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Abstract— Group-by is a core database operation that is used 
extensively in OLTP, OLAP, and decision support systems. In 
many application scenarios, it is required to group similar but 
not necessarily equal values. In this paper we propose a new SQL 
construct that supports similarity-based Group-by (SGB). SGB is 
not a new clustering algorithm, but rather is a practical and fast 
similarity grouping query operator that is compatible with other 
SQL operators and can be combined with them to answer 
similarity-based queries efficiently. In contrast to expensive 
clustering algorithms, the proposed similarity group-by operator 
maintains low execution times while still generating meaningful 
groupings that address many application needs. The paper 
presents a general definition of the similarity group-by operation 
and gives three instances of this definition. The paper also 
discusses how optimization techniques for the regular group-by 
can be extended to the case of SGB. The proposed operators are 
implemented inside PostgreSQL. The performance study shows 
that the proposed similarity-based group-by operators have good 
scalability properties with at most only 25% increase in 
execution time over the regular group-by. 

I. INTRODUCTION 
One of the most important paradigm shifts in data 

management is the move from systems that focus on exact 
semantics of data and Boolean semantics of queries to systems 
that focus on imprecise and approximate semantics of data 
and queries. Among the areas driving this paradigm shift are 
probabilistic databases, the integration of information retrieval 
and database systems, and similarity query processing. 
Previous work on similarity query processing has focused on 
solving the problem of joining two sets of data using 
similarity join predicates that match tuples with similar or 
approximate values. The goal of this paper is to extend 
similarity-based processing to another core database operation, 
the group-by, to group objects with similar or approximate 
values. Grouping capabilities have been extensively studied 
and implemented in data management systems. In DBMSs, 
the most common support for grouping is implemented 
through the standard group-by operator. This operator has 
relatively good execution time and scalability properties. 
However, while the semantics of group-by is simple, it is also 
limited because it is based only on equality, i.e., all the tuples 
in a group have exactly the same values of the grouping 
attributes. Grouping has also been studied in data warehouses, 
where several facilities have been implemented to enrich the 
output of the regular group-by operator with multiple levels of 
subtotals.  Additionally,  analysis techniques, e.g.,  OLAP  and 
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Fig. 1 Comparison of similarity group-by implementation approaches 

data mining, provide advanced features for grouping. OLAP 
provides several tools to summarize data organized under the 
dimensional model but the formation of groups is still based 
on the equality semantics. Data mining clustering tools 
employ complex and sophisticated algorithms to discover 
groups naturally formed in the data. Unfortunately, the use of 
these analysis techniques requires the definition of elaborate 
data mining models; is not integrated into the regular query 
processing engine, and is not standard among the different 
commercial database systems. 

Emerging applications, e.g., biological databases and data 
streaming, require the identification of sets of approximate 
values. Moreover, many business application scenarios, 
especially those handling large datasets, can benefit 
tremendously from SQL constructs that identify groups of 
similar values to process them further. Current database 
systems do not provide fast mechanisms that are integrated 
into the query engine to generate and process groups of 
similar objects using complex TPC-H-like queries [29]. Figure 
1 presents a comparison of several approaches to support 
similarity-based grouping. The implementation of similarity-
based grouping at the DB engine level has the following key 
advantages: (1) the execution time of the Similarity Group-by 
operator (SGB) is comparable to that of the regular group-by 
and is superior to the performance of the other user-level 
definitions; (2) SGB can be interleaved with other regular 
operators and its results pipelined for further processing; and 
(3) important optimization techniques, e.g., pre-aggregation 
and the use of materialized views can be extended to the new 
operator. The contributions of this paper are as follows:  

• We introduce the similarity group-by (SGB) operator 
which extends standard group-by to allow the formation 
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of groups based on similarity rather than equality of the 
data.  

• We present a generic definition of the SGB operator and 
three instances to support: (1) the formation of groups 
based on fundamental group properties, e.g., group 
compactness and group size, (2) the formation of groups 
around points of interest, and (3) the formation of 
groups delimited by a set of limiting points. The 
proposed instances support similarity grouping of one 
or more independent one-dimensional attributes. 

• We extend the standard optimization techniques for 
regular aggregations to the case of SGB. In particular, 
we introduce the main theorem of Eager and Lazy 
similarity aggregations, an extension of the 
corresponding regular aggregation based theorem; and 
the requirements that a materialized view must satisfy 
to be used to answer a similarity aggregation query.  

• We implement the proposed SGB operators in 
PostgreSQL and study their performance and scalability 
properties. We use SGB in modified TPC-H queries to 
answer interesting business questions and show that the 
execution time of all implemented SGB's instances is at 
most only 25% larger than that of the regular group-by. 

The rest of this paper proceeds as follows. Section II 
discusses the related work. Section III presents the general 
definition of SGB and three instances of this definition. 
Section IV studies optimization techniques applicable to the 
new operators. Section V presents implementation guidelines 
based on a prototype realization of the operators within 
PostgreSQL. Section VI reports on the performance 
evaluation of the similarity group-by operators and Section 
VII presents the conclusions and directions for future research. 

II. RELATED WORK 
The work on similarity-based query processing has focused 

on similarity joins. Similarity joins use special types of join 
predicates to match tuples that have approximate values. 
Different types of similarity join have been proposed, e.g., 
range distance join (retrieves all pairs whose distances are 
smaller than a pre-defined threshold) [1], [7], [8], k-distance 
join (retrieves the k most-similar pairs) [2], and knn-join 
(retrieves, for each tuple in one table, the k nearest-neighbours 
in the other table) [3], [5], [6]. Some similarity join techniques 
have been employed as building blocks to implement common 
clustering algorithms [4]. Kriegel et al. extend the work on 
similarity join to uncertain data [9].  

The clustering problem has been studied extensively, e.g., 
in pattern recognition, machine learning, physiology, biology, 
statistics, and data mining. In some of these application 
scenarios, finding the groups with certain similarity properties 
is the goal of data analysis while in others finding the groups 
is just the first step for other operations, e.g., for data 
compression or discovery of hidden patterns or relationships 
among the data items. Jain et al. present an overview of 
clustering from a statistical perspective [10]. Berkhin surveys 
clustering techniques used in data mining [11]. These 
techniques consider the special data mining computational 

requirements due to very large datasets and many attributes of 
different types. Given that the result of the clustering process 
depends on the specific clustering algorithm and its parameter 
settings, it is important to assess the quality of the results. This 
evaluation process is termed cluster validity [12], [13]. Of 
special interest is the work on clustering of very large datasets. 
Single scan versions of the well-known clustering algorithms 
K-means and Cobweb for large datasets is proposed in [14] 
and [15]. CURE [16] and BIRCH [17] are two alternative 
clustering algorithms based on sampling and summaries, 
respectively. They use only one pass over the data and hence 
reduce notably the execution time of clustering. However, 
their execution times are still significantly slower than the one 
of the standard group-by. The main differences of the 
proposed similarity group-by from these algorithms are: (1) 
the execution times of the proposed similarity grouping 
operators are very close to that of the regular group-by; (2) 
similarity group-by operators are fully integrated with the 
query engine allowing the direct use of their results in 
complex query pipelines for further analysis; and (3) the 
computation of aggregation functions is integrated in the 
grouping process and considers all the tuples in each group, 
not a summary or a subset based on sampling. The last feature 
allows for fast generation of cluster representatives with the 
exact values of the aggregation functions that can be used 
immediately by other operators in the query pipeline. 
Algorithms similar to CURE or BIRCH would require extra 
steps to evaluate aggregation functions or to make available 
their results to SQL queries. Several clustering algorithms 
have been implemented in data mining systems. In general, 
the use of clustering is via a complex data mining model and 
the implementation is not integrated with the standard query 
processing engine. The work in [18] proposes some SQL 
constructs to make clustering facilities available from SQL in 
the context of spatial data. Basically, these constructs act as 
wrappers of conventional clustering algorithms but no further 
integration with database systems is studied. Li et al. extend 
the group-by operator to approximately cluster all the tuples in 
a pre-defined number of clusters [28]. Their framework makes 
use of conventional clustering algorithms, e.g., K-means; and 
employs summaries and bitmap indexes to integrate clustering 
and ranking into database systems. Our study differs from [28] 
in that (1) we focus on similarity grouping operators 
independent of the support and tight coupling to ranking; (2) 
we introduce a framework that does not depend on possibly 
costly conventional clustering algorithms, but rather allows 
the specification of the desired grouping using descriptive 
properties such as group size and compactness; and (3) we 
consider optimization techniques of the proposed similarity 
group-by operators. In the context of data reconciliation, 
Schallehn et al. propose SQL extensions to allow the use of 
user-defined similarity functions for grouping purposes [25] 
and similarity grouping predicates [26], [27]. They focus on 
string similarity and similarity predicates to reconcile records. 
Although they can be used for this purpose, the proposed 
similarity group-by operators in this paper are more general 
and are designed to be part of a DBMS’s query engine. 
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The optimization techniques of similarity grouping 
presented in this paper builds on previous work on 
optimization of regular aggregation queries. Larson et al. 
study pull-up and push-down techniques that enable the query 
optimizer to move aggregation operators up and down the 
query tree [19], [20]. These techniques allow complete [19] or 
partial [20] pre-aggregation that can reduce the input size of a 
join and consequently decrease significantly the execution 
time of an aggregation query. Galindo-Legaria proposes a 
general framework for optimization of queries with subqueries 
and aggregations [21]. Another technique that can provide 
substantial improvements in query processing is the use of 
materialized views to answer aggregation queries. This 
technique is presented in [22] for the case of sum and count 
aggregation functions, and is extended in [23] and [24] to 
arbitrary aggregation functions. 

III. SIMILARITY GROUP-BY: DEFINITION 
This section presents the general definition of the similarity 

group-by operator along with three instances that enable: (1) 
grouping tuples based on desired group properties, e.g., size 
and compactness, (2) grouping around points of interest, and 
(3) segmenting the tuples based on given limiting values. 

A. Generic Definition 
We define the similarity group-by operator as follows:  

!"#$%#&'('")$%)&$*&$+#',#&'('$+-',-&   
where R is a relation name, Gi is an attribute of R that is used 
to generate the  groups, i.e.,  a similarity grouping attribute,  Si 
is a  segmentation of the domain of Gi in non-overlapping 
segments, Fi is an aggregation function, and Ai is an attribute 
of R. 

The formation of groups has two steps: 
1. For each tuple t, each value vi of t.Gi is replaced by the 

identifier of the segment (member of Si) that contains vi. 
If no segment contains vi, t is dismissed. 

2. The resulting tuples are merged to form the similarity 
groups. Two tuples are in the same group if their new 
G1,…,Gn values are the same.  

The aggregation functions Fi are applied over each group 
similar to a standard aggregation operation. Figure 2 
illustrates an example segmentation S1 that groups a two-
dimensional data set into three segments S1,1, S1,2, and S1,3 
based on some notion of similarity. Let the dots in the figure 
represent the tuples of a relation R(G1, A1), where the value of 
G1 is the position of the dot and the value of A1 is the value 
next to the dot. The result of: 

!,./$%#&$*&$+#',#&  
is: {(S1,1, 80), ( S1,2, 25), (S1,3, 50)}. 

B. Instantiating the General Definition 
The general definition of similarity group-by (SGB) allows 
the use of any kind of segmentation on the grouping attributes. 
The segmentation could be the result of any clustering 
algorithm. For example, the previously proposed clustering 
approaches  for  large  datasets  [14],  [15],  [16],  [17]  can  be  
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Fig. 2 Example usage of the generic SGB 

modeled as instances of this generic definition. The generic 
definition is useful for reasoning with the new SGB operation 
and for deriving equivalences that allow the optimization of 
queries (as in Section IV). Naturally, this generic form of SGB 
is not to be implemented directly. Below, we present three 
implementable instances of the generic SGB. The main factors 
considered in the selection of the proposed instances are: (1) 
the ability to generate meaningful and useful groups, e.g., 
around a set of points of interest or groups that satisfy key 
properties such as group size and group compactness; (2) the 
viability of a fast implementation, e.g., using a single-pass 
plane-sweep approach; and (3) the usefulness of the instances 
in practical scenarios; the specific scenarios considered in this 
paper are: business decision support systems (Section VI-B.3) 
and sensor networks (Section III-B). The proposed instances 
represent middle ground between the regular group-by and 
standard clustering algorithms. The proposed similarity group-
by instances are intended to be much faster than regular 
clustering algorithms and generate groupings that capture 
similarities on the data not captured by regular group-by. On 
the other hand, the quality of the generated groupings is not 
expected to be always as high as the ones generated by more 
complex and costly clustering algorithms. The presentation in 
this section focuses on the case of one or multiple independent 
grouping attributes (multiple independent dimensions). 

1)  Unsupervised Similarity Group-by (SGB-U): This 
operator groups a set of tuples in an unsupervised fashion, i.e., 
with no extra data provided to guide the process. The SGB-U 
operator uses the following two clauses to control the group 
size and the group compactness: 

• MAXIMUM_ELEMENT_SEPARATION s: If the 
distance between two neighbor elements (consecutive 
elements, for the one-dimensional case) is greater than 
s, then these elements belong to different groups. 

• MAXIMUM_GROUP_DIAMETER d: For each 
formed group, the distance between the extreme 
elements of a group should be less than or equal to d. 

The SQL syntax of the SGB-U operator is: 
SELECT select_expr, ... 
FROM table_references WHERE where_condition 
GROUP BY col_name  

[MAXIMUM_ELEMENT_SEPARATION s]  
[MAXIMUM_GROUP_DIAMETER d], ... 

In the case of one-dimensional attributes, the similarity 
group-by operator forms the groups in the following way: 

1. If neither of the clauses MAXIMUM_ELEMENT_ 
SEPARATION, or MAXIMUM_GROUP_DIAMETER 
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is specified, we assume d=0 and s=0. This case is 
equivalent to the standard group-by. 

2. If only one clause is specified, we assume that the value 
of the other is !. 

3. If MAXIMUM_ELEMENT_SEPARATION is 
specified, the elements are grouped first using this 
criterion. If only MAXIMUM_GROUP_DIAMETER is 
specified, all the elements form the unique resulting 
group of this step.   

4. If MAXIMUM_GROUP_DIAMETER is specified, the 
groups formed in the previous step are further divided 
until the group diameter. The criterion to divide a group 
can be: (i) split a group “breaking” the longest link in 
the group, or (ii) process the elements in ascending 
order and end current group as soon as the distance 
from the start of the group to the current element E is 
greater than d. We use this approach in our examples. 

One way to extend the semantics of group diameter and 
element separation to higher dimensions is as follows. 
Assume that we build the minimum spanning tree that 
connects all the elements. Group diameter is the distance 
between the two most separated elements of a group. Element 
separation is defined for each pair of elements connected by a 
link of the tree, and its value is equal to the length of this link. 
Initially, all the elements connected by the tree form a group. 
If MAXIMUM_ELEMENT_SEPARATION is specified, all 
the links whose length is greater than s are “broken”. If 
MAXIMUM_GROUP_DIAMETER is specified, we further 
divide the resulting connected groups until the group diameter 
of each group is less than or equal to d. To split a group, we 
“break” the longest link of its spanning tree. The following 
example groups a set of sensor readings such that in each 
formed group, the distance between two consecutive values is 
at most 2 degrees. Similar to the regular group-by, each tuple 
that belongs to the result of the query represents one group.  

SELECT Min(Temperature), Max(Temperature),  
                Count(Temperature), Avg(Temperature) 
FROM SensorsReadings WHERE Temperature > 0 
GROUP BY Temperature 
 MAXIMUM_ELEMENT_SEPARATION 2 

Figure 3.a gives one possible output of the previous 
example. The different temperature readings are represented 
as marks on a line. Figures 3.b and 3.c give the output when 
using the other two possible combinations of the clauses of 
this operator. In practice, different combinations can be more 
suitable for different grouping purposes. As evident from 
Figure 3, the use of group size and element separation to guide 
the process of similarity grouping captures important aspects 
of the natural formation of groups. These key properties are 
actually the building elements of more sophisticated clustering 
algorithms (e.g., as in [10]).  

2)  Supervised Similarity Group Around (SGB-A): The  
SGB-A similarity grouping operator groups tuples based on a 
set of guiding points, named central points, such that groups 
are formed around the central points and each tuple is 
assigned to the group of  its closest central point.  Additionally,  
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 7

d d d

Group 6

d d d d d d

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
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b) GROUP BY Temperature MAXIMUM_GROUP_DIAMETER 6

c) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2
MAXIMUM_GROUP_DIAMETER 6

a) GROUP BY Temperature MAXIMUM_ELEMENT_SEPARATION 2

 
Fig. 3 Examples of unsupervised similarity grouping limiting the groups 
based on group size and compactness 
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Fig. 4 Examples of supervised similarity grouping around two points under 
various conditions on size and compactness 

the SQL syntax of SGB-A provides two clauses that are 
similar to the ones for the SGB-U operator (Section III-B.1) to 
restrict the size and compactness of a group. The SQL syntax 
of the operator is: 

SELECT select_expr, ... 
FROM table_references WHERE where_condition 
GROUP BY col_name AROUND central-points 
 [MAXIMUM_GROUP_DIAMETER 2r]  
  [MAXIMUM_ELEMENT_SEPARATION s], ... 

The central points can be specified directly using a list of 
points or, more generally, by another select statement. The 
latter option is very useful when the location of the central 
points depends on dynamic data. In the case of one-
dimensional attributes, SGB-A forms the groups as follows: 

1. Each tuple is assigned the group with closest central 
point. 
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2. If neither clause (MAXIMUM_ELEMENT_ 
SEPARATION, MAXIMUM_GROUP_DIAMETER) 
is specified, the groups formed in the previous step are 
the output of this operator. 

3. If only one clause is specified, we assume that the value 
of the other is !. 

4. If MAXIMUM_ELEMENT_SEPARATION is 
specified, the extent of each group is restricted such that 
each pair of consecutive elements of a group is 
separated at most by s. For this step we can consider the 
central point of each group to be one additional data 
point. The elements that are not connected to the central 
point under this compactness restriction are discarded. 

5. If MAXIMUM_GROUP_DIAMETER is specified, the 
groups formed in the previous steps are further 
narrowed by removing all the elements whose distance 
from their central point is greater than r. 

For multidimensional attributes, the semantics of group 
diameter and element separation can be extended as follows: 

1. If MAXIMUM_GROUP_DIAMETER is specified, the 
groups are formed around the central points such that 
the distance from each point of a group to its central 
point is less than r. 

2. If MAXIMUM_ELEMENT_SEPARATION is 
specified, the groups are further reduced such that it is 
possible to build a path from each element to its central 
point in which the length of every link is at most s. 

Unlike operator SGB-U of Section III-B.1, operator SGB-A 
generates at most as many groups as central points are 
provided and all the elements that do not belong to any group 
are not considered in the output. Alternatively, all the 
discarded tuples could form a special group, i.e., group of 
outliers. Continuing with the scenario of applying similarity 
grouping to data retrieved from sensors, the following 
example groups the temperature readings around two 
temperature values of interest (30 and 50 degrees). 
Furthermore, the groups are restricted to include only readings 
whose distance from their central point is at most 10. 

SELECT Min(Temperature),  Avg(Temperature)  
FROM SensorsReadings WHERE Temperature > 0 
GROUP BY Temperature AROUND {30,50} 
 MAXIMUM-GROUP-DIAMETER 20 

Figure 4.c gives one possible output of the previous 
example. The given central points are represented as small 
circles. Figures 4.a, 4.b, and 4.d give the output when using 
the other three possible combinations of the clauses of SGB-A. 
From the figures, we observe that SGB-A can identify the 
naturally formed groups around certain points of interest.  

In the operators defined so far, clauses to describe desired 
properties of the groups are combined implicitly using the 
AND operator. Although not shown in the paper, we can 
combine the conditions using other logic operators.  

3)  Supervised SGB using Delimiters (SGB-D): The SGB-D 
similarity grouping operator forms groups based on a set of 
delimiting points that can be provided directly or specified 
using a select statement. 

a) Segmentation of values that cannot be obtained using 
central points

Group 1 Group 2 Group 3 Group 4 Group 5

b) GROUP BY Temperature 
DELIMITED BY (SELECT Value FROM Thresholds)  

Fig. 5 Example of supervised similarity grouping based on a dynamic set of 
delimiting points 

sPressure
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Fig. 6 Similarity grouping with two attributes 

In the case of one-dimensional attributes, this operator is 
especially useful when the partition of the line representing all 
the possible values of an attribute cannot be obtained using a 
set of central points. Figure 5.a gives an example of this 
scenario. SGB-D should be used when the natural way to form 
the required groups is to partition the range of all possible 
values in predefined or dynamic segments. SGB-D’s syntax is:  

SELECT select_expr, … 
FROM table_references WHERE where_condition 
GROUP BY col_name DELIMITED BY limit-points 

The following example groups the temperate readings in 
groups delimited by the result of a select statement on Table 
Thresholds.    

SELECT Count(Temperature), Avg(Temperature) 
FROM SensorsReadings WHERE Temperature > 0 
GROUP BY Temperature  
DELIMITED BY (SELECT Value FROM Thresholds) 

Figure 5.b gives the output of the previous example. The 
result of the internal select is represented by vertical dotted 
line segments. 

Extending the semantics of SGB-D to multidimensional 
attributes can be achieved replacing limit-points by a set of 
geometrical objects, e.g., lines or planes, that partition the 
multidimensional space containing the elements to be grouped.  

An important property of all the presented operators is that 
multiple executions of the operators on the same data set and 
same reference points, i.e., central and delimiting points, will 
generate the same results. 

 The generic definition of SGB specifies how similarity 
groups should be formed when several similarity grouping 
attributes (SGAs) are used. In general, we assume that the 
segmentation of each SGA is generated using a different 
similarity grouping instance. The main definition assumes that 
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the SGAs are independent, i.e., the segmentation associated 
with each SGA A depends only on the values of A in the data 
tuples, and the reference points and conditions used with this 
SGA. According to this generic definition, the result of SGB 
when multiple SGAs are used is obtained intersecting the 
segmentations of all the (independent) SGAs. Therefore, the 
order in which the grouping attributes are specified in a 
similarity grouping query does not affect its final result. 
Clustering and segmentation based on correlated attributes is 
beyond the scope of this paper. From an implementation point 
of view, all the similarity grouping strategies associated with 
the different operators presented so far can be integrated into 
one single similarity group-by operator. This integration 
facilitates the use of several similarity grouping strategies in 
the same SQL statement. The following example applies 
similarity group around (SGB-A) on attribute Pressure and 
similarity group-by with delimiters (SGB-D) on attribute 
Temperature. The sets of elements delimited by dashed lines 
in Figure 6 represent the output of this query. 

SELECT Avg(Temperature), Avg(Pressure)  
FROM SensorsReadings GROUP BY  
Pressure AROUND {30,50} 
  MAXIMUM_ELEMENT_SEPARATION 3,  
Temperature 
  DELIMITED BY (SELECT Value FROM Thresholds) 

IV. OPTIMIZING SIMILARITY GROUP-BY 
Several approaches have been proposed to improve the 

performance of regular aggregation queries. This section 
presents a study of how these approaches can be extended to 
the case of similarity grouping. An important approach to 
optimize queries with regular aggregations is the use of pull-
up and push-down techniques to move the group-by operator 
up and down the query tree. The main Eager and Lazy 
aggregations theorem presented in [19] is a fundamental 
theorem that enables several pull-up and push-down 
techniques. Its application allows the pre-aggregation of data, 
i.e., aggregation before join, and thus potentially reduces the 
number of tuples to be processed by the join operator. Eager 
and lazy similarity aggregations are query transformation 
classes that extend their regular aggregation counterparts. 
Figure 7 illustrates the transformations of the main theorem 
for eager and lazy similarity aggregation. The single 
similarity-based aggregation operator of the Lazy approach is 
split into two parts in the Eager approach. The first part pre-
evaluates some aggregation functions and calculates the count 
before the join. The second part uses that intermediate 
information to calculate the final results after the join. Similar 
to the case of non-similarity-based aggregations, it is 
important to consider both the Eager and Lazy versions of a 
similarity aggregation query because neither approach is the 
best in all scenarios. Joins with high selectivity tend to benefit 
the Lazy approach while aggregations that reduce 
significantly the number of flowing tuples in the pipeline tend 
to benefit the Eager approach. Section VI-B.3 presents real 
world scenarios in which each of the approaches performs 
better. 

SGB

Join

T1 T2
(G1,J1,S1) (G2,J2,S2)

SUM(S1), SUM(S2)

SGB
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T2
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b) Eager Similarity Aggregationa) Lazy Similarity Aggregation
 

Fig. 7 The Main Theorem 

The algebraic notation used in this section is similar to that 
in [19]. g[GA; Seg]R represents similarity grouping of relation 
R on grouping attributes GA using segmentations Seg. The 
domain of the nth element of GA is partitioned by the nth 
element of Seg. This operation can be represented by a query 
that replaces in R each value of a grouping attribute by the 
representative value of the segment that contains it, and sorts 
the result by GA. Each segmentation is assumed to cover the 
whole domain of its associated attribute. The extension of the 
main theorem to the case in which this is not true is 
straightforward. F[AA]R represents the aggregation operation 
of a previously grouped table R. F and AA are sets of 
aggregation functions and columns, respectively. ×, ", #D, #A, 
and UA represent Cartesian product, selection, projection with 
and without duplicate elimination, and set union without 
duplicate elimination operations, respectively. 

The presentation of the main theorem uses the following 
notation. Rd is a table that always contains aggregation 
attributes. Ru is a table that may or may not contain such 
attributes. Let GAd and GAu be the grouping columns of Rd 
and Ru, respectively, AA be all the aggregation columns, AAd 
and AAu be the subsets of AA that belong to Rd and  Ru, 
respectively, Cd and Cu be the conjunctive predicates on 
columns of Rd and Ru, respectively, C0 be the conjunctive 
predicates involving columns in both Ru and Rd, !(C0) be the 
columns involved in C0, GAd

+ = GAd U !(C0) - Rd be the 
columns that participate in the join and grouping, F be the set 
of all aggregation functions, Fd and Fu be the members of F 
applied on AAd and AAu, respectively, FAA be the resulting 
columns of the application of F on AA in the first grouping 
operation of the eager strategy, Seg be the set of segmentation 
of the attributes in GA, Segd and Segu be the subsets of Seg for 
the attributes in GAd and GAu, respectively, NGAd be a set of 
columns in Rd, CNT be the column with the result of Count(*) 
in the first aggregation operation of the eager approach, FAAd 
be the set of columns, other than CNT, produced in the first 
aggregation operation of the eager approach, and  Fua be the 
duplicated aggregation function of Fu, e.g., if Fu=(SUM,MAX), 
then Fua=(SUM, MAX, count) = (SUM*count, MAX). Let A ~ 
B denote that A and B belong to the same similarity group, and 
A !~ B denote the opposite. 
Theorem 1 Eager/Lazy Similarity Aggregation Main 
Theorem: The following two expressions 
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  E1: F[AAd, AAu]"A[GAd, GAu, AAd, AAu] 
       g [GAd, GAu; Seg]#[Cd ^ C0 ^ Cu] (Rd × Ru) 
  E2: "D[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 
       "A[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu; Segu]#[C0 ^ Cu] 
       (((Fd1[AAd], COUNT)"A[NGAd, GAd

+, AAd] 
       g [NGAd; Segd]#[Cd]Rd) × Ru) 

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2) 
Fu contains only class C or D aggregation functions [19], (3) 
NGAd $ GAd

+ holds in #[Cd]Rd, and (4) !(C0) % GAd = Ø. 
Expression E1 represents the Eager approach while 

expression E2 represents the Lazy approach. 
Proof sketch: 

Consider a group Gd generated by g [NGAd, Segd]#[Cd]rd 
for some instance rd of Rd. Due to conditions (3) and (4), all 
the rows of Gd have the same values of GAd and the joining 
attributes. Every tuple of Gd joins with the same set of tuples 
SAu(Gd). Let Su(Gd) be the subset of SAu(Gd) that has a unique 
value of GAu. Consider two groups of g [NGAd, Segd]#[Cd]rd: 
Rd1 and Rd2. There are two cases to be considered. 

Case 1: Gd1[GAd] ~ Gd2[GAd] and Su(Gd1)[GAu] ~ 
Su(Gd2)[GAu]. In E2, the results of the join operations 
represented by the following two expressions are merged into 
the same similarity group by the second similarity group-by. 

i. ((Fd1[AAd], COUNT)"[NGAd, GAd
+, AAd]Gd1) × Su(Gd1)  

ii. ((Fd1[AAd], COUNT)"[NGAd, GAd
+, AAd]Gd2) × Su(Gd2) 

In E1, each row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2) 
respectively and all the resulting rows are also merged by the 
second similarity group-by. Due to (1), the aggregation values 
in the resulting row of the following expressions in E1 and E2 
respectively are the same. 

iii. Fd[AAd]"A[GAd,GAu,AAd]  
 ((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))    

iv. Fd2[FAAd]"A[GAd,GAu,FAAd] 
 (((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd1) × Su(Gd1)) 
UA ((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd2) × Su(Gd2)) 
Due to (2), the aggregation values in the resulting row of 

the following expressions in E1 and E2, respectively, are the 
same. 

v. Fu[AAu]"A[GAd,GAu,AAu] 
((Gd1 × Su(Gd1)) UA (Gd2 × Su(Gd2)))    

vi. Fua[AAu,CNT]"A[GAd,GAu, AAu, CNT] 
(((COUNT "A[NGAd, GAd

+]Gd1) × Su(Gd1)) 
UA ((COUNT "A[NGAd, GAd

+]Gd2) × Su(Gd2)) 
Case 2: Gd1[GAd] !~ Gd2[GAd] or Su(Gd1)[GAu] !~ 

Su(Gd2)[GAu]. In E2, the results of the join operations 
represented by (i) and (ii) are not merged into the same 
similarity group by the second similarity group-by. In E1, each 
row of Gd1 and Gd2 joins with Su(Gd1) and Su(Gd2), respectively,  
but the resulting rows are not merged by the second similarity 
group-by. Due to (1), the aggregation values in the resulting 
row of the following expressions in E1 and E2, respectively, 
are the same. 

vii. Fd[AAd]"A[GAd,GAu,AAd](Gd1 × Su(Gd1))    

viii. Fd2[FAAd]"A[GAd,GAu,FAAd] 
((Fd1[AAd]"A[NGAd, GAd

+, AAd]Gd1) × Su(Gd1)) 
Due to (2), the aggregation values in the resulting row of 

the following expressions in E1 and E2, respectively, are the 
same. 

ix. Fu[AAu]"A[GAd,GAu,AAu] ((Gd1 × Su(Gd1))     
x. Fua[AAu,CNT]"A[GAd,GAu, AAu, CNT] 

((COUNT "A[NGAd, GAd
+]Gd1) × Su(Gd1))           

Similar to the case of regular group-by, several other query 
transformation techniques can be derived from the main 
theorem. The way the main theorem is extended in the case of 
similarity grouping follows closely the way the equivalent 
theorem is extended in the case of group-by [19], [20], [21]. 

The use of materialized views to answer aggregation 
queries [22], [23], [24] is another important optimization 
technique that can yield considerable query processing time 
improvements and can be extended to the case of similarity 
grouping. Goldstein et al. propose a view matching algorithm 
[22] that determines if a query can be answered from existing 
materialized views with aggregation functions sum and count. 
Similarity aggregation queries and views should be treated as 
a SPJ query followed by a similarity aggregation operation. 
The requirements that a view must satisfy to be used to 
answer a SPJG query with similarity-based aggregations are a 
slight variation of the requirements for queries with regular 
aggregation. These requirements are: 

1. The SPJ component of the view contains all rows 
needed by the SPJ component of the query with the 
same duplication factor. 

2. All columns required by compensating predicates are 
part of the view output. 

3. The view does not contain aggregations or is less 
aggregated than the query, i.e., the query output can be 
computed by further aggregating the view output.  

4. In case further aggregation is required, all the columns 
needed are available in the view output. 

5. All the columns required to compute the query 
aggregation expressions are part of the view output. 

Steps 1, 2, 4, and 5 can be enforced similar to the case of 
regular aggregation queries. To satisfy Step 3, the algorithm 
has to consider that a query with regular group-by on 
attributes GA, can be computed from a view with regular 
group-by on a superset of GA; a query with similarity group-
by on attributes GA, can be computed from a view with 
regular group-by on a superset of GA; and a query with 
similarity group-by on attributes GA, can be computed from a 
view with similarity group-by on a superset of GA. For 
instance, a view grouped on attributes A on Seg1, B on Seg2, 
C, D can be used to compute the results of queries grouped on 
(1) A on Seg1; (2) A on Seg1, C; (3) C, D; or (4) C on Seg3.  

V. IMPLEMENTING SIMILARITY GROUP-BY  
This section presents the guidelines to implement the 

similarity grouping operators introduced in Section III inside 
the query engine of standard RDBMSs. Although the 
presentation is intended to be applicable to any RDBMS, 
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some specific details refer to our implementation in 
PostgreSQL. The SGB operators can be implemented as 
different database operators or they can be combined with the 
regular group-by operator given that there are no conflicts in 
their syntax. We use the latter approach as it reduces the 
required changes in the query engine and facilitates the 
integration of SGB with other query processing mechanisms, 
e.g., generation of query trees, optimization tasks, etc.  

To add support for similarity grouping in the parser, the 
raw-parsing grammar rules, e.g., the yacc rules in the case of 
PostgreSQL, are extended to recognize the syntax of the 
different new grouping approaches. This stage also identifies 
the grouping strategy, i.e., regular, similarityAround, 
similarityDelimitedBy, or similarityUnsupervized, being used 
with each grouping attribute. The parse-tree and query-tree 
data structures are extended to include the information related 
to similarity grouping as shown in Figure 8. The routines in 
charge of transforming the parse tree into the query tree are 
updated to process the new fields of the parse tree. The 
transformation of the parse tree section that represents the 
query of the reference points can be easily performed calling 
recursively the same function that is used to parse regular 
select statements, e.g., do_parse_analyze in PostgreSQL. 

A. The Optimizer 
Traditionally, the aggregation nodes of execution plans 

have only one input plan tree, i.e., a data input plan tree, 
which represents the query that generates the data to be 
grouped. To support supervised similarity grouping, the 
aggregation nodes make use of a second input plan tree to 
receive the reference points data. Given that in many query 
engine implementations all the plan tree nodes inherit from a 
generic plan node that supports two input plan trees; 
aggregation nodes can make use of a second input plan tree 
without major changes to the plan tree’s data structures. 
Figure 9.a presents the structure of the plan trees when one 
SGA is used. A sort node that orders by the grouping attribute 
is added on top of the data input plan tree, and in the case of 
supervised grouping, another sort node is added on top of the 
reference-points input plan tree. This order is assumed by the 
routines that form the similarity groups. When multiple SGAs 
are used, they are processed one at the time. Figure 9.b gives 
the structure of the plan trees generated when two SGAs a1 
and a2 are used. The bottom aggregation node applies 
similarity grouping on a1 and regular aggregation on a2. The 
result of this node is further aggregated by the top aggregation 
node that applies similarity grouping on a2 and regular 
aggregation on a1. This approach can be extended directly to 
support any number of attributes. A similarity-based group 
can combine tuples that have different values of the grouping 
attribute. Thus, the value of a grouping attribute A in an output 
tuple T is a representative of the values of this attribute in the 
tuples that form T. In our implementation, the central point of 
a group is selected as the representative value when group-by-
around is used, the smaller delimiting point when group-by-
delimited-by is used, and the average of the minimum and 
maximum values of A in the tuples that form T when 
unsupervised group-by is used.  Each aggregation node is able  

NodeTag type

...

SelectStmt

List *targetList
List *fromClause

Node *whereClause
List *groupClause

TargetEntry tarEntry
SelectStmt *refPointsSelect
int maxElementSeparation

GroupTargetEntry

int maxGroupLength
char grouping_mode

list of

NodeTag type

...

Query

List *targetList
List *rtable

bool usesSimGrouping

NodeTag type
Index tleSortGroupRef

Oid sortop
Query *RefPointsSelect

int maxElementSeparation
int maxGroupLength
char grouping_mode

list of

a) Modified data structures of the parse tree

b) Modified data structures of the query tree

GroupClause

List *groupClause

 
Fig. 8 Modifications in the main query processing data structures 
(PostgreSQL) 

Agg (a1 around T1), or
Agg (a1 delimited by T1)

1. SELECT … FROM (T)    
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Agg (a2 around T2, a1), or
Agg (a2 delimited by T2, a1)
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a) One grouping attribute 
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Fig. 9 Path/Plan trees for similarity grouping 

to process one SGA and any number of regular grouping 
attributes. The group formation routines are presented in 
Section V-B. Some additional modifications have to be 
implemented to ensure the correct calculation of the 
aggregation functions when the aggregation operation is 
divided into several aggregation nodes. For aggregation 
functions F for which F(SetA U SetB) cannot be computed 
from F(SetA) and F(SetB), e.g., Avg, the bottom aggregation 
nodes calculate intermediate information, e.g., Sum and Count, 
instead of directly computing the values of the aggregation 
function F. The top aggregation node processes the 
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intermediate information and computes the correct final 
results. For the aggregation function Count for which 
Count(SetA U SetB) is not equal to 
Count(Count(SetA),Count(SetB)) but equivalent to 
Sum(Count(SetA),Count(SetB)), the bottom aggregation node 
uses the function Count while the upper nodes aggregate the 
intermediate result using Sum. Another important change in 
the optimizer is in the way the number of groups generated by 
a similarity aggregation operation is estimated. This key 
estimation is used to compare different query execution paths 
and is commonly based on the number of groups each 
grouping attribute would generate if used alone (NA). In 
regular grouping, NA is the number of different values of a 
grouping attribute and appropriate statistics are maintained to 
estimate it. In the case of supervised similarity grouping, NA 
should be estimated as the number of tuples of the reference 
points query. In the case of unsupervised similarity grouping, 
NA can be estimated as the number of different values of the 
grouping attribute divided by a constant. The estimated 
number of groups (ENG) can be used to reduce the cost of 
queries with several similarity aggregation attributes. Given 
that the order of processing these attributes does not change 
the final result, they can be arranged to reduce the number of 
tuples that flow to upper nodes.  

B. The Executor 
When several SGAs are used, the constructed query plan 

uses several aggregation nodes where the result of each 
aggregation node is pipelined to the next one. The hash-based 
executor routines that form the groups in each aggregation 
node are expected to be able to handle one SGA and zero or 
more regular grouping attributes. The tuples received from the 
input plans of the data and reference points have been 
previously sorted by sort nodes added in the plan construction 
stage as explained in Section V-A. The executor routines 
process the input tuples sequentially and form the similarity 
groups following a plane sweep approach. A vertical line is 
swept across the sorted data tuples from left to right. At any 
time, a set of current groups is maintained and each time the 
line reaches a tuple the system evaluates whether this tuple 
belongs to the current groups, does not belong to any group, 
or starts a new set of groups. The main execution routine is 
modified to call appropriate subroutines that handle the 
different grouping strategies. In the regular implementation of 
PostgreSQL, this routine calls the subroutines 
agg_fill_hash_table and agg_retrieve_hash_table. The first 
routine forms the groups using a hash table, and the second 
retrieves the resulting tuples, one tuple at the time. In the case 
of similarity grouping, the main routine calls extensions of 
these two routines that form and retrieve the similarity groups. 
The rest of this section describes the extensions of these 
subroutines for the case of group-by-around.  

To simplify the presentation we do not distinguish between 
a tuple and its value, this should be clear from the context. If 
the value is being used, it corresponds to the value of the SGA 
of this node, or the attribute representing the central points. In 
agg_fill_hash_table_around, both, the tuples to be grouped 
and the central points are processed sequentially. At any point, 

the routine maintains the current and next central points and it 
processes the data tuples to form the group(s) around the 
current central point. The sequence of values of the grouping 
attribute that satisfies the conditions MAXIMUM_GROUP_ 
DIAMETER and MAXIMUM_ELEMENT_SEPARATION is 
called a chain. When the distance of at least one of the values 
of the chain to the central point is smaller than 
MAXIMUM_ELEMENT_SEPARATION we say that the 
chain is connected. Tuples that belong to a chain are 
considered candidates to form similarity groups. The hash 
table entries corresponding to these potential groups are 
marked “active”. If the routine finds that the current chain is 
connected then it changes the status of the entries to “final”. If 
there is no element that connects the chain to the central 
element, the entries are marked “inactive”. Tuples that do not 
belong to any group under the current SGA are also assigned 
to hash table entries. These entries are marked as “outlier”. 
Outlier entries are maintained to allow the correct group 
formation in subsequent similarity grouping nodes when 
several SGAs are used. This ensures that the final result of a 
similarity group-by query is not affected by the order in which 
its SGAs are processed. Outlier entries are not considered to 
calculate the results of aggregation functions since the final 
groups are composed only by tuples that belong to some group 
under each SGA. Additionally, the tuple structure is extended 
with a status field that is used to determine if a tuple is an 
outlier or not. For each data tuple T, the routine performs a 
test to check if the distance from T to the current central point 
C is smaller than the value of the parameter 
MAXIMUM_GROUP_DIAMETER/2 (i.e., the radius) and 
that T is closer to the current central point than to the next one. 
If the test fails and T is located to the left of C, T is an outlier. 
Consequently, the value of the SGA of this tuple is replaced 
by a constant and this modified tuple is inserted in the hash 
table marking the associated entry as “outlier”. If the test fails 
and T is located to the right of C, the routine finishes 
processing the current groups, starts the formation of the 
groups around the next central point, and processes T with the 
new central point. If the test succeeds and T has not been 
marked “outlier” previously, T is processed with the current 
central point. All the possible arrangements of the previous 
and current data tuples and current and next central points are 
considered and appropriate actions taken in each case. For 
instance, if (i) the distance between the previous and current 
tuples is greater than MAXIMUM_ELEMENT_ 
SEPARATION, (ii) the current tuple is connected to the 
current central point, and (iii) the current chain (without 
considering the current tuple) is not connected; the current 
groups are dismissed, i.e., marked “inactive”, a new chain is 
started having the current tuple T as its first element, and if T 
is not an outlier, the aggregation calculations of the associated 
group are updated with the values of T. The process of 
advancing a tuple, i.e., updating the aggregation calculations 
of the associated group with the values of the tuple, uses a 
similarity version of the tuple replacing the grouping attribute 
value with the value of the current central point. The 
agg_retrieve_hash_table_around   routine   is   a  variation   of  
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Part(P), Supplier(S), PartSupp(PS), Customer(C), Orders(O), LineItem(L), Nation(N) 

Reference Points Tables
RefPoints_all:        All values used by C_acctbal
RefPoints_1b:        50*SF-1 points that partition C_acctbal’s domain in 50*SF 

segments of equal length. For SF=1: {-780,560,...,9780} 
RefPoints_x:          50*SF points that correspond to the center of the segments of 

RefPoints_1b. For SF=1: {-890,-670, ...,9890}
RefRevLevels:       10 order revenue levels. {20000,60000,…,380000}
MktCmpRefDates: Marketing campaign dates. Random in the range of O_orderdate.
RefDiscLevel:         5 discount levels. {0.010, 0.030, ..., 0.090}

TPC-H Tables

C.c_acctbal_xb: Similar to C_acctbal but without values in SF*50 segments of length 
1.1 around the points of RefPoints_1b

C.c_acctbal_x:   Similar to C_acctbal
C.c_segment_x: Integer. Random [0,19]. Represents ways to segment clients
O.o_clerkType: Integer. Random [1,50]. Represents a way to segment clerks

 
Fig. 10 Performance evaluation dataset 

agg_retrieve_hash_table. It returns the entries marked "final" 
when called from the last SGA of a SGB query. Otherwise, it 
returns the entries marked "final" or "outlier". 

The changes in the executor required to support the other 
similarity grouping strategies can be implemented using 
similar guidelines. The cost of group formation in SGB nodes 
is very close to the one of the regular group-by since each 
tuple is processed once and in almost constant time. The 
additional cost of the SGB operators is due to the additional 
comparison operations and hash table status maintenance. 
Although we focus on the hash-based approach, some of the 
basic mechanisms employed by this approach to control the 
extent of the groups can be used by a simpler sort-based 
approach to answer single-GA similarity aggregation queries. 

VI. PERFORMANCE EVALUATION 
We implemented the similarity grouping operators 

presented in Section III inside the PostgreSQL 8.2.4 query 
engine. This section presents the results of the performance 
study of these operators. The main cost considered is the 
query execution time. 

A. Test Configuration 
The dataset used in the performance evaluation is based on 

the one specified by the TPC-H benchmark [29]. The tables, 
additional attributes, and queries used in the tests are 
presented in Figures 10 and 11. The default dataset scale 
factor (SF) is 1, i.e., the dataset size is about 1GB. All the 
experiments are performed on an Intel Dual Core 1.83GHz 
machine with 2GB RAM running Linux as operating system. 
We use the default values for all PostgreSQL configuration 
parameters. The results presented in this section consider the 
average of the warm performance numbers having 95% 
confidence and an error margin less than ±5%. 

B. Performance Evaluation 
The focus of the performance evaluation is to study the 
scalability and overhead of the similarity group-by operators 
and compare them with the ones of the regular group-by. 

1) Increasing Dataset Size: Figure 12 gives the execution time 
of several aggregation queries for different dataset sizes. The 
number of tuples in table Customer is 15,000*SF while the 
number of tuples in the reference points tables is 50*SF. The 
key result of this experiment is that the execution times of all 
the queries that use similarity group-by,  i.e., SGB-X, are very  

GB SELECT c_acctbal count(c_acctbal), min(c_acctbal), max(c_acctbal), 
sum(c_acctbal), avg(c_acctbal) FROM C GROUP BY c_acctbal 

Queries used in Section 7.2.1

GB(SGB) <GB> AROUND <RefPoints_all>
SGB-A <GB> AROUND <RefPoints_1>

SGB(GB)

SELECT count(R2.A), min(R2.A),max(R2.A),sum(R2.A), avg(R2.A)
FROM (SELECT c_acctbal as A, min(abs(c_acctbal - refpoint)) as B
FROM C, RefPoints_1 GROUP BY C.c_acctbal) as R1,
(SELECT c_acctbal as A, refpoint as C, abs(c_acctbal - refpoint) as B
FROM C, RefPoints_1) as R2
WHERE R1.A=R2.A and R1.B=R2.B GROUP BY R2.C

SGB-A_MR SGB-A + 'MAXIMUM_GROUP_DIAMETER 2r'. r =11000/(100*SF)
SGB-A_MS SGB-A + MAXIMUM_ELEMENT_SEPARATION 1

SGB-D <GB> DELIMITED BY <RefPoints_1b>
SGB-U_MR <GB> MAXIMUM_GROUP_DIAMETER d. d =11000/(50*SF)

SGB-U_MS
SGB-U_MR using 'MAXIMUM_ELEMENT_SEPARATION 1' instead of 
'MAXIMUM_GROUP_DIAMETER d'

GB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …, 
c_acctbal_n FROM C GROUP BY c_acctbal_1,…, c_acctbal_n

Queries used in Section 7.2.2. n=number of similarity grouping attributes (SGAs)

SGB
SELECT sum(c_acctbal_1), …, sum(c_acctbal_n), c_acctbal_1, …, 
c_acctbal_n FROM C GROUP BY c_acctbal_1 AROUND <RefPoints_1> 
… c_acctbal_n AROUND <RefPoints_n>

SGB_MR SGB +'MAXIMUM_GROUP_DIAMETER 220'  in each SGA
SGB_MS SGB +'MAXIMUM_ELEMENT_SEPARATION 1'  in each SGA

<Query>+5 <Query> + 'c_acctbal_1b, …, c_segment_5' in the GROUP BY clause

Lazy1
SELECT L.l_discount as DcntLevel, O.o_clerkType, sum(L.l_discount)
FROM L, O WHERE L.l_orderkey=O.o_orderkey
GROUP BY O.o_clerkType, L.l_discount AROUND <RefDiscLevel>

Queries used in Section 7.2.3
Business question: Study the discount level (DL) given by each type of clerk

Eager1

SELECT R1.l_discount as DcntLevel, O.o_clerkType, sum(R1.CNT) 
FROM O, (SELECT L.l_discount, L.l_orderkey, count(L.l_discount) as 

CNT FROM L GROUP BY L.l_orderkey, L.l_discount AROUND   
<RefDiscLevel>) AS R1

WHERE R1.l_orderkey=O.o_orderkey 
GROUP BY R1.l_discount, O.o_clerkType

Lazy2
(Eager2)

Lazy1 (Eager1) + 'AND O.o_orderdate between '1994-06-17' and
'1995-06-17' ' in the WHERE clause

Business question: Study the DL given by each type of clerk in the past six months

GB1 Same as TPC-H Q3
Business question: Retrieve the unshipped orders with the highest value

SGB1

SELECT revenue as RevLevel, count(revenue), min(revenue), 
max(revenue), avg (revenue) 
FROM  (SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as 

revenue FROM C, O, L WHERE c_mktsegment = 'BUILDING' 
and c_custkey = o_custkey and l_orderkey = o_orderkey and 
o_orderdate < date '1995-03-15' and 
l_shipdate > date '1995-03-15' 
GROUP BY l_orderkey) as R1 

GROUP BY revenue AROUND <RefRevLevels>

Business question: Clusters the unshipped orders around revenue levels of interest 

GB2 Same as TPC-H Q9
Business question: Report profit of a line of parts during marketing campaigns

SGB2

SELECT nation, o_orderdate as MktCmpRefDate, sum(amount) as 
sum_profit 
FROM (SELECT n_name as nation, o_orderdate, l_extendedprice * 

(1 - l_discount) - ps_supplycost * l_quantity as amount
FROM P, S, L, PS, O, N WHERE s_suppkey = l_suppkey and  
ps_suppkey = l_suppkey and ps_partkey = l_partkey and  
p_partkey = l_partkey and o_orderkey = l_orderkey and 
s_nationkey = n_nationkey and p_name like '%green%') as profit

GROUP BY nation, o_orderdate AROUND <MktCmpRefDates> 
MAXIMUM_GROUP_DIAMETER interval '14 day' ORDER BY nation

Business question: Report profit on a given line of parts (by supplier nation and year)

GB3 Same as TPC-H Q18
Business question: Retrieve clusters of customers with similar buying power

SGB3

SELECT TotalBuy as TotalBuyLevelRef, min(TotalBuy), max(TotalBuy), 
count(TotalBuy), avg(TotalBuy) 
FROM (SELECT c_name,c_custkey,sum(l_extendedprice) as TotalBuy 

FROM C, O, L WHERE c_custkey = o_custkey and o_orderkey = 
l_orderkey and o_orderkey IN (SELECT l_orderkey FROM L 

GROUP BY l_orderkey  
HAVING sum(l_quantity) > 300)

GROUP BY c_name,c_custkey)
GROUP BY TotalBuy MAXIMUM_GROUP_DIAMETER 200000 
MAXIMUM_ELEMENT_SEPARATION 20000

Business question: Retrieve large volume customers

 
Fig. 11 Performance evaluation queries 

close to the execution time of the regular aggregation query 
GB for all the dataset sizes. Even in the worst case scenario 
represented by GB(SGB)_X, i.e., SGB query produces the 
same result as GB, the execution time of GB(SGB) is at most 
only 25% bigger than the one of GB. The optimizer selected 
the sort-based approach to execute GB. GB(SGB)_H and 
GB(SGB)_S use the hash-based and sort-based similarity 
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grouping approaches respectively. The SGB parameters and 
the data used in this test have been selected such that all the 
SGB queries generate approximately the same result. SGB-
A_H and SGB-A_S are queries that use group-by-around 
without additional clauses. They are executed using the hash-
based and sort-based approaches respectively. The execution 
time of SGB-A_H is about 12% bigger than that of GB while 
the execution time of SGB-A_S is about 2% bigger than that 
of GB. The execution time of SGB-A_S is about 9% smaller 
than the one of SGB-A_H because the hash-based approach 
makes use of an additional sort node. Given that the hash-
based approach supports queries with multiple similarity 
grouping attributes (SGAs), the execution time of the other 
SGB queries consider this approach. The execution time of 
SGB-A_MD and SGB-A_MS, variants of SGB-A that use 
parameters MAXIMUM_GROUP_DIAMETER and 
MAXIMUM_ELEMENT_SEPARATION respectively, are 
around 2% and 6% bigger than the one of the simple SGB-A 
query.  This is due to the extra calculations that need to be 
performed to ensure that the produced groups comply with the 
specified parameters, and the overhead of keeping track of the 
status of hash table entries. As expected, the group-by-
delimited-by query SGB-D performs almost exactly as SGB-
A, and the queries with unsupervised similarity grouping, i.e., 
SGB-U_MD and SGB-U_MS, perform similarly to SGB-
A_MD and SGB-A_MS respectively. In all the cases the 
difference is less than 2%. In the following experiments we 
use group-by-around as a representative of the SGB queries.  

Although in general it is not possible to produce the output 
of SGB queries using only regular SQL operations, this is 
feasible in the following special cases: (i) SGB-A without 
conditions (assuming there are no points whose distance to the 
closest two central points are the same) can be obtained using 
a complex mix of aggregations and joins as presented in query 
SGB(GB) of Figure 11; SGB-A with MAXIMUM_GROUP_ 
DIAMETER can be implemented using further selection 
predicates; and (ii) SGB-D can be obtained using a complex 
query similar to SGB(GB). Figure 13 compares the execution 
time of SGB(GB) with that of SGB-A. The presented results 
show that the execution time and scalability properties of the 
SGB query is much better than those of the query that uses 
only regular SQL operations. The execution time of SGB(GB) 
grows from being 500% bigger than that of SGB-A for SF=1 
to being 1300% bigger for SF=14. 

2) Increasing the Number of SGAs: Figure 14 gives the 
execution time of SGB queries when the number of SGAs 
increases. As in the previous test, all the SGB queries generate 
similar results. The query GB is included as a reference. The 
optimizer selected sort-based grouping to execute this query. 
Even though the implementation to support multiple SGAs 
makes use of one aggregation node per similarity grouping 
attribute, the execution times of all the SGB queries, i.e., SGB, 
SGB_MD, and SGB_MS, scale well when the number of 
SGAs increases. Furthermore, the way they scale is similar to 
the one the regular aggregation query GB scales. Each query 
QRY+5 represents the query QRY with five additional regular 
grouping attributes. In all the cases, these extra attributes have  

 
Fig. 12 Performance while increasing dataset size 

 
Fig. 13 Performance of generating similarity groups with group-by vs. 
similarity group-by 

 
Fig. 14 Performance while increasing number of SGAs 

 
Fig. 15 Performance of complex queries 

a very small effect (1% to 5% of additional cost) on the 
execution time of similarity aggregation queries because they 
are handled using the same hash tables used in the similarity-
based aggregation nodes. 

3) Complex Queries: Figure 15 gives the execution time of 
several real world similarity aggregation queries and presents 
scenarios in which the Eager and Lazy query transformation 
techniques presented in Section IV are used. Figure 11 gives 
the details of the queries used in this section and the business 
question they help to answer. The similarity-based queries 
used in this experiment are a small representative set of the 
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queries that can be built using the introduced similarity 
operators to answer real world business questions. Lazy1 and 
Eager1 are equivalent queries that obtain information about 
discount levels given by the different clerk types. The 
discount values are grouped around a set of discount levels of 
interest. Lazy1 performs first the join and after that the 
similarity grouping while Eager1 preaggregates all the 
discount values in table Lineitem that correspond to the same 
order, joins the result with table Orders, and finally aggregates 
all the orders that belong to the same clerk type. The 
execution time of Eager1 is 13% smaller than that of Lazy1. 
The reason is that the similarity-based preaggregation step 
reduces significantly the number of tuples to be processed by 
the join operator. Lazy2 and Eager2 are also equivalent 
queries, and are similar to Lazy1 and Eager1, respectively, but 
only consider the orders made in the past six months. In this 
case, the execution time of Lazy2 is 40% smaller than that of 
Eager2. In this case the join is significantly more selective and 
reduces in Lazy2 the number of tuples to be processed by the 
similarity aggregation operator. SGB1, SGB2, and SGB3 are 
three variants of the TPC-H queries Q3 (GB1), Q9 (GB2), and 
Q18 (GB3) respectively. They all provide richer information 
and are potentially more useful for the decision maker than 
their regular aggregation counterparts. For instance, GB2 
reports the profits on a given line of parts while SGB2 reports 
how those profits change during marketing campaigns; GB3 
retrieves large volume customers while SGB3 clusters those 
costumers in groups of similar buying power. In all cases, the 
similarity aggregation queries have a comparable execution 
time to the ones of their regular aggregation counterparts. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper presents a similarity-based grouping operator, 

named similarity group-by (SGB), to support the grouping of 
objects with approximate values. The main goal of SGB is to 
generate more meaningful and useful groupings than the 
regular group-by operator while having execution times 
comparable to those of its non-similarity counterpart. This 
paper presents a generic definition of SGB and three grouping 
strategies as instances of this definition. It studies how 
techniques to optimize standard group-by operations can be 
extended to the case of similarity group-by and presents the 
implementation guidelines to implement SGB in the query 
engine of standard DBMSs. The performance evaluation of 
the implementation in PostgreSQL shows that the proposed 
strategies of SGB have a very low cost and scales well when 
the dataset size or the number of grouping attributes increases. 
Some paths for future work include: the study of similarity 
grouping techniques for high-dimensional data, the study of 
the relationship and integration of similarity grouping 
techniques with grouping techniques in probabilistic databases, 
and the study of similarity-based aggregation as a tool for 
phenomena detection in the context of sensor networks. 
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