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Research aimed at correcting words in text has focused on three progressively more

difficult problems: (1) nonword error detection; (2) isolated-word error correction; and

(3) context-dependent word correction. In response to the first problem, efflclent

pattern-matching and n-gram analysis techniques have been developed for detecting

strings that do not appear in a given word list. In response to the second problem, a

variety of general and application-specific spelling correction tech n [ques have been

developed. Some of them were based on detailed studies of spelling error patterns. In

response to the third problem, a few experiments using natural-language-processing

tools or statistical-language models have been carried out. This article surveys

documented tindings on spelling error patterns, prowdes descriptions of various

nonword detection and isolated-word error correction techmques, reviews the state of

the art of context-dependent word correction techniques, and discusses research issues

related to all three areas of automatic error correction in text.
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Processing—language models; language parsLng and understandlrLg; text analysts;

1.5.1 [Pattern Recognition]: Models—new-cd nets; stattstzcal: 1.54 [Pattern

Recognition]: Applications—text processing; 1.7.1 [Text Processing]: Text

Editing—spelhng

General Terms: Experimentation, Human Factors, Performance

Additional Key Words and Phrases: Context-dependent spelling correction, grammar

checking, natural-language-processing models, neural net classifiers, n-gram analysis,

Optical Character Recognition (OCR), spell checking, spelling error detection, spelling

error patterns, statistical-language models, word recognition and correction

INTRODUCTION

The problem of devising algorithms and
techniques for automatically correcting
words in text has become a perennial
research challenge. Work began as early
as the 1960s on computer techniques for
automatic spelling correction and auto-
matic text recognition, and it has contin-
ued up to the present. There are good
reasons for the continuing efforts in this
area. Although some excellent academic
and commercial spelling checkers have
been around for some time, existing

spelling correction techniques are limited
in their scope and accuracy. As a conse-
quence, many current computer applica-
tions are still vulnerable to costly text,
code, and data entry mistakes. For exam-
ple, the disruptive 13ell Atlantic and Pa-
cific Bell telephone network outages that
occurred during the summer of 1991 were
due in part to a typographical error in a
software patch. Similarly, although some
good commercial text recognition devices
are available today, they perform opti-
mally only under ideal conditions in
which input consists of clean text set in a

—
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standard type font. Furthermore, even a“.
character recognition accuracy rate as
high as 99?4 yields only a 957. word
recognition accuracy rate, because one
error per 100 characters equates to
roughly one error per 20 words, assum-
ing five-character words. One study
[Cushman 1990] found that in order for
optically scanned documents to contain
no more residual errors than typed docu-
ments, at least 98% character recogni-
tion accuracy coupled with computer-
assisted proofreading would be required.

Evolving human-computer and com-
puter-communications technologies have
opened the door for a host of new applica-

tions that will require better word recog-
nition and error correction capabilities.
Pen-based interfaces will enable users to
provide handwritten input to computers;
text recognition devices will make scan-
ning of printed material feasible under
everyday conditions; voice synthesis
(text-to-speech) devices will make textual
material audible; and voice recognition
(speech-to-text) technology will eventu-

ally allow voice input to computer sys-
tems. But none of these applications will
become practical until significant im-
provements are made in the area of word
recognition and correction. Some of the
other applications that will benefit from
such improvements include more sophis-
ticated software tools for text and code
editing, computer-aided authoring, ma-
chine translation, language learning,
computer-aided tutoring, and database
interaction, as well as various voice input
and voice output business applications
and aids for the disabled such as fax-to-
voice devices and phonetic-transcription
services.

Early on, researchers working within
the paradigms of automatic spelling cor-
rection and automatic text recognition
proceeded somewhat independently us-
ing different techniques. Over time the
various techniques began to migrate be-
tween the fields so that today numerous
hybrid approaches and many reasonably
successful systems exist. But those who
would consider spelling correction a—
solved ~roblem mav be missirw some

L . .

subtle and some not so subtle points
about the nature of the problem and the
scope of existing techniques.

A distinction must be made between
the tasks of error detection and error
correction. Efficient techniques have
been devised for detecting strings that do
not appear in a given word list, diction-
ary, or lexicon. 1 But correcting a mis-
spelled string is a much harder problem.
Not only is the task of locating and rank-
ing candidate words a challenge, but as
Bentley [ 1985] points out: given the mor-
phological productivity of the English
language (e.g., almost any noun can be
verbifled) and the rate at which words

enter and leave the lexicon (e. g., catwonz -

1 The terms “word hsl,,” “dlctlonary,” and “lexlcon”
are used interchangeably m tbe hterature We pre-
fer the use of the term le.wcon because Its connota-
tion of “a list of words relevant to a particular
subject, field, or class” seems best suited to spelling
correction applications, but we adopt the terms
“dictmnary” and “word list” to describe research in
which other authors have used them exclusively.
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anhood, balkanization), some even ques-
tion the wisdom of attempts at automatic
correction.

Many existing spelling correctors ex-
ploit task-specific constraints. For exam-
ple, interactive command line spelling
correctors exploit the small size of a com-
mand language lexicon to achieve quick
response times. Alternatively, longer re-
sponse times are tolerated for noninter-
active-mode manuscript preparation ap-
plications. Both of the foregoing spelling
correction applications tolerate lower
first-guess accuracy by returning multi-
ple guesses and allowing the user to make
the final choice of intended word. In con-
trast, some future applications, such as
text-to-speech synthesis, will require a
system to perform fully automatic, real-
time word recognition and error correc-
tion for vocabularies of many thousands
of words and names. The contrast be-
tween the first two examples and this
last one highlights the distinction be-
tween interactive spelling checkers
and automatic correction. The latter
task is much more demanding, and it is
not clear how far existing spelling correc-
tion techniques can go toward fully auto-
matic word correction.

Most existing spelling correction tech-
niques focus on isolated words, without
taking into account any information that
might be gleaned from the Linguistic or
textual context in which the string ap-
pears. Such isolated-word correction
techniques are unable to detect the sig-
nificant portion of errors, including typo-
graphic, phonetic, cognitive, and gram-
matical errors, that result in other valid
words. Some examples are the use of
form where from was intended, the mis-
use of the words there, their, and they ‘re,

and the occurrence of the word minuets

in the phrase see you in fiue minuets. It
is clear that contextual information is
necessary for the detection and correc-
tion of such errors. A context-based cor-
rection technique would not only address
the problem of real-word errors, i.e., er-
rors that result in another valid word,
but it would also be helpful in correcting
those nonword errors that have more

than one potential correction. An exam-
ple might be the string ater. Without
context there is littlk reason, apart from
a priori frequencies of words, to prefer
after, later, alter, water, or ate, among
others, as the intended correction. Devel-
oping context-based correction tech-
niques has become the foremost chal-
lenge for automatic word recognition and
error correction in text.

For descriptive purposes then, auto-
matic word correcti cm research may be
viewed as focusing on three increasingly
broader problems: (1) nonword error
detection; (2) isolated-word error
correction; and (3) context-depen-
dent word correction. Work on the first
problem spanned a period from the early
1970s into the early 1980s. During that
time, effort was directed mainly toward
exploring efficient pattern-matching and
string comparison techniques for decid-
ing whether an input string appears in a
predefine word list or dictionary. Work
on the second problem spanned a broader
time frame, from as early as the 1960s
into the present. During that time vari-
ous general and special-purpose correc-
tion techniques were devised, some in
conjunction with stuclies of spelling error
patterns. Experimentation on the third
problem began in th,e early 1980s with
the development of automatic natural-
language-processing lmodels, and interest
has recently been rekindled with the de-
velopment of statistlwal language models.

The UnixTM spell program [McIh-oy
1982] is an example of an effective and
efficient program for spelling error detec-
tion that typifies work on the first prob-
lem. Spell takes a whole document as
input, looks up each string in a 25,000 -
word dictionary tailored to include terms
found mainly in the domain of technical
writing, and returns a list of all strings
that were not found in the dictionary. It
does not make any attempt to correct the
strings that it believes are misspelled.
That task is left to the user, who might

‘M Unix is a registered trademark of UNIX System
Laboratories.
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make use of an isolated-word spelling
correction tool, such as grope [Taylor
1981]. Grope, another Unix tool, is one of
many existing isolated-word spelling cor-
rectors that were developed to address
the second problem. Grope acts as an
interactive decision aid by accepting a
string as input and providing the user
with an ordered list of the most similar
strings found in its dictionary as output,
allowing the user to choose among them.
The Unix Writer’s Workbench package
[Cherry 1983] represents one of the first
efforts to address the third problem, that
of detecting and correcting real-word er-
rors in text. Its style and diction tools
flag common grammatical and stylistic
errors and suggest possible corrections.
Although some commercial grammar-
checking programs are available, no gen-
eral-purpose context-dependent word
correction tool yet exists.

This article m-esents a review of the
techniques an~ issues related to auto-
matic error correction in text. It is di-
vided into three sections corresponding
to the three moblems identified above.
Section 1 reviews nonword error detec-
tion work and includes a discussion of
issues related to dictionary size and cov-.
erage and word boundary infractions.
Section 2 reviews findings on spelling
error patterns and provides descriptions
of many of the techniques that have been
used for isolated-word error correction. It
notes the application domains for which
the techniques were devised and high-
lights application-specific constraints
that were exploited by some techniques.
Section 3 reviews preliminary work in
the area of context-dependent error cor-
rection in text. It includes a brief history
of early work based on natural language
processing as well as recent experiments
based on statistical language modeling.
Possible future directions for the field
are hypothesized in an epilogue.

1. NONWORD ERROR

DETECTION RESEARCH

The two main techniques that have been
explored for nonword error detection

are n-gram analysis and dictionary
lookup. IV-grams are n-letter subse-
quences of words or strings, where n is
usually one, two, or three. One-letter n-
grams are referred to as unigrams or
monograms; two-letter n-grams are re-
ferred to as digrams or bigrams; and
three-letter n-grams as trigrams. In gen-
eral, n-gram error detection techniques
work by examining each n-gram in an
input string and looking it up in a pre-
compiled table of n-gram statistics to as-
certain either its existence or its fre-
quency. Strings that are found to contain
nonexistent or hizhlv infrequent n-m-ams

(such as the tri&a”m sh i‘ or lQN”) are
identified as pr~bable misspellings. N-
gram techniques usually require either a
dictionary or a large corpus of text in
order to precompiled an n-gram table. Dic-
tionary lookup techniques work by sim-
ply checking to see if an input string
appears in a dictionary, i.e., a list of ac-
ceptable words. If not, the string is
flagged as a misspelled word. There are
subtle problems involved in the compila-
tion of a useful dictionary for a spelling
correction application.

Historically, text recognition systems
have tended to relv on n-m-am tech-.
niques for error detection while spelling
checkers have tended to rely on dictio-
nary lookup techniques. In both cases,
problems arise when errors cross word
boundaries resulting in run-on or split
words. Issues related to each of these
techniques and their accompanying prob-
lems are discussed next.

1.1 N-gram Analysis Techniques

Text recognition systems usually focus
on one of three modes of text: hand-
printed text, handwritten text (some-
times referred to as cursive script), or
machine-printed text. All three modes
may be processed by optical character
recognition (OCR) devices. OCR devices
typically rely on feature analysis to rec-
ognize individual characters within
words. Examples of features might in-
clude counts of the number of vertical,
horizontal, curved, and crossing lines in
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a character. Errors made by OCR devices
tend to be those that confuse characters
with similar features, such as O and D, S
and 5, or t and f. IV-gram analysis has
proven useful for detecting such errors
because they tend to result in improbable
n-grams. Following up on early work by
Sitar [1961], Harmon [1972] reported
that “l) in large samples of common En-
glish publication text, 42% of all possible
digram combinations never occur and 2)
random substitution of one letter in a
word by another letter which is selected
with equal likelihood from the other 25 of
the alphabet will produce at least one
new digram which has zero probability
70% of the time” (p. 1172). These facts
have been exploited for detecting errors
in the output of optical-character recog-
nizers.2

N-gram tables can take on a variety of
forms. The simplest is a binary bigram

array, which is a two-dimensional array
of size 26 X 26 whose elements represent
all possible two-letter combinations of the
alphabet. The value of each element in
the array is set to either O or 1 depending
on whether that bigram occurs in at least
one word in a predefine lexicon or dic-
tionary. A binary trigram array would
have three dimensions. Both of the above
arrays are referred to as nonpositional
binary n-gram arrays because they do
not indicate the position of the n-gram
within a word.

More of the structure of the lexicon can
be captured by a set of positional bi-

nary n-gram arrays. For example, in a
positional binary trigram array, the
i, j, k th element would have the value 1
if and only if there exists at least one
word in the lexicon with the letters 1, m,

and n in positions z, j, and k. The trade-
off for representing more of the structure
of the lexicon is the increase in storage

2 Although text recognition researchers often refer
to techniques that use n-gram statistics as
context-dependent techniques, this use of the term
“context” refers only to within-word context. In con-
trast, the techniques that are discussed in Section 3
of this article exploit extraword context for correct-
ing real-word errors.

space required for the complete set of
positional arrays, Any word can be
checked for errors by simply looking up
its corresponding enltries in binary n-

gram arrays to make sure they are all 1s.
Two studies give some indication of

how effective nonpositional and posi-
tional binary n-gram arrays are at de-
tecting errors in OCFt output. Hanson et
al. [1976] studied the output of an optical
scanner that had been fed a corpus of
hand-printed six-letter words. The out-
put contained 7,662 words each having a
single substitution error. The best de-
tection performance was achieved using
positional binary trigram arrays. These
detected 7,561, or 98%, of the errors.
Nonpositional n-gram arrays scored sub-
stantially lower. Hull and Srihari [1982]
found that positional binary trigrams
representing a subdlictionary of 5,000
seven-letter words detected over 98% of
substitution errors. 1t is not clear how
well these results generalize to shorter-
length words and otlher types of errors
such as insertions, deletions, and fram-
ing errors that alter the lengths of words.
An example of a framing error is the
substitution of the sinlgle letter m for the
two-letter sequence ni or vice versa.

Another study was designed to evalu-
ate the effectiveness of trigram frequency
statistics for spell-checking applications.
Zamora et al. [1981] compiled a trigram
table containing frequency counts or
probabilities instead of binary values.
Such statistics must be compiled from a
sufficiently large corpus of text (e.g., at
least a million words) covering the do-
main of discourse. Then they analyzed a
collection of 50,000 word/misspelling
pairs from seven machine-readable
databases to determine “whether there is
sufficient difference lbetween the trigram
compositions of correct and misspelled
words for the latter to be reliably de-
tected (p. 306). They found that al-
though trigram analysis was able to de-
termine the error site within a mis-
spelled word accurate ly, it did not distin-
guish effectively between valid words and
misspellings.

To address this problem, Morris and
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Cherry [1975] devised an alternative
technique for using trigram frequency
statistics to detect errors. Rather than
generating a trigram frequency table
from a general corpus of text, they gener-
ated the table directly from the docu-
ment to be checked. Their rationale for
this approach was based on their finding
that “for a given author, the number of
distinct words [used in a document] in-
creases approximately as the square root
of the total number of words” (p. 54).
Thus, misspellings might show up as
words containing trigrams that were pe-
culiar to the document itself.

To check a document for spelling er-
rors, Morris and Cherry [1975] generate
a trigram frequency table based on the
document itself. Then, for each unique
word in the document they compute an
index of peculiarity as a function of the
trigram frequencies of the word. Finally,
they rank the words in decreasing order
of peculiarity. They hypothesize that
misspelled words will tend to appear near
the top of the list. As an example of the
technique’s success, they point out (1)
that it took only ten minutes for an au-
thor of a 108-page document to scan the
output list and identify misspelled words
and (2) that 23 of the 30 misspelled words
in the document occurred in the top 100
words of the list.

1.2 Dictionary Lookup Techniques

Dictionary lookup is a straightforward
task. However, response time becomes a
problem when dictionary size exceeds a
few hundred words. In document pro-
cessing and information retrieval, the
number of dictionary entries can range
from 25,000 to more than 250,000 words.
This problem has been addressed in three
ways, via efficient dictionary lookup
and/or pattern-matching algorithms, via
dictionary-partitioning schemes, and via
morphological-processing techniques.

The most common technique for gain-
ing fast access to a dictionary is the use
of a hash table [Knuth 1973]. To look up
an input string, one simply computes its
hash address and retrieves the word
stored at that address in the precon-

structed hash table. Sometimes a link or
two must be traversed if collisions oc-
curred during construction of the hash
table. If the word stored at the hash
address is different from the input string
or is null, a misspelling is indicated.

Turba [1981] provides a quick review
of the pros and cons of using hash tables
for dictionary lookup. The main advan-
tage is that the random-access nature of
a hash code eliminates the large number
of comparisons needed for sequential or
even tree-based searches of the dictio-
nary. The main disadvantage is the need
to devise a clever hash function that
avoids collisions without requiring a huge
hash table. Fox et al. [1992] recently de-
scribed a technique for devising “minimal
perfect hash functions whose specifica-
tion space is very close to the theoretical
lower bound” (p. 266). Some earlier sys-
tems circumvented the storage problem
by not storing the character representa-
tion of the word itself but instead using a
single bit to indicate that a given hash
code maps into a valid word. This trick
explains the occasional odd behavior of
some spelling checkers in which an in-
valid string goes undetected because it
happened to map into a hash address for
a valid word. The Unix spell program is
one example of a program that employs a
hash table for fast dictionary lookup.

Other standard search techniques,
such as tries [Knuth 1973], frequency-
ordered binary search trees [Knuth 1973],
and finite-state automata [Aho and
Corasick 1975], have been used to reduce
dictionary search time. Knuth [1973] de-
fines a trie as “an M-ary tree, whose
nodes are M-place vectors with compo-
nents corresponding to digits or charac-
ters. Each node on level 1 represents the
set of all keys that begin with a certain
sequence of 1 characters; the node speci-
fies an M-way branch, depending on the
(1 + l)st character” (p. 481). Knuth notes
that the name trie was coined by Fred-
kin [1960] because of its role in informa-
tion retrieval applications. Sheil [1978]
introduced a fast lookup technique called
median split trees for searching lexicons
with highly skewed distributions such as
English text. A technique for fast regu-
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lar-expression pattern matching in-
vented by Aho and Corasick [1975] pre-
scribes a method for creating a finite-
state automaton to represent a small set
of terms (keywords) that must be
matched against a corpus of running text.
Other algorithms for fast pattern match-
ing, some of which have been adopted for
spelling correction applications, are de-
scribed in a review article by Aho [1990].

Peterson [1980] suggests partitioning a
dictionary into three levels for spelling
error detection in text-processing appli-
cations. The first level, to be stored in
cache memory, would consist of the few
hundred most frequently used words that
account for 5070 of dictionary accesses;
the second level, to be stored in regular
memory, would consist of a few thousand
domain-specific words which account for
another 45T0 of dictionary accesses; a
third level, to be stored in secondary
memory, would consist of tens of thou-
sands of less frequently used words which
account for the remaining 57o of dictio-
nary accesses.

Memory constraints also motivated
many early spelling checkers to avoid
storing all possible morphological vari-
ants of individual words (e.g., plurals,
past tenses, adverbial, nominals, etc.) as
separate dictionary entries. Instead, only
root forms of words were stored. If a
lookup procedure failed to find an input
string in the dictionary, it would issue a
call to a morphological-processing rou-
tine which would iteratively check for
known suffixes and prefixes to strip (and
possibly replace with alternative strings,
as in dictionaries * dictionary) before
re-searching the dictionary. However, as
Elliott [1988] describes in a memo on an
improved morphological-processing com-
ponent for the Unix spell program, sim-
ple affix-stripping methods often lead to
false acceptances, such as adviseed or
disclam, when affixes are stripped with
no regard to grammar. Elliott provides
an efficient solution based on creating
affix equivalence classes that are moti-
vated by spelling similarities.

Increases in computational speed and
memory have made dictionary storage
and processing-time constraints less crit-

ical, so the current trend is toward stor-
ing all inflectional variants of words as
separate dictionary entries. However, the
need for morpholo~tical processing will
never be completely obviated because it
is virtually impossible to anticipate all of
the morphologically creative terms that
people tend to generate in both text and
conversation (e.g., “1arge software pro-
jects must avoid creeping featurism,”

“these actors are highly hatchable”).

1.3 Dictionary Construction issues

A lexicon for a spelling correction or text
recognition application must be carefully
tuned to its intended domain of dis-
course. Too small a lexicon can burden
the user with too many false rejections of
valid terms; too large a lexicon can result
in an unacceptably hllgh number of false
acceptances, i.e., genuine mistakes that
went undetected beta use they happened
to form valid low-frequency or extra-
domain words (e.g., icwe, fen, ueery, etc).
But the relationship between mis-
spellings and word frequencies is not
straightforward.

Peterson [1986] calculated that ap-
proximately half a percent of all single-
error transformations of each of the words
on a 350,000-item word list result in other
valid words on the list. He noted that the
number of actual undetected errors may
be much higher in practice due to the
fact that shorter words, which tend to
occur more frequently, also have a higher
tendency to result in other valid words
when misspelled. So he went on to com-
pute frequency-weighted estimates of the
percentage of errors that would go unde-
tected as a function of dictionary size.
His estimates ranged from 2% for a small
dictionary to 10% for a 50,000-word dic-
tionary to almost 16% for a 350,000-word
dictionary. This led Peterson to recom-
mend that word lists for spelling correc-
tion be kept relatively small.

However, Damerau and Mays [1989]
challenge this recommendation. Using a
corpus of over 22 million words of text
from various genres, they found that by
increasing the size of their frequency
rank-ordered word list from 50,000 to
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60,000 words, they were able to elimi-
nate 1,348 false rejections while incur-
ring only 23 additional false acceptances.
Since this 50-to-l differential error rate
represents a significant improvement in
correction accuracy, they recommend the
use of larger lexicons.

Dictionaries themselves are often in-
sufficient sources for lexicon construc-
tion. Walker and Amsler [1986] observed
that nearly two-thirds (61%) of the words
in the Merriam-Webster Seventh Colle-

giate Dictionary did not appear in an
eight million word corpus of New York

Times news wire text, and, conversely,
almost two-thirds (649%) of the words in
the text were not in the dictionary. In
analyzing a sample of the novel terms in
the New York Times text, they found
that “one fourth were inflected forms;
one fourth were proper nouns; one sixth
were hyphenated forms; one-twelfth were
misspellings; and one fourth were not yet
resolved, but some are likely to be new
words occurring since the dictionary was
published’ (p. 79). Many such novel terms
could be desirable, frequently used terms
in a given application. Some applications
require lexicons specialized for command
and file names or specific database en-
tries. On the topic of construction of the
spelling list for the spell program, McIl-
roy [1982] provides some helpful insights
into appropriate sources that may be
drawn upon for general word-list con-
struction. A more recent article by Dam-
erau [1990] provides some insights into
and guidelines for the automatic con-
struction and customization of domain-
oriented vocabularies for specialized nat-
ural-language-processing applications.

Mitton [1986] has made available a
computer-usable dictionary derived from
the Oxford Advanced Learner’s Dictio-

nary of Current English. Its nearly 38,000
main entries yield over 68,000 inflected
forms. Sampson [1989] has evaluated the
coverage of this dictionary against a
50,000-word cross section of a corpus of
written Englislh. Both the dictionary and
the corpus “are British-based, though
both include some material pertaining to
other varieties of English” (p. 29). Samp-

son reports that he found the dictionary’s
coverage of the corpus to be surprisingly
good—only 1,477, or 3.24T0, of the word
tokens in the corpus were not in the
dictionary.3 In analyzing the 1,176 dis-
tinct word types represented by the 1,477
word tokens, Sampson found that over
half, about 600, were proper names or
adjectives derived from proper names
(e.g., Carolean). Of the remainder, he felt
that some, including abbreviations and
numbers written digitally with alpha-
betic affixes, could be added with relative
ease. But he found foreign words, hy-
phenated variants, and derived morpho-
logical variants (e.g., inevitably, glassily,

fairness ), especially missing negative
forms (e.g., uncongenial, irreversible),

to be problems for spelling dictionary
construction.

1.4 The Word Boundary Problem

For virtually all spelling error detection
and correction techniques, word bound-
aries are defined by white space charac-
ters (e.g., blanks, tabs, carriage returns,
etc.). This assumption turns out to be
problematic since a significant portion of
text errors involve running together two
or more words, sometimes with intrinsic
errors (e.g., ofthe, understandhrne), or
splitting a single word (e.g., sp ent, th

ebooh ). Kukich [1992] found that a full
1570 of all nonword spelling errors in a

40,000-word corpus of typed textual con-
versations involved this type of error (i.e.,
13% were run-on words, and 2Yc were
split words), Mitton [1987] found that
run-ons and splits frequently result in at
least one valid word (e.g., forgot + for

got, in form + inform), so one or both
such errors may go undetected. In con-
trast to human-generated errors, Jones
et al. [1991] found that OCR devices are
more likely to split words than to join

~ A type us token convention is used to dmtinguish
actual occurrences of an individual word, i e , to-
kens, from the name of the word itself, i.e., its type
For example, a document may contain many tokens

of the word the, but the word the itself represents
only one type
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them. The difficulty in dealing with run-
ons and splits lies in the fact that weak-
ening the word boundary constraint re-
sults in a combinatorial explosion of the
number of possible word combinations or
subdivisions that must be considered.

No spelling error detection systems
treat word boundary infractions any dif-
ferently than other types of errors, but a
few spelling error correction systems at-
tempt to handle some types of run-on
and split-word errors explicitly. One such
corrector was built by Lee et al. [ 1990]
for a natural language interface to an
intelligent tutoring system in the domain
of cardiovascular physiology. This correc-
tor exploits the limited vocabulary of its
domain of discourse to check for run-ons
or splits when no candidate corrections
exceed a minimum threshold of similar-
ity. Another corrector implemented by
Means [1988] for a limited-domain natu-
ral language interface handles split-word
errors in the same way. A corrector de-
signed by Kernighan [1991] for a text-to-
speech application handles run-on words
by checking for space bar deletions at the
same time it checks for other letter dele-
tions. It sets a “likelihood score for a
two-word correction equal to a constant
(determined by trial and error) times the
frequencies of the two words” (p. 4).
CLARE, a front end to a natural lan-
guage parsing and generation system im-
plemented by Carter [1992], was explic-
itly designed to handle word boundary
infractions. It does so by maintaining “a
lattice of overlapping word hypotheses
from which one or more complete paths
are subsequently selected” (p. 159). This
system was able to find a single, accurate
correction for 59 of 108 errors in a test
set of 102 sentences. Twenty-four of the
59 corrections involved word boundary
infractions. An error-correcting postpro-
cessor for OCR devices designed by Jones
et al. [1991] includes a processing phase
that explicitly checks for split-word er-
rors.

There is some indication that a large
portion of run-on and split-word errors
involves a relatively small set of high-
frequency function words (i.e., preposi-

tions, articles, quantifiers, pronouns,
etc.), thus giving rise to the possibility of
limiting the search time required to check
for this type of error. The SPEEDCOP
corrector, implemented by Pollock and
Zamora [1984] for a general text-editing
application, includes a final subroutine
that checks for run-on errors involving
function words after other routines have
failed. However, the general problem of
handling errors due to word boundary
infractions remains one of the significant
unsolved problems in spelling correction
research.

1.5 Summary of Nonword Error
Detection Work

In general, although n-gram analysis
may be useful for detecting machine-gen-
erated errors such as those produced by
optical-character recognizes, it has
proven to be less accurate for detecting
human-generated errors. Hence, most
current spelling correction techniques
rely on dictionary lookup for error detec-
tion. Since access speed may be a factor
when dictionary size is moderate to large
(e.g., > 20,000 entries), efficient algo-
rithms for exact pattern matching that
exploit hash tables, tries, and other tech-
niques have been used. Dictionaries must
be carefully tailored to the domain of
discourse of the application in order to
avoid frustrating the user with too many
false acceptances and rejections. More re-
search in the area of generative morphol-

Ogy is warranted to address the problem
of creative morphology if not dictionary
size reduction. Finally, errors due to word
boundary infractions remain a signifi-
cant unsolved problelm for spelling error
detection and correct] on.

2. ISOLATED-WORD EIRROR

CORRECTION RESEARCH

For some applications, simply detecting
errors in text may be sufficient, but for
most applications detection alone is not
enough. For example, since the goal of
text recogmtlon devmes 1s to accurately
reproduce input text, output errors must
be both detected and corrected. Simi-
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larly, users have come to expect spelling
checkers to suggest corrections for the
nonwords they detect. Indeed, some
spelling correction applications, such as
text-to-speech synthesis, require that er-
rors be both detected and corrected with-
out user intervention. To address the
problem of correcting words in text, a
variety of isolated-word error correc-
tion techniques have been developed.

The characteristics of different applica-
tions impose different constraints on the
design of isolated-word error correctors,
and many successful correction tech-
niques have been devised by exploiting
application-specific characteristics and
constraints. It is worth reviewing some
isolated-word error correction applica-
tions and their characteristics before
delving into the details of individual
techniques.

Text recognition and text editing
are the most studied applications. A
number of papers covering the first two
decades of text recognition research is
available in an anthology [Srihari 1984],
Some more recent work in this area in-
cludes the following papers: [Burr 1987;
Goshtasby and Ehrich 1988; Ho et al.
1991; Jones et al. 1991]. A variety of
spelling correction techniques used in
text editing is represented by the follow-
ing papers: [Damerau 1964; Alberga
1967; Gorin 1971; Wagner 1974; Hall
1980; Peterson 1980; Yannakoudakis and
Fawthrop 1983a; Pollock and Zamora
1984; Kernighan et al. 1990].

Other applications for which spelling
correction techniques have been devised
include systems programming appli-
cations [Morgan 1970; Aho and Peter-
son 1972; Sidorov 1979; Spenke et al.
1984], command language interfaces
[Hawley 1982; Durham et al. 1983],
database retrieval and information
retrieval interfaces [Blair 1960; David-
son 1962; Boivie 1981; Mor and Fraenkel
1982a; Bickel 1987; Kukich 1988a; Salton

1989; Gersho and Reiter 1990;
Cherkassky et al. 1990; Parsaye et al.
1990], natural language interfaces
[Veronis 1988a; Means 1988; Berkel
1988; Lee et al. 1990; Deffner et al.

1990a], computer-aided tutoring
[Tenczar and Golden 1972], computer-
aided language learning [ Contant and
Brunelle 1992], text-to-speech applica-
tions [Kukich 1990; Tsao 1990;
Kernighan 1991], augmentative com-
munication systems for the disabled
[Aim et al. 1992; Wright and Newell 1991;
Demasco and McCoy 1992], pen-based
interfaces [Rhyne and Wolf 1991], and
even searching for historical word forms
in databases of 17th century English [Ro-
bertson and Willet 1992].

Most application-specific design con-
siderations are related to three main is-
sues: (1) lexicon issues, (2) computer-
human interface issues, and (3) spell-
ing error pattern issues. Lexicon is-
sues include such things as lexicon size
and coverage, rates of entry of new terms
into the lexicon, and whether morpholog-
ical processing, such as affix handling, is
required. These were discussed in the
preceding section on dictionary construc-
tion issues.

Computer-human interface issues
include such considerations as whether a
real-time response is needed, whether the
computer can solicit feedback from the
user, how much accuracy is required on
the first guess, etc. These issues are es-
pecially important in command language
interfaces where trade-offs must be made
to balance the need for accuracy against
the need for quick response time and
where care must be taken to provide the
user with helpful corrections without
badgering her with unwanted sugges-
tions. An empirical study by Durham et
al. [1983] demonstrated, among other
things, that considerable benefits ac-
crued from a simple, speedy algorithm
for correcting single-error typos that only
corrected about one quarter of the
spelling mistakes made by users but did
so in an unobtrusive manner. Other work,
by Hawley [1982], demonstrated the ease
with which spelling correction could be
incorporated into the Unix command lan-
guage interface. In studying alternative
methods for correcting recognition errors
in pen-based interfaces, Rhyne and Wolf
[1993] found that the cost to repair er-
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rors is a critical factor in the design of
these interfaces and in their ultimate ac-
ceptance by users. Some of the correction
methods they are studying include allow-
ing the user to write over an error, allow-
ing for keyboard correction, and provid-
ing n best matches for the user to select
from.

Issues related to spelling error pat-
terns include such things as what the
most common errors are, how many er-
rors tend to occur within a word, whether
errors tend to change word length,
whether misspellings are typographi-
cally, cognitively, or phonetically based,
and, in general, whether errors can be
characterized by rules or by probabilistic
tendencies. Spelling error pattern issues
have had perhaps the greatest impact
design of correction techniques.

2.1 Spelling Error Patterns

Spelling error patterns vary greatly de-
pending on the application task. For ex-
ample, transcription typing errors, which
are for the most part due to motor coordi-
nation slips, tend to reflect typewriter
keyboard adjacencies, e.g., the substitu-
tion of b for n. In contrast, errors intro-
duced by optical-character recognizes
are more likely to be based on confusions
due to featural similarities between let-
ters, e.g., the substitution of D for O.
More subtly, even two similar text entry
modes, such as transcription typing and
conversational text typing, e.g., elec-
tronic mail, may exhibit significantly dif-
ferent error frequency and distribution
statistics due to the greater cognitive
overhead involved in the latter task. So
care must be taken not to overgeneralize
findings when discussing spelling error
patterns.

Distinctions are sometimes made
among three different types of nonword
misspellings: (1) typographic errors, (2)
cognitive errors, and (3) phonetic errors.
In the case of typographic errors (e.g.,
the + teh, spell + speel ), it is assumed
that the writer or typist knows the cor-
rect spelling but simply makes a motor
coordination slip. The source of cognitive

errors (e.g., receive -+ recieve, conspiracy

+ conspiracy) is presumed to be a mis-
conception or a lack clf knowledge on the
part of the writer or typist. Phonetic er-
rors (e.g., abyss * abiss, naturally *

nacherly ) are a special class of cognitive
errors in which the writer substitutes a
phonetically correct but orthographically
incorrect sequence of letters for the in-
tended word. It is frequently impossible
to ascribe a single category to a given
error. Is recieue necessarily a cognitive
error, for example, or might it simply be
a typographic transposition error? Simi-
larly, is abiss a phonetic or typographic
error? Fortunately, it is often unneces-
sary to categorize errors in order to de-
velop a useful spelling correction tech-
nique because man,y correction tech-
niques handle typographic and cognitive
misspellings equally well. In fact, only a
few researchers botlher to distinguish
among categories of misspellings. Pho-
netic errors, however, tend to distort
spellings more than typographic errors
and other cognitive errors, so the limited
findings related to these errors are re-
ported below.

Most studies of spelling error patterns
were done for the purpose of designing
correction techniques for nonword errors
(i.e., those for which there is no exact
match in the dictionary), so most find-
ings relate only to nonword as opposed to
real-word errors (i. e., those that result in
another valid word). However, at least
two studies that did address real-world
errors are included in this discussion. It
should be noted that the increasing use
of automatic spelling checkers has proba-
bly reduced the number of nonword er-
rors found in some genres of text. Conse-
quently, the relative ratio of real-word
errors to nonword errors is probably
higher today than it was in early studies,
at least for some applications.

2.1.1 Basic Error Types

One of the first general findings on hu-
man-generated spelling errors was ob-
served by Damerau in 1964 and has been
substantiated for man y applications since
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then. Damerau [ 1964] found that approx-
imately 8070 of all misspelled words con-
tained a single instance of one of the
following four error types: insertion,
deletion, substitution, and transposi-
tion. Misspellings that fall into this large
class are often referred to as single-
error misspellings; misspellings that
contain more than one such error have
been dubbed multi-error misspellings.

The 80% single-error rule cannot be
taken for granted for all applications,
however. Pollock and Zamora [1984]
found that only 6% of 50,000 nonword
spelling errors in the machine-readable
databases they studied were multi-error
misspellings. Conversely, Mitton [1987]
found that 31% of the misspellings in his
170,0 16-word corpus of handwritten es-
says contained multiple errors.

OCR-generated misspellings do not fol-
low the pattern of human-generated mis-
spellings. Most error correction tech-
niques for OCR output assume that the
bulk of the errors will be substitution
errors. However, Jones et al. [1991] re-
port that “the types of [OCR] errors that
occur vary widely, not only from one rec-
ognize to another but also based on font,
input quality and other factors” (p. 929).
They also report that “a significant frac-
tion of OCR errors are not one-to-one
errors (e.g., r-i + n or m + iii)” (p. 927).
Rhyne and Wolf [1993] classify recogni-
tion errors into four categories: (1) sub-
stitutions; (2) failures (no character ex-
ceeds a minimal recognition threshold);
(3) insertions and deletions; and (4) fram-
ing errors (one-to-one mapping failures).

2.1.2 Word Length Effects

Another general finding, a corollary to
the first, is the observation that most
misspellings tend to be within two char-
acters in length of the correct spelling.
This has led many researchers, espe-
cially within the OCR paradigm, to parti-
tion their dictionaries into subdictionar-
ies by word length in order to reduce
search time.

Unfortunately, little concrete data ex-
ists on the frequency of occurrence of
errors by word length. This characteristic

will clearly affect the practical perfor-
mance of a correction technique since er-
rors in short words are harder to correct,
in part because less intraword contextual
information is available to the corrector.
Furthermore, according to Zipfs law [Zipf
1935], short words occur more frequently
than long words, and, according to an
empirical study by Landauer and
Streeter [1973], high-frequency (i.e.,
short) words tend to have more single-er-
ror neighbors than low-frequency words,
thus making it difficult to select the in-
tended correction from its set of neigh-
bors. On the other hand, if spelling er-
rors occur less frequently in short words,
then the problem may be less pressing.

Pollock and Zamora’s study [Pollock
and Zamora 1983] of 50,000 nonword er-
rors indicated that errors in short words
are indeed problematic for spelling cor-
rection even though their frequency of
occurrence may be low. They state: “al-
though 3–4 character misspellings con-
stitute only 9.2% of total misspellings,
they generate 42% of the miscorrections”
(p. 367). There appears to be wide vari-
ance in the proportion of errors that oc-
cur in short words across different appli-
cations. For example, Yannakoudakis
and Fawthrop [ 1983b] found an even
lower frequency of occurrence of errors in
short words, about 1.570, in their analy-
sis of 1,377 errors found in the literature.
In contrast, Kukich [1990] analyzed over
2,000 error types in a corpus of TDD
conversations and found that over 639Z0 of
the errors occurred in words of length 2,
3, and 4 characters. These differences
emphasize the need for determining the
actual characteristics of the spelling er-
rors of the intended application before
designing or implementing a correction
system.

2.1.3 F/rst-Posit/on Errors

It is generally believed that few errors
tend to occur in the first letter of a word.
Only a few studies actually document
first-position error statistics. Pollock and
Zamora [1983] found that 3.370 of their
50,000 misspellings involved first letters,
and Yannakoudakis and Fawthrop
[ 1983b] observed a first-position error

ACM Computmg Surveys, Vol. 24, No 4, December 1992



Automatically Correcting Words 1n Text ● 389

rate of 1.490 in 568 typing errors. Mitton
[1987] found that 7% of all the mis-
spellings he studied involved first-posi-
tion errors. In contrast, Kukich [1992]
observed a 15 TO first-position error rate
in a 40,000-word corpus of typed textual
conversations.

Discounting first-position errors allows
a lexicon to be partitioned into 26 sub-
sets, each containing all words beginning
with a single letter, thus greatly reduc-
ing search time. Many spelling correction
techniques have exploited this character-
istic. However, a caveat is in order any
time dictionary-partitioning schemes are
used: a trade-off must be made between
quicker response time and reduced accu-
racy due to the possibility of missing the
correction entirely because it is not in the
partition searched.

2.1.4 Keyboard Effects

Some extensive studies of typing behav-
ior were carried out by the LNR Typing
Research Group [Gentner et al. 1983].
Rather than developing a spelling correc-
tion technique, their goal was to develop
a working computer simulation model of
typing. As part of this work, Grudin
[1983] performed an extensive analysis
of the typing errors made by six expert
typists and eight novice typists while
transcribing magazine articles totaling
about 60,000 characters of text. He found
large individual differences in both typ-
ing speed and types of errors made. For
example, error rates ranged from 0.4% to
1.9?0 for experts and averaged 3.2% for
novices; the majority of expert errors
were insertions that resulted from hit-
ting two adjacent keys simultaneously
while the majority of novice errors were
substitutions. But Grudin did uncover
some general patterns. After compiling a
confusion matrix4 from the 3,800 substi-
tution errors in his corpus, he observed

‘ A confusion matrix M a square matrix whose rows
and columns are labeled with the characters of the
keyboard and whose @h element contains the fre-
quency count of the number of times letter L was
mistakenly keyed when letter J was intended in a
given corpus.

that 58% of all substitution errors in-
volved adjacent typewriter keys. He also
found strong letter frequency effects in
the adjacent substitution errors, i.e., even
after normalizing for frequency in lan-
guage, a typist is more likely to substi-
tute a higher-frequency letter for a

lower-frequency nej ghbor than vice-
versa. Grudin went on to develop a com-
puter model of typing capable of generat-
ing the same sorts of errors that human
typists make [Grudin 1981]. Until re-
cently, few spelling correction techniques
have attempted to directly exploit the
probabilistic tendencies that arise from
keyboard adjacencies and letter frequen-
cies. Those that have are discussed in
Section 2.2.5.

2.1.5 Error Rates

Data concerning the frequency of occur-
rence of spelling errors is not abundant.
The few data points tlhat do exist must be
qualified by (1) the size of the corpus
from which they were drawn; (2) the text
entry mode of the corpus, e.g., handwrit-
ing, transcription typing, conversational
typing, edited machine-readable text,

etc.; and (3) the date of the study, since
newer studies for solme genres, such as
edited machine-readable text, probably
reflect lower error rates due to the avail-
ability of automatic spelling checkers.
Furthermore, whether both nonword and
real-word errors wet-e included in the
study should also be noted.

Grudin’s transcription-typing study
[Grudin 1983] foundl average error rates
of 1% for expert tylpists and 3.2% for
novices. His corpus consisted of approxi-
mately 60,000 characters of typed text.
He did not distinguish between errors
that resulted in nonwords and errors that
resulted in real words.

Two studies of errors in typed textual
conversations by deaf TDD (Telecom-
munications Device for the Deaf) users
by Kukich [1992] and Tsao [19901 found
nonword spelling error rates of 670 and
5% respectively. The corpus studied by
Kukich contained 40,000 words, or, more
accurately, strings, and that studied by
Tsao contained 130,000 strings.

Pollock and Zamora [1984] examined a
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set of machine-readable databases con-
taining 25 million words of text. They
found over 50,000 nonword errors, for a
spelling error rate of 0.2%. An even lower
error rate holds for a corpus of AP (Asso-
ciated Press) news wire text studied by
Church and Gale [1991]. For the pur-
poses of their study, a typo was defined
as any lower-case word rejected by the
Unix spell program. By this measure,
they found that “the AP generates about
1 million words and 500 typos per week”
(p. 93), which equates to an error rate of
0.05Y0.

Spelling error rates of 1.5% and 2.5%
for handwritten text have been reported
by Wing and Baddeley [ 1980] and Mitton
[1987] respectively. Wing and Baddeley’s
corpus consisted of 40 essays written by
Cambridge college applicants totaling
over 80,000 words, of which 1,185 were
in error; Mitton’s corpus contained 925
high school student essays totaling
170,016 words, of which 4,128 were in
error. Both of these studies included both
nonword and real-word errors. A quick
scan of Wing and Baddeley’s data sug-
gest that at least 30’%. were real-word
errors. Mitton found that fully 409” of
the misspellings in his corpus were real-
word errors. These involved mainly sub-
stitution of a wrong function word (e.g.,
he for her), substitution of a wrong in-
flected form (e.g., arriue for arriued), and
incorrect division of a word (e.g., my self

for myself ). None of these types of errors
are detectable by isolated-word error cor-
rectors. As noted in Section 1.3,
Peterson’s [1986] study of undetected
spelling errors indicates that single-error
typos alone are likely to result in valid
words at least 16% of the time. These
findings suggest a genuine need for con-
text-dependent spelling correction meth-
ods, at least for some applications. This
topic will be taken up in Section 3.

While many manufacturers of OCR
equipment advertise character recogni-
tion error rates as low as 1–270, or equiv-
alent word error rates of 5–10%, recent
research [Santos et al. 1992; Jones et al.
1991] indicates that these devices tend to
exhibit marginal performance levels, e.g.,

word error rates in the range of 7– 16~0,
in actual field applications (as opposed to
laboratory testing under ideal condi-
tions). Nevertheless, one recent study

[Nielsen et al. 19921 found that despite
word error rates of 8.87o for one pen-
based system, information retrieval rates
were nearly as good for pen-based-en-
tered documents as they were for the
same error-free text. The authors caution
readers that this result holds only for
documents whose average length was 185
words, and that “very short notes would
be difficult to find without the use of
further attributes such as time or context
of writing” (p. 7).

2.1.6 Phonet/c Errors

Examples of applications in which pho-
netic errors abound include (1) the auto-
matic yellow-pages-like information re-
trieval service available in the French
Minitel system [Veronis 1998b], (2) a di-
rectory assistance program for looking up
names in a corporate directory [ Boivie
1981], a database interface for locating
individuals by surname in large credit,
insurance, motor vehicle bureau, and law
enforcement databases [ Oshika et al.
1988], and (3) a natural language inter-
face to an electronic encyclopedia [Berkel
and DeSmedt 1988]. The predominant
phonetic nature of errors in these appli-
cations is intuitively explained by the
fact that people resort to phonetic
spellings for unfamiliar names and
words.

Two data points on the frequency of
occurrence of phonetic errors have been
documented. One is provided by Van
Berkel and DeSmedt [ 1988]. They had 10
Dutch subjects transcribe a tape record-
ing of 123 Dutch surnames randomly
chosen from a telephone directory. They
found that 38% of the spellings gener-
ated by the subjects were incorrect de-
spite being phonetically plausible. The
other data point comes from Mitton’s
study [Mitten 1987]. He found that 44970
of all the spelling errors in his corpus
of 925 student essays involved homo-
phones.
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2.1.7 Heuristic Rules and Probabilistic

Tendencies

Three comprehensive studies of spelling
error patterns have been carried out with
the goal of devising spelling correction
techniques. One study, by Yannakou-
dakis and Fawthrop [ 1983b], aimed at
discovering specific rules that spelling
errors tend to follow, with the intent of
designing a rule-based spelling correc-
tion algorithm. Another study, by Pollock
and Zamora [1983], aimed at discovering
probabilistic tendencies, such as which
letters and which position within a word
are most frequently involved in errors,
with the intent of devising a similarity
key-based technique. A third study, by
Kernighan et al. [1990] aimed at compil-
ing error probability tables for each of
the four classes of errors, with the intent
of exploiting those probabilities directly.
There is obviously some overlap among
goals of these three studies. Neverthe-
less, the information they derived was
used to devise and implement three very
different spelling correction techniques,
each of which is described in the next
section. This section contains a brief re-
view of their findings.

Yannakoudakis and Fawthrop [1983a,
1983b] sought a general characterization
of misspelling behavior. They compiled a
database of 1,377 spelling errors culled
from a variety of sources, including mis-
takes found in the Brown corpus [Kucera
and Francis 1967] as well as those found
in a 60,000-word corpus of text typed by
three University of Bradford adults who
“believed themselves to be very bad
spellers.” They found that a large portion
of the errors could be accounted for by a
set of 17 heuristic rules, 12 of which
related to the misuse of consonants or
vowels in graphemes,5 and five of which
related to sequence production. For ex-
ample, heuristics related to consonants
included (1) the letter h is frequently

‘ A grapheme is a letter sequence corresponding to

a phoneme. For example, that includes the
graphemes th, a, and t.

omitted in words containing the graph-
emes cii, gh, ph, and rh, as in the mis-
spellings agast and tecniques; and (2)
doubling and singling of consonants
which frequently occur doubled is a com-
mon error. Heuristics related to sequence
production included: (3) the most fre-
quent length of a misspelling is one letter
short of the correct spelling; (4) typing
errors are caused by hitting an adjacent
key on the keyboard or by hitting two
keys together; (5) short misspellings do
not contain more than one error, and so
on.

The application motivating Pollock and
Zamora’s study was that of editing ma-
chine-readable text for bibliographic in-
formation retrieval services. They ex-
tracted over 50,000 errors from 25 mil-
lion words of scientifi c and scholarly text
taken from seven (Uhemical Abstracts
Service databases. Among other things,
they found that (1) 0.2(% of the words in
their corpus contained spelling errors; (2)
9470 of the spelling errors were single
errors; (3) 34% of all errors were omis-
sions; (4) 2370 of all errors occurred in
the third position of a word; and (5) ex-
cept for a few frequently misspelled words
(e.g., the - teh), most misspellings are
rarely repeated.

Kernighan et al. [1990] scanned 44
million words of AP news wire text for
spelling errors. Using spell to locate non-
word strings in the text and a candidate
generation technique to locate every pos-
sible dictionary entry formed by a single
insertion, deletion, substitution, or trans-
position in the nonword strings, they
found over 25,000 misspellings for which
there existed exactly one possible correct
spelling. (Some nonword strings had no
possible corrections because they con-
tained more than one error; others had
more than one possible correction, e.g.,
acress + actress, acres, access.) Their list
of 25,000 misspelling/correct-spelling
pairs was used to compile error fre-
quency tables (a.k.a., confusion matrices)
for each of the four classes of spelling
errors: insertions, deletions, substitu-
tions, and transpositions. For example,
they determined tha~ a was incorrectly
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substituted for e 238 times; s was incor-
rectly inserted after e 436 times; t was
incorrectly deleted after i 231 times; and
it was incorrectly typed for ti48 times.
These frequencies were used to estimate
the probability of occurrence of each po-
tential error.

2.1,8 Common M/sspell/ngs

Still other sources of data on the nature
of spelling errors are published lists of
common misspellings and their correc-
tions. Webster’s New World Misspeller’s

Dictionary [Webster 1983] is one such
list. Its foreword identifies 12 classes of
common errors, such as uncertainty
about whether a consonant is doubled,
errors resulting from mispronunciations,
errors resulting from homonyms, etc.,
some of which overlap with the Yan-
nakoudakis and Fawthro~ [ 1983bl find-.-
ings. Very few academic spelling correc-
tors report the use of lists of common
misspellings. One exception is the tech-
nique devised by Pollock and Zamora
which did incorporate a routine for
checking a short list of frequently mis-
spelled words.

2.1.9 Summary of Spelling Error

Pattern F/ndings

In summary, the frequency of occurrence
of nonword spelling errors varies greatly
depending on application, data entry
mode, and date of study. Estimates range
from as low as 0.0570 in edited news wire
text to as high as 38% in phonetically
oriented database retrieval applications.
Practical OCR word error rates currently
range between 7~c and 16%. OCR error
~atterns tend to varv for different OCR
kevices and tv~e fon<s

Some gene~~l findings on the nature of
human-generated spelling errors include
the facts that: (1) most errors (i.e.,
roughly 80~c) tend to be single instances
of insertions, deletions, substitutions, or
transpositions; (2) as a corollary, most
errors tend to be within one letter in
length of the intended word; and (3) few
misspellings occur in the first letter of a
word. These findings have been exploited

by implementing fast algorithms for cor-
recting single-error misspellings and/or
by partitioning dictionaries according to
first letter and/or word length to reduce
search time. Other general findings of (4)
strong keyboard adjacency effects and (5)
strong letter frequency effects hold po-
tential for improving correction accuracy.
There is general agreement that phonetic
errors are harder to correct because they
result in greater distortion of the mis-
spelled string from the intended word
than single-error typos.

At least one study has examined indi-
vidual errors to try to identify common
mistakes that could be characterized by
general rules, such as the tendency to
double or undouble consonants. Another
study examined errors to identify proba-
bilistic tendencies, such as the fact that
over one-third of all errors were omis-
sions. And another study compiled gen-
eral error probability tables for inser-
tions, deletions, substitutions, and trans-
positions.

It is worth emphasizing that specific
findings do not hold for all applications.
It is imperative to collect a sufficiently
large sample of errors characteristic of
the target application for analysis and
testing in order to select or devise a
spelling correction technique that is opti-
mally suited to that application. Finally,
it is worth noting that one study found
that fully 40% of all errors in a corpus
were real-word errors, i.e., errors that
are not detectable by isolated-word error
correction techniques, thus emphasizing
the need for research into context-depen-
dent word correction techniques.

2.2 Techniques for Isolated-Word
Error Correction

The problem of isolated-word error cor-
rection entails three subproblems: (1) de-
tection of an error; (2) generation of
candidate corrections; and (3) rank-
ing of candidate corrections. Most
techniques treat each subproblem as a
separate process and execute them in se-
quence. The error detection process usu-
ally consists of checking to see if an input
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string is a valid dictionary word or if its
n-grams are all legal. The candidate gen-
eration process usually employs a dictio-
nary or a database of legal n-grams to
locate one or more potential correction
terms. The ranking process usually in-
vokes some lexical-similarity measure
between the misspelled string and the
candidates or a probabilistic estimate of
the likelihood of the correction to rank
order the candidates. Some techniques
omit the third process, leaving the rank-
ing and final selection to the user. Other
techniques, including many probabilistic
and neural net techniques, combine all
three subprocesses into one step by com-
puting a similarity or probability mea-
sure between an input string and each
word, or some subset of words, in the
dictionary. If the resulting top-ranked
dictionary word is not identical to the
input string, an error is indicated and a
ranked list of potential corrections is
computed.

As in detection research, n-gram

statistics initially played a central role in
text recognition techniques while dictio-
nary-based methods dominated spelling
correction techniques. But text recogni-
tion researchers quickly discovered that
n-gram analysis alone was inadequate to
the task of correction, so they began to
develop “top-down/bottom-up” ap-
proaches that combined the use of dictio-
naries (the “top-down” aspect) with n-

gram statistics (the “bottom-up” aspect).
At the same time, n-gram statistics found
their way into dictionary-based spelling
correction research. In addition, many
other clever techniques were invented
based on minimum edit distance algo-
rithms, similarity keys, rule-based proce-
dures, probability estimates, and neural
nets. A convenient way to organize the
approaches is to group them into six main
classes:

(1) minimum edit distance techniques;

(2) similarity key techniques;

(3) rule-based techniques;
(4) n-gram-based techniques;

(5) probabilistic techniques;

(6) neural nets.

This organization is somewhat arbitrary
as there is some overlap among classes.
In particular, the last three classes are
closely related in that most implementa-
tions rely on some lexical feature-based
representation of words and misspellings
such as n-grams. Furthermore, many hy-
brid techniques cc~mbining the ap-
proaches of more than one class have
been developed.

In the following discussion, each of the
techniques is briefly described in terms
of the candidate generation and ranking
subprocesses. For the sake of providing
some insight into how techniques differ
in their scope and accuracy, some addi-
tional relevant characteristics are re-
ported whenever that information is
available. These include: (1) lexicon
size; (2) test set size; (3) correction
accuracy for single-error mis-
spellings; (4) correction accuracy for
multi-error misspellings; (5) word
length limitations; and (6) type of er-
rors handled (e.g., OCR-generated vs.
human-generated, typographic vs. pho-
netic, etc. ). These characteristics are im-
portant because techniques differ greatly
in the types of errors they handle form-
ing nonoverlapping or partially overlap-
ping error coverage sets. Since few tech-
niques have been tested on the same test
set and lexicon, direct comparisons are
rarely possible. The following sections are
meant to convey a general idea of the
scope and accuracy c)f existing isolated-
word error correction techniques.

2.2.1 Mm/mum Edit DNance Techniques

By far the most studied spelling correc-
tion algorithms are those that compute a
minimum edit distance between a mis-
spelled string and a dictionary entry. The
term minimum edit distance was defined
by Wagner [1974] as the minimum num-
ber of editing operations (i.e., insertions,
deletions, and substitutions) required to
transform one string into another. The
first minimum edit distance spelling cor-
rection algorithm was implemented by
Damerau [ 1964]. About the same time,
Levenshtein [ 1966] developed a similar
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algorithm for correcting deletions, inser-
tions, and reversals (transpositions).
Wagner [1974] first introduced the no-
tion of applying dynamic-programming
techniques [Nemhauser 1966] to the
spelling correction problem to increase
computational efficiency. Wagner and
Fischer [ 1974] also generalized Leven-
shtein’s algorithm to cover multi-error
misspellings. Another algorithmic vari-
ant, due to Lowrance and Wagner [1975],
accounted for additional transformations

(such as exchange of nonadjacent letters).
Still, other variants were developed by
Wong and Chandra [1976], Okuda et al.
[ 1976], and Kashyap and Oommen [ 19/31].
The metric that all of these techniques
compute is sometimes referred to as a
Damerau-Levenshtein metric after the
two pioneers. Hawley [ 1982] tested some
of these metrics in his spelling corrector
for the Unix command language inter-
face.

Aho’s [1990] survey article of pattern-
matching algorithms points out that the
Unix file comparison tool, cliff, is based
on a dynamic-programming minimum
edit distance algorithm. It goes on to de-
scribe other dynamic-programming algo-
rithms in terms of their time complexi-
ties. Dynamic-programming algorithms
have also been studied extensively for
other approximate pattern-matching ap-
plications, such as comparing macro-
molecular sequences (e.g., RNA and
DNA), comparing time-warped speech
signals for speech recognition, comparing
gas chromatograms for spectral analysis,
and others. These are described in a col-
lection of articles edited by Sankoff and
Kruskal [1983].

Although many minimum edit distance
algorithms compute integer distance

scores, some algorithms obtain i3ner-
grained scores by assigning noninteger
values to specific transformations based
on estimates of phonetic similarities or
keyboard adjacencies. Veronis [1988a]
devised a modified dynamic-program-
ming algorithm that differentially
weights graphemic edit distances based
on phonemic similarity. This modifica-
tion is necessary because phonetic mis-

spellings frequently result in greater de-
viation from the correct orthographic
spelling.

In general, minimum edit distance
algorithms require m comparisons be-
tween the misspelled string and the dic-
tionary, where m is the number of dictio-
nary entries. However, some shortcuts
have been devised to minimize the search
time required. Going on the assumption
that deletions are the most common type
of error, Mor and Fraenkel [ 1982b]
achieved an efficient response time for a
full-text information retrieval application
by storing every word in the dictionary

Ix I + 1 times, where Ix I is the length of
the word, each time omitting one letter.
They then invoked a hash function to
look up misspellings.

A “reverse” minimum edit distance
technique was used by Gorin [ 1971] in
the DEC-10 spelling corrector and by
Durham et al. [1983] in their command

language corrector. Kernighan et al.
[1990] and Church and Gale [ 1991b] also
used a reverse technique to generate can-
didates for their probabilistic spelling
corrector. In reverse techniques, a candi-
date set is produced by first generating
every possible single-error permutation
of the misspelled string and then check-
ing the dictionary to see if any make up
valid words. This means that given a
misspelled string of length n and an al-
phabet of size 26, the number of strings
that must be checked against the dictio-
nary is 26( n + 1) insertions plus n dele-
tions plus 25n substitutions plus n – 1
transpositions, or 53n + 25 strings, as-
suming there is only one error in the
misspelled string.

Tries have been explored as an alter-
native to dynamic-programming tech-

niques for improving search time in min-

imum edit distance algorithms. Muth and

Tharp [ 1977] devised a heuristic search

technique in which a dictionary of “cor-

rect spellings are stored character-by-

character in a pseudo-binary tree. The

search examines a small subset of the

database (selected branches of the tree)

while checking for insertion, deletion,

substitution, and transposition errors”
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(p. 285). Dunlavey [1981] described an
algorithm he called SPROOF, which
stored a dictionary as a trie, i.e., “a huge
finite-state machine recognizing all and
only the strings in the dictionary” (p.
608). The search proceeded by visiting
the nodes of the trie in increasing edit
distance until the candidate corrections
at the leaves were reached. A similar
technique was used by Boivie [1981] in
his da directory assistance program,
which in turn became the underlying al-
gorithm for Taylor’s [1981] grope spelling
corrector.

Minimum edit distance techniques
have been applied to virtually all spelling
correction tasks, including text editing,
command language interfaces, natural
language interfaces, etc. Their spelling
correction accuracy varies with applica-
tions and algorithms. Damel au reports a
957o correction rate for single-error mis-
spellings for a test set of 964 mis-
spellings of medium and long words
(length 5 or more characters), using a
lexicon of 1,593 words. His overall correc-
tion rate was 84~0 when multi-error mis-
spellings were counted. Durham et al.
[1983] report an overall 27% correction
rate for a very simple, fast, and unobtru-
sive single-error correction algorithm ac-
cessing a keyword lexicon of about 100
entries. For as low as this seems, the
authors report a high degree of user sat-
isfaction for this command language in-
terface application, due largely to their
algorithm’s unobtrusiveness. Kukich
[1990] evaluated the grope minimum edit
distance algorithm, among others, for use
in a demanding text-to-speech synthesis
application in which 2570 of 170 mis-
spellings involved multiple errors and
fully 63% of the misspellings involved
short words (length 2, 3, or 4 characters).
She observed a 627o overall correction
rate, using a lexicon of 1,142 words. Other
techniques evaluated by Kukich, includ-
ing the vector distance and neural net
techniques described below, outper-
formed the grope minimum edit distance
technique for the same test set and lexi-
con by more than 107o. Muth and Tharp
[1977] report a performance level as high

as 977o for their trie-based algorithm on
a 1,487-word test set, though they do not
specify the size of the lexicon they used
or the median length of the words in
their test set.

2.2.2 Similarity Key Techniques

The notion behind similarity key tech-
niques is to map every string into a key
such that similarly spelled strings will
have identical or similar keys. Thus,
when a key is computed for a misspelled
string it will provide a pointer to all simi-
larly spelled words (candidates) in the
lexicon. Similarity key techniques have a
speed advantage because it is not neces-
sary to directly compare the misspelled
string to every word in the dictionary.

A very early (1918), often cited similar-
ity key technique, the SOUNDEX sys-
tem, was patented by Odell and Russell
[1918] for use in phonetic spelling correc-
tion applications. It has been used in an
airline reservation system [Davidson
1962] among other applications. It maps
a word or misspelling into a key consist-
ing of its first letter followed by a se-
quence of digits. Digits are assigned ac-
cording to the following rules:

A, E, I, O, U, H, W,I(-O
B, F, P, V- 1
C, G, J, K, Q, S, X,Z+2
D,T+3
La4

M,N+5
R+6

Zeros are then eliminated and repeated
characters are collapsed. So, for example,
we can have: Bush ~ B020 ~ B2 and
Busch -+ B0220 ~ B2. However, we
could also have: QUAYLE ~ QOO040 -
Q4 while KWAIL -~ KOO04 ~ K4. It is
clear that the SOUNDEX similarity key
is a very coarse-grained one. Further-
more, the SOUNDEX. system provides no
function for ranking candidates. Instead,
all candidates are simply presented to
the user.

Pollock and Zamora [1984] used the
findings of their stucly of 50,000 spelling
errors from seven Chemical Abstracts
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Service databases to devise a similarity
key technique, called SPEEDCOP, for
correcting single-error misspellings. Af-
ter constructing a key for each word in
the lexicon, the lexicon was sorted by key
order. A misspelling was corrected by
constructing its key and locating it in the
sorted key list. Then all nearby words
(candidates) within a certain distance in
both directions were checked in sequence
to find the first word that could have
been generated from the misspelling by
either an insertion, omission, substitu-
tion, or transposition (i.e., the ranking
process).

The SPEEDCOP system actually made
use of two similarity keys, a skeleton key
and an omission key, both of which were
carefully tailored by statistical findings
to achieve maximum correction power for
their application domain, which included
few, if any, phonetic misspellings. Both
the skeleton key and the omission key
consisted of single occurrences of all the
letters that appear in a string arranged
in a specific order. In the skeleton key,
the order is the first letter of the string
followed by the remaining unique conso-
nants in order of occurrence and the
unique vowels in order of occurrence. In
the omission key, consonants come first
in reverse order of the frequency of oc-
currence of omitted letters, which, ac-
cording to Pollock and Zamora’s findings,
is

RSTNLCHDPGMFBYWVZXQK.

Vowels follow, in order of their occur-
rence in the string. They also found that
spelling errors tend to preserve the order
of occurrence of vowels. The omission key
for the word chemical is MHCLEIA. The
keys for two actual misspellings chemi-

cial and ehemcial are identical, and the
key for another misspelling chemcal is
very close.

The SPEEDCOP algorithm consisted
of four steps, each of which was applied
only if the previous one failed to yield a
correction: (1) consult a common mis-
spelling dictionary; (2) apply the skeleton
key; (3) apply the omission key; (4) apply
a function word routine to check for con-

catenations of function words. Pollock
and Zamora [ 1984] mention that the last
step increased corrections by only
1%–2% but was entirely accurate. They
report that the correction accuracy of
their technique ranged from 77% to 969Z
in correcting the single-error mis-
spellings in the seven databases they
studied. Single-error misspellings ac-
counted for an average of 94% of all the
errors they observed. They report an
overall correction rate ranging from 74%
to 88q0. These tests were based on a
lexicon of 40,000 words.

A creative similarity key spelling cor-
rection technique was devised by Tenczar
and Golden [1972] for the PLATO com-
puter tutoring system. As in the SPEED-
COP technique, a similarity key was con-
structed for each word in the application
lexicon and the lexicon was sorted by key
order. But the PLATO similarity key was
based on a set of human cognitive fea-
tures intuited by the authors, including
(1) word length, (2) first character, (3)
letter content, (4) letter order, and (5)
syllabic pronunciation. Each feature was
represented by a bit field in the similar-
ity key, and the authors point out that
additional features could easily be in-
cluded by adding another bit field. Locat-
ing the word typed by the student, or its
closest approximation, consisted of com-
puting the similarity key for the input
word and executing a “binary chop”
search through the encoded application
lexicon to find an exact or closest match.

Tenczar and Golden [ 1972, p. 13] tested
their technique on a dictionary of com-
mon misspellings and found that it cor-
rected 959Z0 of a sample of items taken
from the dictionary. And they tested it by
checking each of the 500 most commonly
used English words against each other
and found that it “performed satisfacto-
rily, (i.e., pairs which it calls mis-
spellings usually differ by only one let-
ter).”

An algorithm called token reconstruc-

tion that computes a fuzzy similarity
measure has been patented by 130cast
[1991]. Given a misspelled string and a
dictionary word, the algorithm returns a
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similarity measure that is computed by
taking an average of the sum of four
empirically weighted indices that mea-
sure the longest matching substrings
from both ends of the two strings. The
technique partitions the dictionary into
buckets containing words that have the
same starting character c and the same
length n. The search space expands from
bucket c,, nj to buckets c:, nj ~ 1 so as
to check first for words with small differ-
ences in length and then check for words
beginning with other characters in the
misspelled string. Bocast reports that the
algorithm is simple enough to be blind-
ingly fast, and that its 7890 first-guess
accuracy on a 123-word test set that in-
cludes 15 multi-error misspellings ex-
ceeds the accuracy of four popular com-
mercial spelling correctors on the same
test set.

2.2.3 Rule-Based Techniques

Rule-based techniques are algorithms or
heuristic programs that attempt to rep-
resent knowledge of common spelling er-
ror patterns in the form of rules for
transforming misspellings into valid
words. The candidate generation process
consists of applying all applicable rules
to a misspelled string and retaining ev-
ery valid dictionary word that results.
Ranking is frequently done by assigning
a numerical score to each candidate based
on a predefined estimate of the probabil-
ity of having made the particular error
that the invoked rule corrected.

Yannakoudakis and Fawthrop [1983]
devised a knowledge-based spelling cor-
rection program based on the set of rules
they inferred from their study of 1,377
misspellings described above. Their goal
was a general spelling correction system,
so they tested their program on a set of
1,534 misspellings using a dictionary of
93,769 words. Because some of their rules
incorporated knowledge of the probable
length of the correct word based on the
misspelling, their technique employed a
dictionary that was partitioned into many
subsets according to word length as well
as first letter. The candidate generation

process consisted of searching specific
dictionary partitions for words that differ
from the misspelling by only one or two
errors and that follow any of the rules.
When multiple candidates were found
they were ranked by predefine esti-
mates of the probabilities of occurrence
of the rules. They found that the correct
word was in the partition searched for
1,153 cases, or 75% of the time. For those
1,153 cases, the correct word was re-
turned as the first choice 90% of the
time, yielding an overall correction accu-
racy of 6870 (9070 of ‘75970).

In another project, a specialized rule-
based spelling correction system was de-
signed by Means [1988] for a natural
language data entry system with a high
incidence of abbreviation, acronym, and
jargon usage. This system first checks a
set of morphology rules for common in-
flectional violations (such as failure to
double a final consonant before adding
-ing). It next consult,s a set of abbrevia-
tion ex~ansion rules to determine if the.
misspelled string might expand to a lexi-
con term. Failing that, it tries all single-
error transformations of the misspelled
string, including the possibility of an in-
serted blank (i.e., a slplit-word error).

2.2.4 N-gram-Based Techniques

Letter n-grams, including trigrams, bi-
grams, and/or unigrams, have been used
in a variety of ways in text recognition
and spelling correction techniques. They
have been used in OC!R correctors to cap-
ture the lexical syntax of a dictionary
and to suggest legal corrections. They
have been used in spelling correctors as
access keys into a dictionary for locating
candidate corrections and as lexical fea-
tures for computing similarity measures.
They have also been used to represent
words and misspellings as vectors of lexi-
cal features to which traditional and
novel vector distance measures can be
applied to locate and rank candidate cor-
rections. Some n-gralm-based correction
techniques execute the processes of error
detection, candidate retrieval, and simi-
larity ranking in three separate steps.
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Other techniques collapse the three steps
into one operation.

Riseman and Hanson [1974] provide a
clear explanation of the traditional use of
n-grams in OCR correction. After parti-
tioning a dictionary into subdictionaries
by word length, they construct positional
binary n-gram matrices for each subdic-
tionary. They note that because these
matrices provide answers to the question
“is there some word in the dictionary
that has letters a and ~ in positions i

and j respectively,” the matrices capture
the syntax of the dictionary. An OCR
output string can be checked for errors
by simply checking that all its n-grams
have value 1. If a string has a single
error, it will have a O value in at least
one binary n-gram; if more than one O
value is found, the position of the error is
indicated by a matrix index that is com-
mon to the O value n-grams. Correction
candidates can be found by logically in-
tersecting the rows or columns specified
by the shared index of the incorrect n-

grams. If the intersection results in only
one n-gram with value 1, the error can
be corrected; if more than one potential
n-gram correction is found the word is
rejected as ambiguous.

Riseman and Hanson [1974] tested the
technique on a test set of 2,755 6-letter
words. They found that positional tri-
gram matrices, which outperformed other
positional and nonpositional n-gram ma-
trices, were able to detect 98.670 of the
errors in their test set and correct 62.4%
of them. This technique has at least one
advantage over dictionary lookup correc-
tion techniques in that it obviates the
need for an exhaustive dictionary search.
A minor drawback it that it is possible
for a correction to result in a nonword on
rare occasions. A more serious drawback
is that the technique is designed to han-
dle only substitution errors, and it is not
clear how well it would handle other er-
rors, such as insertion, deletion, transpo-
sition, and framing errors.

Two hardware-based techniques have
been proposed that would exploit n-gram
databases in parallel. Ullmann [ 1977]
proposed a technique for finding all valid

words differing from an input string by
up to two insertion, deletion, substitu-
tion, and reversal errors by processing
binary n-grams in parallel. Henseler et
al. [1987] implemented a parallel OCR
recognition and correction algorithm on a
16-processor hypercube machine. Their
technique used a database of trigram fre-
quencies as opposed to binary trigrams.
A test of their technique on a small sam-
ple of text yielded 95% initial character
recognition accuracy and 1009ZO accuracy
after correction.

Angell et al. [ 1983] have written a
seminal paper on the use of trigrams for
spelling correction applications. Their
technique computes a similarity measure
based on the number of (nonpositional
binary) trigrams common to a misspelled
string and a dictionary word. The simi-
larity measure is the simple function
2(c/(n + n’)), where c is the number of
trigrams common to both the dictionary
word and the misspelling and n and n’

are the lengths of the two strings. They
refer to this function as “the well-known
Dice coefficient.” They also suggest creat-
ing an inverted index into the dictionary
using trigrams as access keys. The tri -
grams of the misspelled string can be
used to retrieve only those dictionary
words having at least one trigram in
common with the misspelling, and the
similarity function needs to be computed
only for that subset.

This technique achieved an overall ac-
curacy score of 76% on a test set of 1,544
misspellings using a dictionary of 64,636
words. The authors analyzed its perfor-
mance by error type and found that it
worked “very well indeed for omission
and insertion errors, adequately for sub-
stitution errors, but very poorly for
transposition errors’” (p. 259). Although
they did not break down the technique’s
performance by word length, they did
note that it cannot be expected to do well
on short words because a single error can
leave no valid trigrams intact. The mean
length of the misspelled strings in their
test set was 8.4 characters.

A problem with the Dice coefficient was
that it tended to make errors when the
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misspelled string was wholly contained
in a valid word, or vice versa. For exam-
ple, given the misspelled string concider,

it assigned values of 0.71 and 0.70 re-
spectively to the words cider and con-

sider. Angell et al. noted that the ten-
dency for misspellings to differ in length
from their intended correction by at most
one character could be exploited by
changing the similarity function to
(c/max(n, n’)). They found that this
modified similarity function corrected the
containment error problem without af-
fecting the correction rate for multi-error
misspellings.

Similar trigram correction techniques
have been suggested or devised by Koho-
nen [1980] and DeHeer [1982] for text
editing and information retrieval appli-
cations. A related technique, triphone
analysis, was devised by Van Berkel and
DeSmedt [1988] specifically for a natural
language interface application involving
the use of proper nouns that tend to be
phonetically misspelled. It first applies a
set of grapheme-to-phoneme conversion
rules to a string and then makes use of
an inverted-triphone index to retrieve
other candidate corrections. It was highly
successful in a test experiment, correct-
ing 94% of a test set of deviant spellings
of 123 Dutch surnames. Its lexicon was a
database of 254 Dutch surnames ran-
domly culled from a telephone directory.
Van Berkel and DeSmedt compared their
phonetic-based technique to some well-
known nonphonetic techniques and found
that the phonetic technique outper-
formed the others by anywhere from 4 to
40 percentage points on this test set.

In addition to the trigram-based sim-
ilarity functions suggested by Angell
et al. [1983], a variety of traditional and
novel vector distance measures based on
representations of words as n-gram vec-
tors has been tested. Most of these tech-
niques collapse all three subprocesses
(detection, candidate generation, and
ranking) into one process. The basic ideas
are: (1) to position each lexicon entry at
some point in an n-chrnenslonal lexical-
feature space and then (2) to project a
misspelled string into that same space

and measure its proxj mity to its nearest
neighbors (candidates). ~nigrams, bi-
grams, and trigrams are three possible
candidates for the features of the lexical
space; words and misspellings can be
represented as sparse vectors in such
spaces. Hamming distances, dot prod-
ucts, and cosine distances are three pos-
sible measures of the proximity of any
two vectors in lexical space.

Kukich [1992] evaluated the correction
accuracy of these three vector distance
metrics using the same test set and lexi-
con as those used to t(est the grope mini-
mum edit distance technique (which
scored 627o accuracy); the test set con-
tained 170 single and multi-error mis-
spellings of which nearly two-thirds oc-
curred in short words, (less than 5 char-
acters), and the lexicon contained 1,142
words. Using 790-element vectors of uni-
grams and bigrams to represent words
and misspellings, she recorded correction
rates of 54$70 for a allot product metric,
687o for a Hamming distance metric, and
7570 for a cosine distance metric.

Correlation matrix memory (CMM)
techniques are closely related to vector
space techniques. They represent a lexi-
con of m words as an n x m matrix of
n-dimensional lexical-feature vectors.
The correction process consists of multi-
plying the n-dimensional feature vector
representing the miss pelled string by the
n x m-dimensional matrix representing
the entire lexicon, yielding an m-dimen-
sional vector in which the ith element
represents the zth lexicon entry. The ele-
ment with the highest value is taken to
be the most strongly correlated entry,
thus the correct word.

Cherkassky et al. [1.992] have done de-
tailed studies comparing the use of bi-
gram and trigram f’eature vectors in
CMM models. They created two test sets
of randomly generated single-error mis-
spellings, one for medium-length words
(5-7 characters) and one for long words
(10-12 characters), and tested them
against lexicons ranging in size from 500
to 11,000 words. In particular, they ob-
served excellent correction rates (above
9070) for long words using trigram fea-
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ture vectors and fair-to-good correction
rates (averaging from 60% to 857o de-
pending on lexicon size) for medium-
length words using bigram feature vec-
tors. An even more detailed study by Dahl
and Cherkassky [1990] compared the use
of unigrams, bigrams, and trigrams on
words of varying lengths for each of the
four classes of single-error typos. They
found that “[b]igram and trigram encod-
ings give better recall rates for all kinds
of errors except transpositions for all
word lengths” and that a unigram encod-
ing performs much better for transposi-
tion errors. Indeed, a lexical study by
Deloche and Debili [1980] found that in
both French and English, 96% of the
anagrams created from lexicons of over
20,000 uninflected word forms had
unique solutions.

Some attempts have been made to
transform lexical-feature spaces by
known mathematical techniques in an
effort to better reflect the similarity rela-
tions among lexical entries, and thus im-
prove correction accuracy. One such tech-
nique, the computation of the General-
ized Inverse (GI) matrix, was explored by
Cherkassky et al. [1990]. The goal of the
GI technique, which is based on finding a
minimum least squares error inverse of
the lexicon matrix, is to minimize the
“crosstalk or interference that occurs
among similar lexicon entries. Later
however, Cherkassky et al. [1991] de-
rived a proof, based on a theorem of lin-
ear algebra, that a GI matrix saturates
when the number of lexicon entries ap-
proaches the dimensionality of the fea-
ture space, and a significant decline in
correction accuracy follows. This led them
to conclude that simple C!MM models are
more effective and efficient for spelling
correction.

Another technique for transforming a
feature space, Singular Value Decompo-
sition (SVD), was explored by Kukich

[1990]. SVD can be used to decompose a
lexicon matrix into a product of three
matrices, one representing each of the
individual-letter n-grams as a vector of
factors, a second, diagonal matrix con-
sisting of a set of singular values that are

used to weight each of the factors, and a
third matrix representing each of the lex-
icon entries as a vector of factors. The
goal of the decomposition process is to
identify and rank the most important
factors that determine the relevant simi-
larity relations in the lexical space. The
least important factors, which may in
fact represent noise in the data, can be
discarded, yielding three matrices of re-
duced rank which better capture the es-
sential similarity relations among lexical
entries. SVD has been used successfully
to this end in information retrieval
experiments [Deerwester et al. 1990]. In
those experiments, bibliographic data-
bases consisting of thousands of docu-
ments and lexicon entries are repre-
sented by sparse term-by-document ma-
trices. The technique has been dubbed
Latent Semantic Indexing because the
SVD process appears to elicit the inher-
ent semantic relations among terms and
documents.

In contrast to the information retrieval
application, a spelling correction matrix
in which words are represented by bi-
gram and unigram vectors is far less
sparse. Once such a matrix has been de-
composed into three factor matrices and
reduced, a misspelling is corrected by first
summing the vectors for each of the indi-
vidual-letter n-grams in the misspelled
string (as represented in the first matrix)
and then multiplying the sum vector by

the singular-value matrix of weights
(represented in the second matrix). The
resultant vector determines the location
of the misspelled word in the n-dimen-
sional lexical-feature space. Any stand-
ard distance measure (such as a dot
product or a cosine distance) can be used
then to measure the distances between
the vector for the misspelled word and
the vectors for each of the correctly
spelled words (represented by the third
matrix) in order to locate and rank the
nearest correctly spelled words. In Ku-
kich’s studies, SVD matrices yielded im-
proved spelling correction accuracy over
undecomposed matrices for a small lexi-
con (from 7670 to 8170 for a lexicon of 521
words), but no significant improvement
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for larger lexicons. These empirical find-
ings are consistent with the theoretical
findings of Cherkassky et al. [1991] re-
garding the saturation point of General-
ized Inverse matrices.

Bickel [ 1987] devised a hybrid unigram
and heuristically based vector distance
correction technique for a database re-
trieval application that used employee
names as access keys. The lexicon for
this application consisted of nearly one
thousand personal names. Bickel’s tech-
nique represented each valid name as a
unigram vector. The value of each uni-
gram vector element was set to either O if
that letter did not occur in the name or
to an integer between 3 and 9 if the
letter did not occur in the name. Integer
values for each letter of the alphabet
were predetermined according to their
frequency of occurrence in the lexicon of
names, with least frequent letters receiv-
ing the highest weights. The assumption
was that less frequently occurring letters
were more valuable as search informa-
tion. Potentially misspelled input names
were represented by binary unigram vec-
tors. The correction technique assumed
the first letter of the name was correct
and confined its search to that portion of
the lexicon. It derived a similarity mea-
sure for the input name and each valid
name in the sublexicon by computing the
inner product of the two vectors. Bickel
found this similarity measure to be more
than 9596 successful in locating the in-
tended name given another spelling.

2.2.5 Probabilistic Techniques

IV-gram-based techniques led naturally
into probabilistic techniques in both the
text recognition and spelling correction
paradigms. Two types of probabilities
have been exploited, transition proba-
bilities and confusion probabilities.
Transition probabilities represent proba-
bilities that a given letter (or letter se-
quence) will be followed by another given
letter. Transition probabilities are lan-
guage dependent. They are sometimes
referred to as Markov probabilities based
on the assumption that language is a

Markov source. They can be estimated by
collecting n-gram frequency statistics on
a large corpus of text from the domain of
discourse.

Confusion probabilities are estimates
of how often a given 1etter is mistaken or
substituted for another given letter. Con-
fusion probabilities are source depen-
dent. Because different OCR devices use
different techniques and features to rec-
ognize characters, each device will have
a unique confusion probability distribu-
tion. For that reason, confusion probabil-
ities are sometimes referred to as chan-
nel characteristics. The same OCR device
may generate different confusion proba-
bility distributions for different font types
and points sizes.

A confusion probability model for a
specific device can be estimated by feed-
ing the device a sample of text and tabu-
lating error statistics. This process is
sometimes referred to as a “training”
phase when the results are used in the
development of an error-correcting post-
processor. Alternatively, a device can
generate a 26-element vector containing
a likelihood estimate for each letter of
the alphabet at the time a character is
recognized. In that case the likelihood
estimates may be interpreted as confu-
sion probabilities.

Confusion probabilities based on hu-
man errors are simply called error proba-
bilities. They, too, have been estimated
by extracting error statistics from large
samples of human-generated text con-
taining typos or other spelling errors. One
other class of probabilistic information
that has been exploited for isolated-word
correction techniques is word frequency
data, or word unigram probabilities.

Text recognition researchers have in-
tensively explored tb e use of probabilis-
tic information; spelling correction re-
searchers have only recently joined the
fray. Text recognition research has shown
that these probabilistic sources alone are
insufficient to achieve acceptable error
correction rates; however, combining
probabilistic information with dictionary
techniques results in significantly better
error correction ability. A brief history of
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probabilistic error correction research
follows.

Bledsoe and Browning [1959] pio-
neered the use of likelihood estimates in
text recognition techniques. The Bledsoe-
Browning technique entails two phases:
(1) an individual-character recognition
phase in which a 26-element vector of
likelihood estimates is generated for each
character in an input word, followed by
(2) a whole-word recognition phase in
which a dictionary is used to help choose
the individual letters whose likelihoods
jointly maximize the probability of pro-
ducing a valid word from the dictionary.
In effect, whole-word recognition en-
hances individual-character recognition
by imposing dictionary constraints that
help resolve uncertainty and correct er-
rors made at the individual-character
recognition level.

The Bledsoe-Browning technique uses
Bayes’ rule to compute an a posteriori

probability for each word in the dictio-
nary from the a priori likelihood proba-
bilities for the individual characters. Let-
ting X represent a dictionary word and
Y represent an OCR output string, Bayes’
rule states that

P(YIX)’P(X)
P(XIY) =

P(Y)
(1)

where P(X IY ) is the conditional proba-
bility that X is the correct word, P(Y IX)
is the conditional probability of observing
Y when X is the correct word, and P(X)

and P(Y) are the independent probabili-
ties of words X and Y. Finding the most
probable dictionary word X given the
OCR output string Y amounts to maxi-
mizing the function

G(YIX) = log P(YIX) + log P(X) (2)

where P(X) is often taken to be the
unigram probability of the word X. The
a posteriori probability for each dictio-
nary word can be readily computed from
the a priori likelihood estimates for indi-
vidual characters by the equation

~=~
log P(Ylx) = ~ log P(YJxt) (3)

1=1

where n is the length of the word, and i
indexes the individual characters in the
word. For example, given an OCR output
string DOQ and a dictionary word DOG,

G(DOQIDOG) = log P(DID)

+ log P(olo)

+ log P(QIG)

+ log P(DOG). (4)

In the Bledsoe-Browning technique, the
likelihood estimates for each character in
the output string are supplied by the
OCR device; the unigram word frequency
is ignored; and the word with the maxi-
mum probability is chosen.

The computational demands of the
Bledsoe-Browning technique are linear
with the size of the dictionary. Hence,
the processing of large dictionaries is in-
feasible, even if they are partitioned by
word length. In an application for a
handwriting recognize, Burr [1983] ex-
tended the Bledsoe-Browning technique
to incorporate morphological processing.
This allowed him to use a smaller dictio-
nary of root forms of words along with
prefixes and suffixes.

Kahan et al. [1987] have also combined
confusion probabilities with dictionary
lookup in a postprocessor for OCR out-
put. When an output word is rejected by
spelling checker, they generate succes-
sive candidates, based on confusion prob-
abilities obtained through training, until
an acceptable dictionary word is found or
some threshold is exceeded. They report
a 977o character recognition rate ignor-
ing indistinguishable pairs such as 0/0
(zero/oh) md 1/1 (one/en).

Techniques have been tried that make
use of confusion and transition probabili-
ties without the benefit of a dictionary.
Hanson et al. [ 1976] report on experi-
ments using likelihood probabilities in
combination with either trinary transi-
tion probabilities or positional binary tri-
grams. They found that using trinary
transition probabilities to directly weight
the likelihoods of individual characters

ACM Comput,ng Surveys, Vol 24, No 4, December 1992



Automatically Correcting Words in Text 8 403

in OCR output words reduced the word
error rate on a test set of 2,755 6-letter
words, but only from 49% to 299%0.They
concluded that efficient techniques based
on transition probabilities would not be
effective. They went on to find that posi-
tional binary trigrams alone corrected
over 50% of the word errors in their test
set, and that additional processing using
likelihood probabilities further reduced
the error rate by an order of magnitude.

Both Toussaint [1978] and Hull and
Srihari [1982] provide general overviews
of error correction techniques based ex-
clusively on transition and confusion
probabilities. Bayes’ formula can be used
to combine these two kinds of probabili-
ties. Instead of using a word unigram
probability for the final term in the for-
mula, the sum of the transition probabili-
ties in the dictionary word can be substi-
tuted. But a more efficient and widely
used method for combining transition and
confusion probabilities is a dynamic-pro-
gramming technique called the Viterbi
algorithm [Forney 1973]. In the Viterbi
algorithm, a directed graph, sometimes
referred to as a trellis, is used to capture
both the structure of a lexicon (transition
probabilities) and the channel character-
istics of a device (confusion probabilities).
A starting node and an ending node rep-
resent word boundary markers; interme-
diate nodes represent likelihood esti-
mates for individual letters; and edges
represent transition probabilities be-
tween letters. The graph is efficiently
traversed via a dynamic-programming
algorithm to find the sequence of letters
having the highest probability given the
likelihood estimates output by the OCR
device and the transition probabilities of
the language.

Various modifications to the original
Viterbi algorithm, e.g., Shinghal and
Toussaint [ 1979a], that limit the depth of
a search based on likelihoods or other
factors have been developed. A disadvan-
tage of all these techniques is that the
highest probability string is not always a
valid word. More importantly, Toussaint,
Hull, Srihari, and others have concluded
that the correction accuracy of tech-

niques based solely on these two proba-
bilistic sources is on] y mediocre.

One other technique worth noting for
exploiting these two probabilities is a re-
laxation technique described by Gosh-
tasby and Ehrich [ 1!)88]. It calls for set-
ting the initial character probabilities for
an OCR output word according to the
likelihood estimates for each character.
Rosenfeld’s relaxation formula [Rosen-
feld et al. 1976] is applied to iteratively
adjust the likelihood probabilities for
each character as a function of the tran-
sition probabilities of adj scent charac-
ters. The number of (confusion candidates
for each character can be limited to a
small set that exceeds some threshold,
thus making the relaxation process itself
computationally quite affordable, on the
order of 10 nz for a word of length n. As
with the Viterbi algorithm, the relax-
ation process can converge on a nonword.
For example, during one test it converted
the correct word biomass to biomess. The
authors point out that the process can be
improved by incorporating additional
knowledge. They suggest using syllable
digram information to increase the prob-
abilities of the candidates that form com-
patible syllables at each iteration. They
also note that the relaxation process could
be integrated with a dictionary-based
technique.

Probabilistic information has been used
effectively as a preprocessor for a spelling
correction application. Oshika et al.
[1988] implemented a Hidden Markov
Model (HMM) procedure for preclassifi-
cation of surnames according to ethnic
background. HMM’s were automatically
constructed for each of five different lan-
guages based on transition probabilities
of letter sequences in 2,000 sample sur-
names from each language. The HMMs
were then used to automatically classify
input names before generating langaage-
speciflc spelling variants of the names.
Oshika et al. report that their prepro-
cessing technique improved retrieval ac-
curacy from 6970 to 887o on a test of 160
query names.

Better error correction performance
has been achieved by techniques that
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combine the use of probabilistic infor-
mation (bottom-up information) with dic-
tionaries (top-down information). As
Shinghal and Toussaint [ 1979b] note,
“Dictionary methods have low error-rates
but suffer from large storage demands
and high computational complexity.
Markov methods have the inverse char-
acteristics” (p. 201). So they invented a
technique they call the predictor-correc-
tor method that “achieves the error-cor-
recting capability of dictionary look-up
methods at half the cost.” The technique
calls for sorting the dictionary according
to a precomputed value V for each word
that is based on the word’s transition
probabilities. The predictor-corrector al-
gorithm first uses a modified Viterbi al-
gorithm to recognize an input word. Then
it computes V !ior the recognized word
and does a binary search of the dictio-
nary for the word with a matching value.
If that word is not an exact match, it
calculates V for words in the neighbor-
hood and chooses the one with the high-
est score. In an experiment with a dictio-
nary of 11,603 words and two test sets of
2,521 and 2,256 words, the technique
achieved character recognition rates of
96.69Z and 96.4%. Unfortunately, Shing-
hal and Toussaint [1979] note that the
technique worked best when the neigh-
borhood included the whole dictionary, so
they suggest the need for a better method
for organizing the dictionary. Even so,
they note that the technique still cut dic-
tionary-processing time in half because
the modified Viterbi algorithm produced
the correct word more than half the time.

Srihari et al. [1983] implemented a
technique in which the dictionary is rep-
resented as a trie and integrated into the
Viterbi algorithm search “so as to retain
VA [Viterbi algorithm] efficiency while
guaranteeing the most likely dictionary
word as output” (p. 72). They tested their
technique on a sample text of 6,372 words
that yielded a dictionary of 1,724 words.
They found that their Viterbi algorithm
alone was able to correct 3570 of the
errors made by the OCR device; their
dictionary lookup algorithm alone cor-
rected 8270; and their combination

Viterbi-dictionary algorithm corrected
87%.

Sinha and Prasada [1988] developed a
technique that not only integrated proba-
bilistic and dictionary information but
also incorporated a variety of heuristics.
Their objective was to tackle the problem
that in practice one cannot assume that a
dictionary will contain all the words
found in a document, So they compiled a
“partial dictionary” by starting with a
list of the 10,000 most frequent words
from the Brown Corpus [Kucera and
Francis 1967] and augmenting it “with
all the valid words obtained by single
character substitutions” (p. 465). Their
algorithm takes two passes. It first cor-
rects only those errors for which confu-
sion probabilities produce a word found
in the partial dictionary. Then it uses a
modified Viterbi algorithm to estimate
the most likely correction for words not
in the dictionary. The dictionary is
searched as a trie, and the system uses
various heuristics to rank confusion can-
didates, limit the search through the trie,
and limit the branches of Viterbi net
searched. They tested their technique on
a test set of 5,000 words (25,000 charac-
ters) of text from typewritten and typeset
documents in seven different font types
and point sizes. Its overall performance
exceeded 9870 character recognition ac-
curacy, and its word recognition accuracy
was around 9770 not counting punctua-
tion errors. They note that the “aug-
mented dictionary approach yields better
performance as compared to the unaug-
mented version in the case of texts that
are not very conventional such as techni-
cal and literary documents. . . . However,
performance [on conventional texts] dete-
riorates for low performance [ < 90%]

IOCR [devices] with the augmented dic-
tionary . . . [because] a comparatively
larger number of [correction candidates]
get generated and many of the high fre-
quency words. . . get mapped to less fre-
quent words in the augmented dictio-
nary” (p. 474).

Jones et al. [1991] have implemented
an OCR postprocessor that “integrates a
Bayesian treatment of predictions made
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by a variety of knowledge sources” (p.
926). In a training phase they build sta-
tistical models for both the OCR device
and the documents to be processed. Their
models include letter unigram and di-
gram frequencies, binary letter trigrams
and initial-letter n-grams, word unigram
frequencies, and some word digram fre-
quencies. They include letter and word
digrams involving punctuation and capi-
talization. They adjust their statistics to
reflect undertraining so that, for exam-
ple, undertrained word digram frequen-
cies do not unduly influence results. Their
confusion probability models include
non-one-to-one mappings (e.g., and e

aml).

The corrector operates in three phases:
(1) it generates a ranked list of candi-
dates for each word of input based on
confusion probabilities and a trie-based
dictionary; (2) it merges words to undo
apparent word-splitting errors; (3) it
reranks candidates based on word di-
gram probabilities. Phases 2 and 3 feed
back proposed analyses into previous
phases.

Jones et al. [1991] tested their system
in two experiments. In the first experi-
ment, they trained the system on six
software-testing documents totaling
8,170 words and tested on a seventh doc-
ument containing 2,229 words. The raw
OCR word error rate was 16.270. Their
system corrected 89.47o of those errors.
In the second experiment, they trained
the system on 33 pages of AP news wire
text and tested it on 12 additional pages.
The raw OCR word error rate on the 12
pages varied from 6.87o to 10.37o, and
their system corrected 72.570 of those er-
rors. This system is significant in that it
is one of the fh-st to incorporate extra-
word contextual knowledge in the form of
word and punctuation digram probabili-
ties into the correction process.

Recently, techniques that make ex-
plicit use of error probabilities have be-
gan to be explored for spelling correc-
tions applications. Kashyap and Oom-
men [ 1984] were motivated to explore
using error probabilities in response to
the poor performance of traditional

spelling correction techniques on short
words (less than six characters). Observ-
ing that misspellings frequently involve
the mistyping of an adjacent key on the
typewriter keyboarcl, they compiled a
table of subjective estimates of the proba-
bilities of such substitution errors. They
also ascribed subjective estimates to the
probabilities of a single deletion or inser-
tion of any character at various positions
within a word. Assuming that every
spelling error can be reduced to a combi-
nation of such deletions, insertions, and
substitutions, they {devised a recursive
algorithm that used their estimates for
calculating the probability that a given
misspelled string is a garbled version of a
dictionary word. When applied to each
word in a dictionary, this algorithm com-
putes a probability ranking over the dic-
tionary of correct words for a misspelled
input string.

Kashyap and Oommen [1981] tested
their technique on artificially generated
misspellings in words of length 3, 4, and
5 characters. Misspellings were gener-
ated according to their error probability
tables with an average of between 1.65
and 1.90 errors per word. They used a
dictionary of the 1,025 most frequent
words. They report correction accuracies
ranging from 3070 tc~ 927o depending on
word length and number of errors per
word. They report also that these figures
compare favorably with those reported
by Okuda et al. [1976] which ranged from
287. to 647o, for words of similar length
and error character sties. Okuda et al.
used a Damerau-Levenshtein minimum
edit distance correction technique.

Kernighan et al. [1990] and Church
and Gale [199 la] devised an algorithm
for correcting single-error misspellings.
They used a database of genuine errors
extracted from a 44 million-word corpus
of AP news wire text to compile four
confusion matrices, (one for each of the
four standard classes of errors (inser-
tions, deletions, subs titutions, and trans-
positions). They estimated confusion
probabilities then from these statistics.
Their program, called correct, used a re-
verse minimum edit distance technique
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to generate a set of single-error candi-
dates and identify a specific error within
each candidate, followed by a Bayesian
computation to rank the candidates.

Correct starts with a misspelled string
detected by spell. First, it generates a set
of candidate correct spellings by system-
atically testing all possible single-error
typographic permutations of the mis-
spelled string, checking to see if the re-
sult is a valid word in the spell dictio-
nary. A precomputed deletion table and
hashing are used to minimize dictionary
accesses during candidate generation.
Candidates are then ranked by multiply-
ing the a priori probability of occurrence
of the candidate word (i. e., its normalized
frequency) by the probability of occur-
rence of the specific error by which the
candidate word differs from the mis-
spelled string.

Correct was evaluated by testing it on
a set of 332 misspellings from a subse-
quent month of AP news wire text. Each
of these misspellings had exactly two
candidate correct spellings, and both cor-

rect and three human judges were asked
to choose the best candidate. The human
judges were allowed to pick “neither,”
and they were given a surrounding sen-
tence of context. Correct agreed with at
least two of the three judges 87% of the
time.

Kernighan went on to build a version
of correct into a text-to-speech synthe-
sizer for TDD conversations [Kernighan
1991]. Before pronouncing a word, this
system’s pronunciation component [ Coker
et al. 1990] computed a pronunciation
difficulty index to avoid unnecessarily
correcting misspelled words whose pro-
nunciation would be acceptable, such as
operater and wud. Note that the latter
might be incorrectly changed to wed

when would was intended. A misspelling
was sent to correct only when the pro-
nunciation difficulty index exceeded a
threshold. In an experiment with human
listeners, Kernighan’s system signifi-
cantly improved the comprehensibility of
synthesized text. Kernighan and Gale
[1991] also tested some variations of the
technique on a spelling corrector for
Spanish.

In a related study, Troy [ 1990] investi-
gated the effects of combining probabilis-
tic information with a vector distance
technique. She used a cosine distance
metric, word unigram probabilities, and
Kernighan-Church-Gale (KCG) [1990] er-
ror probabilities on Kukich’s [1990] 170-
word test set and 1,142-word lexicon. The
cosine distance metric was used to gener-
ate a candidate correction set; a dy-
namic-programming technique was used
to identify specific errors within the can-
didates; and either word unigram proba-
bilities or the KCG error probabilities
were used to rerank candidates. Since
the cosine distance metric could handle
single- and multi-error misspellings,
candidates could have multiple errors.
Troy observed that the word frequency
information did not improve the correc-
tion accuracy of the cosine distance met-
ric, but error probability information did
improve the cosine distance metric accu-
racy by three percentage points (from
75V0 to 78%).

2.2.6 Neural Net Techniques

Neural nets are likely candidates for
spelling correctors because of their inher-
ent ability to do associative recall based
on incomplete or noisy input. Further-
more, because they can be trained on
actual spelling errors, they have the po-
tential to adapt to the specific error pat-
terns of their user community, thus max-
imizing their correction accuracy for that
population. One can imagine a neural
net learning chip in a personal worksta-
tion that continuously adapts its weights
to conform to its owner’s idiosyncratic
spelling error behavior.

The back-propagation algorithm

[Rurnelhart et al. 19861 is the most widely
used algorithm for training a neural net.
A typical back-propagation net consists
of three layers of nodes: an input layer,
an intermediate layer, usually referred
to as a hidden layer, and an output layer.
Each node in the input layer is connected
by a weighted link to every node in the
hidden layer. Similarly, each node in the
hidden layer is connected by a weighted
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link to every node in the output layer.
Input and output information is repre-
sented by on-off patterns of activity on
the input and output nodes of the net. A
1 indicates that a node is turned on, and
a O indicates that a node is turned off.
Patterns of continuous real numbers can
also be used to indicate that nodes are
more or less active.

Processing in a back-propagation net
consists of placing a pattern of activity
on the input nodes, sending the activity
forward through the weighted links to
the hidden nodes, where a hidden pat-
tern is computed, and then on to the
output nodes, where an output pattern is
computed. Weights represent connection
strengths between nodes. They act as re-
sistors to modify the amount of activity
reaching an upper-level node from a
lower-level node. The total activity reach-
ing a node is the sum of the activities of
each of the lower-level nodes leading up
to it, multiplied by their connection
strengths. This sum is usually thresh-
olded to produce a value of O or 1 or put
through a squashing function to produce
a real number between 0.1 and 0.9.

The back-propagation algorithm pro-
vides a means of finding a set of weights
for the net that allows the net to produce
the correct, or nearly correct, output
pattern for every input pattern. It is a
convergence technique that relies on
training from examples. Weights are ini-
tialized to small random values. Then,
for each input-output pair in a training
set, the input pattern is placed on the
input nodes of the net, and activation is
sent forward through the weights to the
hidden and output nodes to produce an
output pattern on the output nodes. The
actual output pattern is then compared
to the desired output pattern, and a dif-
ference is computed for each node in
the output layer. Working backwards
through the net, the difference is used to
adjust each weight by a small amount
inversely proportional to the error. This
procedure is used to cycle repeatedly
through all the examples in the training
set until the weights converge. The re-
sult is a set of weights that produces a
nearly correct output pattern for every

input pattern in the training set, as well
as for similar input patterns that were
not in the training set. This last factor is
referred to as the net’s ability to general-
ize to noisy and novel inputs,

For example, in a spelling correction
application, a misspelling represented as
a binary n-gram vector might serve as an
input pattern to the net. Its correspond-
ing output pattern might be a vector of
m elements, where m is the number of
words in the lexicon, and only the node
corresponding to the correct word is
turned on. This type of net is sometimes
referred to as a l-of-m classifier because
the goal of the net is to maximize activa-
tion on the output node representing the
correct word and minimize activation on
all other nodes. In fact, the values of the
nodes in the resultant output vector are
sometimes interpreted as likelihood val-
ues. The l-of-m encoding scheme used for
the output pattern is referred to as a
local encoding scheme because each word
in the lexicon is represented by a single
node. In contrast, the binary n-gram en-
coding scheme used for the input pattern
is referred to as a distributed encoding
scheme because no one node contains all
the information needed to represent a
word. Rather, the information is dis-
tributed across the whole vector of input
nodes.

Neural nets are being intensively ex-
plored for OCR applications, not so much
for word recognition as for applications of
handwritten-number recognition such as
postal zipcode reading and bank check
and credit card recellpt reading [Matan
et al. 1992; Keeler and Rumelhart 1992].
These OCR applications are inherently
difficult due to the lack of contextual
information available. Some neural net
word recognition work has been done,
however. Burr [1987] implemented a
two-phase hand-printed-word recognize
that combines a neural net recognition
technique with a probabilistic correction
technique. In phase one, his system uses
a neural net with 26 output nodes, each
representing one letter, and 13 input
nodes, each representing one segment of
a bar mask, for capturing the features of
a handprinted letter. The output of the
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neural net is a useful approximation to a
maximum-likelihood probability distribu-
tion over the 26 letters of the alphabet.
In phase two, the system uses Bayes’
formula to compute a probability esti-
mate for each word in the dictionary
based on the likelihood probabilities of
the individual characters and the uni-
gram probabilities of the words. In a test
experiment, Burr created a set of 208
hand-printed characters, eight instances
of each letter in the alphabet. He trained
a neural net using half the set and tested
it on the other half. The net attained
949ic character recognition accuracy on
the test set. Then, he tested his word
recognition technique by simulating a
hand-printed word for each word in a
20,000-word dictionary using instances
of letters in the test set. He obtained a
word recognition rate of 99.7mC for words
at least six characters long.

Neural nets have been investigated by
both Kukich [ 1988a, 1988b] and Cher-
kassky and Vassilas [ 1989a, 1989b] for
name correction applications, by Kukich
[1990] for a text-to-speech synthesis ap-
plication, by Gersho and Reiter [ 1990] for
an address correction application, and by
Deffner et al. [1990a, 1990b] for a natu-
ral language interface application. The
studies by Kukich and Cherkassky and
Vassilas explored the use of the back-
propagation algorithm for training nets;
Gersho and Reiter’s experiments made
use of both self-organizing and back-
propagation nets; and the system devised
by Deffner et al. employed a weighted
correlation matrix model to combine a
variety of sources of lexical knowledge.

For her name correction experiments
Kukich [ 1988a] used a lexicon of 183 sur-
names to train a standard back-propa-
gation net. The output layer consisted of
183 nodes, one for each name. The input
layer contained 450 nodes in 15 sequen-
tial blocks of 30 nodes each, so names of
up to 15 characters in length could be
represented. Each 30-node block con-
tained one node for each character in a
30-character alphabet. So if the letter C,
for example, appeared as the first char-
acter in a string, the node representing C

would be turned on (set to 1) in the fh-st
block, and the remaining 29 nodes in
that block would be turned off (set to O).
Thus, it was a positionally encoded
shift-sensitive input vector.

The net was trained on hundreds of
artificially generated single-error mis-
spellings of each of the 183 names. Tens
of hours of training time on the equiva-
lent of a Sun SPARCstation 2TM proces-
sor were required for the net to converge.
The net was tested on additional ran-
domly generated single-error misspell-
ings. Testing required only a few seconds
of CPU time. The net achieved near-per-
fect (approaching 1007o) correction accu-
racy for all four classes of typos, includ-
ing the shift-variant insertion and dele-
tion typos. In fact, these latter error types
did take slightly longer to learn.

Some of the experimental findings were
that: (1) nets trained on names with mis-
spellings learned better than nets trained
on perfectly spelled names; (2) as the
number of hidden nodes was increased
up to 183 nodes, performance increased;
above 183 nodes performance leveled oft
and (3) nets using local encoding schemes
learned more quickly than variants using
distributed encoding schemes. Subse-
quent experiments revealed that nets us-
ing the positionally encoded shift-sensi-
tive input scheme and no hidden layer
actually learned more quickly and per-
formed at least as well as the optimally
configured hidden-layered nets. How-
ever, nets that used a binary n-gram

(unigram-plus-bigram,), hence shift-in-
variant, input scheme, while exhibiting
the same performance increase as the
number of hidden nodes was increased,
performed miserably with no hidden
layer.

The experiments performed by Cher-
kasskv and Vassilas [ 1989a, 1989b] cor-.
roborated many of Kukich’s findings.
They separately tested both unigram and

‘M Sun SPARCstatlon 2 M a re~stered trademark
of Sun Microsystems, Inc.
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bigram vector encoding schemes for in-
put to the nets, and they used the same
local encoding scheme (one node per lexi-
con entry) for output; thus their nets
were also l-of-m classifiers. They trained
nets on correctly spelled names and
tested them on names with artificially
generated deletion and substitution er-
rors. Lexicon sizes ranged from 24 to 100
names. They found that nets attained
almost 100% correction accuracy for the
smallest lexicons, but the choice of learn-
ing rate and number of hidden units
made significant differences in the per-
formance of the nets. They found also
that the optimum number of hidden units
was close to the number of names in the
lexicon. One might be tempted to con-
clude from this fact that nets were sim-
ply performing a rote lookup operation,
and no generalization was taking place.
However, this is clearly not the case, as
evidenced by the fact that nets were
tested on novel misspellings which they
had never seen during training. Cher-
kassky and Vassilas concluded that be-
cause the nets were so sensitive to vari-
ous training parameters, and because
they required extensive computational
training time, they are less desirable
candidates for spelling correctors than
correlation matrix models. An overview
paper by Cherkassky et al. [1992] sum-
marizes these experiments and discusses
the relative merits and shortcomings of
correlation matrix models and neural
nets.

Kukich [1990] went on to investigate
how such nets might scale up for a text-

to-speech spelling correction application
requiring a larger lexicon and having a

significant portion (25 $%) of multi-error
misspellings. A standard three-layer,
back-propagation architecture was used,
with a 420-element unigram-plus-bigram
vector input layer, a 500-node hidden
layer, and a locally encoded 1,142-node
output layer. Again, the net had to be

trained on artificially generated errors
because not enough genuine errors were
available, but it was tested on the same
set of 170 genuine misspellings previ-
ously used to test vector space and other

techniques. Like the best vector space
techniques, the net achieved an accuracy
score of 757o. Computational training
time requirements were high, how-
ever—on the order of hundreds of hours
of Sun SPARCstation 2 CPU time. Thus,
it appears that the heavy computational
training demands of standard three-
layer, l-of-m back-propagation nets im-
pose strict practical limits on scalability
with respect to lexicon size, at least with
currently available computational power.

However, techniques for reducing
training time by partitioning the lexicon
or by exploiting alternative network ar-
chitectures are being explored. One such
variation was investigated by Gersho and
Reiter [ 1990] for a di~tabase retrieval ap-
plication involving up to 1,000 street
names. They devisecl a hierarchical two-
layer network strategy consisting of a
self-organizing Koh onen-type network
[Kohonen 1988] anc[ many small back-
propagation networks. Input to their sys-
tem goes first to the Kohonen network to
be categorized into one of a few coarse-
grained categories and then to the appro-
priate back-propagation network for more
fine-grained categorllzation. They report
accuracy rates ranging from 7497 to 9770
for a database of 800 street names, and
they are continuing to explore larger
databases.

The neural net spelling corrector im-
plemented by Deffher et al. [1990a],
which is currently being tested on a
5,000-word lexicon, is part of a natural
language interface to a database system.
During retrieval, certain features (such
as syntactic and semantic features) may
be fixed by the context of the database
query. Lexicon entries and misspellings
are represented by feature vectors con-
taining letter n-grams, phonetic fea-
tures, syntactic features (e.g., is _adjec-
tive), and semantic features (e.g.,
is_ color). A Hamming distance metric
is used to compute a measure of similar-
ity between a potentially misspelled or
incomplete input string and each mem-
ber of a restricted subset of the lexicon.
This technique appears to be a promising
step toward incorporating some context
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Table 1.

Accuracy of Some Isolated-Word Spelling Correction Techniques

Technique

Minimum Edit Ihtance

- grope

Simllanty Key

- Bocast Token Reconstrru tmrr

Simple N-gram Vector Distance

- Dot Product

- Hamming Distance

- Cosine Distance

SVD N-gram Vector Distance

- Cosine D@mce

Probabilistic

on Kuklch’s 170-Word Test Set

521 -Word

Lexicon

64%

80%

58%

69%

7670

81%

1142-Word 1872-Word

Lexicon Lexicon

62~0 60%

78% 757.

54% 52%

6870 6770

75% 74%

76% 7470

- Kemighan-Church-Gale Error Probs 78%

Neural Net

- Back-propagation Classifier 757. 75TC

dependency into a corrector for domain- direct comparisons of techniques. In onlv
specific applications.

2.2.7 Summary of Isolated- Word Error

CorrectIon Research

It should be clear from the preceding
sections that the ideal isolated-word er-
ror corrector does not yet exist. Such a
system would have broad lexical cover-
age ( > 100,000 words) and be capable of
correcting both single-error and multi-
error misspellings in short, medium, and
long words in real time with near-perfect
first-choice accuracy. Real-time text-to-
speech synthesis is one example of such a
demanding application. It appears that
performance levels approaching 90% cor-
rection accuracy for isolated-word text
recognition and 80% correction accuracy
for isolated-word spelling correction rep-
resent the state of the art for practical
applications.

In most cases it is impossible to make

a few case; were techniques <ested on th~
same test set and lexicon. Furthermore,
techniques vary greatly in the kinds of
errors they were designed to correct (e.g.,
OCR-generated vs. human-generated, ty-
pos vs. phonetic errors, single vs. multi-
ple errors, errors in long vs. short words,
etc.). Hence, the characteristics of the
errors in a test set as well as the size and
content of a test dictionary all have great
impact on the correction accuracy of a
technique.

One small set of direct comparisons is
available based on Kukich’s test set of
170 human-generated misspellings. This
test set may be considered difficult but
realistic in that it contains relatively
large portions of multi-error misspellings
(2570) and short words (63%). The re-
sults, shown in Table 1, provide at least
a partial ordering of the accuracy of some
isolated-word spelling correction tech-
niques.
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It maybe surprising to some that most
of the other techniques outperform the
minimum edit distance technique. The
increased accuracy of the n-gram vector
distance techniques, especially the cosine
distance metric, may be due to the fact
that the bigram representation it uses
captures more useful information than
the unigram representation used in the
minimum edit distance technique. Bo-
cast’s “token reconstruction,” which
makes use of bidirectional letter se-
quence information, also apparently cap-
tures some useful information. It is inter-
esting that the neural net technique at-
tained nearly the same performance level
as the best n-gram vector distance tech-
nique despite being trained on artificially
generated errors. At the same time, it is
notable that computational demands
make standard neural net techniques im-
practical given existing hardware. It is
even more interesting that Kernighan et
al.’s [1990] error probabilities enhanced
the performance of the cosine distance
metric despite the fact that those proba-
bilities were estimated from a general
source (AP news wire data) while the test
set and lexicon came from a specialized
domain.

It is not clear whether these tech-
niques approach some theoretical upper
bound on isolated-word correction accu-
racy. It may not be coincidental that hu-
man performance on the same test set
was nearly identical to the best auto-
matic techniques. Seven human subjects
turned in scores ranging from 65’%o to
83% and averaging 74%. To see why even
humans have trouble achieving 100% ac-
curacy levels, consider the problem of
guessing the intended word from among
the closest candidates for just a few of
the misspellings in that test set:

vver ~ over, ever, very?

ater ~ after, later, ate, alter?
wekk - week, well, weak?
gharge ~ charge, garage, garbage?
throught - through, thought,

thoughout?
thre ~ there, three, threw, the?

oer ~ per, or, over, her, ore?

Given isolated misspelled strings such as

these, it is difficult to rank candidate
corrections based on orthographic simi-
larity alone.

Nevertheless, it does seem likely that
isolated-word spelling correction accu-
racy levels could be pushed a little higher
with good sources o f probabilistic infor-
mation. OCR error correction research
has shown that although transition and
confusion probabihties provide only
mediocre correction capability when used
alone, they achieve excellent perfor-
mance levels when coupled with dictio-
nary lookup techniques. OCR re-
searchers have been able to estimate reli-
able confusion probabilities for OCR de-
vices by feeding text to those devices and
tabulating error frequencies, but confu-
sion probabilities fcm human-generated
errors are harder to come by. Indeed,
those compiled by Kernighan et al. [1990]
remain the only such source. Given that
the KCG error probabilities were able to
improve the performance of other tech-
niques despite their generality, it seems
reasonable to infer that error probabili-
ties that are specifically tuned to their
human sources and lexical domains
would achieve even better accuracy. An-
notated machine-readable corpora of hu-
man-generated errors from which error
probabilities may be estimated are sorely
needed. A starting collection containing
mainly British-English misspellings is
available from Mitto n [1985].

Error probabilities might be integrated
into n-gram vector distance techniques
by storing their values directly into word
vectors, thus creating detailed word mod-
els that explicitly represent the specific
probabilities of typing any n-gram in any
position of a correct word. Alternatively,
once neural net learning chips become
practical, the same probabilistic knowl-
edge could not only be learned for each
individual, but it could also be continu-
ously adapted.

Further research is still needed to ad-
dress the problem ojf word boundary in-
fractions as well as the problem of neolo-
gisms, i.e., novel terms that arise from
creative morphology and from the influx
of new proper nouns and other words
reflecting a changing environment. As
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Sinha and Prasada [1988] have aptly
pointed out, no dictionary will ever be
complete for this reason. Their tech-
nique, which relies on the use of transi-
tion probabilities when it encounters such
terms, seems apropos and warrants fur-
ther investigation.

Other techniques worth investigating
are those that, like Tenczar and Golden’s
[ 1972], are modeled after human psycho-
logical word recognition processes. Such
techniques would attempt to capture
gestalt features of words, such as num-
ber of characters extending above and
below the horizontal base line, etc. Hull
[ 1987] and Ho et al. [1991] have already
begun some work along these lines. There
is a wealth of experimental-psychology
research to be exploited. Rumelhart and
McClelland [ 1982], McClelland and
Rumelhart [1981], and Johnston and Mc-
Clelland [1980] might serve as starting
points for exploring this area.

It is interesting to note that while all
techniques fall short of perfect correction
accuracy when only the first guess is
reported, most researchers report accu-
racy levels above 9070 when the first
three guesses are considered. Given a
small candidate set that contains the cor-
rect word over 9070 of the time, it is
possible to consider exploiting some con-
textual information to choose from among
the candidates. Thus, the potential exists
for current isolated-word error correction
techniques to be extended by context-de-
pendent knowledge. Some preliminary
experiments along this line, along with
other context-dependent spelling correc-
tion efforts, are discussed next.

3. CONTEXT-DEPENDENT WORD

CORRECTION RESEARCH

Regardless of the progress that is made
on isolated-word error correction, there
will always remain a residual class of
errors that is beyond the capacity of those
techniques to handle. This is the class of
real-word errors in which one correctly
spelled word is substituted for another.
Some of these errors result from simple

tYPos (e.g., from + form, form + farm)
or cognitive or phonetic lapses (e.g., there

+ their, ingenious + ingenuous); some
are syntactic or grammatical mistakes,
including the use of the wrong inflected
form (e.g., arrives ~ arrive, was + were)

or the wrong function word (e.g., for +

of, his ~ her); others are semantic
anomalies (e.g., in five minuets, lave a

message); and still others are due to in-
sertions or deletions of whole words (e.g.,
the system has been operating system for

almost three years, at absolutely extra

cost ) or improper spacing, including both
splits and run-ons (e.g., myself ~ my self,

ad here - adhere). These errors all seem
to require information from the sur-
rounding context for both detection and
correction. Contextual information would
be helpful also for improving correction
accuracy for detectable nonword errors.

Devising context-dependent word cor-
rection tools has remained an elusive
goal. This is due mainly to the seeming
intractability of the problem, which ap-
pears to call for full-blown natural-lan-
guage-processing (NLP) capabilities, in-
cluding robust natural language parsing,
semantic understanding, pragmatic mod-
eling, and discourse structure modeling.
Up to now, successful NLP systems have
been confined to highly restricted do-
mains of discourse, and although a few of
these systems have addressed the need
to handle ill-formed input, none were de-
signed for general use. Recently, how-
ever, progress toward robust syntactic
parsing has led to the development of at
least two general writing aid tools capa-
ble of detecting and correcting errors due
to some syntactic-constraint violations.
At the same time, advances in statistical
language modeling, together with a
steady increase in computational power,
have led to some promising experiments

in the area of statistically-based error

detection and correction.

The history of research related to con-

text-dependent word correction is re-

viewed in this section. It is divided into

four subsections. The first reviews find-

ings on the frequency and classification

of real-word errors. The second reviews

prototype NLP systems that address the

problem of handling ill-formed input, in-

cluding two syntactic rule-based writing

ACM Computing Surveys, Vol 24, No 4, December 1992



Automatically Correcting Words in Text w 413

aid tools that incorporate spelling and
grammar checking. The third reviews re-
cent experiments that attempt to exploit
statistical language models for ccmtext-
dependent spelling error detection and
correction. The last provides a summary
of context-dependent spelling correction
work.

3.1 Real-Word Errors: Frequency
and Classification

Only a few studies have attempted to
estimate the frequency of occurrence of
real-word errors. (One obvious reason for
the shortage of data on the frequency of
occurrence of real-word errors is the lack
of automatic tools for detecting such er-
rors.) The significant findings are: Peter-
son’s [1986] estimates suggesting that
anywhere from 2% to 16% of all single-
error typos might result in real-word er-
rors, Mitton’s [1987] analysis of 925
handwritten student essays in which he
observed that a full 40% of misspellings
were real-word errors, and Wing and
Baddeley’s [1980] listing of 1,185 hand-
written errors in which roughly 30% in-
volved real words.

An extrapolation from Mitton’s [1987]
statistics to the 40,000-word corpus of
typed textual conversations studied by
Kukich [1992] dramatizes the need for
context-dependent spelling correction.
Only 85% of the 2,000+ detectable non-
word error types in that corpus were cor-
rectable by isolated-word correction tech-
niques (the remaining 15% being word
boundary infractions that are not cor-
rectable by current techniques). The best
isolated-word correction techniques cor-
rected approximately 7890 of that 85%,
for an overall nonword correction rate of
66$Z0. But if the nonword errors studied
represent only 60% of all errors in the
corpus (the remaining 4090 being real-
word errors), then only 66% of 6070, or
40%, of all the errors in the corpus are
ultimately being corrected. Clearly, the
greatest gain is to be found in the detec-
tion and correction of errors in the 40%
block of real-word errors.

Because real-word spelling and gram-
matical errors pose practical problems for

natural language interfaces, a few stud-
ies have been undertaken to determine
the expected error rate in such environ-
ments. Thompson [ 1!180] analyzed 1,615
database input queries. She found that
446 queries, or almost 28%, contained
errors. Of those 446, 61 were nonword
spelling errors; 161 were errors due to
incomplete lexicon coverage; and 72 were
punctuation errors. The remaining real-
word errors included 62 grammatical er-
rors and comprised 34$Z0 of all errors.

Eastman and McLean [1981] studied
693 natural language queries to a
database system. They found that over
12% of them contained co-occurrence vio-
lations such as subject-verb disagree-
ment, pronoun-noun disagreement, in-
correct verb form, uninflected plural, etc.
Another 129. exhibited missing words,
and 2% contained extraneous words.
Overall, more than ’25% of the queries
contained real-word grammatical errors.
In a more recent study, Young et al.
[1991] again found real-word spelling and
grammar error rates in excess of 25T0 in
a sample of 426 natural language queries
to a document retrieval system. Thus,
real-word error rates ranging from 259?0
to 40% of all errors have been empiri-
cally documented.

One approach to handling real-word
errors is to view them as violations of
natural language processing constraints
and to apply NLP tools to the task of
detecting and correcting them. NLP re-
searchers traditionally identify at least
five levels of processi ng constraints: (1) a
lexical level, (2) a syntactic level, (3) a
semantic level, (4) a discourse structure
level, and (5) a pragmatic level. Nonword
errors would be classified as lexical er-
rors since they violate constraints on the
formation of valid words. Errors due to
lack of subject-verb number agreement
would be classified as syntactic errors
because they viola te syntactic con-
straints, as would other errors that re-
sult in the substitution of a word whose
syntactic category does not fit its context,
e.g., T’he study was conducted be XYZ

Marketing Research. Errors that do not
necessarily violate syntactic constraints
but do result in semantic anomalies, e.g.,
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see you in five minuets, would be classi-
fied as semantic errors. Errors that vio-
late the inherent coherence relations in a
text, such as an enumeration violation,
would be classified as discourse structure
errors, e.g., Iris flowers have four parts:

standards, petals, and falls. And errors
that reflect some anomaly related to the
goals and plans of the discourse partici-
pants would be classified as pragmatic
errors, e.g., Has Mary registered for Intro

to Communication Science yet? (where

Computer was intended).
It would be helpful to know the rela-

tive proportions of real-word errors that
fall into each of the five categories be-
cause the five levels of natural-language-
processing constraints represent increas-
ingly more difficult problems for NLP
research. Lexical errors are amenable to
isolated-word spelling correction tech-
niques; tools are just beginning to emerge
for handling syntactic errors in unre-
stricted texts; but only restricted-domain
prototype systems exist for handling se-
mantic, discourse structure, and prag-
matic errors. Ramshaw [1989] astutely
points out that the same error may be
classified differently with respect to de-
tectability and correctability. He cites the
following example from a student advisor
expert system, Is there room in CIM

360?, as a case in which lexical con-
straints may be sufficient to detect the
error (since CIM is not a valid course
code), but pragmatic knowledge about the
student’s goals and past course history
may be needed to determine whether CIS
(Computer and Information Science) or
COM (Communication Sciences) was in-
tended.

It would also be helpful to know the
relative proportions of real-word errors
that depend on local vs. long-distance
relations between words. This is because
an alternative approach to handling
real-word errors is to treat them as ir-
regularities or improbabilities within
the framework to statistical language
modes. Statistical language models based
on word bigram probabilities [Gale and
Church 1990; Church and Gale 1991b],
word trigram probabilities [Bahl et al.

1983; Jelinek et al. 1991], word n-gram
probabilities [Bahl et al. 1989; Brown et
al. 1990a], syntactic part-of-speech bi-
gram and trigram probabilities [De-
rouault and Merialdo 1984a; Garside et
al. 1987; Church 1988], and collocating
probabilities [Choueka 1988; Smadja and
McKeown 1990; Smadja 1991a] have been
developed already for other speech- and
text-processing applications. Statistical
techniques based on such models could
be used to detect improbable word se-
quences and to suggest probable correc-
tions. Most of these models are based on
local lexical or syntactic relations, i.e.,
relations among words that occur within
a few positions of each other, so error
detection and correction techniques based
on these models would be limited to han-
dling local errors. Since it is still not
clear what proportion of real-word errors
fall within this realm, the error coverage
potential of statistically based models is
yet to be determined.

One small but insightful study was
done by Atwell and Elliott [1987] in con-
junction with the University of Lancaster
Unit for Computer Research on the En-
glish Language (UCREL) probabilistic
parsing project [Garside et al. 1987].
These researchers analyzed a small sam-
ple of errors to determine the relative
proportion of errors in each of the follow-
ing four categories: (1) nonword errors;
(2) real-word errors in locally invalid
syntactic contexts; (3) real-word errors in
globally invalid syntactic contexts; and
(4) syntactically valid real-word errors in
invalid semantic contexts. Their sample
consisted of 50 errors each from three
different sources: (a) published, manu-
ally proofread texts, (b) essays by 11- and
12-year-old students, and (c) English
written by non-native English speakers.
The results of their analysis, shown in

6 Collocations are word pares (or tr]ples or quadru-
ples, etc. ) that exhlblt statistically slgmticant
affimtles for occurring somewhere m each other’s
nearby, though not necessary contiguous, lexlcal
envmonment, e.g., salt and pepper, apple, and pze,

apple and big, state and u7Lzon, etc

ACM Computmg Surveys, Vol. 24, No 4, December 1992



Automatically Correcting Words in Text

Table 2.

—

Distribution of Spelling Errors @om Anoell & Elllorf)

Total % % Local % Global %

#of Non-word Syntactic Syntactic Semantic

Errors Errors Errors Errors Errors

Text source
PubhshedTexts 50 52% 28’% 8% 12%
StudentEssays 50 36% 38% 16% 10%
Non-Native Text 50 4% 48% 12% 36%

Table 2, indicate widely different distri-
butions of errors across text genres, but
they do indicate that a significant por-
tion of errors may be detectable as local
syntactic violations. The prototype sys-
tem Atwell and Elliott implemented for
detecting such errors is described in Sec-
tion 3.3.1

The following few sentences, which
were randomly culled from existing texts,
contain genuine real-word errors that il-
lustrate some of the problems and poten-
tial for various NLP and statistically
based detection and correction tech-
niques. Most of the errors in these sen-
tences are readily detectable by humans,
though errors of this type are frequently
overlooked because inherent, human, er-
ror correction tendencies are so strong.7

Local Syntactic Errors:

(1) The study was conducted mainly be

John Black.

(2) The design an construction of the
system will take more than a year.

7 See Cohen [ 1980] for a review of some experi-
ments on human ability to detect nonword, real-
word, homophonic, and nonhomophonic spelling er-
rors in context. Experimental results indicate that,
not surprisingly, nonword errors are easier to de-
tect than real-word errors, and that, perhaps sur-
prisingly, real-word homophones are easier to de-
tect than real-word nonhomophones. The author
suggests three possible explanations for the latter
result, a primmg explanation, a frequency explana-
tion, and a semantic explanation,

. 415

(3) Hopefully, all with continue

(4)

(5)

(6)

smoothly in my absence.

Then they an going to go to his
house.

I need to notified the bank of [this
problem].

He need to go there right no w.

Global Syntactic Errors:

(7)

(8)

(9)

(lo)

Not only we in academia but the
scientific community as a whole
needs to guard against this.

Won’t they heave if next Monday at
that time?

I can’t pick him cup cuz he might be
working late.

This thesis is supported by the fact
that since 1989 ithe system has been
operating system with all four units
on-line, but. . .

Semantic Errors:

(11) He is trying to fine out.

(12) They are leaving in about fifteen
minuets to go to her house.

(13) Can they lave him my message?

(14) Well, 1’11 call again when they come
hoe.

Examples (1) through (10) all contain
syntactic violations. In theory, they
should be detectable by a sufficiently ro-
bust automatic natural language parser,
The syntactic violations in(1) through (6)
involve local (within 1 or 2 words) incon-
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gruities which should make them de-
tectable not only by a parser but also via
a statistical language model.

The mistakes in examples (7) through

(10) are more problematic. The subject-
verb number disagreement in example
(7) turns on a long-term dependency be-
tween the complex subject phrase and
the verb. This mistake requires a parser
capable of building the full syntactic
structure of the sentence. Even a parser
with that capability might have trouble
locating the double error in (8) which
precipitates a garden path effects Al-
though the problem in (9) might be de-
tectable by local syntactic-constraint vio-
lations, it would be difficult to select be-
tween two potential corrections, the
phrases pick him up and pick his cup,

on syntactic grounds alone. Furthermore,
the same mistake would not have been
detectable even via syntactic analysis if
the sentence had read pick ?zer cup.

Deletions and insertions, such as the ex-
tra word, system, in example (10) might
be problematic for both locally based and
globally based syntactic analyzers.

The mistakes in examples (11) through
(14) would all be undetectable via syntac-
tic analysis alone since they all have valid
parses. However, they are readily de-
tectable by humans for their semantic
incongruities and/or lexical improbabili-
ties. Unfortunately, there are no gen-
eral-purpose NLP systems capable of de-
tecting semantic incongruities that might
be used for this purpose. There are sta-
tistical language models, however, that
might hold some promise for detecting
not only semantic errors but also local
syntactic errors. Intuition suggests that
many of the above errors result in low-
frequency bigrams, i.e., an construction,

with continue, and they an in (2), (3), and
(4). However, some seem to require at
least trigrams to be detected, e.g., con-

ducted mainly be, been operating system,

and to fine out, in (l), (10), and (11). At

sA garden path effect occurs when a processor M
led down an incorrect search or processing path
from which it has difficulty recovering.

least one, (7), is resilient to both bigram
and trigram improbability detection.

No examples of discourse structure er-
rors or pragmatic errors are included
above because none were readily found in
a few days’ recording of actual errors.
Whether this reflects a genuine sparse-
ness of such errors is unknown.

One other characteristic of real-word
errors for which little hard data exists is
their apparent tendency to involve ortho-
graphic intrusion errors, i.e., substitu-
tions of graphemes from nearby words,
as in the following examples:

(15) Is there a were to display your plots
on a DEC workstation running X?
(way + were)

(16) . . . and they would bust bill us 1/12
of that each month. (just ~ bust)

(17) As noted above, such as system
would give them a monopoly. (a ~
as)

(18) I have access to those people through
by boss. (my ~ by)

(19) We will not meet again until. . . we
get out first outside speaker. (our

+ out)

Although phonemic (aural) lexical intru-
sions, or slips of the tongue, are well
documented in cognitive studies of lan-
guage production [Fromkin 1980; Garrett
1982], orthographic (visual) lexical intru-
sions, or slips of the pen, are less well
documented [Ellis 1979; 1982; Hotopf
1980]. Studies of these phenomena might
certainly be exploited in the context of
word correction.

In summary, there is some evidence
that real-word errors are ubiquitous, ac-
counting for as much as 40Yc or more of
all textual errors, but more research is

needed to determine their true fre-

quency. More research is also needed to

characterize or classify such errors.

Knowledge of the relative proportions of

such errors that violate each of the five

natural language processing level con-

straints, as well as the proportions that
entail local vs. global lexical or syntactic
violations and the proportions that in-
volve orthographic intrusions, would be
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helpful to determine which techniques
might be most useful in detecting and
correcting them. Emerging NLP tools for
syntactic processing have potential for
detecting and correcting some grammati-
cal errors, while statistical language-
modeling tools have potential for han-
dling other certain errors that result in
local lexical irregularities. These tech-
niques are described in more detail in
the following sections.

3.2 NLP Prototypes for Handling
Ill-Formed Input

Natural language researchers were quick
to recognize the need for handling inf-
ormed input as they observed their ear-
liest NLP systems floundering with the
naturally erroneous input proffered by
their first real users. They soon began
incorporating error-handling techniques
into prototype NLP systems. Most of the
prototypes were designed for specific
tasks within restricted domains of dis-
course, so their error-handling tech-
niques do not scale up well for use on
unrestricted text. Nevertheless, this work
helps to elucidate some to the issues sur-
rounding the problem of context-depen-
dent spelling and grammar correction, so
an overview is included here. Progress
has been made toward processing unre-
stricted text on the syntactic level, so two
syntactic rule-based NLP systems for
context-dependent spelling and grammar
correction are more fully described at the
end of this section.

Most NLP systems are parser driven.
That is, they view their central task as
one of deriving the syntactic structure of
the input text (or speech). Sometimes
they go on to do further semantic dis-
course structure and pragmatic process-
ing to interpret and act on the input. A
typical NLP system consists of a lexicon,
a grammar, and a parsing procedure. The
lexicon is the set of terms that are rele-
vant to the application domain. The terms
are usually annotated with their poten-
tial parts of speech as well as morpholog-
ical information. The grammar is a set of
rules that specifies how words, parts of

speech, and higher-or der syntactic struc-
tures (e.g., noun phrases, verb phrases,
etc. ) may be validly organized into well-
formed sentence fragments and sen-
tences. The parsing procedure often con-
sists of looking up each word in the dic-
tionary to determine its potential parts
of speech and applying grammar rules to
build up higher-order syntactic struc-
tures. Since many words have more than
one possible part of speech, multiple par-
tial parses often must be built in parallel
until later constraints resolve the syntac-
tic ambiguity of the terms.

Not all NLP systelms retain clear-cut
divisions of lexical, syntactic, and seman-
tic knowledge. Quite a few systems em-
ploy some form of a “semantic grammar”
in which semantic restrictions on how
words can be meaningfully juxtaposed are
incorporated directly into the grammar.
A few systems incorporate knowledge of
syntactic structures and semantic re-
strictions into their lexicons. In either
case, the availability of knowledge of se-
mantic constraints at an earlier stage of
the parsing process helps narrow the
space of potential parses that must be
explored. Those NLP systems that make
use of discourse structure and/or prag-
matic knowledge usually keep that
knowledge in separate data structures
that represent models of the organization
of the text, the user’s plans and goals,
and/or the system’s knowledge of the
domain. The models may be consulted
and modified during the parsing process,
and the constraints they impose help to
reduce further the search space of poten-
tial parses.

Under this paradigm, the detection and
correction of errors is nontrivial for at
least two reasons: ( 1 ) lexical and gram-
matical coverage is necessarily incom-
plete; and (2) locating the source of a
parsing failure is often difficult. For ex-
ample, a failure to find a string in the
system’s lexicon cou Id indicate that a
spelling error has occurred, but it could
also indicate that a novel term has been
encountered. Because the occurrence of
novel terms (e.g., proper nouns) is so
high, most parsers assume that unknown
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terms are not mistakes and assign a de-
fault syntactic category (usually noun) to
them and then attempt to proceed with
the parse. If a parsing failure occurs fur-
ther along in processing, often it is hard
to tell whether it is due to the fact that
the input violates some rule(s) of the
grammar, or the fact that grammar itself
is incomplete, or the fact that an input
string has been miscategorized. Further-
more, it is frequently hard to pinpoint
the precise rule or word that precipitated
the failure let alone suggest a correction.
Consider the previous example: Wo?z’t
they heave if next Monday at that time?

Even a robust parser might not recognize
that a problem exists until the ending
punctuation is encountered, at which
time it would be hard to guess that the
terms heave if are the culprits and that
they should be replaced with the terms
have it.

Various approaches to dealing with
ill-formed natural language input have
been tried. They can be loosely classified
into three general categories: (1) accep-
tance-based approaches; (2) relax-
ation-based approaches; and (3) ex-
pectation-based approaches.

3.2.1 Acceptance-Based Techniques

Acceptance-based approaches are ground-
ed in the philosophical observation that
despite the fact that ordinary language is
replete with errors, people nevertheless
have little trouble interpreting it. So ac-
ceptance-based techniques assume that
errors can simply be ignored as long as
some interpretation can be found that is
meaningful to the given application. Ac-
ceptance-based approaches tend to make
heavy use of semantic information and
little use of any other level of linguistic
information.

Many of the earliest NLP systems, for
example, those devised by Waltz [1978]
and Schank [ 1980] and their students,
focused on semantic understanding, and
so were able to adopt acceptance-based
approaches for handling ill-formed input.
Under these approaches ill-formed input,
such as lack of number agreement be-
tween a subject and a verb, was treated

on an equal basis with well-formed input,
either by ignoring or eliminating from
the grammar the syntactic or other
grammatical constraints that the input
violated or by incorporating rules for pro-
cessing certain common ill-formed con-
structions directly into the grammar.
These approaches proved successful for
their particular applications, in part be-
cause erroneous input is frequently se-
mantically unambiguous within a re-
stricted domain. But they do not general-
ize readily to the task of detecting and
correcting real-word errors in unre-
stricted text for at least two reasons. One
is that they often accommodate ill-formed
input without even detecting a problem.
The other is that they require a semantic
model of the domain of discourse. No
full-blown semantic model is available
for unrestricted text.

A variant of an acceptance-based ap-
proach that has some intuitive appeal is
the preference semantics approach advo-
cated by Fass and Wilks [1983]. It is
intended to address the fact that a large
portion of all natural language utter-
ances are either ill-formed or metaphori-
cal to some degree, for example, the
statement My car drinks gasoline. They
assume that a formal semantic-represen-
tation scheme and an encoding procedure
are available that enable every input
string to be encoded in such a way that
highlights any semantic conflicts or se-
mantic-preference violations. Further
processing would then determine the de-
grees to which either certain terms in the
input would have to be changed or the
system’s semantic model would have to
be changed in order to minimize the con-
flicts. The system would settle on the
interpretation resulting in the least
change. While this approach has much
psychological plausibility, at present it is
impractical for processing unrestricted
text, again because the rich formal se-
mantic knowledge base it requires is un-
available.

3.2.2 Relaxation-Based Techniques

Relaxation-based approaches are at the
opposite end of the error spectrum—they
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assume that no errors can be ignored.
This philosophical bias arose from the
fact that many early NLP systems relied
almost exclusively on syntactic rules, and
as such they simply broke down when
such rules were violated. In relaxation-
based techniques, when a parsing failure
occurs, the system attempts to locate an

error by identifying a rule that might
have been violated and by determining
whether its relaxation might lead to a
successful parse. Locating and relaxing
rules allow for both detection and correc-
tion of errors.

Relaxation-based techniques, which fo-
cus mainly on syntactic processing, are
the least knowledge intensive of the three
approaches and for that reason the most
well suited for use on unrestricted text.

In fact, two relaxation-based text-editing
systems, the EPISTLE/CRITIQUE sys-
tem originally designed for editing busi-
ness correspondence [Heidlorn et al. 1982;
Richardson and Braden-Harder 1988]
and a similar text editor for the Dutch
language [Kempen and Vosse 1990] have
been tested on unrestricted text. Those
systems and their test results are de-
scribed in more detail later. For now we
will simply note that they both employ
rule-based parsers to detect and correct
certain errors that result in syntactic-rule
violations. Neither system makes use of
semantic, pragmatic, or discourse struc-
ture knowledge, so neither system at-
tempts to detect or correct errors in those
categories. The EPISTLE/CRITIQUE
system preprocesses input to detect and
correct nonword spelling errors before
beginning its parsing procedure; certain
real-word errors, including commonly
confused terms such as who’s and whose,
as well as a variety of grammatical er-
rors, such as subject-verb number agree-
ment violations and punctuation prob-
lems, are detected during the parsing
process, and corrections are suggested.
The Dutch system preprocesses each in-
put string to generate a rank-ordered co-
hort set, i.e., a relatively small set of
orthographically and phonetically similar
words. Presumably, the cohort sets for
both nonword and real-word errors will
contain the correct word. The parsing

procedure is then applied to the original
input string, and, when a failure occurs,
a rule is relaxed and retried using a can-
didate term from the cohort set.

Similar relaxation-based techniques
have been implemented or proposed by
Trawick [1983], Weischedel and Sond-
heimer [1983], Suri [ 1991], and Suri and
McCoy [1991]. In his REL system, Traw-
ick used syntactic-rule relaxation, plus
ordering strategies foIr trying easy correc-
tions first, plus cohort set generation as a
last resort. Weischedel and Sondheimer
advocate adopting a principled approach
to rule relaxation. They have defined a
set of diagnostic metarules to guide the
search for potential rules to relax when
parsing failures occur. Their proposed
metarules detect problems in the follow-
ing general categories: omitted articles,
homonyms, spelling /typographical er-
rors, violated selection restrictions,
personification, metonymy, and other
violated grammatical tests such as agree-
ment failures. Suri and McCoy have re-
cently begun work on a system for cor-
recting English written by American Sign
Language (ASL) users. Since the gram-
mar and syntax of ASL differ signifi-
cantly from standard English, text writ-
ten by ASL users often contains errors
with respect to standard English that fall
into certain patterns. Suri has developed
a taxonomy of such errors by analyzing a
corpus of writing samples from ASL
users. The error taxonomy will guide the
development of an error-correcting lan-
guage-learning tool.

3.2.3 Expectation-Based Techniques

Expectation-based approaches fall some-
where in the middle of the error spec-
trum—they acknowledge both that er-
rors occur and that people draw on con-
textual knowledge to correct them. In
expectation-based techniques, as the
parsing procedure progresses the system
builds a list of words it expects to see in
the next position based on its syntactic,
semantic, and sometimes pragmatic and
discourse structure knowledge. If the
next term in the input string is not in the
list of expected terms, the system as-
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sumes an error has been detected and
attempts to correct it by choosing one of
the words on its expectation list.

Expectation-based techniques have
been devised to exploit various levels of
linguistic knowledge. One system that
exploits both syntactic and semantic ex-
pectations for error correction is the
case-based parser referred to as CAS-
PAR, DYPAR, and MULTIPAR [Carbo-
nell and Hayes 1983], listed here in suc-
cessive generations. This parser derives
much of its expectation-forming ability
from the fact that it operates under the
case frame paradigm. Case frames are
slot-filler data structures for represent-
ing predicates (usually realized as verbs)
and their arguments. For example, a
GIVE predicate would have a case frame
with slots for three arguments, a
FROM-slot, a TO-slot, and an OBJECT-

Slot .
Under the case frame paradigm, both

the syntactic and semantic structures of
a given domain of discourse are modeled
in recursive case frames which are incor-
porated into a grammar and lexicon. As
each word in an input string is parsed, it
either invokes a new case frame or fills a
slot of an existing one. Existing case
frames and their unfilled slots set up
expectations for upcoming terms. Thus,
an expectation list of potential next terms
can be generated for each word in an
input string as the parse progresses. The
size of the expectation list will vary from
the whole dictionary, when no case frame
has yet been selected, to small sets of
potential terms when a partially filled
case frame is being processed, to a unique
word when a function word is expected.
These “reduced-dictionary” expectation
lists can be exploited when both nonword
and real-word spelling errors are encoun-
tered in the input. Case frames also

provide significant help in recognizing
missing word errors and in parsing valid
instances of ellipsis and anaphoric refer-
ences.

The most recent version of this parser,
MULTIPAR [Minton et al. 1985], pur-
sues multiple parses in parallel. It ex-
ploits both expectation-based and relax-
ation-based error recovery techniques.

When the parsing procedure reaches a
roadblock, it invokes as many recovery
strategies as it needs to achieve at least
one valid parse, including nonword and
real-word spelling correction, missing-
word insertion, and others. The order in
which recovery strategies are invoked is
governed by a control strategy to ensure
that strategies leading to less-deviant er-
rors are tried first.

Another expectation-based parser, the
NOMAD system [Granger 1983], makes
similar use of syntactic and semantic ex-
pectations to correct nonword and real-
word errors, to constrain possible word
senses, and even to guess the meanings
of unknown words. For example, NO-
MAD is able to guess that the unknown
term scudded in the input Enemy scud-

ded bombs at us is probably a verb whose
action is in the PROPEL class.

Expectation-based techniques have
also been devised to exploit pragmatic
and discourse structure knowledge. A
system devised by Ramshaw [1989] ex-
ploits pragmatic knowledge to detect and
correct real-word errors in user input to
an expert system. The expert system has
a rich pragmatic model “based in part on
a library of domain plans for how agents
can deal with situations of the given type”
(p. 23). Input errors are detected when
the system is unable to construct a com-
plete interpretation of an input that is
compatible with one of the domain plans.
Ramshaw’s system uses a wildcarding
technique to successively replace each
word in the input with an open slot and
then combine the syntactic and semantic
constraints from the partially inter-
preted input with the predictions from
the pragmatic model to yield a ranked
set of corrections. Two other systems, one
by McCoy [1989] and one by Carberry
[1984] prescribe methods for generating
responses to pragmatically ill-formed in-
put. Both rely on heuristics for building a
model of the user’s plans and goals based
on information that can be inferred from
the preceding dialogue,

Expectations that can be derived from
the structure of the dialogue have also
been used to correct errors and resolve
ambiguities introduced by speech recog-
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nizers. Speech-to-text systems are faced
with a compound problem: not only are
current voice recognition systems subject
to a high rate of error in classifying
speech signals into phonemes, but many
unique phoneme sequences yield lexi-
cally ambiguous homophones (e.g., hear,

here). Fink and Biermann [1986] de-
scribe a connected-speech-understanding
system capable of executing commands
spoken by a user. Their system learns
dialogue scripts as it is lbeing used and
then exploits the dialogue expectations it
has learned to resolve subsequent inf-
ormed and ambiguous input.

In summary, expectation-based tech-
niques appeal to the intuition that con-
textual linguistic knowledge at all levels,
lexical, syntactic, semantic, discourse
structure, and pragmatic, help to con-
strain the list of possible word choices
when natural ambiguities and errors oc-
cur in everyday language. Unfortunately,
general computational processing tech-
niques exist for only two of those levels,
the lexical and syntactic levels. Tech-
niques for representing and processing
semantic, pragmatic, and discourse
structure knowledge at sufficiently rich
levels of detail are currently impractical
beyond limited domains of discourse. So,
like acceptance-based techniques, expec-
tation-based techniques are not practical
yet for attacking the problems of
context-dependent spelling and gram-
matical-error correction for unrestricted
text. However, the less knowledge-inten-
sive relaxation-based techniques, which
concentrate almost exclusively on syntax,
have made some progress in this area,
and the extent of their success is de-
scribed next.

3.2.4 Parser-Based Writing Aid Tools

One obvious application for context-de-
pendent spelling correction is in writing
aid and text critiquing systems. The
Unix-based Writer’s Workbench system

[Cherry and Macdonald 19831 is perhaps
the earliest such system. It consists of a
set of automatic tools that include, among
others, the spell isolated-word spelling
corrector, a grep-based pattern-matching

tool for detecting some 800 commonly
misspelled words (including some real-
word misspellings), a word usage tool that
describes the proper usage of some 300
words and phrases, a tool for detecting
common instances of poor writing style,
such as the use of sexist language and
stilted phrases (e.g., more preferable, col-

laborate together, with the exception of),

and the style program, which computes a
number of statistics about a document
including a readability score, sentence
lengths, percentage of words in each
part-of-speech category, etc. Style makes
use of a program called parts that
guesses the parts of speech of the words
in a document. Its authors claim that it
achieves 959t0 accuralcy despite the fact
that it uses only a small dictionary of
function words, irregular verbs, and suf-
fixes to classify some words and then
looks for relations among those words to
classify the rest.

Perhaps the first system to attempt to
bring robust natural language parsing to
bear on the problems of detecting and
correcting real-word spelling and gram-
mar errors was the IBM EPISTLE sys-
tem [Heidorn et al. 1982], later known as
CRITIQUE [Richardson and Broden-
Harder 1988]. EPISTLE was originally
designed to diagnose five classes of gram-
matical errors:

(1) subject-verb disagreement: (e.g., Mr.
Jones, as well as his assistance, are
entitled. ., );

(2)

(3)

(4)

(5)

wrong pronoun case: (e.g., If I were

him...);

noun-modifier disagreement: (e.g.,
These report must be checked. ..);

nonstandard verb forms: (e.g., The

completed manuscript was wrote
by.. .); and

nonparallel structures: (e.g., We will

accept the funds, send rec~ipts to the

payers, and crediting their ac-

counts . . . ).

Note that EPISTLE’s robust parsing ap-
proach has the advantage of being able to
detect even problems that turn on long-
term syntactic dependencies.
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The EPISTLE parser and grammar
were designed and tested reiteratively
around a corpus of 411 business letters
consisting of 2,254 sentences whose aver-
age length was about 19 words. EPIS-
TLE made use of an on-line dictionary of
over 100,000 words. By 1982, EPISTLE’s
core grammar of augmented phrase
structure rules consisted of about 300
rules. Its rule-based parser attempted to
arrive at a unique parse for each sen-
tence by invoking first its core grammar
rules. When multiple parses were found
a general metric for ranking parses

[Heidorn 19821 was invoked to select one.
When the core grammar failed to pro-
duce a complete parse, another tech-
nique, called fitted parsing [Jensen et al.
1983], was invoked. The fitted-parsing
technique consisted of a set of heuristics
for choosing a head constituent and at-
taching remaining constituents to form a
complete sentence. In 1981, 64% of the
sentences in the test corpus could be
parsed using EPISTLE’s core grammar
alone. By mid-1982, when the fitted-
parsing technique was introduced, the
whole corpus could be successfully
parsed, 27% via fitted parsing.

Processing of text in EPISTLE began
with a dictionary lookup phase that as-
signed parts-of-speech to input words,
and in the process detected nonword
spelling errors and certain awkward
phrases. Unrecognized words were as-
signed a default part of speech, usually
noun. Next came the parsing phase, dur-
ing which the detection and correction of
real-word grammatical errors occurred.
The parsing process might require multi-
ple passes; if a successful parse was not
obtained on the first pass, it was retried
with selected grammatical constraints
being relaxed. The result of the parsing
phase was a parse tree that highlighted
any relaxed constraints and suggested
corrections. A final EPISTLE processing

9 Roughly speaking, a constituent is a portion of the
syntactic tree structure of a sentence that com-
prises a complete phrasal unit, such as a noun
phrase, verb phrase, or prepositional phrase.

phase diagnosed stylistic problems such
as sentences that were too long.

EPISTLE’s authors acknowledged that
its five original error classes “do not cover
all possible grammar errors in English,
but they do address those that are most
often mentioned in the literature and
most frequently found in the observed
correspondence” (p. 319) [Heidorn et al.
1982]. Over the years, EPISTLE’s gram-
mar and error coverage were extended so
that by 1985, its revised version, named
CRITIQUE [Richardson and Braden-
Harder 1988], covered over 100 grammar
and style errors and had been tested on
four text genres: business correspon-
dence, freshman student essays, ESL

(English as a Second Language), and pro-
fessional writing. CRITIQUE’s output on
10 randomly selected samples from each
of these genres was analyzed, and its
advice was classified into three cate-
gories: correct, useful, or wrong. The
useful category designated cases in
which CRITIQUE detected a problem
correctly but was not exactly correct in
its diagnosis. Results of the analysis are
shown in Table 3.

Perhaps the lower performance level
for professional text might be due in part
to a lack of coverage of the lexicon and
grammatical structure of the profes-
sional domain. Unfortunately, we are not
told how many errors CRITIQUE over-
looked. The authors indicate they believe
CRITIQUE to be “most helpful on
straightforward texts before they are sig-
nificantly revised” and that “In general,
CRITIQUE also appears to be more accu-
rate on texts with a shorter average sen-
tence length” [Richardson and Braden-
Harder 1988, pp. 201-202].

A parser-based text-editing system for
the Dutch language has produced some
encouraging results [ Kempen and Vosse
1990]. Although its authors are careful to
point out that the system was not de-
signed to be a full-scale grammar and
style checker, it does appear to function
well as a general-purpose tool for detect-
ing and correcting both nonword and
real-word syntactic errors. It incorpo-
rates the triphone-based isolated-word
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Table 3.

CRITIQUE’s Error CorrectIon Ab]l]ty

Genre Average Correct Correct +

Sentence Adwce Useful

Length Adwce

Business Corm 18 words 7370 82%
Student Essays 16 words 72% 8670

ESL Text 21 words 547. 87’%0

Pro!cwlond Text 22 words 397. 41?’.

spelling corrector of Van Berkel and
DeSmedt described in Section 2.2.4 and a
unification-based parser consisting of
some 500 augmented phrase structure
rules. It also has access to a 100,000-word
dictionary that is cross-indexed to in-
flected forms, giving it a total lexicon of
about 250,000 words.

It wocesses a document in four staszes:

(1) p~eprocessing, (2) word-level anal~sis,
(3) sentence-level analysis, and (4) text
resynthesis. The preprocessing stage re-
moves typesetting markup symbols and
corrects punctuation. The word-level
analysis stage calls upon the Van Berkel
and DeSmedt spelling corrector to gener-
ate a small set ( - 5) of candidate correc-
tions, including homophones, for each
word type in the document. In the sen-
tence-level analysis stage, a unification-
based parser is called to produce a high-
level parse. Unification rules are relaxed
to allow for syntactic violations which
are then flagged. When violations are
detected, the parser attempts to con-
struct a valid parse using candidates from
the correction set. Finally, in the text
resynthesis stage the system regenerates
the original document with suggested
corrections and error diagnostic mes-
sages.

Kempen and Vosse [1990] evaluated
the system on a standard 150-sentence
spelling correction exam for typists that
contained 75 correct sentences and 75

incorrect sentences; 59 of the incorrect
sentences had nonword errors; 14 had
real-word syntactic errors; and 2 had
real-word idiomatic errors. The system
gave no false alarma on the 75 correct
sentences; it detected 56 of the 59 non-
word errorsl” and corrected 55 of them; it
detected 9 of the 14 syntactic errors and
corrected 7 of them; it overlooked the 2
idiomatic errors. All this required under
10 seconds of CPU time on a DECstation
3100. A more recent version of the sys-
tem, which will soon be available com-
mercially [Vosse 199>!], was tested on the
same test set. It left only 3 errors unde-
tected, correcting the other 72 and caus-
ing no false alarms. This system was also
tested on a random sample of 1,000 lines
from two texts on employment legislation
submitted for publication. The sample
contained 6,000 words with 30 spelling
errors. The system detected 28 of the
errors and accurately corrected 14 of
them while producing 18 false alarms.

Recent research halS led to significant
advances toward robust natural lan-
guage parsing of unrestricted English
text. 11 Given this progress, some useful
commercial systems for real-word gram-
matical-error correction based on robust
parsing and syntactic-constraint relax-
ation techniques should be appearing in
the not-too-distant f’uture.

3.3 Statistically Based Error Detection and
Correction Experiments

An alternative approach to context-
dependent spelling correction is the sta-
tistical language-modeling approach.
Statistical language models (SLMS) are
essentially tables of conditional probabil-
ity estimates for some or all words in a
language that specify a word’s likelihood
to occur within the cOIIteXt of other words.
For example, a word trig-ram SLM speci-

10 The nonwords were overlooked because the sys-
tem’s morphological analyzer construed them as
legal compounds.
u See for example, ~indle~:; [1983] Fidditch parser,

Abne~s [1990] CASS parser, and Sleator’s [1992]
Lmk Grammar.
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fies the probability distribution for the
next word conditioned on the previous
two words; a part-o f-speech-bigram SLM
specifies the probability distribution for
the part of speech of the next word condi-
tioned on the part of speech of the previ-
ous word; and a collocation SLM specifies
the probability distributions for certain
words to occur within the vicinity (e.g.,
within five places in either direction) of
another linguistically related word. Some
of the various speech and text-processing
applications for which SLMS have been
compiled include speech recognition [Bahl
et al. 1983; Jelinek et al. 1991], informa-
tion retrieval [Choueka 1988], text gen-
eration [Smadja 1990a, 1991 b], syntactic
tagging and parsing [Garside et al. 1987,
Church 1988], machine translation
[Brown et al. 1990b], semantic disam-
biguation [Brown et al. 1991], and a
stenotype transcription application [De-
rouault and Merialdo 1984b].

The probability estimates comprising
SLMS are derived from large textual cor-
pora, where “large” is currently defined
as tens of millions of words. Only re-
cently have the computational resources
become available and the sizes of ma-
chine-readable corpora begun to ap-
proach the dimensions required to make
the compilation and use of such models
feasible. Note, for example, that the size
of a word trigram probability matrix
grows cubically with the size of the lexi-
con, so that a full-scale word trigram
model for a lexicon of only 5,000 words
would have 25 trillion entries. Clearly,
the majority of those entries should be
assigned zero probabilities. But because
of Zipf’s law [Zipf 1935], which states
that the frequency of occurrence of a term
is roughly inversely proportional to its
rank, there will always be a large tail of
terms that occur only once. So even with
the availability of corpora as large as 100
million words, hence 100 million tri-
grams, computing nonzero probabilities
is a nontrivial statistical estimation
problem. To alleviate this problem, some
clever estimation techniques have been
devised [Bahl et al. 1983, 1989; Brown
et al. 1990a], and some comparative
studies of estimation procedures have

been carried out [Gale and Church 1990;
Church and Gale 1991b]. The latter stud-
ies were done in the context of word bi-
gram models, which are somewhat more
manageable in size than word trigram
models.

Other more manageably sized SLMS
have been explored. For example, part-
of-speech (POS) bigram and trigram
models have been compiled [Garside
et al. 1987; Church 1988; Derouault and
Merialdo 1984a] based on expanded part-
of-speech category sets of approximately
100 categories (for example, plural-
possessive-personal-pronoun, e.g.,
our, reflexive-indefinite-pronoun,
e.g., oneself, superlative-degree-ad-
verb, e.g., most, superlative-general-
adverb, e.g., best, etc). Note that a POS
bigram model based on 100 categories
will have at most 10,000 POS bigram
entries for which probabilities must be
compiled. Manageably sized collocation-
based SLMS have been compiled also
[Choueka 1988; Smadja 1991a]. Since the
goal of collocation-based models is to lo-
cate and estimate probabilities of co-oc-
currence for only those terms that enter
into statistically significant collocation
relations, the resulting models contain
fewer table entries. The price that is paid
for the computational manageability of
these smaller models is reduced predic-
tive power: POS n-gram models are able
to predict only the part-of-speech of the
next word as opposed to the word itself,
and collocation models provide predic-
tions for only some terms. Nevertheless,
by combining POS n-gram probabilities
or collocation probabilities with other
lexical statistics, such as unigram word
frequency or relative probability that a
word will have a particular part-of-
speech, these models have been put to
productive use in certain applications, in-
cluding the syntactic tagging and pars-
ing, stenotype transcription, information
retrieval, and text generation applica-
tions cited above.

The statistical langaage-modeling ap-
proach to context-dependent word correc-
tion shares a basic premise with expecta-
tion-based NLP approaches: namely, that
contextual information can be used to
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help set a priori expectations for possible
word choices. Thus, low-probability word
sequences might be used to detect real-
word errors, and high-probability word
sequences might be used to rank correc-
tion candidates. Word-based SLMS (as
opposed to SLMS based on syntactic POS
n-grams) might even capture some inher-
ent semantic relations, e.g., the semantic
relation between the words doctor and
nurse, without the need for an explicit,
handcrafted, formal semantic model. In-
deed, all SLMS are compiled automati-
cally. One limitation of both word-based
and POS-based bigram and trigram
SLMS is that they are confined to repre-
senting only local relations (i. e., two or
three contiguous terms).

It is not immediately clear how suc-
cessful various SLMS might be at either
detecting or correcting real-word errors.
Three recent studies, one using a POS
bigram model [Atwell and Elliott 1987],
one using a word bigram model [Gale
and Church 1990; Church and Gale
1991a], and one using a word trigram
model [Mays et al. 1991], were designed
specifically to shed some light on these
questions. In the first study, researchers
attempted to determine how well a POS
bigram model could detect real-word er-
rors. In the second study, the ability of a
word bigram model to improve the accu-
racy of a nonword corrector was tested.
In the third study, the ability of a word
trigram model both to detect and correct
real-word errors was tested. The results
of all three studies are reviewed here.

3.3.1 Detecting Real-Word Errors wa

Part-of-Speech Bigram Probabilities

One successful application of statistical-
language modeling to a natural language
text-processing problem is the syntactic
tagging and parsing project undertaken
by the University of Lancaster’s Unit for
Computer Research on the English Lan-
guage (UCREL) [Garside et al. 1987]. The
UCREL prototype system includes a
probabilistic word tagger called CLAWS
(Constituent Likelihood Automatic
Word-tagging System) that makes use of
a syntactic-tag set consisting of 133 part-

of-speech categories and a part-of-speech
bigram SLM. POS bigram transition
probabilities were estimated from a
tagged corpus of one million words.
CLAWS first assigns one or more syntac-
tic tags to each word in a sentence by
looking up a word’s potential parts-of-
speech in a dictionary. Approximately
6570 of all words (i.e., tokens) receive
only one tag when processed in this man-
ner. Remaining ambiguities are resolved
by selecting the tag of highest probability
according to POS bigram transition prob-
abilities. This is accomplished by com-
puting the path of maximum probability
for a sequence of one or more ambigu-
ously tagged words bounded at either end
by unambiguously tagged words. CLAWS
ultimately assigns an unambiguous part-
of-speech tag to every word with an over-
all accuracy rate of 9[S–97%.

Two UCREL researchers, Atwell and
Elliott [ 1987] set out to explore the util-
ity of CLAWS for detecting and correct-
ing real-word errors. Prior to experi-
ments, they studied a small sample of
errors to determine what proportion fell
into each of the following categories: (1)
nonword errors; (2) real-word errors in
locally invalid syntactic contexts; (3)
real-word errors in globally invalid syn-
tactic contexts; and (4) syntactically valid
real-word errors in invalid semantic con-
texts. They hypothesized that CLAWS
might be helpful in detecting and correct-
ing errors in the second and perhaps third
categories. The results of their brief study
(shown in Table 2 in Section 3.1) indi-
cated that nearly half of the errors they
found in published text were real-word
errors, and over three-quarters of those
were due to either local or global syntac-
tic violations. So they went on to test the
ability of CLAWS to detect these types of
errors.

By manually examining a corpus of
13,500 words of text taken from four dif-
ferent sources. Atwelll and Elliott [ 1987]
and their colleagues identified 502 real-
word errors. Of those, 420 errors fell into
categories 2 or 3, anld 82 fell into cate-
gory 4. Since category 4 errors would be
impossible to detect via syntactic analy-
sis alone, these errors were separated
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from the others. Note that category 3
errors, which turn on global synt attic re-
lations, are also unlikely to be detected
by POS bigram probabilities, but they
were not separated from the others.

Next, Atwell and Elliott [ 1987] ran the
CLAWS tagger to assign syntactic-cate-
gory tags based on POS bigram transi-
tion probabilities to the entire 13,500 -
word corpus and to record the resulting
POS bigram transition probabilities.
They hypothesized that a sequence of two
low POS bigram probabilities might indi-
cate an occurrence of an error, and they
set about determining an optimal thresh-
old setting for those probabilities such
that the number of errors detected would
be maximized while the number of false
alarms would be minimized. The o~timal.
setting they found resulted in a detection

rate of 62~0 and a precision rate of 35~0.

That is, 260 of the 420 errors were de-

tected. and 753 words in all were flagged

as errors. Unfortunately, changing”~he
thresholds slightly only raised the preci-
sion rate to 38Yc while sacrificing the
detection rate to the level of 47%.

These results indicate that raw POS
bigram transition probability scores alone
perform relatively poorly as a diagnostic
tool because it is impossible to choose a
threshold that ensures the detection of a
high number of errors without permit-
ting an unreasonable number of false
alarms. However, the original implemen-
tation of CLAWS did not assign probabil-
ities to the candidate tags for words (ex-
cept for marking some tags as extremely
rare). So it might be possible to add can-
didate tag probabilities, as in some other
POS n-gram models [Church 1988; Der-
ouault and Merialdo 1984a], thereby im-
proving the error-detecting capabilities of
CLAWS. Nevertheless, there is an inher-
ent limitation in the correction power of

POS bigram probabilities. That is, if mul-
tiple candidates share the same pre-
ferred POS tag, the tag loses its discrimi-
nation power.

Atwell and Elliott [ 1987] considered
their results to be reasonably promising,
but they acknowledged a need to incorpo-
rate other sources of contextual knowl-
edge into a real-word spelling correc-

tor. They have proposed a hypothetical
context-dependent spelling correction
scheme in which an isolated-word spell-
ing corrector would be used to generate
first a relatively small candidate set ( -5
words) for every word in a sentence. Fol-
lowing that. a relative likelihood rating
would” be ascribed to each candidate b;
considering five factors: (1) the degree of
similarity of the candidate to the typed
word; (2) part-of-speech bigram transi-
tion probabilities; (3) probabilities of in-
dividual words; (4) collocation probabili-
ties; and (5) domain-dependent lexical
preferences. They did not try to imple-
ment this scheme because they deemed it
to be too computationally expensive.

3.3.2 Improving Nonword Correction Accuracy

wa Word B/gram Probab/1/t\es

A more general (though still local) proba-
bilistic approach to word correction relies
on the use of word bigram or trigram
probabilities rather than just POS bi-
gram probabilities. Although the word
n-gram approach has the disadvantage of
requiring far more data (e.g., a 50,000 -
word dictionary gives rise to 50,000 g
word bigrams vs. 1332 POS bigrams), it
has the ~otential for detecting and cor-
recting n’ot only syntactic ano~alies but
also semantic anomalies that may be
syntactically valid. Word n-gram ap-
proaches to context-dependent spelling
correction have been explored in at least
two studies, One study, by Church and
Gale [1991a], demonstrated the potential
of word bigrams to improve the accuracy
of isolated-word spelling correctors. It
also demonstrated the im~ortance of ob-.
taining careful estimates of word bigram
probabilities [Gale and Church 1990].
Another, by Mays et al. [ 1991], demon-
strated the detection/ correction power of

word trigrams. It also identified an opti-

mum setting for an a priori likelihood
estimate that the actual word typed was
the correct word.

The Church and Gale [1991a] study
did not address the detection problem.
Instead, It tested a context-sensitive
technique for improving the accuracy of
the correct isolated-word spelling correc-
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tion program (described in Section 2.2.5).
Church and Gale’s technique took as in-
put a nonword together with its immedi-
ate left and right contextual neighbors.
First, correct was used to generate a set
of correction candidates and their proba-
bilities for the nonword. Next, word bi-
gram probabilities were used to estimate
left and right context conditional proba-
bilities for each candidate. Finally, candi-
dates were scored and ranked by comput-
ing a simple Bayesian combination of the
three probabilities for the candidate it-

self and its left and right context condi-
tional probabilities. Results obtained
from the context-sensitive ranking were

then compared to results obtained from
the correct ranking alone. Experimental
results indicated that, for a test set of
329 errors, the context-sensitive ranking
did in fact achieve an improvement in
correction accuracy over the context-free
ranking. The improvement was from 87%
to almost 90%, which the authors found
to be significant.

Gale and Church [1990] also found that
the performance of the context-sensitive
technique was highly sensitive to the

method used to estimate conditional
probabilities given word unigram and bi-
gram frequencies. Their unigram and bi-
gram frequencies were tabulated from a

44 million-word corpus of AP news wire
text. Of all the estimation techniques
they tried, including various combina-
tions of maximum-likelihood estimation,
expected-likelihood estimation, and a

Good-Turing estimation [Good 1953;
Church and Gale 1991b], the only combi-
nation to achieve a significant improve-
ment in performance was one that com-

bined a Good-Turing estimation with an

expected-likelihood estimation.

3.3.3 Detecting and Correcting Real- Word

Errors via Lexical Trigram Probabilities

The study by Mays et al. [1991] ad-
dressed the simultaneous detection and
correction capability of word trigrams. It
employed a word trigram SLM based on

a Z0,000-word lexicon that was compiled
originally for IBMs speech recognition
experiments. It also employed a set of

100 sentences containing only words
found in that lexicon. The researchers
created a set of 8,628 erroneous sen-

tences, each containing one real-word er-

ror, by generating every possible single-
error real-word misspelling of each word
in all 100 sentences and by substituting
“all of the misspellings for all of the words
exactly once.” This error set, together
with the 100 original sentences, was used
to test tlhe ability of word trigrams to

detect and correct reid-word errors.
Their combined detection/correction

technique consisted of computing a
Bayesian probability score for each sen-

tence in a cohort set, where the cohort
set comprised one of the 8,728 test sen-
tences together with all other sentences
generated by replacing each of its words
with all of its potential real-word mis-

spellings, including the correct spelling.
Given a cohort set, they could determine
how often some oth,er sentence had a

higher probability than the erroneous
sentence (error detection) and how often
the correct sentence from the original
100 had the highest probability (error
correction).

A Bayesian probability score for each
sentence was computed by taking the
product of the word trigram probabilities
of each word in the sentence multiplied
by an a priori probability for each word.
The a priori probability represents the
likelihood that a typed input word is ac-
tually the intended word. The set of po-
tential real-word alternatives to the typed
input word is called the confusion set
and is made up of all possible single-
error real-word transformations of the
typed input word. The authors assume
that the a priori probability for a typed
input word is some constant a, and that
the remaining probability (1 – a) is di-
vided equally among the other words in

the confusion set. If a is set too high the
result will be a tendlency to retain typed
input words even if they are incorrect; if
a is set too low the result will be a

tendency to change typed input words
even if they are correct. The authors
tested a range of values for a and found
that the optimum value was between 0.99
and 0.999.
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Mays et al. [1991] obtained overall test
results that yielded a detection score of

7670 and a correction score of 74%. These

results are informative because they pro-

vide an approximate upper bound on the

capacity of lexical trigram SLMS to per-

form real-word error detection and cor-

rection on sentences containing single

real-word errors consisting of single-er-

ror typos. A system that could detect 76’?ZO
of real-word errors would probably be

very useful. However, it is not yet clear

what level of performance could be

achieved in practice because it is unclear

to what extent genuine error data con-

form to the one-error-per-sentence, one-

typo-per-word random error distribution

of the artificially generated test. Further-

more, the computational requirements of

the technique were manageable under

the artificial test conditions since sen-

tences could be pregenerated and

Bayesian probability scores could be pre-

computed. But computational require-

ments would certainly be problematic if

cohort sets for multitypo, multiword er-

rors had to be generated and their

Bayesian scores computed on the fly.

Certainly, candidate sets for individual

words could be pregenerated and ranked,

but it somehow seems excessive to gener-

ate a complete cohort set of all possible

sentence alternatives in order to detect a

possible error, especially if multiword er-

rors are allowed. Intuition suggests that

localizing the error somehow before gen-

erating the complete sentential cohort set

would be useful. Might word trigrams

perhaps be more successful than POS

n-grams for localizing errors? Might uni-

gram probabilities (based on word fre-

quencies) be factored into the a priori

probabilities ascribed to input words and

the words in their confusion sets to bet-

ter reflect error likelihoods? Obviously,

there is still room for further investiga-

tion and invention.

3.3.4 Related Neural Net Research

One other area of research that has
barely begun to be explored for context-

dependent word recognition and error

correction is that of neural net (NN)

modeling. Neural net models have much

in common with statistical language

models in that both attempt to capture

contextual expectations by modeling the

conditional probability distributions that

represent the strengths of associations

between terms. Their main difference is

that in SLMS expectations are explicitly

represented as conditional probabilities,
whereas in NNs they are implicitly rep-
resented as weights in the nets. Another
non-negligible difference is the intense

computational storage and processing re-

quirements of neural nets. For SLMS,

hundreds of thousands of conditional

probabilities for lexicons of many thou-

sands of words can be incrementally com-

piled and stored on disks. In contrast, for

NNs, thousands of nodes representing

words and hundreds of thousands of

weights representing strengths of associ-

ations between words must be fully con-

tained in working memory during train-

ing and processing. Unfortunately, those

demands make NN models impractical

for vocabularies larger than a few thou-

sand words at most, at least until spe-

cialized neural net hardware and soft-

ware or clever neural net modularization

techniques become available.

Nevertheless, some peripherally rele-

vant neural net experiments have been

carried out by restricting NN models to

represent only syntactic parts of speech

or by severely limiting vocabulary size.

One of the earliest such experiments was

performed by Hanson and Kegl [1987]

who used the syntactically tagged Brown

corpus [Kucera and Francis 1967] to suc-

cessfully train a neural net to predict the

next part-of-speech based on the parts-

of-speech of previous words in the sen-

tence. More recently, Allen and Kamm

[1990] trained a net to recognize words in

an input stream of continuous phonemes,

using a limited vocabulary of 72 words.

Most recently, Gallant [ 1991] proposed a

neural net model that employs a context

vector representing the strengths of asso-

ciated terms for use in a word sense dis-

ambiguation task. These experiments

and proposals only hint at the possibili-
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ties for neural nets to represent and ex-

ploit contextual information. However,

those possibilities will not be fully ex-

plored until more practical neural net

computational tools and techniques be-

come available.

3.4 Summary of Context-Dependent Word
Correction Work

Research in context-dependent spelling

correction techniques is in its infancy.

Despite limited empirical studies of the

pervasiveness and character of real-word

errors in text-processing applications, the

need for context-dependent spelling cor-

rection and word recognition techniques

is clear. The few data points that do exist

suggest that real-word errors account for

anywhere from 25T0 to well over !50Y0 of

all textual errors depending on the appli-

cation. One study indicates further that

as much as 75 YO of real-word errors in-

volve syntactic violations. This latter

finding, which begs further empirical

confirmation, suggests the value of ex-

ploring syntactic techniques for detecting

and correcting such errors.

The two main approaches being ex-

plored for exploiting contextual infor-

mation are traditional NLP (Natural

Language Processing) and SLM (Statisti-

cal Language Modeling). For practical use

on unrestricted domains, NLP tech-

niques are currently limited to syntax-

driven approaches. One research proto-

type NLP system, EPISTLE, offered ac-

curate or useful corrections 82~0, 87q0,

and 4170 of the time when tested on

corpora containing genuine errors in the

genres of business correspondence, stu-

dent essays, and professional text, re-

spectively. Another syntactic rule-based

parser/corrector for the Dutch language

detected and accurately corrected 72 of

75 errors, including 14 real-word errors,

on a standard secretarial typing exam,

without generating any false alarms.

SLM techniques may be explicitly syn-

tactic in their approach, as when they

exploit part-of-speech statistics, or they

may be implicitly semantic, as when they

exploit word co-occurrence statistics

which tend to reflect latent semantic re-

lations. One study demonstrated the ef-

fectiveness of word bigram statistics for

improving the accuracy of a nonword cor-

rector. But the problem of detecting

real-word! errors remains a significant

challenge. One real-word error detection

study demonstrated that a syntactic

part-of-speech big-ram model was able to

detect 62% of 420 real-word errors that

involved local or global syntactic-con-

straint violations, but not without gener-

ating nearly twice as many false alarms.

Another study demonstrated that a word

trigram model accurately detected real-

word errors 7670 of the time and accu-

rately corrected those errors 749Z0 of the

time, but not without significant compu-

tational overhead resulting from the need

to generate and test a large number of

alternative sentences for each potentially

erroneous input sentence. Further re-

search is needed to devise computation-

ally feasible real-word error detection

techniques that are sensitive enough to

attain high correction rates and discrimi-

nating enough to maintain low false

alarm rates.

Neural net approaches will remain

constrained to limii,eld vocabularies until

efficient neural net hardware and soft-

ware become available. Most impor-

tantly, these and other developments now

point toward a host of new techniques

that could add significant intelligence to

our computational text and speech-

processing systems. Hence the topic of

the epilogue.

FUTURE DIRECTIONS

Words are a basic unit of communication

common to all natural language text and

speech-processing activities. But the

physical signals that embody words,

whether realized in electronic, acoustic,

optical, or other forms, frequently arrive

at their destinations in imperfect condi-

tion. Therefore, autc)matic spelling cor-

rection, or, xnore generally, automatic

word recognition, is an essential, nontriv-

ial, practical problem at the heart of all

computational text- and speech-proces-
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sing applications. Before any text under-
standing, speech recognition, machine
translation, computer-aided learning, op-

tical character, or handwriting recogni-

tion system can achieve a marketable

performance level, it must tackle the per-
vasive problem of dealing with noisy, ill-
fitting, novel, and otherwise unknown in-
put words.

Now is a particularly exciting time to
be studying the problem of recognizing
and correcting words in text and speech.
In addition to the variety of techniques
that are beginning to show potential, in-
cluding rule-based, statistical, and neu-
ral net techniques, various efforts are
underway, under the auspices of the As-
sociation for Computational Linguistics,
to accumulate a “critical mass” of
sharable text, including large textual cor-
pora, machine-readable dictionaries,
transcriptions of speech, bilingual cor-
pora, etc., and to develop tools for anno-
tating that text [Walker 199 1; Liberman
and Walker 1989]. Past research has
shown that by bootstrapping from manu-
ally annotated corpora (with part-of-
speech tags, for example), automatic
techniques can be developed for annotat-
ing ever larger corpora, which can then
be used for exploring higher-level text-
processing techniques. Some manual ef-
forts are underway, and some automatic
tools are already being developed for
some of the lower- and mid-level tasks
involved in text processing, including for-
matting, tagging, aligning, and extract-
ing lexical, syntactic, and even latent se-
mantic statistics. These tools and their
resultant annotated corpora and statisti-
cal langaage models will pave the way
for developing hybrid rule-based, statisti-
cal, and neural net systems for higher-

level text-processing tasks, including

real-word error detection and correction,

parsing, generation, semantic uncler-

standing, and even pragmatic and dis-

course modeling. As the increasing body

of tools, annotated corpora, and statisti-

cal language models becomes generally

available, researchers will be able to build

on each other’s results for ever larger

domains of discourse. In short, the syner-

gistic effects resulting from the shared
use and combination of these techniques
and resources could be explosive.

So what are some of the possible error
detection and correction techniques that
might be explored? Hybrid rule-based/
statistical parsers capable of probabilis-
tic error detection and correction are in-
evitable. The prerequisite for such sys-
tems is the general availability of lexical
and part-of-speech n-gram statistical
language models. As mentioned in Sec-
tion 3.4, a variety of potential statistical
techniques has yet to be explored for lo-
calizing errors. These include the use of
word n-grams and the use of a combina-
tion of part-of-speech trigram statistics
and part-of-speech probabilities for indi-
vidual words. Other creative combina-
tions of statistics will certainly be in-
vented. Abandoning the assumption that
the word is the basic unit of processing
will open up a host of word recognition,
error correction, and other processing
possibilities. Not only might lexical or
part-of-speech n-grams be treated as ba-
sic units, but so also might complex units
built of small syntactic structures that
are fully or only partially lexically in-
stantiated. 12 Statistical language models
as well as annotated dictionaries based
on such syntactic structures will cer-
tainly become available as corpora-tag-
ging efforts progress.

In the long term, the arrival of high-
speed hardware and software for large-
scale neural net processing and the avail-
ability of sufficiently large tagged
training corpora could mark a watershed
in computational language processing.
Neural nets could be trained to capture
and adaptively reflect the changing lexi-
cal, synt attic, and error probability
statistics of given discourse domains or
user populations. Even in the short term,
the possibility exists for hybrid neural
net/statistical techniques to improve the
error detection capabilities of existing
statistical techniques by addressing the

12 See Joshi’s [ 1985] Tree-Adjoining-Grammar

(TAG) formalism, for example.
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A Context-Dependent Word Recogmtlon Model
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precision-recall problem. For example, a
neural net might be trained to improve
the discrimination capability of part-of-
speech transition probability statistics by
distinguishing between genuine errors
and false alarms.

A rough diagram for a hypothetical,
large-scale, expectation-based word
recognition/error detection system that
would exploit many of the sources of lin-
guistic knowledge available to humans
might look something like the model in
Figure 1.

The central premise, hence the central
component, of the model is the postula-
tion of a lexical processing unit whose job
is to intelligently combine probabilistic
estimates of the identity of a word in a
text input stream. The estimates come
from three primary sources: the input
signal itself, feedback from a syntactic
processing unit, and feedback from a se-
mantic processing unit.

-1I Semantic Processing Umt

Figure 1.

Probabillstlcally
Ranked

Candrdate

L]st

In the first phase of processing, a to-
ken from the text input stream, which
may be a correct word, a nonword, or a
real-word error, is fed to the Isolated-
Word Recognize. This unit produces a
probabilistically ranked list of word can-
didates based on orthographic, phonetic,
and visual similarities as well as error
probabilities. Thus, it is the locus of non-
word spelling error detection, and it is
also the source of candidate corrections
for real-word errors. The output of this
unit could be thought of as a large vector
representing the entire lexicon, or it could
be treated as a truncated list of the top-
ranked lexicon entries given the input
signal and the orthographic and phone-
mic characteristics of the lexicon and the
error probability characteristics of the
linguistic domain. IJI either case, that
output becomes input to the Lexical Pro-
cessing Unit.

The Lexical Processing Unit contains a
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Lexical Trigram Model, a Collocation
Model, and a Lexical Activation Unit. The
latter retains some short-term memory
for the past few words that have been
processed which it uses in combination
with conditional probabilities from the
lexical trigram and collocation models to
rerank the candidate list to take lexical
context into account. The output of the
Lexical Processing Unit is a new list of
word candidates whose probabilistic
ranking is dependent on lexical context.

That output can be simultaneously sent
to both a Syntactic Processing Unit and a
Semantic Processing Unit. These units
are the locus of real-word error detection
capabilities, Input to the Syntactic Pro-
cessing Unit goes to a Probabilistic
Parser. The parser makes use of a Lexi-
cal Part-of-Speech Model to ascribe part-
of-speech probabilities to the ranked in-
put word candidates. It also employs
some short-term memory of the parts of
speech of previously processed words so
that it can exploit a Part-of-Speech Tri-
gram Model during parsing. In the pro-
cess of parsing it recomputes the proba-
bilities of the words in the candidate list
based on syntactic considerations. A po-
tential error is signaled if the top-ranked
candidate changes.

A similar process is carried out by the
Semantic Processing Unit. Its Semantic
Interpreter may employ a Latent Seman-
tic Association Model that was precom-
puted from lexical statistics, Local and
Global Discourse Models that retain
short- and long-term memories of the
topic and focus of the discourse repre-
sented by previously processed terms,
and a Pragmatic Model that represents
plans and goals of the system and user.
Like the Syntactic Processing Unit, the
Semantic Processing Unit also recom-
putes the probabilities of the words in
the candidate list. Again, a change in the
top-ranked candidate may signal a po-
tential real-word error.

The output streams of ranked candi-
dates and their probabilities from both
the Syntactic Processing Unit and the
Semantic Processing Unit are fed back
into the Lexical Processing Unit to be

recombined with the unchanged ranked
list from the Isolated-Word Recognize.
The newly ranked candidate list pro-
duced by the Lexical Processing Unit is
sent again to both the Syntactic and Se-
mantic Processing Units which in turn
recompute their probability rankings and
feed them back to the Lexical Processing
Unit. This process is repeated until all
three units agree on the top-ranked can-
didate. Of course, on rare occasions unre-
solvable conflicts may occur, much like
the conflicts of meaning and form found
in Escherian paintings, so some mecha-
nism must be incorporated to detect such

conflicts.

The individual components of the

model might be implemented separately

using different techniques. For example,

a combination of rule-based and case-

based techniques might be appropriate

for the Semantic Interpreter; a combina-

tion of rule-based and stochastic tech-

niques might be appropriate for the

Probabilistic Parser; and neural net tech-

nology might someday be appropriate for

the Lexical Activation Unit.

The intent of the model in Figure 1 is

only to spark the imagination. Many

other possible organizations and realiza-

tions of the modules in this rough model

might be explored, and many practical

implementation problems will pose inter-

esting research problems. Indeed, the fu-

ture of research on real-word recognition

and error correction holds much promise

for a wide array of creative solutions and

useful applications.
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