
Similarity Group-by*
Yasin N. Silva1, Walid G. Aref 1, Mohamed H. Ali2

1Department of Computer Science, Purdue University, Indiana, USA
{ysilva,aref}@cs.purdue.edu

2Microsoft Corporation, Washington, USA
mali@microsoft.com

Abstract— Group-by is a core database operation that is used
extensively in OLTP, OLAP, and decision support systems. In
many application scenarios, it is required to group similar but
not necessarily equal values. In this paper we propose a new SQL
construct that supports similarity-based Group-by (SGB). SGB is
not a new clustering algorithm, but rather is a practical and fast
similarity grouping query operator that is compatible with other
SQL operators and can be combined with them to answer
similarity-based queries efficiently. In contrast to expensive
clustering algorithms, the proposed similarity group-by operator
maintains low execution times while still generating meaningful
groupings that address many application needs. The paper
presents a general definition of the similarity group-by operation
and gives three instances of this definition. The paper also
discusses how optimization techniques for the regular group-by
can be extended to the case of SGB. The proposed operators are
implemented inside PostgreSQL. The performance study shows
that the proposed similarity-based group-by operators have good
scalability properties with at most only 25% increase in
execution time over the regular group-by.

I. INTRODUCTION
One of the most important paradigm shifts in data

management is the move from systems that focus on exact
semantics of data and Boolean semantics of queries to systems
that focus on imprecise and approximate semantics of data
and queries. Among the areas driving this paradigm shift are
probabilistic databases, the integration of information retrieval
and database systems, and similarity query processing.
Previous work on similarity query processing has focused on
solving the problem of joining two sets of data using
similarity join predicates that match tuples with similar or
approximate values. The goal of this paper is to extend
similarity-based processing to another core database operation,
the group-by, to group objects with similar or approximate
values. Grouping capabilities have been extensively studied
and implemented in data management systems. In DBMSs,
the most common support for grouping is implemented
through the standard group-by operator. This operator has
relatively good execution time and scalability properties.
However, while the semantics of group-by is simple, it is also
limited because it is based only on equality, i.e., all the tuples
in a group have exactly the same values of the grouping
attributes. Grouping has also been studied in data warehouses,
where several facilities have been implemented to enrich the
output of the regular group-by operator with multiple levels of
subtotals. Additionally, analysis techniques, e.g., OLAP and

———————————————
* This work was partially supported by NSF Grant Number IIS-0811954.

Similarity Grouping Implementation Approach
As Stored

Procedures
Using User-

Defined Aggr.
Using Basic SQL

Operators
Integrated in
DB Engine

Implementation
complexity

SPs require
the support
of large hash
tables,
spilling
mechanisms,
etc.

UDAs require
the support of
vectors for
reference points,
spilling
mechanisms,
etc.

Queries use a
complex mix of
joins and
aggregations

Low (reuses
and extends
DB operators
and
structures)

YesYes

NoNoNo directly

Low

No

High (see Fig. 13)Very Low MediumExecution time

Yes

All (Sup. &
Unsup.)

Only Supervised
(partially)

All (Supervised
& Unsupervised)

Supported
grouping
strategies

Only Supervised
(partially)

Composable with
other operators
(pipelining)

Yes (pre-aggr.
and use of MVs)

Take advantage
of query optimizer

Fig. 1 Comparison of similarity group-by implementation approaches

data mining, provide advanced features for grouping. OLAP
provides several tools to summarize data organized under the
dimensional model but the formation of groups is still based
on the equality semantics. Data mining clustering tools
employ complex and sophisticated algorithms to discover
groups naturally formed in the data. Unfortunately, the use of
these analysis techniques requires the definition of elaborate
data mining models; is not integrated into the regular query
processing engine, and is not standard among the different
commercial database systems.

Emerging applications, e.g., biological databases and data
streaming, require the identification of sets of approximate
values. Moreover, many business application scenarios,
especially those handling large datasets, can benefit
tremendously from SQL constructs that identify groups of
similar values to process them further. Current database
systems do not provide fast mechanisms that are integrated
into the query engine to generate and process groups of
similar objects using complex TPC-H-like queries [29]. Figure
1 presents a comparison of several approaches to support
similarity-based grouping. The implementation of similarity-
based grouping at the DB engine level has the following key
advantages: (1) the execution time of the Similarity Group-by
operator (SGB) is comparable to that of the regular group-by
and is superior to the performance of the other user-level
definitions; (2) SGB can be interleaved with other regular
operators and its results pipelined for further processing; and
(3) important optimization techniques, e.g., pre-aggregation
and the use of materialized views can be extended to the new
operator. The contributions of this paper are as follows:

• We introduce the similarity group-by (SGB) operator
which extends standard group-by to allow the formation

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.113

904

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.113

904

of groups based on similarity rather than equality of the
data.

• We present a generic definition of the SGB operator and
three instances to support: (1) the formation of groups
based on fundamental group properties, e.g., group
compactness and group size, (2) the formation of groups
around points of interest, and (3) the formation of
groups delimited by a set of limiting points. The
proposed instances support similarity grouping of one
or more independent one-dimensional attributes.

• We extend the standard optimization techniques for
regular aggregations to the case of SGB. In particular,
we introduce the main theorem of Eager and Lazy
similarity aggregations, an extension of the
corresponding regular aggregation based theorem; and
the requirements that a materialized view must satisfy
to be used to answer a similarity aggregation query.

• We implement the proposed SGB operators in
PostgreSQL and study their performance and scalability
properties. We use SGB in modified TPC-H queries to
answer interesting business questions and show that the
execution time of all implemented SGB's instances is at
most only 25% larger than that of the regular group-by.

The rest of this paper proceeds as follows. Section II
discusses the related work. Section III presents the general
definition of SGB and three instances of this definition.
Section IV studies optimization techniques applicable to the
new operators. Section V presents implementation guidelines
based on a prototype realization of the operators within
PostgreSQL. Section VI reports on the performance
evaluation of the similarity group-by operators and Section
VII presents the conclusions and directions for future research.

II. RELATED WORK
The work on similarity-based query processing has focused

on similarity joins. Similarity joins use special types of join
predicates to match tuples that have approximate values.
Different types of similarity join have been proposed, e.g.,
range distance join (retrieves all pairs whose distances are
smaller than a pre-defined threshold) [1], [7], [8], k-distance
join (retrieves the k most-similar pairs) [2], and knn-join
(retrieves, for each tuple in one table, the k nearest-neighbours
in the other table) [3], [5], [6]. Some similarity join techniques
have been employed as building blocks to implement common
clustering algorithms [4]. Kriegel et al. extend the work on
similarity join to uncertain data [9].

The clustering problem has been studied extensively, e.g.,
in pattern recognition, machine learning, physiology, biology,
statistics, and data mining. In some of these application
scenarios, finding the groups with certain similarity properties
is the goal of data analysis while in others finding the groups
is just the first step for other operations, e.g., for data
compression or discovery of hidden patterns or relationships
among the data items. Jain et al. present an overview of
clustering from a statistical perspective [10]. Berkhin surveys
clustering techniques used in data mining [11]. These
techniques consider the special data mining computational

requirements due to very large datasets and many attributes of
different types. Given that the result of the clustering process
depends on the specific clustering algorithm and its parameter
settings, it is important to assess the quality of the results. This
evaluation process is termed cluster validity [12], [13]. Of
special interest is the work on clustering of very large datasets.
Single scan versions of the well-known clustering algorithms
K-means and Cobweb for large datasets is proposed in [14]
and [15]. CURE [16] and BIRCH [17] are two alternative
clustering algorithms based on sampling and summaries,
respectively. They use only one pass over the data and hence
reduce notably the execution time of clustering. However,
their execution times are still significantly slower than the one
of the standard group-by. The main differences of the
proposed similarity group-by from these algorithms are: (1)
the execution times of the proposed similarity grouping
operators are very close to that of the regular group-by; (2)
similarity group-by operators are fully integrated with the
query engine allowing the direct use of their results in
complex query pipelines for further analysis; and (3) the
computation of aggregation functions is integrated in the
grouping process and considers all the tuples in each group,
not a summary or a subset based on sampling. The last feature
allows for fast generation of cluster representatives with the
exact values of the aggregation functions that can be used
immediately by other operators in the query pipeline.
Algorithms similar to CURE or BIRCH would require extra
steps to evaluate aggregation functions or to make available
their results to SQL queries. Several clustering algorithms
have been implemented in data mining systems. In general,
the use of clustering is via a complex data mining model and
the implementation is not integrated with the standard query
processing engine. The work in [18] proposes some SQL
constructs to make clustering facilities available from SQL in
the context of spatial data. Basically, these constructs act as
wrappers of conventional clustering algorithms but no further
integration with database systems is studied. Li et al. extend
the group-by operator to approximately cluster all the tuples in
a pre-defined number of clusters [28]. Their framework makes
use of conventional clustering algorithms, e.g., K-means; and
employs summaries and bitmap indexes to integrate clustering
and ranking into database systems. Our study differs from [28]
in that (1) we focus on similarity grouping operators
independent of the support and tight coupling to ranking; (2)
we introduce a framework that does not depend on possibly
costly conventional clustering algorithms, but rather allows
the specification of the desired grouping using descriptive
properties such as group size and compactness; and (3) we
consider optimization techniques of the proposed similarity
group-by operators. In the context of data reconciliation,
Schallehn et al. propose SQL extensions to allow the use of
user-defined similarity functions for grouping purposes [25]
and similarity grouping predicates [26], [27]. They focus on
string similarity and similarity predicates to reconcile records.
Although they can be used for this purpose, the proposed
similarity group-by operators in this paper are more general
and are designed to be part of a DBMS’s query engine.

905905

The optimization techniques of similarity grouping
presented in this paper builds on previous work on
optimization of regular aggregation queries. Larson et al.
study pull-up and push-down techniques that enable the query
optimizer to move aggregation operators up and down the
query tree [19], [20]. These techniques allow complete [19] or
partial [20] pre-aggregation that can reduce the input size of a
join and consequently decrease significantly the execution
time of an aggregation query. Galindo-Legaria proposes a
general framework for optimization of queries with subqueries
and aggregations [21]. Another technique that can provide
substantial improvements in query processing is the use of
materialized views to answer aggregation queries. This
technique is presented in [22] for the case of sum and count
aggregation functions, and is extended in [23] and [24] to
arbitrary aggregation functions.

III. SIMILARITY GROUP-BY: DEFINITION
This section presents the general definition of the similarity

group-by operator along with three instances that enable: (1)
grouping tuples based on desired group properties, e.g., size
and compactness, (2) grouping around points of interest, and
(3) segmenting the tuples based on given limiting values.

A. Generic Definition
We define the similarity group-by operator as follows:

!"#$%#&'('")$%)&$*&$+#',#&'('$+-',-&
where R is a relation name, Gi is an attribute of R that is used
to generate the groups, i.e., a similarity grouping attribute, Si
is a segmentation of the domain of Gi in non-overlapping
segments, Fi is an aggregation function, and Ai is an attribute
of R.

The formation of groups has two steps:
1. For each tuple t, each value vi of t.Gi is replaced by the

identifier of the segment (member of Si) that contains vi.
If no segment contains vi, t is dismissed.

2. The resulting tuples are merged to form the similarity
groups. Two tuples are in the same group if their new
G1,…,Gn values are the same.

The aggregation functions Fi are applied over each group
similar to a standard aggregation operation. Figure 2
illustrates an example segmentation S1 that groups a two-
dimensional data set into three segments S1,1, S1,2, and S1,3
based on some notion of similarity. Let the dots in the figure
represent the tuples of a relation R(G1, A1), where the value of
G1 is the position of the dot and the value of A1 is the value
next to the dot. The result of:

!,./$%#&$*&$+#',#&
is: {(S1,1, 80), (S1,2, 25), (S1,3, 50)}.

B. Instantiating the General Definition
The general definition of similarity group-by (SGB) allows
the use of any kind of segmentation on the grouping attributes.
The segmentation could be the result of any clustering
algorithm. For example, the previously proposed clustering
approaches for large datasets [14], [15], [16], [17] can be

S1,1

S1,2

S1,3

S1

10

20

20
10

20

5

5
10

5

10

5
10

5

20

Fig. 2 Example usage of the generic SGB

modeled as instances of this generic definition. The generic
definition is useful for reasoning with the new SGB operation
and for deriving equivalences that allow the optimization of
queries (as in Section IV). Naturally, this generic form of SGB
is not to be implemented directly. Below, we present three
implementable instances of the generic SGB. The main factors
considered in the selection of the proposed instances are: (1)
the ability to generate meaningful and useful groups, e.g.,
around a set of points of interest or groups that satisfy key
properties such as group size and group compactness; (2) the
viability of a fast implementation, e.g., using a single-pass
plane-sweep approach; and (3) the usefulness of the instances
in practical scenarios; the specific scenarios considered in this
paper are: business decision support systems (Section VI-B.3)
and sensor networks (Section III-B). The proposed instances
represent middle ground between the regular group-by and
standard clustering algorithms. The proposed similarity group-
by instances are intended to be much faster than regular
clustering algorithms and generate groupings that capture
similarities on the data not captured by regular group-by. On
the other hand, the quality of the generated groupings is not
expected to be always as high as the ones generated by more
complex and costly clustering algorithms. The presentation in
this section focuses on the case of one or multiple independent
grouping attributes (multiple independent dimensions).

1) Unsupervised Similarity Group-by (SGB-U): This
operator groups a set of tuples in an unsupervised fashion, i.e.,
with no extra data provided to guide the process. The SGB-U
operator uses the following two clauses to control the group
size and the group compactness:

• MAXIMUM_ELEMENT_SEPARATION s: If the
distance between two neighbor elements (consecutive
elements, for the one-dimensional case) is greater than
s, then these elements belong to different groups.

• MAXIMUM_GROUP_DIAMETER d: For each
formed group, the distance between the extreme
elements of a group should be less than or equal to d.

The SQL syntax of the SGB-U operator is:
SELECT select_expr, ...
FROM table_references WHERE where_condition
GROUP BY col_name

[MAXIMUM_ELEMENT_SEPARATION s]
[MAXIMUM_GROUP_DIAMETER d], ...

In the case of one-dimensional attributes, the similarity
group-by operator forms the groups in the following way:

1. If neither of the clauses MAXIMUM_ELEMENT_
SEPARATION, or MAXIMUM_GROUP_DIAMETER

906906

is specified, we assume d=0 and s=0. This case is
equivalent to the standard group-by.

2. If only one clause is specified, we assume that the value
of the other is !.

3. If MAXIMUM_ELEMENT_SEPARATION is
specified, the elements are grouped first using this
criterion. If only MAXIMUM_GROUP_DIAMETER is
specified, all the elements form the unique resulting
group of this step.

4. If MAXIMUM_GROUP_DIAMETER is specified, the
groups formed in the previous step are further divided
until the group diameter. The criterion to divide a group
can be: (i) split a group “breaking” the longest link in
the group, or (ii) process the elements in ascending
order and end current group as soon as the distance
from the start of the group to the current element E is
greater than d. We use this approach in our examples.

One way to extend the semantics of group diameter and
element separation to higher dimensions is as follows.
Assume that we build the minimum spanning tree that
connects all the elements. Group diameter is the distance
between the two most separated elements of a group. Element
separation is defined for each pair of elements connected by a
link of the tree, and its value is equal to the length of this link.
Initially, all the elements connected by the tree form a group.
If MAXIMUM_ELEMENT_SEPARATION is specified, all
the links whose length is greater than s are “broken”. If
MAXIMUM_GROUP_DIAMETER is specified, we further
divide the resulting connected groups until the group diameter
of each group is less than or equal to d. To split a group, we
“break” the longest link of its spanning tree. The following
example groups a set of sensor readings such that in each
formed group, the distance between two consecutive values is
at most 2 degrees. Similar to the regular group-by, each tuple
that belongs to the result of the query represents one group.

SELECT Min(Temperature), Max(Temperature),
 Count(Temperature), Avg(Temperature)
FROM SensorsReadings WHERE Temperature > 0
GROUP BY Temperature
 MAXIMUM_ELEMENT_SEPARATION 2

Figure 3.a gives one possible output of the previous
example. The different temperature readings are represented
as marks on a line. Figures 3.b and 3.c give the output when
using the other two possible combinations of the clauses of
this operator. In practice, different combinations can be more
suitable for different grouping purposes. As evident from
Figure 3, the use of group size and element separation to guide
the process of similarity grouping captures important aspects
of the natural formation of groups. These key properties are
actually the building elements of more sophisticated clustering
algorithms (e.g., as in [10]).

2) Supervised Similarity Group Around (SGB-A): The
SGB-A similarity grouping operator groups tuples based on a
set of guiding points, named central points, such that groups
are formed around the central points and each tuple is
assigned to the group of its closest central point. Additionally,

Group 1 Group 2 Group 3 Group 4

s s ss s

Group 5 Group 6

Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d d d

Group 6

d d d d d d

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

s s ss s
d d d d

b) GROUP BY Temperature MAXIMUM_GROUP_DIAMETER 6

c) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2
MAXIMUM_GROUP_DIAMETER 6

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

Fig. 3 Examples of unsupervised similarity grouping limiting the groups
based on group size and compactness

s s s

c) GROUP BY Temperature AROUND {30,50}
MAXIMUM_GROUP_DIAMETER 20

d) GROUP BY Temperature AROUND {30,50}
MAXIMUM_ELEMENT_SEPARATION 2
MAXIMUM_GROUP_DIAMETER 20

b) GROUP BY Temperature AROUND {30,50}
MAXIMUM_ELEMENT_SEPARATION 2

Group 1 Group 2

a) GROUP BY Temperature AROUND {30,50}

Group 1 Group 2

Group 1 Group 2

r r r r

r r r
s s s

r

Group 1 Group 2

Fig. 4 Examples of supervised similarity grouping around two points under
various conditions on size and compactness

the SQL syntax of SGB-A provides two clauses that are
similar to the ones for the SGB-U operator (Section III-B.1) to
restrict the size and compactness of a group. The SQL syntax
of the operator is:

SELECT select_expr, ...
FROM table_references WHERE where_condition
GROUP BY col_name AROUND central-points
 [MAXIMUM_GROUP_DIAMETER 2r]
 [MAXIMUM_ELEMENT_SEPARATION s], ...

The central points can be specified directly using a list of
points or, more generally, by another select statement. The
latter option is very useful when the location of the central
points depends on dynamic data. In the case of one-
dimensional attributes, SGB-A forms the groups as follows:

1. Each tuple is assigned the group with closest central
point.

907907

2. If neither clause (MAXIMUM_ELEMENT_
SEPARATION, MAXIMUM_GROUP_DIAMETER)
is specified, the groups formed in the previous step are
the output of this operator.

3. If only one clause is specified, we assume that the value
of the other is !.

4. If MAXIMUM_ELEMENT_SEPARATION is
specified, the extent of each group is restricted such that
each pair of consecutive elements of a group is
separated at most by s. For this step we can consider the
central point of each group to be one additional data
point. The elements that are not connected to the central
point under this compactness restriction are discarded.

5. If MAXIMUM_GROUP_DIAMETER is specified, the
groups formed in the previous steps are further
narrowed by removing all the elements whose distance
from their central point is greater than r.

For multidimensional attributes, the semantics of group
diameter and element separation can be extended as follows:

1. If MAXIMUM_GROUP_DIAMETER is specified, the
groups are formed around the central points such that
the distance from each point of a group to its central
point is less than r.

2. If MAXIMUM_ELEMENT_SEPARATION is
specified, the groups are further reduced such that it is
possible to build a path from each element to its central
point in which the length of every link is at most s.

Unlike operator SGB-U of Section III-B.1, operator SGB-A
generates at most as many groups as central points are
provided and all the elements that do not belong to any group
are not considered in the output. Alternatively, all the
discarded tuples could form a special group, i.e., group of
outliers. Continuing with the scenario of applying similarity
grouping to data retrieved from sensors, the following
example groups the temperature readings around two
temperature values of interest (30 and 50 degrees).
Furthermore, the groups are restricted to include only readings
whose distance from their central point is at most 10.

SELECT Min(Temperature), Avg(Temperature)
FROM SensorsReadings WHERE Temperature > 0
GROUP BY Temperature AROUND {30,50}
 MAXIMUM-GROUP-DIAMETER 20

Figure 4.c gives one possible output of the previous
example. The given central points are represented as small
circles. Figures 4.a, 4.b, and 4.d give the output when using
the other three possible combinations of the clauses of SGB-A.
From the figures, we observe that SGB-A can identify the
naturally formed groups around certain points of interest.

In the operators defined so far, clauses to describe desired
properties of the groups are combined implicitly using the
AND operator. Although not shown in the paper, we can
combine the conditions using other logic operators.

3) Supervised SGB using Delimiters (SGB-D): The SGB-D
similarity grouping operator forms groups based on a set of
delimiting points that can be provided directly or specified
using a select statement.

a) Segmentation of values that cannot be obtained using
central points

Group 1 Group 2 Group 3 Group 4 Group 5

b) GROUP BY Temperature
DELIMITED BY (SELECT Value FROM Thresholds)

Fig. 5 Example of supervised similarity grouping based on a dynamic set of
delimiting points

sPressure

Te
m

pe
ra

tu
re

ss s
Fig. 6 Similarity grouping with two attributes

In the case of one-dimensional attributes, this operator is
especially useful when the partition of the line representing all
the possible values of an attribute cannot be obtained using a
set of central points. Figure 5.a gives an example of this
scenario. SGB-D should be used when the natural way to form
the required groups is to partition the range of all possible
values in predefined or dynamic segments. SGB-D’s syntax is:

SELECT select_expr, …
FROM table_references WHERE where_condition
GROUP BY col_name DELIMITED BY limit-points

The following example groups the temperate readings in
groups delimited by the result of a select statement on Table
Thresholds.

SELECT Count(Temperature), Avg(Temperature)
FROM SensorsReadings WHERE Temperature > 0
GROUP BY Temperature
DELIMITED BY (SELECT Value FROM Thresholds)

Figure 5.b gives the output of the previous example. The
result of the internal select is represented by vertical dotted
line segments.

Extending the semantics of SGB-D to multidimensional
attributes can be achieved replacing limit-points by a set of
geometrical objects, e.g., lines or planes, that partition the
multidimensional space containing the elements to be grouped.

An important property of all the presented operators is that
multiple executions of the operators on the same data set and
same reference points, i.e., central and delimiting points, will
generate the same results.

 The generic definition of SGB specifies how similarity
groups should be formed when several similarity grouping
attributes (SGAs) are used. In general, we assume that the
segmentation of each SGA is generated using a different
similarity grouping instance. The main definition assumes that

908908

the SGAs are independent, i.e., the segmentation associated
with each SGA A depends only on the values of A in the data
tuples, and the reference points and conditions used with this
SGA. According to this generic definition, the result of SGB
when multiple SGAs are used is obtained intersecting the
segmentations of all the (independent) SGAs. Therefore, the
order in which the grouping attributes are specified in a
similarity grouping query does not affect its final result.
Clustering and segmentation based on correlated attributes is
beyond the scope of this paper. From an implementation point
of view, all the similarity grouping strategies associated with
the different operators presented so far can be integrated into
one single similarity group-by operator. This integration
facilitates the use of several similarity grouping strategies in
the same SQL statement. The following example applies
similarity group around (SGB-A) on attribute Pressure and
similarity group-by with delimiters (SGB-D) on attribute
Temperature. The sets of elements delimited by dashed lines
in Figure 6 represent the output of this query.

SELECT Avg(Temperature), Avg(Pressure)
FROM SensorsReadings GROUP BY
Pressure AROUND {30,50}
 MAXIMUM_ELEMENT_SEPARATION 3,
Temperature
 DELIMITED BY (SELECT Value FROM Thresholds)

IV. OPTIMIZING SIMILARITY GROUP-BY
Several approaches have been proposed to improve the

performance of regular aggregation queries. This section
presents a study of how these approaches can be extended to
the case of similarity grouping. An important approach to
optimize queries with regular aggregations is the use of pull-
up and push-down techniques to move the group-by operator
up and down the query tree. The main Eager and Lazy
aggregations theorem presented in [19] is a fundamental
theorem that enables several pull-up and push-down
techniques. Its application allows the pre-aggregation of data,
i.e., aggregation before join, and thus potentially reduces the
number of tuples to be processed by the join operator. Eager
and lazy similarity aggregations are query transformation
classes that extend their regular aggregation counterparts.
Figure 7 illustrates the transformations of the main theorem
for eager and lazy similarity aggregation. The single
similarity-based aggregation operator of the Lazy approach is
split into two parts in the Eager approach. The first part pre-
evaluates some aggregation functions and calculates the count
before the join. The second part uses that intermediate
information to calculate the final results after the join. Similar
to the case of non-similarity-based aggregations, it is
important to consider both the Eager and Lazy versions of a
similarity aggregation query because neither approach is the
best in all scenarios. Joins with high selectivity tend to benefit
the Lazy approach while aggregations that reduce
significantly the number of flowing tuples in the pipeline tend
to benefit the Eager approach. Section VI-B.3 presents real
world scenarios in which each of the approaches performs
better.

SGB

Join

T1 T2
(G1,J1,S1) (G2,J2,S2)

SUM(S1), SUM(S2)

SGB

Join

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1), SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 on Seg1,
G2 on Seg2

G1,
G2 on Seg2

G1 on Seg1,
J1

J1=J2

J1=J2

b) Eager Similarity Aggregationa) Lazy Similarity Aggregation

Fig. 7 The Main Theorem

The algebraic notation used in this section is similar to that
in [19]. g[GA; Seg]R represents similarity grouping of relation
R on grouping attributes GA using segmentations Seg. The
domain of the nth element of GA is partitioned by the nth
element of Seg. This operation can be represented by a query
that replaces in R each value of a grouping attribute by the
representative value of the segment that contains it, and sorts
the result by GA. Each segmentation is assumed to cover the
whole domain of its associated attribute. The extension of the
main theorem to the case in which this is not true is
straightforward. F[AA]R represents the aggregation operation
of a previously grouped table R. F and AA are sets of
aggregation functions and columns, respectively. ×, ", #D, #A,
and UA represent Cartesian product, selection, projection with
and without duplicate elimination, and set union without
duplicate elimination operations, respectively.

The presentation of the main theorem uses the following
notation. Rd is a table that always contains aggregation
attributes. Ru is a table that may or may not contain such
attributes. Let GAd and GAu be the grouping columns of Rd
and Ru, respectively, AA be all the aggregation columns, AAd
and AAu be the subsets of AA that belong to Rd and Ru,
respectively, Cd and Cu be the conjunctive predicates on
columns of Rd and Ru, respectively, C0 be the conjunctive
predicates involving columns in both Ru and Rd, !(C0) be the
columns involved in C0, GAd

+ = GAd U !(C0) - Rd be the
columns that participate in the join and grouping, F be the set
of all aggregation functions, Fd and Fu be the members of F
applied on AAd and AAu, respectively, FAA be the resulting
columns of the application of F on AA in the first grouping
operation of the eager strategy, Seg be the set of segmentation
of the attributes in GA, Segd and Segu be the subsets of Seg for
the attributes in GAd and GAu, respectively, NGAd be a set of
columns in Rd, CNT be the column with the result of Count(*)
in the first aggregation operation of the eager approach, FAAd
be the set of columns, other than CNT, produced in the first
aggregation operation of the eager approach, and Fua be the
duplicated aggregation function of Fu, e.g., if Fu=(SUM,MAX),
then Fua=(SUM, MAX, count) = (SUM*count, MAX). Let A ~
B denote that A and B belong to the same similarity group, and
A !~ B denote the opposite.
Theorem 1 Eager/Lazy Similarity Aggregation Main
Theorem: The following two expressions

909909

 E1: F[AAd, AAu]"A[GAd, GAu, AAd, AAu]
 g [GAd, GAu; Seg]#[Cd ^ C0 ^ Cu] (Rd × Ru)
 E2: "D[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])
 "A[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu; Segu]#[C0 ^ Cu]
 (((Fd1[AAd], COUNT)"A[NGAd, GAd

+, AAd]
 g [NGAd; Segd]#[Cd]Rd) × Ru)

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2)
Fu contains only class C or D aggregation functions [19], (3)
NGAd $ GAd

+ holds in #[Cd]Rd, and (4) !(C0) % GAd = Ø.
Expression E1 represents the Eager approach while

expression E2 represents the Lazy approach.
Proof sketch:

Consider a group Gd generated by g [NGAd, Segd]#[Cd]rd
for some instance rd of Rd. Due to conditions (3) and (4), all
the rows of Gd have the same values of GAd and the joining
attributes. Every tuple of Gd joins with the same set of tuples
SAu(Gd). Let Su(Gd) be the subset of SAu(Gd) that has a unique
value of GAu. Consider two groups of g [NGAd, Segd]#[Cd]rd:
Rd1 and Rd2. There are two cases to be considered.

Case 1: Gd1[GAd] ~ Gd2[GAd] and Su(Gd1)[GAu] ~
Su(Gd2)[GAu]. In E2, the results of the join operations
represented by the following two expressions are merged into
the same similarity group by the second similarity group-by.

i. ((Fd1[AAd], COUNT)"[NGAd, GAd
+, AAd]Gd1) × Su(Gd1)

ii. ((Fd1[AAd], COUNT)"[NGAd, GAd
+, AAd]Gd2) × Su(Gd2)

In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2)
respectively and all the resulting rows are also merged by the
second similarity group-by. Due to (1), the aggregation values
in the resulting row of the following expressions in E1 and E2
respectively are the same.

iii. Fd[AAd]"A[GAd,GAu,AAd]
 ((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))

iv. Fd2[FAAd]"A[GAd,GAu,FAAd]
 (((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd1) × Su(Gd1))
UA ((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd2) × Su(Gd2))
Due to (2), the aggregation values in the resulting row of

the following expressions in E1 and E2, respectively, are the
same.

v. Fu[AAu]"A[GAd,GAu,AAu]
((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))

vi. Fua[AAu,CNT]"A[GAd,GAu, AAu, CNT]
(((COUNT "A[NGAd, GAd

+]Gd1) × Su(Gd1))
UA ((COUNT "A[NGAd, GAd

+]Gd2) × Su(Gd2))
Case 2: Gd1[GAd] !~ Gd2[GAd] or Su(Gd1)[GAu] !~

Su(Gd2)[GAu]. In E2, the results of the join operations
represented by (i) and (ii) are not merged into the same
similarity group by the second similarity group-by. In E1, each
row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2), respectively,
but the resulting rows are not merged by the second similarity
group-by. Due to (1), the aggregation values in the resulting
row of the following expressions in E1 and E2, respectively,
are the same.

vii. Fd[AAd]"A[GAd,GAu,AAd](Gd1 × Su(Gd1))

viii. Fd2[FAAd]"A[GAd,GAu,FAAd]
((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd1) × Su(Gd1))
Due to (2), the aggregation values in the resulting row of

the following expressions in E1 and E2, respectively, are the
same.

ix. Fu[AAu]"A[GAd,GAu,AAu] ((Gd1 × Su(Gd1))
x. Fua[AAu,CNT]"A[GAd,GAu, AAu, CNT]

((COUNT "A[NGAd, GAd
+]Gd1) × Su(Gd1))

Similar to the case of regular group-by, several other query
transformation techniques can be derived from the main
theorem. The way the main theorem is extended in the case of
similarity grouping follows closely the way the equivalent
theorem is extended in the case of group-by [19], [20], [21].

The use of materialized views to answer aggregation
queries [22], [23], [24] is another important optimization
technique that can yield considerable query processing time
improvements and can be extended to the case of similarity
grouping. Goldstein et al. propose a view matching algorithm
[22] that determines if a query can be answered from existing
materialized views with aggregation functions sum and count.
Similarity aggregation queries and views should be treated as
a SPJ query followed by a similarity aggregation operation.
The requirements that a view must satisfy to be used to
answer a SPJG query with similarity-based aggregations are a
slight variation of the requirements for queries with regular
aggregation. These requirements are:

1. The SPJ component of the view contains all rows
needed by the SPJ component of the query with the
same duplication factor.

2. All columns required by compensating predicates are
part of the view output.

3. The view does not contain aggregations or is less
aggregated than the query, i.e., the query output can be
computed by further aggregating the view output.

4. In case further aggregation is required, all the columns
needed are available in the view output.

5. All the columns required to compute the query
aggregation expressions are part of the view output.

Steps 1, 2, 4, and 5 can be enforced similar to the case of
regular aggregation queries. To satisfy Step 3, the algorithm
has to consider that a query with regular group-by on
attributes GA, can be computed from a view with regular
group-by on a superset of GA; a query with similarity group-
by on attributes GA, can be computed from a view with
regular group-by on a superset of GA; and a query with
similarity group-by on attributes GA, can be computed from a
view with similarity group-by on a superset of GA. For
instance, a view grouped on attributes A on Seg1, B on Seg2,
C, D can be used to compute the results of queries grouped on
(1) A on Seg1; (2) A on Seg1, C; (3) C, D; or (4) C on Seg3.

V. IMPLEMENTING SIMILARITY GROUP-BY
This section presents the guidelines to implement the

similarity grouping operators introduced in Section III inside
the query engine of standard RDBMSs. Although the
presentation is intended to be applicable to any RDBMS,

910910

some specific details refer to our implementation in
PostgreSQL. The SGB operators can be implemented as
different database operators or they can be combined with the
regular group-by operator given that there are no conflicts in
their syntax. We use the latter approach as it reduces the
required changes in the query engine and facilitates the
integration of SGB with other query processing mechanisms,
e.g., generation of query trees, optimization tasks, etc.

To add support for similarity grouping in the parser, the
raw-parsing grammar rules, e.g., the yacc rules in the case of
PostgreSQL, are extended to recognize the syntax of the
different new grouping approaches. This stage also identifies
the grouping strategy, i.e., regular, similarityAround,
similarityDelimitedBy, or similarityUnsupervized, being used
with each grouping attribute. The parse-tree and query-tree
data structures are extended to include the information related
to similarity grouping as shown in Figure 8. The routines in
charge of transforming the parse tree into the query tree are
updated to process the new fields of the parse tree. The
transformation of the parse tree section that represents the
query of the reference points can be easily performed calling
recursively the same function that is used to parse regular
select statements, e.g., do_parse_analyze in PostgreSQL.

A. The Optimizer
Traditionally, the aggregation nodes of execution plans

have only one input plan tree, i.e., a data input plan tree,
which represents the query that generates the data to be
grouped. To support supervised similarity grouping, the
aggregation nodes make use of a second input plan tree to
receive the reference points data. Given that in many query
engine implementations all the plan tree nodes inherit from a
generic plan node that supports two input plan trees;
aggregation nodes can make use of a second input plan tree
without major changes to the plan tree’s data structures.
Figure 9.a presents the structure of the plan trees when one
SGA is used. A sort node that orders by the grouping attribute
is added on top of the data input plan tree, and in the case of
supervised grouping, another sort node is added on top of the
reference-points input plan tree. This order is assumed by the
routines that form the similarity groups. When multiple SGAs
are used, they are processed one at the time. Figure 9.b gives
the structure of the plan trees generated when two SGAs a1
and a2 are used. The bottom aggregation node applies
similarity grouping on a1 and regular aggregation on a2. The
result of this node is further aggregated by the top aggregation
node that applies similarity grouping on a2 and regular
aggregation on a1. This approach can be extended directly to
support any number of attributes. A similarity-based group
can combine tuples that have different values of the grouping
attribute. Thus, the value of a grouping attribute A in an output
tuple T is a representative of the values of this attribute in the
tuples that form T. In our implementation, the central point of
a group is selected as the representative value when group-by-
around is used, the smaller delimiting point when group-by-
delimited-by is used, and the average of the minimum and
maximum values of A in the tuples that form T when
unsupervised group-by is used. Each aggregation node is able

NodeTag type

...

SelectStmt

List *targetList
List *fromClause

Node *whereClause
List *groupClause

TargetEntry tarEntry
SelectStmt *refPointsSelect
int maxElementSeparation

GroupTargetEntry

int maxGroupLength
char grouping_mode

list of

NodeTag type

...

Query

List *targetList
List *rtable

bool usesSimGrouping

NodeTag type
Index tleSortGroupRef

Oid sortop
Query *RefPointsSelect

int maxElementSeparation
int maxGroupLength
char grouping_mode

list of

a) Modified data structures of the parse tree

b) Modified data structures of the query tree

GroupClause

List *groupClause

Fig. 8 Modifications in the main query processing data structures
(PostgreSQL)

Agg (a1 around T1), or
Agg (a1 delimited by T1)

1. SELECT … FROM (T)
GROUP BY a1 AROUND (T1)

Sort (a1)

T T1

2. SELECT … FROM (T)
GROUP BY a1 DELIMITED BY (T1)

Sort (T1.col)

Agg (a1 Max_Elmt_Sep s)

3. SELECT … FROM (T)
GROUP BY a1
MAX_ELMT_SEPARATION s

Sort (a1)

T

Agg (a2 around T2, a1), or
Agg (a2 delimited by T2, a1)

1. SELECT … FROM (T)
GROUP BY a1 AROUND (T1),

a2 AROUND (T2)

Sort (a2)

T2

2. SELECT … FROM (T)
GROUP BY a1 DELIMITED BY (T1),

a2 DELIMITED BY (T2)

Sort (T2.col)

3. SELECT … FROM (T)
GROUP BY
a1 MAX_ELMT_SEPARATION s1,
a2 MAX_ELMT_SEPARATION s2

Agg (a1 around T1, a2), or
Agg (a1 delimited by T1, a2)

Sort (a1)

T T1

Sort (T1.col)

Agg (a2 Max_Elmt_Sep s2, a1)

Sort (a2)

Agg (a1 Max_Elmt_Sep s1, a2)

Sort (a1)

T

a) One grouping attribute

b) Multiple grouping attributes

Fig. 9 Path/Plan trees for similarity grouping

to process one SGA and any number of regular grouping
attributes. The group formation routines are presented in
Section V-B. Some additional modifications have to be
implemented to ensure the correct calculation of the
aggregation functions when the aggregation operation is
divided into several aggregation nodes. For aggregation
functions F for which F(SetA U SetB) cannot be computed
from F(SetA) and F(SetB), e.g., Avg, the bottom aggregation
nodes calculate intermediate information, e.g., Sum and Count,
instead of directly computing the values of the aggregation
function F. The top aggregation node processes the

911911

intermediate information and computes the correct final
results. For the aggregation function Count for which
Count(SetA U SetB) is not equal to
Count(Count(SetA),Count(SetB)) but equivalent to
Sum(Count(SetA),Count(SetB)), the bottom aggregation node
uses the function Count while the upper nodes aggregate the
intermediate result using Sum. Another important change in
the optimizer is in the way the number of groups generated by
a similarity aggregation operation is estimated. This key
estimation is used to compare different query execution paths
and is commonly based on the number of groups each
grouping attribute would generate if used alone (NA). In
regular grouping, NA is the number of different values of a
grouping attribute and appropriate statistics are maintained to
estimate it. In the case of supervised similarity grouping, NA
should be estimated as the number of tuples of the reference
points query. In the case of unsupervised similarity grouping,
NA can be estimated as the number of different values of the
grouping attribute divided by a constant. The estimated
number of groups (ENG) can be used to reduce the cost of
queries with several similarity aggregation attributes. Given
that the order of processing these attributes does not change
the final result, they can be arranged to reduce the number of
tuples that flow to upper nodes.

B. The Executor
When several SGAs are used, the constructed query plan

uses several aggregation nodes where the result of each
aggregation node is pipelined to the next one. The hash-based
executor routines that form the groups in each aggregation
node are expected to be able to handle one SGA and zero or
more regular grouping attributes. The tuples received from the
input plans of the data and reference points have been
previously sorted by sort nodes added in the plan construction
stage as explained in Section V-A. The executor routines
process the input tuples sequentially and form the similarity
groups following a plane sweep approach. A vertical line is
swept across the sorted data tuples from left to right. At any
time, a set of current groups is maintained and each time the
line reaches a tuple the system evaluates whether this tuple
belongs to the current groups, does not belong to any group,
or starts a new set of groups. The main execution routine is
modified to call appropriate subroutines that handle the
different grouping strategies. In the regular implementation of
PostgreSQL, this routine calls the subroutines
agg_fill_hash_table and agg_retrieve_hash_table. The first
routine forms the groups using a hash table, and the second
retrieves the resulting tuples, one tuple at the time. In the case
of similarity grouping, the main routine calls extensions of
these two routines that form and retrieve the similarity groups.
The rest of this section describes the extensions of these
subroutines for the case of group-by-around.

To simplify the presentation we do not distinguish between
a tuple and its value, this should be clear from the context. If
the value is being used, it corresponds to the value of the SGA
of this node, or the attribute representing the central points. In
agg_fill_hash_table_around, both, the tuples to be grouped
and the central points are processed sequentially. At any point,

the routine maintains the current and next central points and it
processes the data tuples to form the group(s) around the
current central point. The sequence of values of the grouping
attribute that satisfies the conditions MAXIMUM_GROUP_
DIAMETER and MAXIMUM_ELEMENT_SEPARATION is
called a chain. When the distance of at least one of the values
of the chain to the central point is smaller than
MAXIMUM_ELEMENT_SEPARATION we say that the
chain is connected. Tuples that belong to a chain are
considered candidates to form similarity groups. The hash
table entries corresponding to these potential groups are
marked “active”. If the routine finds that the current chain is
connected then it changes the status of the entries to “final”. If
there is no element that connects the chain to the central
element, the entries are marked “inactive”. Tuples that do not
belong to any group under the current SGA are also assigned
to hash table entries. These entries are marked as “outlier”.
Outlier entries are maintained to allow the correct group
formation in subsequent similarity grouping nodes when
several SGAs are used. This ensures that the final result of a
similarity group-by query is not affected by the order in which
its SGAs are processed. Outlier entries are not considered to
calculate the results of aggregation functions since the final
groups are composed only by tuples that belong to some group
under each SGA. Additionally, the tuple structure is extended
with a status field that is used to determine if a tuple is an
outlier or not. For each data tuple T, the routine performs a
test to check if the distance from T to the current central point
C is smaller than the value of the parameter
MAXIMUM_GROUP_DIAMETER/2 (i.e., the radius) and
that T is closer to the current central point than to the next one.
If the test fails and T is located to the left of C, T is an outlier.
Consequently, the value of the SGA of this tuple is replaced
by a constant and this modified tuple is inserted in the hash
table marking the associated entry as “outlier”. If the test fails
and T is located to the right of C, the routine finishes
processing the current groups, starts the formation of the
groups around the next central point, and processes T with the
new central point. If the test succeeds and T has not been
marked “outlier” previously, T is processed with the current
central point. All the possible arrangements of the previous
and current data tuples and current and next central points are
considered and appropriate actions taken in each case. For
instance, if (i) the distance between the previous and current
tuples is greater than MAXIMUM_ELEMENT_
SEPARATION, (ii) the current tuple is connected to the
current central point, and (iii) the current chain (without
considering the current tuple) is not connected; the current
groups are dismissed, i.e., marked “inactive”, a new chain is
started having the current tuple T as its first element, and if T
is not an outlier, the aggregation calculations of the associated
group are updated with the values of T. The process of
advancing a tuple, i.e., updating the aggregation calculations
of the associated group with the values of the tuple, uses a
similarity version of the tuple replacing the grouping attribute
value with the value of the current central point. The
agg_retrieve_hash_table_around routine is a variation of

912912

Part(P), Supplier(S), PartSupp(PS), Customer(C), Orders(O), LineItem(L), Nation(N)

Reference Points Tables
RefPoints_all: All values used by C_acctbal
RefPoints_1b: 50*SF-1 points that partition C_acctbal’s domain in 50*SF

segments of equal length. For SF=1: {-780,560,...,9780}
RefPoints_x: 50*SF points that correspond to the center of the segments of

RefPoints_1b. For SF=1: {-890,-670, ...,9890}
RefRevLevels: 10 order revenue levels. {20000,60000,…,380000}
MktCmpRefDates: Marketing campaign dates. Random in the range of O_orderdate.
RefDiscLevel: 5 discount levels. {0.010, 0.030, ..., 0.090}

TPC-H Tables

C.c_acctbal_xb: Similar to C_acctbal but without values in SF*50 segments of length
1.1 around the points of RefPoints_1b

C.c_acctbal_x: Similar to C_acctbal
C.c_segment_x: Integer. Random [0,19]. Represents ways to segment clients
O.o_clerkType: Integer. Random [1,50]. Represents a way to segment clerks

Fig. 10 Performance evaluation dataset

agg_retrieve_hash_table. It returns the entries marked "final"
when called from the last SGA of a SGB query. Otherwise, it
returns the entries marked "final" or "outlier".

The changes in the executor required to support the other
similarity grouping strategies can be implemented using
similar guidelines. The cost of group formation in SGB nodes
is very close to the one of the regular group-by since each
tuple is processed once and in almost constant time. The
additional cost of the SGB operators is due to the additional
comparison operations and hash table status maintenance.
Although we focus on the hash-based approach, some of the
basic mechanisms employed by this approach to control the
extent of the groups can be used by a simpler sort-based
approach to answer single-GA similarity aggregation queries.

VI. PERFORMANCE EVALUATION
We implemented the similarity grouping operators

presented in Section III inside the PostgreSQL 8.2.4 query
engine. This section presents the results of the performance
study of these operators. The main cost considered is the
query execution time.

A. Test Configuration
The dataset used in the performance evaluation is based on

the one specified by the TPC-H benchmark [29]. The tables,
additional attributes, and queries used in the tests are
presented in Figures 10 and 11. The default dataset scale
factor (SF) is 1, i.e., the dataset size is about 1GB. All the
experiments are performed on an Intel Dual Core 1.83GHz
machine with 2GB RAM running Linux as operating system.
We use the default values for all PostgreSQL configuration
parameters. The results presented in this section consider the
average of the warm performance numbers having 95%
confidence and an error margin less than ±5%.

B. Performance Evaluation
The focus of the performance evaluation is to study the
scalability and overhead of the similarity group-by operators
and compare them with the ones of the regular group-by.

1) Increasing Dataset Size: Figure 12 gives the execution time
of several aggregation queries for different dataset sizes. The
number of tuples in table Customer is 15,000*SF while the
number of tuples in the reference points tables is 50*SF. The
key result of this experiment is that the execution times of all
the queries that use similarity group-by, i.e., SGB-X, are very

GB SELECT c_acctbal count(c_acctbal), min(c_acctbal), max(c_acctbal),
sum(c_acctbal), avg(c_acctbal) FROM C GROUP BY c_acctbal

Queries used in Section 7.2.1

GB(SGB) <GB> AROUND <RefPoints_all>
SGB-A <GB> AROUND <RefPoints_1>

SGB(GB)

SELECT count(R2.A), min(R2.A),max(R2.A),sum(R2.A), avg(R2.A)
FROM (SELECT c_acctbal as A, min(abs(c_acctbal - refpoint)) as B
FROM C, RefPoints_1 GROUP BY C.c_acctbal) as R1,
(SELECT c_acctbal as A, refpoint as C, abs(c_acctbal - refpoint) as B
FROM C, RefPoints_1) as R2
WHERE R1.A=R2.A and R1.B=R2.B GROUP BY R2.C

SGB-A_MR SGB-A + 'MAXIMUM_GROUP_DIAMETER 2r'. r =11000/(100*SF)
SGB-A_MS SGB-A + MAXIMUM_ELEMENT_SEPARATION 1

SGB-D <GB> DELIMITED BY <RefPoints_1b>
SGB-U_MR <GB> MAXIMUM_GROUP_DIAMETER d. d =11000/(50*SF)

SGB-U_MS
SGB-U_MR using 'MAXIMUM_ELEMENT_SEPARATION 1' instead of
'MAXIMUM_GROUP_DIAMETER d'

GB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …,
c_acctbal_n FROM C GROUP BY c_acctbal_1,…, c_acctbal_n

Queries used in Section 7.2.2. n=number of similarity grouping attributes (SGAs)

SGB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …,
c_acctbal_n FROM C GROUP BY c_acctbal_1 AROUND <RefPoints_1>
… c_acctbal_n AROUND <RefPoints_n>

SGB_MR SGB +'MAXIMUM_GROUP_DIAMETER 220' in each SGA
SGB_MS SGB +'MAXIMUM_ELEMENT_SEPARATION 1' in each SGA

<Query>+5 <Query> + 'c_acctbal_1b, …, c_segment_5' in the GROUP BY clause

Lazy1
SELECT L.l_discount as DcntLevel, O.o_clerkType, sum(L.l_discount)
FROM L, O WHERE L.l_orderkey=O.o_orderkey
GROUP BY O.o_clerkType, L.l_discount AROUND <RefDiscLevel>

Queries used in Section 7.2.3
Business question: Study the discount level (DL) given by each type of clerk

Eager1

SELECT R1.l_discount as DcntLevel, O.o_clerkType, sum(R1.CNT)
FROM O, (SELECT L.l_discount, L.l_orderkey, count(L.l_discount) as

CNT FROM L GROUP BY L.l_orderkey, L.l_discount AROUND
<RefDiscLevel>) AS R1

WHERE R1.l_orderkey=O.o_orderkey
GROUP BY R1.l_discount, O.o_clerkType

Lazy2
(Eager2)

Lazy1 (Eager1) + 'AND O.o_orderdate between '1994-06-17' and
'1995-06-17' ' in the WHERE clause

Business question: Study the DL given by each type of clerk in the past six months

GB1 Same as TPC-H Q3
Business question: Retrieve the unshipped orders with the highest value

SGB1

SELECT revenue as RevLevel, count(revenue), min(revenue),
max(revenue), avg (revenue)
FROM (SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as

revenue FROM C, O, L WHERE c_mktsegment = 'BUILDING'
and c_custkey = o_custkey and l_orderkey = o_orderkey and
o_orderdate < date '1995-03-15' and
l_shipdate > date '1995-03-15'
GROUP BY l_orderkey) as R1

GROUP BY revenue AROUND <RefRevLevels>

Business question: Clusters the unshipped orders around revenue levels of interest

GB2 Same as TPC-H Q9
Business question: Report profit of a line of parts during marketing campaigns

SGB2

SELECT nation, o_orderdate as MktCmpRefDate, sum(amount) as
sum_profit
FROM (SELECT n_name as nation, o_orderdate, l_extendedprice *

(1 - l_discount) - ps_supplycost * l_quantity as amount
FROM P, S, L, PS, O, N WHERE s_suppkey = l_suppkey and
ps_suppkey = l_suppkey and ps_partkey = l_partkey and
p_partkey = l_partkey and o_orderkey = l_orderkey and
s_nationkey = n_nationkey and p_name like '%green%') as profit

GROUP BY nation, o_orderdate AROUND <MktCmpRefDates>
MAXIMUM_GROUP_DIAMETER interval '14 day' ORDER BY nation

Business question: Report profit on a given line of parts (by supplier nation and year)

GB3 Same as TPC-H Q18
Business question: Retrieve clusters of customers with similar buying power

SGB3

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy), max(TotalBuy),
count(TotalBuy), avg(TotalBuy)
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy

FROM C, O, L WHERE c_custkey = o_custkey and o_orderkey =
l_orderkey and o_orderkey IN (SELECT l_orderkey FROM L

GROUP BY l_orderkey
HAVING sum(l_quantity) > 300)

GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER 200000
MAXIMUM_ELEMENT_SEPARATION 20000

Business question: Retrieve large volume customers

Fig. 11 Performance evaluation queries

close to the execution time of the regular aggregation query
GB for all the dataset sizes. Even in the worst case scenario
represented by GB(SGB)_X, i.e., SGB query produces the
same result as GB, the execution time of GB(SGB) is at most
only 25% bigger than the one of GB. The optimizer selected
the sort-based approach to execute GB. GB(SGB)_H and
GB(SGB)_S use the hash-based and sort-based similarity

913913

grouping approaches respectively. The SGB parameters and
the data used in this test have been selected such that all the
SGB queries generate approximately the same result. SGB-
A_H and SGB-A_S are queries that use group-by-around
without additional clauses. They are executed using the hash-
based and sort-based approaches respectively. The execution
time of SGB-A_H is about 12% bigger than that of GB while
the execution time of SGB-A_S is about 2% bigger than that
of GB. The execution time of SGB-A_S is about 9% smaller
than the one of SGB-A_H because the hash-based approach
makes use of an additional sort node. Given that the hash-
based approach supports queries with multiple similarity
grouping attributes (SGAs), the execution time of the other
SGB queries consider this approach. The execution time of
SGB-A_MD and SGB-A_MS, variants of SGB-A that use
parameters MAXIMUM_GROUP_DIAMETER and
MAXIMUM_ELEMENT_SEPARATION respectively, are
around 2% and 6% bigger than the one of the simple SGB-A
query. This is due to the extra calculations that need to be
performed to ensure that the produced groups comply with the
specified parameters, and the overhead of keeping track of the
status of hash table entries. As expected, the group-by-
delimited-by query SGB-D performs almost exactly as SGB-
A, and the queries with unsupervised similarity grouping, i.e.,
SGB-U_MD and SGB-U_MS, perform similarly to SGB-
A_MD and SGB-A_MS respectively. In all the cases the
difference is less than 2%. In the following experiments we
use group-by-around as a representative of the SGB queries.

Although in general it is not possible to produce the output
of SGB queries using only regular SQL operations, this is
feasible in the following special cases: (i) SGB-A without
conditions (assuming there are no points whose distance to the
closest two central points are the same) can be obtained using
a complex mix of aggregations and joins as presented in query
SGB(GB) of Figure 11; SGB-A with MAXIMUM_GROUP_
DIAMETER can be implemented using further selection
predicates; and (ii) SGB-D can be obtained using a complex
query similar to SGB(GB). Figure 13 compares the execution
time of SGB(GB) with that of SGB-A. The presented results
show that the execution time and scalability properties of the
SGB query is much better than those of the query that uses
only regular SQL operations. The execution time of SGB(GB)
grows from being 500% bigger than that of SGB-A for SF=1
to being 1300% bigger for SF=14.

2) Increasing the Number of SGAs: Figure 14 gives the
execution time of SGB queries when the number of SGAs
increases. As in the previous test, all the SGB queries generate
similar results. The query GB is included as a reference. The
optimizer selected sort-based grouping to execute this query.
Even though the implementation to support multiple SGAs
makes use of one aggregation node per similarity grouping
attribute, the execution times of all the SGB queries, i.e., SGB,
SGB_MD, and SGB_MS, scale well when the number of
SGAs increases. Furthermore, the way they scale is similar to
the one the regular aggregation query GB scales. Each query
QRY+5 represents the query QRY with five additional regular
grouping attributes. In all the cases, these extra attributes have

Fig. 12 Performance while increasing dataset size

Fig. 13 Performance of generating similarity groups with group-by vs.
similarity group-by

Fig. 14 Performance while increasing number of SGAs

Fig. 15 Performance of complex queries

a very small effect (1% to 5% of additional cost) on the
execution time of similarity aggregation queries because they
are handled using the same hash tables used in the similarity-
based aggregation nodes.

3) Complex Queries: Figure 15 gives the execution time of
several real world similarity aggregation queries and presents
scenarios in which the Eager and Lazy query transformation
techniques presented in Section IV are used. Figure 11 gives
the details of the queries used in this section and the business
question they help to answer. The similarity-based queries
used in this experiment are a small representative set of the

0

50

100

150

200

2 6 10 14

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

GB
GB(SGB)_H
GB(SGB)_S
SGB-A_H
SGB-A_S
SGB-A_MD
SGB-A_MS
SGB-D
SGB-U_MD
SGB-U_MS

0

500

1000

1500

2000

2500

3000

0 5 10 15

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

SGB-A_H
SGB-A_S
SGB(GB)

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15

Ex
ec

ut
io

n
TI

m
e(

s)

Similarity Grouping Attributes

GB SGB
SGB_MD SGB_MS
SGB+5 SGB_MD+5

0
50

100
150
200
250
300

La
zy
1

Ea
ge
r1

La
zy
2

Ea
ge
r2

G
B1

SG
B1

G
B2

SG
B2

G
B3

SG
B3

Ex
ec

ut
io

n
Ti

m
e

(s
)

914914

queries that can be built using the introduced similarity
operators to answer real world business questions. Lazy1 and
Eager1 are equivalent queries that obtain information about
discount levels given by the different clerk types. The
discount values are grouped around a set of discount levels of
interest. Lazy1 performs first the join and after that the
similarity grouping while Eager1 preaggregates all the
discount values in table Lineitem that correspond to the same
order, joins the result with table Orders, and finally aggregates
all the orders that belong to the same clerk type. The
execution time of Eager1 is 13% smaller than that of Lazy1.
The reason is that the similarity-based preaggregation step
reduces significantly the number of tuples to be processed by
the join operator. Lazy2 and Eager2 are also equivalent
queries, and are similar to Lazy1 and Eager1, respectively, but
only consider the orders made in the past six months. In this
case, the execution time of Lazy2 is 40% smaller than that of
Eager2. In this case the join is significantly more selective and
reduces in Lazy2 the number of tuples to be processed by the
similarity aggregation operator. SGB1, SGB2, and SGB3 are
three variants of the TPC-H queries Q3 (GB1), Q9 (GB2), and
Q18 (GB3) respectively. They all provide richer information
and are potentially more useful for the decision maker than
their regular aggregation counterparts. For instance, GB2
reports the profits on a given line of parts while SGB2 reports
how those profits change during marketing campaigns; GB3
retrieves large volume customers while SGB3 clusters those
costumers in groups of similar buying power. In all cases, the
similarity aggregation queries have a comparable execution
time to the ones of their regular aggregation counterparts.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents a similarity-based grouping operator,

named similarity group-by (SGB), to support the grouping of
objects with approximate values. The main goal of SGB is to
generate more meaningful and useful groupings than the
regular group-by operator while having execution times
comparable to those of its non-similarity counterpart. This
paper presents a generic definition of SGB and three grouping
strategies as instances of this definition. It studies how
techniques to optimize standard group-by operations can be
extended to the case of similarity group-by and presents the
implementation guidelines to implement SGB in the query
engine of standard DBMSs. The performance evaluation of
the implementation in PostgreSQL shows that the proposed
strategies of SGB have a very low cost and scales well when
the dataset size or the number of grouping attributes increases.
Some paths for future work include: the study of similarity
grouping techniques for high-dimensional data, the study of
the relationship and integration of similarity grouping
techniques with grouping techniques in probabilistic databases,
and the study of similarity-based aggregation as a tool for
phenomena detection in the context of sensor networks.

REFERENCES
[1] N. Koudas and K. C. Sevcik, “High Dimensional Similarity Joins:

Algorithms and Performance Evaluation,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 1, pp. 3-18, 2000.

[2] G. Hjaltason and H. Samet, “Incremental distance join algorithms for
spatial databases,” SIGMOD Record, vol. 27, no. 2, pp. 237-248, 1998.

[3] C. Böhm and F. Krebs, “The k-Nearest Neighbour Join: Turbo
charging the KDD process,” Knowledge and Information Systems, vol.
6, no. 6, pp. 728-749, 2004.

[4] C. Böhm, B. Braunmüller, M. Breunig, and H. Kriegel, “High
performance clustering based on the similarity join,” in Proc. 9th
CIKM, 2000, pp. 298-305.

[5] C. Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based KNN join
processing for high-dimensional data,” Information and Software
Technology, vol. 49, no. 4, pp. 332-344, 2007.

[6] C. Xia, H. Lu, B. Chin, and O. Hu, “GORDER: An Efficient method
for KNN join processing,” in Proc. 30th VLDB, 2004, pp. 756-767.

[7] C. Böhm and H. Kriegel, “A cost model and index architecture for the
similarity join,” in Proc. 17th ICDE, 2001, pp. 411-420.

[8] C. Böhm, F. Krebs, and H. Kriegel, “Optimal Dimension Order: A
generic technique for the similarity join,” in Proc. 4th DaWaK, 2002,
pp. 135-149.

[9] H. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic
similarity join on uncertain data,” in Proc. 11th DASFAA, 2006, pp.
295-309.

[10] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[11] P. Berkhin, “Survey of clustering data mining techniques,” Accrue
Software, 2002.

[12] B. Stein, S. zu Eissen, and F. Wibrock, “On cluster validity and the
information need of users,” in Proc. 3rd AIA, 2003, pp. 216-221.

[13] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “Clustering validity
checking methods: part II,” SIGMOD Record, vol. 31, no. 3, pp. 19-27,
2002.

[14] M. Li, G. Holmes, B. Pfahringer, “Clustering large datasets using
Cobweb and K-Means in tandem,” in Proc. 17th Australian Joint
Conference on Artificial Intelligence, 2004, pp. 368-379 .

[15] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering
algorithms revisited,” SIGKDD Explorations Newsletter, vol. 2, no. 1,
pp. 51–57, 2000.

[16] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering
algorithm for large databases,” SIGMOD Record, vol. 27, no. 2, pp. 73-
84, 1998.

[17] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” SIGMOD Record, vol. 25,
no. 2, pp. 103-114, 1996.

[18] C. Zhang and Y. Huang, “Cluster By: A new SQL extension for spatial
data aggregation,” in Proc. 15th GIS, 2007, pp. 1-4.

[19] W. Yan and P. Larson, “Eager Aggregation and Lazy Aggregation,” in
Proc. 21th VLDB, 1995, pp. 345-357.

[20] P. Larson. “Data reduction by partial preaggregation,” in Proc. 18th
ICDE, 2002, pp. 706-715.

[21] C. Galindo-Legaria and M. Joshi, “Orthogonal optimization of
subqueries and aggregation,” SIGMOD Record, vol. 30, no. 2, pp. 571-
581, 2001.

[22] J. Goldstein and P. Larson, “Optimizing queries using materialized
views: a practical, scalable solution,” SIGMOD Record, vol. 30, no. 2,
pp. 331-342, 2001.

[23] S. Cohen, W. Nutt, and Y. Sagiv, “Rewriting Queries with Arbitrary
Aggregation Functions Using Views,” ACM Transactions on Database
Systems, vol. 31, no. 2, pp. 672-715, 2006.

[24] S. Cohen, “User-defined aggregate functions: bridging theory and
practice,” in Proc. SIGMOD, 2006, pp. 49-60.

[25] E. Schallehn, K. Sattler, and G. Saake, “Extensible Grouping and
Aggregation for Data Reconciliation,” in Proc. 4th EFIS, 2001, pp. 19-
32.

[26] E. Schallehn and K. Sattler, “Using similarity-based operations for
resolving data-level conflicts,” in Proc. 20th BNCOD, 2003, pp. 172-
189.

[27] E. Schallehn, K. Sattler, and G. Saake, “Efficient similarity-based
operations for data integration,” Data & Knowledge Engineering, vol.
48, no. 3, pp. 361-387, 2004.

[28] C. Li, M. Wang, L. Lim, H. Wang, and K. C. Chang, “Supporting
ranking and clustering as generalized order-by and group-by,” in Proc.
SIGMOD, 2007, pp. 127-138.

[29] TPC-H Version 2.6.1. [Online]. Available: http://www.tpc.org/tpch

915915

