
The Object Identification Framework∗

Mattis Neiling
Free University of Berlin, Dept. of Economics

Institute for Information Systems

mneiling@wiwiss.fu-berlin.de

Steffen Jurk
BTU Cottbus

Dept. of Database and Information Systems

sj@informatik.tu-cottbus.de

ABSTRACT
The object identification problem in databases has been
tackled in many different ways, e.g. Record Linkage, or the
Sorted Neighborhood Method. We present a framework, that
allows the evaluation of the competing approaches. Appro-
priate experiments on a real-world database has been made.

1. MOTIVATION
Object Identification is essential if a real-world objects data
is distributed over multiple databases. The object identifi-
cation task becomes complicated, if no global and consistent
identifier is shared all over the databases. This situation oc-
curs often for real-world applications, such as information
integration, data warehousing or the administrative record
census. Then, object identification can only be performed
through an utilization of the identifying information pro-
vided by the object’s data. Unfortunately real-world data is
dirty, hence identification mechanisms like natural keys fail
— we have to take care of the variations and errors of the
data. Consequently, object identification can not be guar-
anteed to be fault-free.
Different methods tackle the object identification problem,
e.g. There are several algorithms developed and successful
applied to large databases like Record Linkage [11], or the
Sorted Neighborhood Method [4]. But until now no compris-
ing methodology for object identification exist that allows
an evaluation of competing solutions.
In this paper we recommend a generic framework that forms
a base for such an universal methodology. We do not discuss
new algorithms, but we provide a generic approach to object
identification problems. Our framework for object identifi-
cation requires no global identifiers. Within the framework
the object identification task is interpreted as a specific clas-
sification problem. It consists basically of the three succeed-

∗This work was supported by the Berlin-Brandenburg Grad-
uate School in Distributed Information Systems (DFG grant
no. GRK 316) and summarizes parts of the dissertation of
the first author [6].

ing steps: (1) Conversion, (2) Comparison and (3) Classi-
fication. If identifying attributes are derivable from all the
data sources (step 1), these attributes can be compared for
pairs of elements (step 2), and finally the pairs can be classi-
fied as (not) matched, or matched to some degree, according
to their comparison values (step 3). To be efficient for large
databases, we apply a preselection technique for reducing
the number of pairs of elements to compare by incorporat-
ing suitable index structures.
We illustrate our framework with a case study of a customer
address database.

2. THE FRAMEWORK IN A NUTSHELL
A database schema S consists of classes with types. Types
are recursively built from a type system τ with basic types ν,
labels ` and references to labels ` : τ by use of constructors
like × (tuple), { } (set), and [] (list). Then a database D

is an instance of S, whereby the elements are instances of
classes belonging to S.

2.1 Conversion Step
Identification of objects requires an intensional overlap of
the data sources, e.g. the existence of common attributes.
At least a set of attributes with identifying information has
to be derivable from both data sources.
For two databases (sources) D1, D2 with schemas S1, S2
we introduce a conversion procedure. First we determine
these classes C, that are usable for identification, e.g. books
within a library but without information of lends to users.
For each class C we require two partial schema mappings
(conversion functions) hC

1 : S1 → C and hC
2 : S2 → C that

extract common structures of C from S1 and S2, respec-
tively. Formally a common schema S is derivable from S1
and S2, such that a real-world object represented in S1 and
S2 became the same representation in S.1 The schema S

should contain all the identifying information provided by
both S1 and S2.

2.2 Comparison Step
Since the conversion yields a common schema, comparison
of elements (instances of classes) becomes more easier. The
comparison vector of two elements e1 and e2 is defined by a
(finite) set of user-defined functions, f(e1, e2) = (f1(e1, e2),

1Since references to other classes might contain identifying
information, the references should be mapped into S ade-
quately: References between instances of classes of Si should
be mapped into S, if representable therein.

Comparison values of matches

Comparison values of non-matches

Figure 1: Frequency of comparison values taken
from a sample of pairs library records (Note: the
z–axis is logarithmic scaled).

. . . , fk(e1, e2)). Each fi represents a numeric value with
respect to a nominal, ordinal or cardinal scale. To com-
pare single attribute values suitable binary functions can
be applied, e.g. (discrete) metrics. If relevant for iden-
tification, nominal scaled comparison functions can manage
structural differences, missing values, and other special cases
for pairs of elements. The choice of comparison functions
can be guided by a discernibility principle: Matches and
non-matches should have different comparison vectors.

Example 1. Consider a sample of 10,000 pairs of book ob-
jects and two comparison functions. Function f1 reflects the
degree of equal authors of two books within a range of 1 to
8. Where 8 reflects a missing author list and 1 a fit of all
authors. Function f2 reflects the edit distance of the book
titles ranging from 0 to 10 edits (cases 0–4) or more edits
(case 5). Figure 1 depicts the outcomes of the comparison
vectors (f1, f2) with respect to the number of matching and
non-matching pairs in the chosen sample.

2.3 Classification Step
The comparison functions span a multidimensional compar-
ison space V , where certain regions indicate for comparison
values of matches or non-matches, respectively. Unfortu-
nately, there are often regions, where a separation becomes

more incorrect, t.i. certain comparison vectors indicate nei-
ther matches nor non-matches (e.g. the right upper edge in
figure 1). Sometimes a refinement of the comparison func-
tions for this regions leads to better results.
The object identification can be perceived as a classifier
δ : V → [0, 1] for comparison vectors v = f(e1, e2) of pairs of
elements e1, e2, whereby 0 denotes matches, 1 non-matches
and (0, 1) a certain degree of match.
The classifier δ can be defined manually (e.g. the deci-
sion rules of the Sorted Neighborhood Method) Alternatively
it can be learned from given example data, t.i. a set of
matches and non-matches. For example, within the Record
Linkage method, the likelihood ratios of comparison vectors
for matches and non-matches (the so-called odds) are esti-
mated and used as classifier.
There exist many suitable classification methods in litera-
ture, e.g. Decision Tree Induction, k-Nearest Neighbor Clas-
sification, Support Vector Machines, Neural Networks, Bayes
Classifier, etc. Also a combination of different classifiers has
been studied under the term Boosting, e.g. applied for ob-
ject identification in [10]. The interested reader may consult
textbooks about Machine Learning (e.g. [5, 1]), or existing
Data Mining Software.

2.4 Preselection Of Pairs
To be efficient for large databases, preprocessing is applied.
Let δ′ be a classifier for pairs of elements from two databases
D1, D2. Within the preprocessing we avoid pairs of elements
that are likely not matched. T.i. we use a combination
σ =

⋃
j
(
⋂

i
σij) of selectors σij , where σij filters pairs from

the cross product space D1 × D2. Then we can apply the
classifier δ = δ′ ◦ σ for object identification, reducing the
number of pairs to check.
Each selector has a selection rate, quantifying the percentage
of the selected pairs from D1×D2, an error rate, estimating
the portion of the not selected matches, and preprocessing
costs. Typically, the lower the selection rate the better the
performance of the whole identification task, since the main
cost of object identification is determined by loading and
processing of pairs. But obviously there is a trade off be-
tween the error rate and the selection rate. Thus choosing a
selector among a set of possible selectors (including combi-
nations of them) becomes an optimization problem, c.f. [8],
[6, Ch.5].

Example 2. A relational selector σ poses conditions on
attribute values, e.g. requiring equality (this is sometimes
called blocking) or containment of a value in a list, or limiting
the variation of cardinal scaled attributes by some ∆ > 0.
Index structures, such as bitmaps or tree-based structures,
are available in database management systems and can be
used to achieve efficient data access.
A metrical selector σ poses conditions on attributes in terms
of a given (multidimensional) metric, e.g. the Minimum–
Edit–Distance for strings. A metrical selector allows (1) the
selection of the k nearest neighbors of an element, or (2) the
selection of all elements within a ∆–environment for ∆ > 0.
Metrical index structures can be employed, e.g. the M-tree
[3] or the MVD-tree [2].

Remark 1. Since the sort key of the Sorted Neighborhood
Method induces a total order of the records, the scan window
of size 2k can be perceived as a metrical selector σ filtering
the k nearest neighbors of an record.

We mention only the semantic constrains introduced in [7].
Attributes fulfilling the constraints of a semantic or approx-
imative key are good candidates for attributes to compare,
since these attributes are almost as good for identification
as natural keys in databases. Further (approximative) dif-
ferentiating keys can be used for the definition of relational
selectors, since the unequalness of their attribute values in-
dicates for non-matches.

3. CASE STUDY
We tested three classification methods on a database includ-
ing 250,000 German private address records.2 Additionally
a list of over 55,000 duplicates was provided by the Double
Clean service of the Deutsche Post3, that employs the regu-
larly updated register of German postal delivery addresses.
We used this list as reference for the evaluation of the cor-
rectness of a classification.
For object identification we used the attributes Firstname,
Lastname, Zip, City, Street, and Birthdate. We derived fur-
ther attributes like Fullname, Housenumber, and Sex.
As comparison functions we used the Minimum-Edit-Dis-
tance for strings, equal/not equal patterns for other attri-
butes, or additionally we took care of the occurrence of miss-
ing values, and therefore we added the third case missing.
As preselection σ we applied the matching of at least one
phonetic code of the Fullname according to the Kölner Pho-
netic [9]. There were only 34 duplicates without any match-
ing, thus the error rate of this preselection was below 0.1%.
Thereby we yield a selection rate only about 1%, t.i. each
record must be compared with 100 up to 20,000 records.

3.1 Evaluation
We tested the classification methods Record Linkage andDe-
cision Tree on several samples of pairs, each method with
different parameterizations.
The parameterizations of Record Linkage differ (1) in the se-
lection of attributes (ranging from 4 to 9, always two name
comparisons and further comparison of attributes like Zip,
Street, Birthdate and Sex) and (2) the allowed factor inter-
actions between them.4

For Decision Tree Induction we varied (1) the measure used
for partitioning, e.g. information gain, information gain
ratio, or gini-index and (2) whether pruning was applied
or not, while always all attributes were used from the DT
learner.
We applied each parameterization on samples of increasing
size (5,000, 10,000 and 20,000 pairs), and we generated for
each size 12 random samples. We report the results of the
correctness test, where a sample was split up into a learn
and a test sample. We calculated the α– and β–error rates
on the test sample, defined by

α = #misclassified matches

#matches in the sample
, β = #misclassified non-matches

#non-matches in the sample
.

While all of the Decision Tree parameterizations behave sim-
ilar with α below 1% and β below .5% (for the largest sam-
ple), only the α–error of Record Linkage gets a little bit
2These tests are part of the Benchmarking-Chapter in [6],
where further tests were applied to library data and online
apartment announcement data.
3C.f. http://www.addressfactory.de
4The restriction of the factor interactions are fundamental
for the estimation of the multinomial distribution.

poorer in all settings (slightly above 1% at best). But there
were some false-specified parameterizations: Record Link-
age models with more than 5 of all 12 attributes leads to
α–errors above .25%, and the smaller models without two-
factor interactions produce similar results. If the number of
involved attributes increases, the multinomial distribution
can not be estimated adequately. Furthermore, the cardinal
scales of distance measures are reduced to nominal scales for
Record Linkage.
We conclude, that if many attributes with identifying infor-
mation are given, the divide-and-conquer approach imma-
nent to Decision Trees performs best.

4. OUTLOOK
The progress of computer technology and the exponentially
increasing amount of data requires methods, that are ca-
pable to integrate data from different sources. Therefore
the solution of object identification problems is essential for
nowadays and future information systems. Based on our
framework object identification methods can be specified,
implemented and evaluated. Furthermore it is possible to
get the best method fulfilling the requirements of an specific
application in terms of correctness, performance, costs, or
other quality criteria.

5. REFERENCES
[1] M. Berthold and D. Hand, editors. Intelligent Data

Analysis: An Introduction. Springer, 1999.

[2] T. Bozkaya and Z. Özsoyoglu. Indexing large metric
spaces for similarity search queries. TODS,
24(3):361–404, 1999.

[3] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. VLDB’97, 1997.

[4] M. Hernandez and S. Stolfo. Real-world data is dirty:
Data cleansing and the merge/purge problem. Data
Mining and Knowledge Discovery, 2(1):9–37, 1998.

[5] D. Michie, D. J. Spiegelhalter, and C. C. Taylor.
Machine learning, neural and statistical classification.
Horwood, New York, 1994.

[6] M. Neiling. Identifizierung von Real-Welt Objekten in
Multiplen Datenbanken. Dissertation (draft), BTU
Cottbus, Cottbus, Germany, 2003. in German.

[7] M. Neiling, S. Jurk, H.-J. Lenz, and F. Naumann.
Object identification quality. In Intl. Workshop on
Data Quality in Cooperative Information Systems
(DQCIS2003), Siena, Italy, 2003.

[8] M. Neiling and R. Müller. The good into the pot, the
bad into the crop. preselection of record pairs for
database integration. In 1st Workshop DBFusion 2001.

[9] H.J. Postel. Die Kölner Phonetik - ein Verfahren zur
Identifizierung von Personennamen auf Grundlage der
Gestaltanalyse. IBM-Nachrichten, 19:925–931, 1969.

[10] S. Tejada, C. Knoblock, and S. Minton. Learning
object identification rules for information integration.
Information Systems, 26(8), 2001.

[11] W. Winkler. Matching and record linkage. In Cox, ed.,
Business Survey Methods, J. Wiley, New York, 1995.

