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Abstract

The entity resolution (ER) problem, which identifies du-
plicate entities that refer to the same real world entity, is
essential in many applications. In this paper, in particu-
lar, we focus on resolving entities that contain a group of
related elements in them (e.g., an author entity with a list
of citations, a singer entity with song list, or an intermedi-
ate result by GROUP BY SQL query). Such entities, named
as grouped-entities, frequently occur in many applications.
The previous approaches toward grouped-entity resolution
often rely on textual similarity, and produce a large num-
ber of false positives. As a complementing technique, in
this paper, we present our experience of applying a recently
proposed graph mining technique, Quasi-Clique, atop con-
ventional ER solutions. Our approach exploits contextual
information mined from the group of elements per entity in
addition to syntactic similarity. Extensive experiments ver-
ify that our proposal improves precision and recall up to
83% when used together with a variety of existing ER solu-
tions, but never worsens them.

1 Introduction

Large-scale data repositories often suffer from duplicate
entities whose representations are different, but yet refer to
the same real world object. For instance, in digital libraries,
there may be various name variants of an author due to er-
rors introduced in data entry or errors from imperfect data
collection softwares. Let us denote that, among the dupli-
cate entities, the single authoritative one as canonical en-
tity1 while the rest as variant entities or variants in short.

∗Contact author: dongwon@psu.edu. His research was partially
supported by Microsoft SciData Award (2005) and IBM Eclipse Innova-
tion Award (2006).

†His work was partially supported by a gift funding from Microsoft.
1Our proposal is orthogonal to the issue of canonical entity since it

works as long as one of entities is designated as the canonical one. There-
fore, the issue of determining the canonical entity among many candidate
entities is not pursued further in this paper.

(a) (b)

Figure 1. Real examples of the GER problem: (a) Split
case of “J. D. Ullman” in ACM, and (b) Split case of “Yin-
Feng Xu” in DBLP.

Since the existence of variant entities degrades the quality of
the collection severely, it is important to de-duplicate them.
Such a problem is, in general, known as the Entity Resolu-
tion (ER) problem. The ER problem frequently occurs in
many applications and is exacerbated especially when data
are integrated from heterogeneous sources. Note that the
ER problem cannot be completely avoided since not all en-
tities in data collections carry an ID system such as digital
object ID (DOI).

In this paper, in particular, we focus on the ER problem
where the goal is to detect all variant entities – what we call
“split entities”2 – and consolidate them into one entity. With
an array of extensive research on the ER problem (to be sur-
veyed in Section 6), in general, there are various efficient
and effective methods to identify split entities. However,
we observed that a particular type of entities occur quite
common in real applications, and a more aggressive method
can exploit the characteristics of the type better. That is, we
noticed that many entities contain “a group of elements” in

2The other type of ER problem is to detect distinct entities from a pool
of “mixed entities” due to homonyms. In general, mixed entity case can be
casted as k-way clustering problem.
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them. We refer to such an entity as the Grouped-Entity and
the ER problem on grouped-entity as Grouped-Entity Res-
olution (GER) problem. Unlike a regular entity, a grouped-
entity contains a wealth of information in its elements. How
to unearth such hidden information for resolving grouped-
entities is the focus of this paper. Throughout the rest of the
paper, we simply use “entity” to refer to the grouped-entity.
The GER problem frequently occurs in many situations as
follows:

Example 1. Examples of grouped-entities include an au-
thor entity with a paper list or an actor entity with a movie
list. Figure 1 illustrates the screen-shots of the GER prob-
lem from two real digital libraries – ACM and DBLP. Here,
each grouped-entity (i.e., author) has a group of citations
in it. Due to various errors, however, citations of the same
author may be split under multiple author names. For in-
stance, in the ACM, the citations of computer scientist “Jef-
frey D. Ullman” appear under ten different name variants.
If we take entity “Jeffrey D. Ullman” as the canonical one,
then the other nine (e.g., “D. Ullman” and “J. Ullmann”) are
variants, and should be consolidated. Similarly, in DBLP, a
partial list of citations of “Yin-Feng Xu” appears under the
variant entity “Yinfeng Xu.” 2

Example 2. The US census bureau3 needs to keep track of
people in families. To do this, they often use people’s names
or known addresses. However, due to data-entry errors or
confusing homonyms, the tracking is not always success-
ful. Moreover, comparing two people by their names alone
yields many false positives. Now, suppose one uses as con-
text the family information of each person – two persons
are similar if their “families” are similar, e.g., they share the
similar family members such as names of spouse and chil-
dren. That is, each grouped-entity (i.e., person) has a group
of elements (i.e., family names). Then, in determining if
“John Doe” is the same person of “Jonathan Doe,” for in-
stance, one may combine the textual similarity, sim(“John
Doe”, “Jonathan Doe”), as well as the contextual similarity
– if the family of “John Doe” shares similar names with that
of “Jonathan Doe.” If so, it is likely that “Jonathan Doe” is
a name variant of “John Doe.” 2

By and large, previous approaches to the GER problem
(e.g., [4, 10, 6]) work as follows: (1) the information of
an entity, e, is captured in a data structure, D(e), such as
a multi-attribute tuple or an entropy vector; (2) a binary
distance function, f , is prepared; (3) the distance of two
entities, e1 and e2, is measured as that of the correspond-
ing data structures, D(e1) and D(e2), using function f :
dist(e1, e2) = f(D(e1), D(e2)); and (4) finally, if the re-
sult, r = dist(e1, e2), is less than certain threshold, φ, then

3The example is derived from the discussion with Divesh Srivastava at
AT&T Labs.

the two entities are variants: r < φ → e1 ∼ e2. Although
working well in many scenarios, this approach often suf-
fers from a large number of false positives (i.e., an entity
determined to be a variant when it is not). Consequently,
the overall recall and precision suffer. If a user asks for
top-k answers, such false positives can even override cor-
rect variants out of the answer window of |k|, degrading the
precision substantially.

Example 3. Consider the example of Figure 1(a) again.
Suppose the distance of two entities is measured as that of
author name spellings themselves. If we use Edit distance,
for instance, dist(“J. D. Ullman”, “J. Ullman”) = 2. If the
threshold φ is set to 3, then “J. Ullman” can be correctly
identified as a variant of “J. D. Ullman”. However, other
entities such as “J. L. Ullman” or “K. Ullmann” whose
distances are less than 3 will also be detected as variants.
However, both are in fact false positives. Even if we use
more sophisticated data structures to capture entities, the
problem may still persist. For instance, suppose an author
entity of Figure 1(a) is represented as a multiple-attribute
tuple, (coauthor, title, venue), where each
attribute is a vector of tokens from the citations. That
is, “J. D. Ullman” and “K. Ullman” are represented as
([Hopcroft, Aho], [Cube, Query], [KDD,
ICDM]) and ([Cruise, Kidman], [Mining,
Query], [KDD, SIGMOD, ICDM]), respectively.
Then, depending on the distance function, it is possible that
“K. Ullman” is identified as a variant of “J. D. Ullman”
since both share many tokens. However, “K. Ullmann”
is a false positive which happens to bear certain textual
similarity to “J. D. Ullman” (since maybe both share
research interests). 2

The culprit of this false positive problem is in essence
the use of distance functions that solely rely on the “textual
similarity” of two entities, regardless of the adopted data
structures. Toward this problem, in this paper, we present
a novel graph partition based approach that boosts up pre-
cision significantly. We unearth the relationship hidden un-
der the grouped-entities, and exploit it together with textual
similarities. Experimental results using real and synthetic
data sets validate our claim.

Our contributions are as follows:

• We formulate the GER problem as a specialized form
of the ER problem. Since the grouped-entities in the
GER problem contain a wealth of information (i.e., a
group of elements), its exploitation can result in better
outcome.

• We introduce how to capture “contextual information”
hidden in a group of elements in grouped-entities. In
particular, we propose to use the technique of superim-
position to mine hidden relationships into graphs.
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• To capture the “contextual distance” between grouped-
entities, we exploit the notion of Quasi-Clique, a mea-
sure to see how strong inter-relationships between two
graphs are, and propose a simple yet effective two-step
GER algorithm, distQC.

• The proposed techniques of superimposed graphs and
subsequent Quasi-Clique-based distance measurement
are implemented and tested extensively against five
test cases (1 real and 4 synthetic cases). Experiments
verify that our proposal improves precision and recall
up to 83% (when used with a variety of existing ER
solutions) but never worsens them.

2 Problem Formulation

Typically, a group of elements in grouped-entities fol-
low certain formats, and contain a lot of tokens, “not” all
of which are directly indicative of the entity. For instance,
the grouped-entity of “Yin-Feng Xu” of Figure 1(c) con-
tains 20 citations, each of which contains co-authors, title,
venue, year, etc. Then, some tokens in this long list are not
real indicative of the entity “Yin-Feng Xu” and may con-
fuse distance functions. Therefore, often, detecting vari-
ant grouped-entities yields a large number of false positives.
Formally, the GER problem is:

Given a set of grouped-entities, E, where each
contains a group of elements, for each canoni-
cal entity, ec (∈ E), identify all variant entities,
ev (∈ E), such that dist(ec, ev) < φ with as few
false positives as possible.

Note that our proposal works as long as “one” entity is se-
lected as the canonical one.

3 General Idea

We consider a web of entities connected via relationships
present in data sets. Our approach is based on the hypoth-
esis that “if two entities are variants, there is a high likeli-
hood that they are strongly connected to each other through
a web of relationships, implicit in the database” [13]. In
other words, among “J. D. Ullman,” “J. Ullman,” and “J.
K. Ullman” entities, in order not to mistakenly mark “J.
K. Ullman” as a variant of “J. D. Ullman” (i.e., no false
positive), we may unearth the hidden relationships between
two and exploit them (e.g., although both are Database
researchers, the cores of their frequent co-author list are
slightly different). If such relationships are first captured as
some graphs, then subsequently the distance between two
graphs can be used to measure the distance between two
entities. Since graphs may contain richer information than

(a) “A. Puneli” (b) “A. Punelli”

(c) “M. Sharir”

Figure 2. Graph representations of the “contexts” (i.e.,
co-authors) of three entities, {Ea, Eb, Ec}, and their su-
perimposed quasi-cliques (solid lines). This real example
is drawn from ACM data set.

simple strings or vectors, the corresponding distance com-
puted from graphs are likely to help identify real variants.

3.1 Context as Additional Information

In the general ER problem (e.g., record linkage, refer-
ence resolution, name disambiguation), often, the under-
lying assumption is that there are some textual similarities
among variant entities. For instance, to identify if two given
records are duplicate or not (i.e., record linkage problem),
one may apply either a token-based distance function (e.g.,
cosine) or an Edit distance based function (e.g., Jaro) to
measure how similar two records are. However, in the sit-
uations where matching entities may “not” bear syntactical
similarities, the general ER methods do not work well. On
the other hand, an interesting observation from the previous
studies is that a method often shows a good performance if
it considers some “additional information” beyond textual
similarities. We call this additional information as context
in this paper. When contextual information is captured as a
graph, let us call the graph as context graph.

In particular, note that grouped-entities have a group of
elements in it. That is, each has abundant repetition of re-
lated tokens – a set of co-author names, a tokens of words
used in paper titles, or a set of venue names to which they
submit often, etc. We may use these as context and measure
the corresponding contextual similarity. Let us first see an
example where the notion of context is useful.

Consider the real cases of three entities from ACM data
set, Ea (“A. Puneli” entity), Eb (“A. Punelli” entity), and
Ec (“M. Sharir” entity), of which Ea and Eb are name vari-
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ants and Ec is a false positive of Ea. Each entity has the
following co-authors in their group of elements:

• Ea={“M. Sharir”, “S. Harts”, “T. Henzinger”, “Z.
Manna”, “M. Shalev”, “E. Harel”, “O. Maler}

• Eb={“M. Sharir”, “S. Harts”, “T. Henzinger”, “Z.
Manna”, “O. Kupferman”, “S. Kaplan”, “E. Singer-
man”, “M. Siegel”}

• Ec={“A. Pnueli”, “S. Harts”, “Z. Monna”, “A.
Wiernik”, “P. Agarwal”, “M. Shalev”, “E. Harel”, “O.
Maler”}

If we draw graphs where the entity itself becomes the cen-
ter node and its co-authors become neighboring nodes at-
tached to the center node, then we get Figure 2. Further-
more, if there are known co-authorship among co-authors,
edges are created between them. For instance, “S. Harts”
and “T. Henzinger” co-authored elsewhere (i.e., other than
in entities Ea, Eb, and Ec), and thus an edge connecting
them is created in Figure 2(a).

First, suppose we compare three entities by counting
how many common co-authors they have. Then, Eb and
Ec have 5 and 7 common co-authors with Ea, respectively.
Therefore, if we use distance metrics that are based on the
number of common tokens of two entities such as Jaccard
distance, then Ec would be probably returned as a variant
of Ea over Eb. However, this is wrong, and we have a case
of false positive. Second, if we compare three entities in
terms of how large the maximum common subgraph (where
all vertices and adjacent edges match) is, then Eb and Ec

have a common subgraph with 5 and 3 vertices with Ea, re-
spectively. Therefore, Eb would be returned as a variant of
Ea over Ec – the opposite result of previous case.

Note that entities Ea and Eb have four common co-
authors, {“M. Sharir”, “S. Harts”, “T. A. Henzinger”, “Z.
Manna”}, who are all well connected among themselves.
This can be used as a clue to unearth the hidden similarity
between the two entities, Ea and Eb. On the other hand, Ec

shares only small-sized well-connected subgraph although
overall it has more number of common co-authors. In other
words, if we look at the relationships existing in the whole
graph, instead of individual vertices, then we may be able
to detect that Ec is not a variant of Ea.

3.2 Quasi-Clique

Once hidden relationships among two entities are cap-
tured as two context graphs, one needs a way to measure
distance between two graphs. For this purpose, we propose
to use a graph mining technique using the notion of Quasi-
Clique.

Given a graph G, let V (G) and E(G) be the sets of ver-
tices and edges in the graph, respectively. Let U ⊆ V (G)

be a subset of vertices. The subgraph induced on U , de-
noted by G(U), is the subgraph of G whose vertex-set
is U and whose edge-set consists of all edges in G that
have both endpoints in U , i.e., G(U) = (U,EU ), where
EU = {(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ U}.

Definition 1 (γ-Quasi-Clique) A connected graph G is a γ-
Quasi-Clique graph (0 < γ ≤ 1) if every vertex in the
graph has a degree at least γ · (|V (G)| − 1). Clearly, a 1-
Quasi-Clique graph is a complete graph (i.e., clique). In
a graph G, a subset of vertices S ⊆ V (G) is a γ-Quasi-
Clique (0 < γ ≤ 1) if G(S) is a γ-Quasi-Clique graph, and
no proper superset of S has this property. 2

As shown in [20], an interesting property of Quasi-Cliques
is that when γ is not too small, a γ-Quasi-Clique is compact
– the diameter of the Quasi-Clique is small. That is, the
diameter of G, D(G), is:

D(G)



= 1 if 1 ≥ γ > n−2
n−1

≤ 2 if n−2
n−1 ≥ γ ≥ 1

2

≤ 3b n
γ(n−1)+1c − 3 if 1

2 > γ ≥ 2
n−1 and

n mod (γ(n− 1) + 1) = 0
≤ 3b n

γ(n−1)+1c − 2 if 1
2 > γ ≥ 2

n−1 and
n mod (γ(n− 1) + 1) = 1

≤ 3b n
γ(n−1)+1c − 1 if 1

2 > γ ≥ 2
n−1 and

n mod (γ(n− 1) + 1) ≥ 2
≤ n− 1 if γ = 1

n−1

The upper bounds are realizable. This property gives Quasi-
Cliques a lift to be a good data structure to identify compact
subgraphs.

In a network (e.g., a social network or a citation network)
scenario, a Quasi-Clique is a set of objects that are highly
interactive with each other. Therefore, a Quasi-Clique in
a graph may strongly indicates the existence of a poten-
tial community. Since a Quasi-Clique contains a group of
highly interacting (and thus likely highly similar in role)
objects, it may be more reliable in representing relation-
ships than individual objects. Heuristically, we can use
Quasi-Cliques to annotate the relationships in large scale
subgraphs, which is highly desirable for solving the GER
problem.

While γ value indicates the compactness of Quasi-
Clique, another parameter that is of interest is the number
of vertices of Quasi-Clique. We denote this parameter as S.
For a graph G, therefore, functions:

• QC(G, γ, S) returns a γ-Quasi-Clique graph g from G
with |V (g)| ≥ S if it exists, and

• QC(G1, G2, γ, S) returns a common γ-Quasi-Clique
graph g of G1 and G2 with |V (g)| ≥ S.
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Figure 3. Illustration of “superimposition” of co-author
data set. After superimposition, three new edges, (b, y),
(y, p), and (p, r), are added to the context graph (top),
where solid edges are due to A’s co-authors while dotted
edges are due to superimposition.

Then, |g| indicates how strongly two graphs G1 and G2

are related, and can be used as a “distance.” This func-
tion QC(G1, G2, γ, S) is used to measure the contextual
distance in our distQC algorithm in Section 4.2.

4 The Two-Step GER Algorithm

Based on the ideas of Section 3, here, we introduce our
proposal of using graph-based partition to tackle the GER
problem. We capture contextual information in context
graphs through superimposition (step 1), and measure their
contextual similarity in terms of Quasi-Clique (step 2).

4.1 Step 1: Mining Context Graphs

Suppose we want to mine a graph out of an author entity
A’s co-author tokens: B, C, D, and E. First, a vertex is pre-
pared for tokens, A through E, referred to as V (A) through
V (E). Then, four co-author vertices, V (B) through V (E),
are connected to the main vertex V (A), forming a graph,
ga. Next, ga is “superimposed” to the collaboration graph,
G, that is pre-built using the entire set of co-authors from all
entities. For instance, if an author C had co-authored with
an author D elsewhere, then now ga will have an edge con-
necting V (C) and V (D). At the end, if all neighboring co-
authors of A have co-authored each other, then ga becomes
a clique. This process is illustrated in Figure 3. Note that
the pre-built collaboration graph works as the base graph.

Similarly, for venue information, once we create an ini-
tial graph, ga, we can superimpose it against a base graph.

Algorithm 1: distQC
Input: A grouped-entity e, an ER methodM, and

three parameters (α, γ and S).
Output: k variant grouped-entities, ev (∈ E), such

that ev ∼ e.
UsingM, find top α× k candidate entities, eX ;1

Gc(e)← context graph of e;2

forall ei (∈ eX ) do3

Gc(ei)← context graph of ei;4

gi ←QC(Gc(e), Gc(ei), γ, S);5

Sort ei (∈ eX ) by |gi|, and return top-k;6

For instance, one may use, as a base graph, a venue relation
graph where an edge between two venue vertices represents
the “semantic” similarity of two venues (e.g., how many au-
thors have published in both venues). The superimpostion
works as long as there is a base graph (e.g., collaboration
graph, venue relation graph) onto which an entity’s graph
can be superimposed. For more general cases, a base graph
can be also constructed using the co-occurrence relationship
among tokens.

4.2 Step 2: Measuring Contextual Dis-
tance

Once the contexts of entities are captured and repre-
sented as graphs, their similarity can be properly modeled
using Quasi-Clique. Two factors matter here. First, Since
parameter γ indicates the compactness of a γ-Quasi-Clique,
two entities in a Quasi-Clique with a higher γ value are
more similar to each other than two in a Quasi-Clique with
a lower γ value. Second, two entities in a Quasi-Clique
with more vertices suggests that the two entities are very
“similar” not only in their vertices but also in their relation-
ships. For instance, in the Quasi-Clique jargon, in Figure 2,
there is a 0.5-Quasi-Clique between Ea and Eb with at least
4 vertices. However, there exists clearly no common 0.5-
Quasi-Clique between Ea and Ec, which prevents us from
concluding that Ec is a variant entity.

Since one of the motivations of this work is to reduce
false positives, we can adopt the Quasi-Clique into a two-
step GER algorithm, distQC, as shown in Algorithm 1.
Given an entity e (∈ E), to locate matching k variant en-
tities, the distQC algorithm first relies on any existing ER
solutions, and selects α times more number of candidates
than k as an extra. Since we try to improve precisions by
reducing false positives, once we get more candidates, if we
can boost up those correct variants up into higher ranks in
the subsequent step, then our aim can be met.
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Table 1. Summary of data sets.
# of grouped- # of elements

Data set Domain entities in all entities
ACM Comp. Sci. 707,368 1,037,968

BioMed Medical 6,169 24,098
IMDB Entertainment 446,016 935,707

5 Experimental Validation

5.1 Set-up

For validating our proposal, we first gathered three real
data sets from diverse domains – ACM, BioMed, and IMDB
– as shown in Table 1.

Real Case. From ACM data set, we have manually identi-
fied 47 real cases of canonical and variant grouped-entities
by contacting authors or visiting their home pages. Each
case has one designated canonical entity and on average two
variant entities. Furthermore, each grouped-entity has on
average about 24.6 elements in it (i.e., each author has 24.6
citations). Real cases include variants as simple as “Dong-
won Lee” vs. “D. Lee” (i.e., abbreviation) and “Alon Levy”
vs. “Alon Halevy” (i.e., last name change) to as challeng-
ing as “Shlomo Argamon” vs. “Sean Engelson” (i.e., little
similarity) or even ten variants of “Jeffrey D. Ullman” of
Figure 1. Since there are a total of 707,368 entities in ACM
data set, locating all k variants correctly without yielding
any false positives is a challenging task.

Synthetic Case. We synthetically generated a test case for
each data set as follows. For each data set, we first pick 100
grouped-entities that has at least 10 elements in them. Then,
we made up a variant entity by either abbreviating the first
name or injecting invalid characters to the last name in 7:3
ratio. Then, both canonical and variant entities carry halves,
133, of the original elements. The goal is then to identify
the artificially generated variant out of the entire entities –
e.g., 707,368 in ACM and 446,016 in IMDB data sets. For
the details, please refer to [18].

Evaluation Metrics. Suppose there are R variants hid-
den. When top-k candidate variants are returned by an algo-
rithm, furthermore, suppose that only r candidates are cor-
rect variants and the remaining k − r candidates are false
positives. Then, Recall = r

R and Precision = r
k . Since

this traditional recall and precision do not account for the
quality of rankings in the answer window k, the Ranked
Precision metric measures the precision at different cut-off
points [12]. For instance, if the topmost candidate is a cor-
rect variant while the second one is a false positive, then we
have 100% precision at a cut off of 1 but 50% precision at a
cut off of 2. In our context, we dynamically set the cut-off
points, C, to be the same as R. That is, if we know that
there are 4 variants to identify, we set C = 4. Formally,

Table 2. Summary of notation.
Notation Meaning

JC Jaccard
TI TFIDF
IC IntelliClean
QC Quasi-Clique

JC+QC Jaccard + Quasi-Clique
TI+QC TFIDF + Quasi-Clique
IC+QC IntelliClean + Quasi-Clique

Ranked Precision =
P

i∈C precisioni

r , where precisioni is
the precision at a cut off of i. Finally, the Average Recall
(AR) and Average Ranked Precision (ARP) are the averages
of recall and ranked precision over all cases (i.e., 47 cases
for real ACM test set and 100 cases for each of the four
synthetic test sets).

Compared Methods. Recall that the goal of the proposed
two-step algorithm is to avoid false positives, and thus im-
prove overall precision and recall. To see the effectiveness
of our distQC, therefore, we conducted the most effective
distance metrics in the first step to get initial candidate vari-
ants. Then, in the second step, we applied the Quasi-Clique-
based metric to the candidate variants to get the final an-
swers. Then, we compared the performance of “before” and
“after” Quasi-Clique-based metric was applied.

In the first step, we experimented the following distance
metrics: Jaccard, TF/IDF, and IntelliClean (IC). Due to
the space limitation, we omit the definitions of each met-
ric (please refer to [23] [15]).

At the end, we have implemented distQC and Intelli-
Clean in Java, borrowed implementations of TFIDF, Jac-
card, etc. from SecondString [23], and Quasi-Clique
from [20]. Table 2 summarizes notations of methods evalu-
ated in the experimentation.

5.2 Results

1. Quasi-Clique on ACM real case. We experiment to see
if Quasi-Clique can improve the performance of one-step
distance functions. We first ran and measured the perfor-
mance of three distance methods Jaccard (JC), TFIDF (TI)
and IntelliClean (IC). Then, to each, Quasi-Clique is ap-
plied as a second step, and the performance is measured
as JC+QC, TI+QC, and IC+QC. Hierarchical clustering al-
gorithm is used to generate a concept hierarchy for IC. Fig-
ure 4(a-b) illustrate AR and ARP of these six schemes. Note
that Quasi-Clique improved the precision visibly. For in-
stance, the precision of JC+QC (resp. TI+QC) significantly
improves from JC (resp. TI) on co-authors. On average,
precision improves by 63%, 83%, and 46% for three at-
tributes, respectively.
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In general, JC and TI are simple distance metrics, mea-
suring distances based on the occurrences of common to-
kens. Since some authors have name initials and common
first names on co-author data, therefore, these metrics tend
to generate a large number of false positives as shown in
Figure 4(a-b). Since Quasi-Clique uses additional informa-
tion as to how closely co-authors of the authors are corre-
lated each other on graph representation, it overcomes the
limitations of the simple metrics.

2. Quasi-Clique on Synthetic cases. We experiment to see
how effective Quasi-Clique is against large-scale data sets
with synthetically generated solution sets. For this purpose,
we prepared three data sets with diverse domains – ACM,
BioMed, and IMDB. Figure 4(c-h) illustrate the final results
of AR and ARP for all data sets. Regardless of the distance
function used in step 1 (either JC or TI), type of attributes
(co-authors, titles or venues), or type of data sets, distQC
consistently improved the ARP up to 75% (BioMed/title
case).

In particular, Figure 4(g-h) illustrate the performance re-
sult of IMDB – a movie data set with attributes like movie
ID, country, distributor, editor, genre, keyword, language,
location, producer, production company, and release date.
Then, we selected three attributes, “location”, “production
companies”, and “release date”, as these have more con-
textual information than other attributes (e.g., French actors
tend to star french movies more often)4.

Figure 4(g-h) illustrate AR and ARP of JC and TI, and
their two-step correspondents, JC+QC and TI+QC. Overall,
the location attribute shows relatively lower AR and ARP
than release date and production companies, in all of the
methods. This is because there are a lot of uncommon to-
kens such as the city “Victorville” in the location attribute.
Nevertheless, distQC improved the ARP by 13%, suggest-
ing its effectiveness. Both AR and ARP of TI are low, com-
pared to those of JC. This is because there are common at-
tribute values, such as “USA” in location, and “pictures”
or “movies” in production companies. In TI, for weighting
tokens, common tokens (e.g., “movies”) would have lower
weight via IDF, negatively affecting matching process. In
AR, our distQC methods show much higher than both JC
and TI.

Compared with citation data sets, note that our distQC
algorithm performs slightly better than string distance met-
rics in IMDB data set. This is because (1) records and at-
tribute values of an actor and his/her variant entities have no
strong relationships unlike those of citations; (2) attribute
values of citations are long while those of IMDB data set are
short, carrying not-so-rich information; (3) many attributes
in IMDB data set contains empty values and noises.

4The “location” shows where the movie was primarily made. Although
the location may not show strong correlation for superstars, majority of
actors tend to appear in movies of only a few locations (e.g., country).
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Figure 4. Test cases for three data sets: (a-b)
real cases for ACM data set, and (c-d), (e-f),
and (g-h) synthetic cases for ACM, BioMed,
and IMDB data sets, respectively.

6 Related Work

The general ER problem has been known as various
names – record linkage (e.g., [8, 4]), citation matching
(e.g., [17]), identity uncertainty (e.g., [19]), merge-purge
(e.g., [10]), object matching (e.g., [6]), duplicate detec-
tion (e.g., [21, 1]), authority control (e.g., [24, 11]), and
approximate string join (e.g., [9]) etc. When entities are
“grouped-entities,” these methods do not distinguish them,
while our distQC tries to exploit them using Quasi-Clique.
Our method can be used together with any of these methods
as the first step.

Bilenko et al. [4] have studied name matching for in-
formation integration using string-based and token-based
methods. Cohen et al. [7] have also compared the efficacy
of string-distance metrics, like JaroWinkler, for the name
matching task. [14] experimented with various distance-
based algorithms for citation matching, with a conclusion
that word based matching performs well. We have imple-
mented all these methods in our framework and compared

7



how much our distQC improves when used together. Be-
fore we process each element in a grouped-entity (e.g., ci-
tation or movie record), we assume that field segmentation
and identification have been completed using some methods
(e.g., [5]). ALIAS system in [21] proposes a framework to
detect duplicate entities such as citations or addresses, but
its focus is on the learning aspect.

Unlike the traditional methods exploiting textual simi-
larity, Constraint-Based Entity Matching (CME) [22] ex-
amines “semantic constraints” in an unsupervised way.
They use two popular data mining techniques, Expectation-
Maximization (EM) and relaxation labeling for exploiting
the constraints. [2] presents a generic framework, Swoosh
algorithms, for the entity resolution problem. Our distQC
can be used as a type of distance metric in their framework.

The recent trend in the ER problem shows similar direc-
tion to ours (e.g., [4, 3, 16, 13]) – Although each work calls
its proposal under different names, by and large, most are
trying to “exploit additional information beyond string com-
parison.” A more extensive and systematic study is needed
to investigate the usefulness and limitations of the context
in a multitude of the ER problem. In this paper, we espe-
cially exploit the graph-based partitioning technique to cap-
ture “contexts.” Recent work by Kalashnikov et. al. [13]
presents a relationship-based data cleaning (RelDC) which
exploits context information for entity resolution, sharing
similar idea to ours. RelDC constructs a graph of entities
connected through relationships and compares the connec-
tion strengths across the entities on the graph to determine
correspondences. The main difference is the notion of data
structure used (i.e., we used Quasi-Clique along with super-
imposition to derive distances between graphs).

7 Conclusion

Toward the grouped-entity resolution problem, we
present a graph partition based approach using Quasi-
Clique. Unlike string distance or vector-based cosine met-
ric, our approach examines the relationship hidden under
the grouped-entities. Experimental results verify that our
proposed approach improves precision up to 83% at best
(in Figure 4(a-d)), but never worsens it.
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