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Dedication

In Loving Memory of

Ruth Lewis, John Krieger, Gary Blacksmith and Luis Tejada

Personal Helicon

by Seamus Heaney

As a child, they could not keep me from wells

And old pumps with buckets and windlasses.

I loved the dark drop, the trapped sky, the smells

Of waterweed, fungus and dank moss.

One, in a brickyard, with a rotted board top.

I savoured the rich crash when a bucket

Plummeted down at the end of a rope.

So deep you saw no reflection in it.

A shallow one under a dry stone ditch

Fructified like any aquarium.
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When you dragged out long roots from the soft mulch

A white face hovered over the bottom.

Others had echoes, gave back your own call

With a clean new music in it. And one

Was scaresome, for there, out of ferns and tall

Foxgloves, a rat slapped across my reflection.

Now, to pry into roots, to finger slime,

To stare, big-eyed Narcissus, into some spring

Is beneath all adult dignity. I rhyme

To see myself, to set the darkness echoing.
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Abstract

When integrating information from multiple websites, the same data objects can

exist in inconsistent text formats across sites, making it difficult to identify match-

ing objects using exact text match. We have developed an object identification

system called Active Atlas, which compares the objects’ shared attributes in order

to identify matching objects. Certain attributes are more important for decid-

ing if a mapping should exist between two objects. Previous methods of object

identification have required manual construction of object identification rules or

mapping rules for determining the mappings between objects, as well as domain-

dependent transformations for recognizing format inconsistencies. This manual

process is time consuming and error-prone. In our approach, Active Atlas learns

to simultaneously tailor both mapping rules and a set of general transformations

to a specific application domain, through limited user input. The experimen-

tal results demonstrate that we achieve higher accuracy and require less user

involvement than previous methods across various application domains.

xi



Chapter 1

INTRODUCTION

Many problems arise when integrating information from multiple information

sources on the web [86]. One of these problems is that data objects can exist

in inconsistent text formats across several sources. An example application of

information integration involves integrating all the reviews of restaurants from the

Zagat’s Restaurants website with the current restaurant health ratings from the

Department of Health’s website. To integrate these sources requires comparing

the objects from both sources and identifying which restaurants are the same.
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Examples of the object identification problem are shown in Figure 1.1. In the

first example the restaurant referred to as “Art’s Deli” on the Zagat’s website

may appear as “Art’s Delicatessen” on the Health Department’s site. Because

of this problem, the objects’ instances cannot be compared using equality, they

must be judged according to text similarity in order to identify if the objects are

the same.

When two objects are determined the same, a mapping is created between

them. There are two types of object identification information needed to de-

termine mappings between the objects. The first type of information is a set

of domain-independent transformations for judging text similarity. These trans-

formations suggest possible relationships between tokens, e.g. (Prefix “Deli”,

“Delicatessen”) or between phrases, e.g. (Acronym “California Pizza Kitchen”,

“CPK”). These transformations are used to identify possible mappings between

the objects from the two datasets.

The second type of information is the importance of certain attributes or

combinations of attributes for deciding on mappings. The examples in Figure 1.1

are each representative of a type of possible mapping found in the restaurant

domain. Together, these types of examples demonstrate the importance of certain

attributes or combinations of attributes for deciding mappings between objects.

Both sources list a restaurant named “Teresa’s,” and even though they match

exactly on the Name attribute, we would not consider them the same restaurant.

2



Name Street          Phone

Art’s Deli12224 Ventura Boulevard    818-756-4124

Teresa's 80 Montague St.               718-520-2910

Steakhouse The 128 Fremont St.      702-382-1600

Les Celebrites 155 W. 58th St.           212-484-5113

Zagat’s Restaurants Department of Health

Name              Street            Phone

Art’s Delicatessen12224 Ventura Blvd.   818/755-4100

Teresa's103 1st Ave. between 6th and 7th Sts.   212/228-0604

Binion’s Coffee Shop 128 Fremont St.      702/382-1600

Les Celebrites 160 Central Park S        212/484-5113

Figure 1.1: Matching Restaurant Objects

These restaurants belong to the same restaurant chain, but they may not share

the same health rating. In this restaurant application the Name attribute alone

does not provide enough information to determine the mappings.

The “Steakhouse The” and “Binion’s Coffee Shop” restaurants are located in

the same food court of a shopping mall. Although they match on the Street and

Phone attributes, they may not have the same health rating and should not be

considered the same restaurant. In the last example, due to error and unreliability

of the data values of the Street attribute, the restaurant objects match only on

the Name and Phone attributes. Therefore, in order for objects to be correctly

mapped together in this application, the objects must match highly on both

the Name and the Street attributes (“Art’s Deli”) or on both the Name and

Phone attributes (“Les Celebrites”). This type of critical attribute information
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is captured in the form of object identification rules (mapping rules), which are

then used to determine the mappings between the objects.

This thesis presents an object identification system called Active Atlas that

starts with a set of general transformations and rules for judging similarity, and

then learns to tailor them to a specific application domain in order to determine

with high accuracy the set of mappings between the objects of two sources. The

main goal of this research is to achieve the highest possible accuracy in object

identification with minimal user interaction in order to properly integrate data

from multiple information sources. The problem of object identification appears

in several research areas as discussed in chapter 5. Active Atlas can be used to

handle the object identification problem for a variety of these research areas. For

this thesis Active Atlas was applied in conjunction with information mediators,

such as SIMS [5] and Ariadne [49], to properly handle the object identification

problem for information integration.

1.1 Ariadne Information Mediator

The Ariadne information mediator [50] is a system for extracting and integrating

information from sources on the web. Ariadne provides a single interface to mul-

tiple information sources for human users or applications programs. Queries to

Ariadne are in a uniform language, independent of the distribution of information

4



over sources, the source query languages, and the location of sources. Ariadne

determines which data sources to use and how to efficiently retrieve the data from

the sources.

Ariadne has a set of modeling tools that allow the user to rapidly construct and

maintain information integration applications for specific information sources,

such as the restaurant application shown in Figure 1.2. This application inte-

grates information about restaurants from Zagat’s Restaurants with information

from the Department of Health. In order to retrieve data objects from these web

sources, wrappers are created for each source.

Zagat’s Wrapper Dept. of Health WrapperAriadne
Information Mediator

User Query

Figure 1.2: Restaurant Application
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A wrapper is software that extracts information from a website and provides

a database-like interface. In this restaurant application two wrappers are cre-

ated. Application building tools are provided with the Ariadne system, including

a wrapper building tool, which generates a wrapper to properly extract informa-

tion from a website. When the application has been constructed, the Ariadne

information mediator can answer queries from the user by breaking them into

individual queries to the appropriate wrapper.

Data objects extracted from websites by these wrappers can be stored in the

form of records in a relational table or database (Figure 1.3). These objects

(records) represent entities in the real world, like restaurants. Each object has

a set of attributes (e.g., Name, Street, Phone). A specific restaurant object,

for example, may have the following set of values for its attributes: the value

“Art’s Deli” for the Name attribute, the value “12224 Ventura Boulevard” for

the Street attribute, and the value “818-756-4124” for the Phone attribute. As

shown in Figure 1.3 the attribute values of objects can have different text formats

and values across websites or information sources.

To allow the user to properly query the information mediator about these

objects, there is a unifying domain model created for each Ariadne application

which provides a single ontology. The domain model (Figure 1.4) is used to

describe the contents of the individual sources. Given a query in terms of the

concepts (e.g. Restaurant) and attributes (e.g. Name and Phone) described in

6



Art’s Deli 12224 Ventura Boulevard   818-756-4124

Teresa’s 80 Montague St. 718-520-2910

Steakhouse The 128 Fremont St.   702-382-1600

Les Celebrites 155 W. 58th St. 212-484-5113

Zagat’s Restaurant Table

Name Street Phone

Name Street Phone

Art’s Delicatessen 12224 Ventura Blvd.     818/755-4100

Teresa’s 103 1st Ave. between 6th and 7th Sts. 212/228-0604

Binion’s Coffee Shop 128 Fremont Street  702/382-1600

Les Celebrites 160 Central Park S 212/484-5113

Department of Health’s Restaurant Table

Figure 1.3: Restaurant Data Objects Stored as Records

the model, the system dynamically selects an appropriate set of sources and then

generates a plan to efficiently produce the requested data.

Unfortunately, due to the object identification problem described in Fig-

ure 1.1, the given domain model (Figure 1.4) does not provide enough information

for the mediator to properly integrate the information from the sources. To ad-

dress this problem, Active Atlas can be applied to determine with high accuracy

the mappings between the objects of the sources and add new information sources

to the domain model that include the necessary information for integrating the

sources (Figure 1.5).
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Restaurant

Zagat’s
Restaurants

Dept of Health
Restaurants

Name
Phone

Street

Menu Rating

Figure 1.4: Restaurant Domain Model

After Active Atlas determines the total mapping assignment for an applica-

tion, it builds two types of tables for storing the mapping information in order to

properly access and integrate these sources in the future. The mapping informa-

tion is stored as a global object table and individual source mapping tables. The

global object table contains a unique identifier for each object in the application.

The global object table represents the union of the objects in the sources, cap-

turing the exact relationship between the sources. In the restaurant application,

this table may contain, for examples, the restaurant names as the unique identi-

fiers for the union of the Zagat’s and Health Dept’s restaurants. Because there is

only one entry in the table for each unique restaurant, only one of the duplicate
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instances, such as “Art’s Deli” and “Art’s Delicatessen,” can be chosen to rep-

resent the restaurant in the global object table. The sources are ranked by user

preference, so that the instances from the most preferred source are chosen to be

included in the global object table. In this example, the Dept. of Health source

has been chosen as the preferred source. Its instances (e.g. “Art’s Delicatessen”)

will be entered into the table over the Zagat’s instances (e.g. “Art’s Deli”) when

there are duplicate instances.

Restaurant

Zagat’s
Restaurants

Dept of Health
Restaurants

Name
Phone

Street

Menu Rating

Source
Mapping

Table

Zagat’s Name

Global
Object
Table

Figure 1.5: Restaurant Domain Model with Mapping Table

Ariadne will now be able to query the sources for restaurant information using

the information given in the global object table. Because these queries will refer to

restaurants shared by the sources using only preferred source (Dept. of Health)

instances, these instances must be translated when querying the other sources

9



(Zagat’s). This type of mapping information is stored as a source mapping table,

or as a source mapping function if a compact translation scheme can be found to

accurately convert data instances from one source into another.

For the restaurant domain, the source mapping table would relate every object

from the Zagat’s Restaurant source to its counterpart in the global object table.

This mapping table would contain two attributes: Restaurant Name and Zagat’s

Name. If the Zagat’s restaurant did not have a duplicate in the Dept. of

Health source, then Restaurants Name and Zagat’s Name would be the same.

Figure 1.5 shows a domain model in which one source (Dept of Health) has

a set of unique instances; therefore, the source mapping table captures a one-

to-one or one-to-many relationship between the sources, depending on whether

the other source (Zagat’s) has a set of unique instances or contains duplicates

within the source. To represent a many-to-many relationship between the objects,

where multiple sources contain duplicate instance, each source will need a source

mapping table as shown in Figure 1.6.

Once these mapping constructs, i.e. mapping tables or functions, have been

automatically generated, they can be considered new information sources (Fig-

ure 1.5). Active Atlas creates these mapping information sources, so that medi-

ators, like Ariadne, can use them to accurately integrate data from inconsistent

sources in an intelligent and efficient manner.

10



Restaurant

Zagat’s
Restaurants

Dept of Health
Restaurants

Name
Phone

Street

Menu Rating

Source
Mapping

Table

Zagat’s Name

Global
Object
Table

Source
Mapping

Table

Figure 1.6: Restaurant Domain Model with Multiple Mapping Tables

1.2 Approach

Identifying mappings between objects may be dependent on the application. The

information necessary for deciding on a mapping may not be evident by solely

evaluating the data itself because there may be knowledge about the task that

is not represented in the data. For example, the same Government Census data

can be grouped by household or by each individual (Figure 1.7) depending on

the task. In the figure below the objects corresponding to Mrs. Smith and Mr.

Smith would not be mapped together if the application is to retrieve information

about an individual, such as their personal income, from the Government Census

data. But, if the application is to determine the household mailing addresses

11



in order to mail the new Census 2000 form to each household, then the objects

Mrs. Smith and Mr. Smith would be mapped together, so that the Smith

household would only receive a single Census 2000 form.

Mr. Smith, 345 Main Street, 678-9034

Matched?
Mrs. Smith, 345 Main St., 333-678-9034

Figure 1.7: Example Census Data

In the restaurant domain (Figure 1.1), because we are retrieving information

about health ratings, we are interested in finding the same physical restaurant

between the sources. In other words we would not map together restaurants

belonging to the same chain, like the “Teresa’s” restaurants in Figure 1.1, or the

restaurants in the same food court of a shopping mall, like “Steakhouse The” &

“Binion’s Coffee Shop.” Because of these types of examples, a combination of

the Name attribute and either the Street or Phone attributes is necessary to

determine whether the objects should be mapped together.

But, because the mapping assignment may depend on the specific applica-

tion, if the application is altered then the mapping assignment may change as

well, even though the sets of data are the same. For example, health inspectors

planning to visit the restaurants in order to update their health ratings would be

interested in obtaining the combined set of restaurant addresses from Zagat’s and

the Dept. of Health. To efficiently print out a map of directions to each of the

12



restaurants, all restaurants with the same address would be considered the same,

.e.g “Steakhouse The” & “Binion’s Coffee Shop.” A different set of mapping rules

would be needed to properly map the objects because the measurement of the

similarity between objects has changed for this application. Since the data itself

may not enough to decide the mappings between the sets of objects, the user’s

knowledge about object similarity is needed to increase the accuracy of the total

mapping assignment. We have adopted a general domain-independent approach

for incorporating the user’s knowledge into the object identification system.

There are two types of knowledge necessary for handling object identification:

(1) the importance of the different attributes for deciding a mapping, and (2) the

text formatting differences or transformations that may be relevant to the ap-

plication domain. It is very expensive, in terms of the user’s time, to manually

encode these types of knowledge for an object identification system. Also, due

to errors that can occur in the data, a user may not be able to provide compre-

hensive information without thoroughly reviewing the data in all sources. The

Active Atlas approach to achieving high accuracy object identification is to simul-

taneously learn to tailor both domain-independent transformations and mapping

rules to a specific application domain through limited user input.
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1.3 Active Atlas System Overview

Learning the transformations and mapping rules for a specific domain is a circular

problem, where the accuracy of the mapping rules depends on the accuracy of the

transformations and vice-versa. For Active Atlas this process has two stages as

shown in Figure 1.8, applying the transformations to calculate initial similarity

scores and then learning the mapping rules and transformations to properly map

the objects between the sources. In order to increase mapping accuracy, it is

important to accurately weight transformations, because some transformations

can be more appropriate for a specific application domain than others. The

transformation weights measure the likelihood that if the transformation, like

“Equality” or “Acronym,” is applied between two objects that those objects will

be classified as mapped.

In the first stage the candidate generator is used to propose the set of possible

mappings between the two sets of objects by applying the transformations to

compare the attribute values. Initially, it is unknown which transformations are

more appropriate for a specific domain, so all transformations are treated the

same when computing the initial similarity scores for the proposed mappings.

The output of the candidate generator is the set of candidate mappings, each

with their corresponding set of attribute similarity scores, combined total object

14



similarity score, and set of applied transformations. The initial similarity scores

will be highly inaccurate, but will serve as the basis for the learning to begin.

The second stage is the mapping learner, which learns to tailor both types of

object identification information – mapping rules and transformations. Mapping

rules determine which attribute or combinations of attributes (Name, Street,

Phone) are most important for mapping objects by learning the thresholds on the

attribute similarity scores computed in the first stage. The purpose of learning

the mapping rules is to achieve the highest possible accuracy for object mapping

across various application domains. The user’s input is necessary for learning

these mapping rules. The main idea behind this approach is for the mapping-rule

learner to actively choose the most informative candidate mappings, or training

examples, for the user to classify as mapped or not mapped. The learner con-

structs high accuracy mapping rules based on these examples, while at the same

time limiting the amount of user involvement. Once the rules have been learned,

they are applied to the set of candidate mappings to determine the set of mapped

objects.

The second type of object identification information learned by the mapping

learner is which transformations are appropriate for the domain of the attribute

or the application. The general transformations (e.g. Abbreviation, Acronym,

and Substring) are domain-independent. The same set of general transformations
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Set of Mappings 
between the Objects

((A3 B2 mapped)
(A45 B12 not mapped)
(A5 B2 mapped)
(A98 B23 mapped)

((A3 B2,   (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

Computing Similarity Scores

Candidate Generator
Attribute Similarity Formula:

Sn(an, bn)  = ∑ (ant• bnt) / (||a||•||b||)
t∈T

Source 1
Input: A1: (a1 a2 …ak)

A2: (a1 a2 …ak)
A3: (a1 a2 …ak)
A4: …

(Object pairs, Similarity Scores, Total Scores, Transformations)

Source 2
Input: B1: (b1 b2 …bk)

B2: (b1 b2 …bk)
B3: (b1 b2 …bk) 
B4: …

Mapping Learner
Mapping Rule Learner

Mapping Rules:
Attribute 1 > s1 => mapped

Attribute n < sn  ∧ Attribute 3 > s3 => mapped
Attribute 2 < s2 => not mapped

Transformation Weight Learner
Transformations:

T 1 = p1

Tn = pn

Figure 1.8: General System Architecture
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is applied in every application domain and for every attribute. These transfor-

mations can suggest possible relationships between tokens, e.g. (Prefix “Deli”,

“Delicatessen”) or between phrases, e.g. (Acronym “California Pizza Kitchen”,

“CPK”), but these relationships may not accurately represent the true relation-

ship between the tokens. For example, the transformation (Acronym “Crazy

Pasta Kitchen”, “CPK”) may be the actual relationship between the tokens, and

not (Acronym “California Pizza Kitchen”, “CPK”), though both may be judged

with the same similarity score.

Some transformations can also be more appropriate for a specific application

domain than others. For example, the transformation Acronym is more appropri-

ate and accurate for the attribute Restaurant Name than for the Phone attribute.

This error or bias in token relationships proposed by the transformations is not

reflected in the initial attribute similarity scores calculated by the candidate gen-

erator. Therefore, in order to increase the accuracy of the similarity scores, as well

as the mapping accuracy, it is important to learn how to weight transformations

appropriately for the domain.

The transformation weight learner accomplishes this through analyzing both

the user-labeled candidate mappings and those mappings classified by the mapping-

rule learner to determine how well the token relationships proposed by the trans-

formations predicted a positively classified mapping between two objects. Once
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the transformation weights are determined then the learner recalculates the at-

tribute similarity scores of the candidate mappings. The mapping-rule learner

can now reclassify the candidate mappings with greater accuracy because the

similarity scores more accurately represent the true textual similarity between

the objects.

1.4 Contributions

The main contribution of this thesis is combining two forms of learning to produce

an efficient and robust high accuracy object identification system. The following

are the key contributions of this research:

• General domain independent method for learning domain-specific knowl-

edge for object identification

• Approach to learning mapping rules that achieve high accuracy mapping

while minimizing user involvement

• Approach to tailor a general set of transformations to a specific domain

application to resolve format inconsistencies for the problem of object iden-

tification

• Novel method to combine both forms of learning to create a robust object

identification system
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1.5 Outline

The remaining chapters provide a detailed description of the Active Atlas object

identification system. Chapter 2 explains the process of computing the similarity

scores, while chapter 3 describes the mapping learner. Chapter 4 presents the

experimental results of the system. Chapter 5 discusses related work, and chapter

6 concludes with a discussion and future work.
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Chapter 2

COMPUTING SIMILARITY SCORES

In comparing the objects between the sources, potentially any object in one

source may be mapped to any object in the other source. The number of potential

mappings can be at most the number of objects in the first source m multiplied by

the number of objects in the second source n. Generating the maximal number of

mappings is an expensive process and may be unnecessary in order to determine

the correct set of mappings. The candidate generator uses the set of domain-

independent transformations to judge the similarity between two objects, so that

only the most similar candidate mappings between the sources are generated. The
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main function of the candidate generator is producing a set of quality candidate

mappings while at the same time minimizing the number of candidate mappings

that will be considered by the mapping learner.

With every mapping the candidate generator also computes information crit-

ical to the learning of the object mappings. It keeps a record of the set of

transformations that were applied for each mapping, which is essential for learn-

ing the transformation weights. It also calculates a set of similarity scores for

each mapping, which is necessary for learning the mapping rules. Both types of

information are given as input along with each mapping to the mapping learner.

When comparing objects, the alignment of the attributes is determined by

the domain model (Figure 1.4). The values for each attribute are compared

individually (Figure 2.1 – Name with Name, Street with Street, and Phone

with Phone). Comparing the attributes individually is important in reducing

the confusion that can arise when comparing the objects as a whole. Words can

overlap between the attribute values. For example, some words in the Name of

the restaurant “The Boulevard Cafe” can appear in the Street attribute value

of another restaurant. Comparing the attributes individually saves computation

and also decreases mapping error by reducing the number of candidate mappings

considered.

Given the two sets of objects, the candidate generator is responsible for gen-

erating the set of candidate mappings by comparing the attribute values of the
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Zagat’s

Art’s Delicatessen     12224 Ventura Blvd.  818/755-4100Dept of Health

Name                            Street                          Phone

Art’s Deli        12224 Ventura Boulevard.  818-756-4124

Figure 2.1: Comparing Objects by Attributes

objects. The output of this component is a set of attribute similarity scores for

each candidate mapping. A candidate mapping has a computed similarity score

for each attribute pair (Figure 2.2). The process for computing these scores is

described in detail later in this section.

Candidate 
Mapping Scores .967         .953 .3

Name               Street        Phone

Figure 2.2: Set of Computed Similarity Scores

Figure 2.2 displays example attribute similarity scores for the candidate map-

ping of the “Art’s Deli” and “Art’s Delicatessen” objects. The similarity scores

for the Name and Street attribute values are relatively high. This is because

the text values are similar and the text formatting differences between them can

be resolved. The Phone attribute score is low because the two phone numbers

only have the same area code in common, and since the dataset contains many

restaurants in the same city as “Art’s Deli,” the area code occurs frequently.
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2.1 Candidate Generator Overview

Figure 2.3 depicts the algorithm employed by the candidate generator in order

to propose the most similar candidate mappings from the set of all possible map-

pings. First, two varieties of transformations are applied to the sets of objects to

compute the set of transformations needed to relate one object from one source

to an object in the other source. A candidate mapping is proposed between

those objects that have transformations relating them. This reduces the number

of mappings considered by the mapping learner. Next, the attribute similarity

scores are calculated for each candidate mapping, given the set of transforma-

tions used to generate the candidate mapping. This process repeats for each of

the attribute of the objects. In order to compute the total object similarity score

that is used to rank the set of candidate mappings, first the attribute uniqueness

weights are determined. Attribute uniqueness weights are a heuristic measure of

the importance of an attribute. After computing the total object similarity scores

the candidate generator outputs the set of candidate mappings, each with their

corresponding set of attribute similarity scores, combined total object similarity

score, and the set of applied transformations.
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Computing Similarity Scores

Source 1
Input: A1: (a1 a2 …ak)

A2: (a1 a2 …ak)
A3: (a1 a2 …ak)
A4: …

Source 2
Input: B1: (b1 b2 …bk)

B2: (b1 b2 …bk)
B3: (b1 b2 …bk) 
B4: …

((A3 B2,   (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

(Object pairs, Similarity Scores, Total Scores, Transformation Rules)

Type I Transformations

Type II Transformations

Total Object Similarity Scores

Attribute Similarity Scores

Figure 2.3: Computing Scores Algorithm

2.2 General Transformations

Included in this framework is a set of general domain-independent transforma-

tions to resolve the different text formats used by the objects (Figure 2.4). These

transformations (e.g. Abbreviation, Acronym, Substring, etc.) are domain-

independent and are applied to all of the attribute values in every application
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domain and for every attribute. These transformations determine if text trans-

formations exist between words (tokens) in the attribute values, e.g., (Prefix -

“Deli”, “Delicatessen”) or between phrases, e.g. (Acronym - “California Pizza

Kitchen”, “CPK”). If transformations exist between the tokens, then a candidate

mapping is proposed between the corresponding objects.

California Pizza Kitchen
Art’s Deli
Philippe The Original

Zagat’s Dept of Health

CPK 
Art’s Delicatessen
Philippe’s The Original

Acronym
Prefix

Stemming

Transformations

Figure 2.4: Transformations

There are two basic types of the transformations. Unary transformations

require only a single token as input in order to compute its transformation. N-

ary transformations compare multiple tokens from two objects.

Unary transformations

• Equality tests if a token contains the same characters in the same order.

• Stemming converts a token into its stem or root.

• Soundex converts a token into a Soundex code. Tokens that sound similar

have the same code.
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• Abbreviation looks up a token in a dictionary and replaces the token with

corresponding abbreviation (e.g., 3rd or third).

N-ary transformations

• Initial computes if one token is equal to the first character of the other.

• Prefix computes if one token is equal to a continuous subset of the other

starting at the first character.

• Suffix computes if one token is equal to a continuous subset of the other

starting at the last character.

• Substring computes if one token is equal to a continuous subset of the

other, but does not include the first or last character.

• Computed Abbreviation computes if one token is equal to a subset of

the other (e.g., Blvd, Boulevard).

• Acronym computes if all characters of one token are initial letters of all

tokens from the other object, (e.g., CPK, California Pizza Kitchen).

• Drop determines if a token does not match any other token
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2.3 Generating Candidate Mappings

The candidate generator uses information retrieval techniques [8] to apply a va-

riety of transformations to resolve text formatting inconsistencies and generate

the candidate mappings. An information retrieval engine is used to apply the

transformations between sets of attribute values individually, i.e. Name with

Name, Street with Street and Phone with Phone in the restaurant appli-

cation (Figure 2.1).

Most information retrieval systems, such as the Whirl system [19], apply only

the stemming transformation to compare the words of the attribute values. The

stemming transformation compares the stem or root of the words to determine

similarity. A single transformation Stemming [76] is the only transformation used

to calculate similarity between strings; therefore, in Figure 2.4 “CPK” would

not match “California Pizza Kitchen.” Our approach includes a set of general

transformations, so that the system is able to resolve a variety of text formatting

differences.

For the candidate generator, the attribute values are considered short doc-

uments. These documents are divided into tokens. The tokenization process is

to first lowercase all characters and remove punctuation, so that the instance or

document “Art’s Deli” would produce the following three token list (“art” “s”

“deli”). Once the instances have been tokenized, they are then compared using
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the transformations. If a transformation exists between the tokens or if the to-

kens match exactly, then a candidate mapping is generated for the corresponding

objects. For the example below, a candidate mapping is generated for the objects

“Art’s Deli” and “Art’s Delicatessen,” because there are transformations between

their tokens: (Equality – “Art”, “Art”), i.e. exact text match, (Equality – “s”,

“s”), and (Prefix – “Deli”, “Delicatessen”) (Figure 2.5).

Zagat’s Name Dept of Health

Art’s Deli Art’s Delicatessen

Prefix
1

Equality

2Equality

3

Figure 2.5: Applying Transformations

The candidate generator applies the transformations in a three-step process.

The first step is to apply all of the unary transformations to the data. The second

step, after applying the unary transformations, is to determine the set of object

pairs that are related. And the third step is to apply the n-ary transformations

in order to further strengthen the relationship between the two data objects.
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2.3.1 Applying Unary Transformations

In step 1, an inverted index or hash-table is created from the tokens of all the

instances or documents of one of the attribute datasets, such as the Department

of Health’s restaurant names. As with a traditional IR engine, the data is first

tokenized. The unary transformations are then applied to each token (Equality,

Stemming, Soundex, and Abbreviation) and stored in an inverted index. There-

fore, each token can have more than one entry in the hash-table. In this index,

information about which transformations were applied is stored, as well as the

document (object) number.

Table 2.1 shows the restaurant name “Art’s Delicatessen” from the Health

Dept’s document set being tokenized and entered into the index. Each of the

four unary transformations are applied to all of the tokens in the order listed

previously, increasing the set of tokens to be added to the hash-table. The trans-

formed token set is a unique set of tokens. If a transformation is applied and the

transformed token already exists in the set, it is then removed. In Table 2.1 a

partial set of the index entries for the Health Dept restaurant names are shown

with the tokens for “Art’s Delicatessen” in boldface.

Now the other dataset for this attribute (Zagat’s restaurant names) is used as

a query set against this hash-table. Each object in the Zagat’s dataset is tokenized

and the transformations are applied to each of the tokens. The object’s tokens

and the new transformation tokens are both used to query the inverted index
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Example:
Document (Object) 5 Restaurant name: “Art’s Delicatessen”
Tokens: “Art”, “s”, “Delicatessen”
Transformed Token Set: “Art”, “A630”, “s”, “S000”, “Delicatessen”, “D423”

Transformed Original
Tokens Transformations Tokens Object Number
“Art” Equal “Art” 5

Stemming “Arte” 57
“A630” Soundex “Art” 5

“s” Equality “s” 5,6,9,71,79,97,111
“S000” Soundex “s” 5,6,9,71,79,97,111
“Del” Stemming “Dell” 57

Stemming “Deli” 7,93
Equality “Del” 60

“Deli” Equality ”Deli” 7,93
“D400” Soundex ”Deli” 7,93

Soundex “Dell” 57
“Delicatessen” Equality “Delicatessen” 5

“D423” Soundex “Delicatessen” 5
“Dell” Equality “Dell” 57

Table 2.1: Health Dept’s Restaurant Name Inverted Index

of Health Dept Restaurant names. The hash-table entries returned contain the

object numbers of the related objects from the other dataset (Department of

Health). Table 2.2 lists the retrieved entries from the Health Dept index for each

of the tokens for the Zagat’s query document “Art’s Deli.” With this information

the set of related Health Dept documents for this query can now be computed.

This process is completed for every attribute (Name, Street, and Phone).

At this stage there is a common method used in the IR community which

can be employed by the candidate generator to further reduce the number of
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Example :
Query: ”Art’s Deli” (Zagat’s)
Tokens: “Art”, “s”, “Deli”
Transformed Token Set: “Art”, “A630”, “s”, “S000”, “Deli”, “Del”, “D400”

Zagats Transformations Health Dept Document
“Art” Equality “Art” 5

Soundex “Art” 5
Stemming “Arte” 57

“s” Equality “s” 5,6,9,71,79,97,111
Soundex “s” 5,6,9,71,79,97,111

”Deli” Equality ”Deli” 7,93,
Soundex ”Deli” 7,93

Stemming ”Dell” 57
Stemming ”del” 60

Table 2.2: Retrieved Health Dept Index Entries for “Art’s Deli”

candidate mappings. This method is to have a stoplist, where very frequent

specific transformations such as (Equality – “Blvd”, “Blvd”), or in the case of

the transformed token “s” in Table 2.2, does not produce candidate mappings,

but are only used to calculate the attribute similarity scores. This method prunes

away any candidate mapping which contain only transformations on the stoplist.

A stoplist can be given as input to the system already containing transforma-

tions that would frequently occur and yet would not propose quality mappings.

Stoplists can also be generated automatically during the creation of the inverted

index. A frequency threshold is given, and any transformation whose frequency

exceeds the threshold is then added to the stoplist. Frequency is calculated by

counting the number of documents that have applied the transformation as shown
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in Table 2.2. The candidate generator handles a combination of both techniques,

where a stoplist can be given and then automatically augmented when the in-

verted index is created.

2.3.2 Computing Set of Related Objects

At the end of the first step, the set of related objects and the transformations

used to relate them are known for each attribute. The second step is to determine

the total set of related objects by combining the sets computed for each of the

attributes. In Table 2.3 are shown the sets of related objects computed for each

attribute.

Example :
Name:“Art’s Deli”
Street:“12224 Ventura Boulevard”
Phone:“818-756-4124”

Name Documents Street Documents Phone Documents
5,7,57,60,93 5,7,12,200, 7,49,77,84,92

Table 2.3: Related Health Dept Documents by Attribute

The combined set of related objects for “Art’s Deli” is (5, 7, 12, 49, 57, 60,

77, 84, 92, 93, 200). A candidate mapping is generated between the object of

“Art’s Deli” and each object in the set. Table 2.4 shows a list of the restaurant

names for each of the candidate mappings.
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Query: ”Art’s Deli” (Zagat’s)

Documents Restaurant Name
5 “Art’s Delicatessen”
7 “Carnegie Deli”
12 “Cava”
49 “California Pizza Kitchen”
57 “Trattoria Dell’Arte”
60 “Ca’del Sol”
77 “Posto”
84 “Border Grill”
92 “Campanile”
93 “Broadway Deli”
200 “Hard Rock Cafe”

Table 2.4: Restaurant Names of Candidate Mappings

Table 2.5 shows the set of candidate mappings, each listed with the best set

of unary transformations that relate the attribute values (documents). For some

pairs of tokens there are more than one way to relate them, as shown in Table 2.2.

For example, both the transformations Equality and Soundex relate the tokens

“Art” and “Art.” The higher ranked transformation is chosen always as the

preferred method for relating tokens. The transformations are ranked by the

order in which they are applied (Equality, Stemming, Soundex, Abbreviation),

so the transformation Equality will be chosen to relate the tokens “Art” and

“Art.”

In Table 2.5 some of the candidate mappings do not have any transformations

relating them to any of the tokens of the query “Art’s Deli” for the Restaurant

Name Attribute. Also, for some of the mappings with transformations there
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Query: ”Art’s Deli” (Zagat’s)

Document Restaurant Name Hypothesis transformation Set
5 “Art’s Delicatessen” (“Art” Equality “Art”)

(“s” Equality “s”)
7 “Carnegie Deli” (“Deli” Equality “Deli” )
12 “Cava”
49 “California Pizza Kitchen”
57 “Trattoria Dell’Arte” (“Art” Stemming ”Arte” )

(“Deli” Stemming ”Dell” )
60 “Ca’del Sol ” (“Deli” Stemming “del” )
77 “Posto”
84 “Border Grill”
92 “Campanile”
93 “Broadway Deli” (“Deli” Equality “Deli” )
200 “Hard Rock Cafe”

Table 2.5: Candidate Mappings with Unary Transformations

are tokens that do not relate to the query. The next step is to apply n-ary

transformations in order to relate more tokens and increase the measurement

of textual similarity. Computing the sets of transformation is important for

calculating the attribute similarity scores, as well as, for transformation weight

learning by the mapping learner.

2.3.3 Applying N-ary Transformations

After the set of candidate mappings have been determined with the unary trans-

formations, then the more computationally expensive transformations (n-ary) are

applied to the remaining unmatched tokens of the attribute values for the related

object pairs in order to improve the match. When this step is finished, it will
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output the set of related object pairs with their corresponding set of transforma-

tions used to related them, along with the token frequency information needed

for computing the similarity scores.

Table 2.6 shows a subset of the candidate mappings for the query object “Art’s

Deli.” The n-ary transformations are shown in boldface. The candidate mappings

not depicted in the table are the ones which involved dropping all of the tokens

from both documents because there were no other ways of relating the tokens for

the Name attribute. In these cases the tokens relate for other attributes, such

as the Street or Phone attributes, which is the reason the candidate mapping

was proposed.

This process of generating a set of candidate mappings by applying the trans-

formations is performed for each object of the Zagat’s dataset across all of the

attributes. The transformations sets computed for each of the attributes of the

candidate mapping for the objects “Art’s Deli” and “Art’s Delicatessen” is de-

picted in Figure 2.6. Once these sets have been computed for every candidate

mapping, then the attribute similarity scores can be calculated. Also, keeping

record of the set of transformations that were applied for each mapping will later

allow the transformation weight learner to measure the likelihood that if the

transformation is applied, the objects will be classified as mapped.
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Query: ”Art’s Deli” (Zagat’s)

Document Restaurant Name Hypothesis Rule Set
5 “Art’s Delicatessen” (“Art” Equality “Art”)

(“s” Equality “s”)
(“Deli” Prefix “Delicatessen”)

7 “Carnegie Deli” (“Deli” Equality “Deli” )
(Drop “Carnegie”)

(Drop “Art”)
(Drop “s”)

57 “Trattoria Dell’Arte” (“Art” Stemming “Arte” )
(“Deli” Stemming ”Dell” )

(Drop “Trattoria”)
(Drop “s”)

60 “Ca’del Sol” (“Deli” Stemming “del” )
(“s” Initial “Sol”)

(Drop “Art”)
93 “Broadway Deli” (“Deli” Equality “Deli” )

(Drop “Broadway”)
(Drop “Art”)
(Drop “s”)

Table 2.6: Candidate Mappings with N-ary Transformations

2.4 Computing Attribute Similarity Scores

This section discusses in detail how the computed sets of transformations are

used to calculate the attribute similarity scores. Figure 2.7 shows how attribute

values, (Zname, Zstreet, Zphone) and (Dname, Dstreet, Dphone), are

compared in order to generate the set of attribute similarity scores (Sname,

Sstreet,Sphone). In Figure 2.7, Zname and Dname represent Name attribute

values, e.g. “Art’s Deli” and “Art’s Delicatessen.” These values are compared
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Zagat’s Name Health Dept Name

Art’s Deli Art’s Delicatessen

Prefix
1

Equality

2Equality

3

Zagat’s Street

12224 Ventura Boulevard 12224 Ventura Blvd

Abbreviation
1

Equality

2Equality

3

Zagat’s Phone

818-756-4124 818/755-4100

1

Drop

2

Drop

5

Equality

Drop Drop

3 4

Health Dept Street

Health Dept Phone

Figure 2.6: Attribute Transformation Sets
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using general transformations and then the set of computed transformation are

used to calculate the similarity score Sname.

Zagat’s Objects Dept of Health Objects

Zname,     Zstreet,        Zphone Dname,      Dstreet,       Dphone

Name        Street      Phone Name        Street     Phone

Sname Sstreet Sphone 

Figure 2.7: Computing Similarity Scores

The candidate generator employs the cosine measure commonly used in infor-

mation retrieval engines with the TFIDF (Term Frequency x Inverse Document

Frequency) weighting scheme [29] to calculate the similarity of each of the objects.

Because the attribute values of the object are very short, the within-document

term frequency weighting is binary. The within-document frequency is 1 if the

term exists in the document and 0 otherwise. The similarity score for a pair of

attribute values is computed using the following attribute similarity formula:

Similarity(A,B) =

∑t
i=1(wia • wib)√∑t

i=1 w2
ia •

∑t
i=1 w2

ib
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• wia= (0.5 + 0.5freqia) x IDF

• wib= freqib x IDFi

• freqia = frequency for token i of attribute value a

• IDFi= IDF (Inverse Document Frequency) of token i in the entire collection

• freqib = frequency of token i in attribute value b

In this formula a and b represent the two documents (attribute values) being

compared and t represents the total number of transformations in the document

collection. The terms wia andwib correspond to the weights computed by the

TFIDF weighting function. This formula measures the similarity by computing

the distance between two attribute values.

2.5 Calculating Total Object Similarity Scores

When the candidate generator is finished, it outputs all of the candidate mappings

it has generated along with each of their corresponding set of attribute similarity

scores. Example sets of attribute similarity scores from the candidate generator

are shown in Table 2.7. For each candidate mapping, the total object similarity

score is calculated as a weighted sum of the attribute similarity scores.

Each attribute has a uniqueness weight that is a heuristic measure of the

importance of that attribute. This is to reflect the idea that we are more likely

39



Restaurant Mappings (Name, Street, Phone, Total)
(“Les Celebrites”,“Les Celebrites”) (1.0, .43, 1.0,2.9)
(“Art’s Deli”,“Art’s Delicatessen”) (.97, .95, .3, 2.8)
(“Spago”,“Spago (Los Angeles)”) (.83, .2, 1.0, 2.7)

(“Teresa’s”,“Teresa’s”) (1.0, .12 , .3, 1.7)
(“Jan’s Restaurant”,“Joe’s Restaurant”) (.17, .3, .74, 1.2)

Table 2.7: Example Output of the Candidate Generator

to believe mappings between unique attributes because the values are rarer. The

uniqueness weight of an attribute is measured by the total number of unique

attribute values contained in the attribute set divided by the total number of

values for that attribute set. There are two uniqueness weights for each attribute

similarity score, because we are comparing pairs of attribute values – one from

each of the two sources being integrated. To calculate the total object similarity

score, each attribute similarity score is multiplied by its associated uniqueness

weights, and then summed together, as shown in the following formula:

TotalObjectSimilarity(S,W ) =
n∑

i=1

siwiawib

• S = set of attribute similarity scores, size n

• n = number of object attributes

• W = set of uniqueness weight pairs
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Once the total object scores are computed, the set of candidate mappings

can be reduced further by simply setting a limit on the maximum number of

mappings per object. This reduced set of the candidate mapping information is

then ranked according to the object similarity score and given as input to the

mapping learner (Figure 2.7).
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Chapter 3

LEARNING OBJECT MAPPINGS

The goal of learning object mappings is to identify with high accuracy those

pairs of objects that are the same from the set of candidate mappings proposed

by the candidate generator. The candidate generator provides the necessary in-

formation for learning object mappings. Given with each candidate mapping are

the set of computed attribute similarity scores and the set of transformations

applied between the objects. From this information both types of object identifi-

cation information, mapping rules and transformations, are tailored to a specific

application domain.
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Mapping rules are created to classify the candidate mappings as mapped or

not mapped based on the attribute similarity scores. The mapping rules deter-

mine which attributes, or combination of attributes, are needed to accurately

classify the candidate mappings. At the time the attribute similarity scores are

computed, it is not known which transformations are appropriate for the appli-

cation domain, and therefore the attribute similarity scores may not accurately

represent the true similarity between all of the objects.

Accurate transformation weights for the specific domain must be known in

order to accurately compute new attribute similarity scores. Once the set of

candidate mappings have been classified as mapped or not mapped, then the

transformation weights can be determined by combining information from both

user-labeled mappings and those labeled by the mapping-rule learner. By com-

puting the number of times the transformation was applied between objects that

are mapped, divided by the total number of times the transformation was applied,

the transformation weight learner calculates weights for the transformations that

are then used for recomputing the attribute similarity scores.

This is a circular problem, where the accuracy of the mapping rules depends

on the accuracy of the transformations and vice-versa. To address this problem

Active Atlas employs an active learning technique that iteratively refines both the

mapping rules and transformation weights in order to classify the set of candidate

mappings. The set of candidate mappings, produced by the candidate generator,
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serves as the basis for the learning to begin. Given these initial attribute simi-

larity scores, mapping rules can be created to classify the mappings. Using the

classification information, new transformation weights can be calculated, allowing

for new attribute similarity scores and mapping rules. At every iteration of the

algorithm, the mapping rules and transformations can more accurately capture

the relationships between the objects.

As shown in (Figure 3.1) the mapping learner combines two types of learn-

ing, the mapping-rule learning and the transformation weight learning, into one

active learning system. The mapping learner incrementally learns to classify the

mappings between objects by offering the user one example to label at a time,

and from those examples learning both the mapping rules and transformation

weights. The criteria for choosing the next example for the user to label is de-

termined by input from both the mapping-rule learner and the transformation

weight leaner.

3.1 Mapping-Rule Learner

The mapping-rule learner determines which attribute, or combinations of at-

tributes (Name, Street, Phone), are most important for mapping objects.

The purpose of learning the mapping rules is to achieve the highest possible ac-

curacy for object mapping across various application domains. In this approach,
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Set of Mappings 
between the Objects

((A3 B2 mapped)
(A45 B12 not mapped)
(A5 B2 mapped)
(A98 B23 mapped)

Label

Mapping Rule Learner

Transformation 
Weight Learner

((A3 B2,   (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

(Object pairs, Similarity Scores, Total Weight, Transformations)

USER

Mapping Learner

Figure 3.1: Mapping Learner

the system actively chooses the most informative candidate mappings (training

examples) for the user to classify as mapped or not mapped in order to minimize
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the number of user-labeled examples required for learning high accuracy mapping

rules.

The mapping-rule learner consists of a committee of decision tree learners.

Each decision tree learner creates its own set of mapping rules from training ex-

amples labeled by the user. The mapping rules classify an example as mapped or

not mapped. These classifications are used by the transformation weight learner

for increasing the accuracy of the transformation weights, and are also needed

for deciding which training examples should be labeled.

3.1.1 Decision Tree Learning

Mapping rules contain information about which combination of attributes are

important for determining the mapping between two objects, as well as, the

thresholds on the similarity scores for each attribute. Several mapping rules may

be necessary to properly classify the objects for a specific domain application.

Examples of mapping rules for the restaurant domain are:

• Rule 1: Name > .859 and Street > .912 =⇒ mapped

• Rule 2: Name > .859 and Phone > .95 =⇒ mapped

These rules are obtained through decision tree learning [78]. Decision tree

learning is an inductive learning technique, where a learner constructs a decision

tree (Figure 3.2) to correctly classify given positive and negative labeled examples.
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Decision trees classify an example by starting at the top node and traversing the

tree down to a leaf, which is the classification for the given example. Each node

of the tree contains a test to perform on an attribute, and each branch is labeled

with a possible outcome of the test.

To classify for the candidate mapping of the objects “Art’s Deli” and “Art’s

Delicatessen,” which has the attribute similarity scores (.967 .953 .3), we can

use the decision tree shown in Figure 3.2. First, the Name attribute is tested.

Its result is positive, so the Street attribute is tested next. Its result is also

positive, and we follow the positive branch to reach a leaf node with a mapped

classification; therefore, this example is classified as mapped.

Decision trees are created by determining the most useful attributes for clas-

sifying the examples. A metric called information gain measures how well an at-

tribute divides the given set of training examples by their classification (mapped

or not mapped). Creating the decision tree is an iterative process, where the

attribute with the greatest information gain is chosen at each level. Once a deci-

sion tree is created, it can be converted into mapping rules, like those described

above.

3.1.2 Active Learning

To efficiently learn the mapping rules for a particular task or domain, we are

currently applying a supervised learning technique, which uses a combination
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Name > .859

Phone > .95

Street > .912not mapped

mapped

mappednot mapped

+

+

+

-

-

-

Figure 3.2: Example Decision Tree for Restaurant Domain

of several decision tree learners, based on an algorithm called query by bag-

ging [1](Figure 3.3). This technique generates a committee of decision tree learn-

ers that vote on the most informative example or candidate mapping for the user

to classify next. A single decision tree learner on its own can learn the necessary

mapping rules to properly classify the data with high accuracy, but may require

a large number of user-labeled examples, as shown in the Experimental Results

chapter.

Query by bagging is considered an active learning technique [4] because the

system actively chooses examples for the user to label. More specifically, it is a

selective sampling method [30] because examples are chosen from a fixed set
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(Committee Votes, User Labels)
((A3 B2,(y,n,y,n,n,n,y,y,y,y),matched)
(A45 B12,,(y,n,n,y,n,n,y,y,n,n))
…)

Choose initial examples

Generate committee of learners

Learn 
Rules

Classify
Examples

Votes Votes Votes

Learn 
Rules

Classify
Examples

Learn 
Rules

Classify
Examples

Label

Mapping Rule Learner

USER

((A3 B2,   (s1 s2 sk), W3 2, ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , (s1 s2 sk),W45 12,((T2,),(T3,,Tn),(T1 T8)))...)

(Object pairs, Similarity Scores, Total Scores, Transformations)

Choose next example
Label

Figure 3.3: Mapping-Rule Learner

of training examples. Query by bagging combines two techniques: query by

committee [82] and bagging [12].
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The query by committee approach uses the inputs of several learners to decide

the classification of the examples. In general the examples are classified according

to how the majority of learners classified the example. The degree to which the

learners’ classifications disagree is used to determine how informative an example

would be if it was labeled.

Bagging is a technique for generating a committee of learners by randomly

sampling the initial training set and choosing subsets of examples. This method

creates several initial training sets to initialize each of the learners in the com-

mittee. Query by bagging employs bagging to create the committee needed for

the query by committee approach. We have adopted a version of this committee-

based approach in order to reduce the number of user-labeled examples.

Figure 3.3 graphically shows the learning algorithm for the query by bagging

technique. The first step is selecting a small initial set of training examples. The

set of candidate mappings (Figure 2.7) serve as the set of examples from which the

training examples are chosen. In order to choose the training examples for this

initial training set, the candidate mappings are ranked according to their total

object similarity scores (Figure 2.7). It is then determined for each transforma-

tion, across all attributes, which are the highest ranked candidate mappings that

contain that transformation. A set of these candidate mappings will be chosen

as examples and labeled for the initial training set.
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Table 3.1 shows the highest ranked mapping for each transformation and each

attribute. These mappings compose the set of examples from which the initial

training set is drawn. This selection process insures that a variety of exam-

ples would be included because there are a sparse number of positive examples

(true mappings) among the candidate mappings. Having a variety of examples

is important for creating a diverse set of decision tree learners and for learning

accurate transformation weights.

Name Street Phone
Transformations Mapping Mapping Mapping

Equality 1 1 1
Stemming 1 7
Soundex 100 200

Abbreviation 7 210
Initial 3 232 77
Prefix 98 200 84
Suffix 2030 77 92

Substring 7 49
Acronym 67 200

Abbreviation2 2030 56

Initial Training Set: 1, 3, 7, 49, 56, 67, 77, 84, 92, 98, 100, 200, 210, 232, 2030

Table 3.1: Choosing the Initial Training Set

Once the initial training set has been created, the next step is to use the

bagging technique to initialize the learners. Bagging randomly samples the ini-

tial training set, choosing subsets of examples to initialize each learner in the

committee. Each decision tree learner is initialized with a different subset of the

51



initial training set. From these training examples the decision tree learner effi-

ciently constructs a decision tree that determines the important attributes and

thresholds for deciding a mapping. This decision tree is then converted into a

set of mapping rules. These mapping rules are used to classify the remaining ex-

amples (candidate mappings) (Figure 2.7). If the similarity scores of a candidate

mapping fulfill the conditions of a rule then the candidate mapping is classified

as mapped.

3.1.3 Choosing the Next Example

With a committee of decision tree learners, the classification of an example or

candidate mapping by one decision tree learner is considered its vote on the

example. The votes of the committee of learners determine which examples are

to be labeled by the user. One of the key factors in choosing an example is

the disagreement of the query committee on its classification (Figure 3.4). The

maximal disagreement occurs when there are an equal number of mapped (yes)

and not mapped (no) votes on the classification of an example. This example has

the highest guaranteed information gain because regardless of the example’s label

half of the committee will need to update their hypothesis. As shown in Figure 3.4

the example CPK, California Pizza Kitchen is the most informative example

for the committee (L1, L2, L3, L4, L5, L6, L7, L8, L9, and L10).
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Art’s Deli, Art’s Delicatessen

CPK, California Pizza Kitchen

Ca’Brea,  La Brea Bakery

Yes   Yes   Yes   Yes   Yes   Yes  Yes  Yes  Yes   Yes     

Yes   No    Yes    No    Yes   Yes  Yes   No    No    No

No    No     No     No     No    No    No   No    No    No

Examples                                      L1 L2 L3   L4    L5    L6   L7   L8   L9  L10

Figure 3.4: Committee Votes

The committee votes are used in deciding the next example to label, and

they are also necessary for determining the classification of an example. Each

learner votes on all candidate mappings. Those mappings where the majority

of the learners vote yes are considered mapped otherwise they are not mapped.

These classifications of the examples are then given as input to the transformation

weight learner.

Both the mapping-rule learner and the transformation weight learner influ-

ence the decision on choosing the next example to be labeled by the user. The

mapping-rule learner contributes the committee votes on each example, and the

transformation weight learner provides the new ranking of the examples based

on their total object similarity scores. Using the mapping-rule learner criteria

allows for the example with the most information gain to be chosen, yet there

are cases where the committee disagrees the most on several examples.
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Figure 3.5 shows the order in which four different criteria can be applied in

order to select one example from the set of candidate mappings. Because there

are so few positive examples in the dataset the system prefers to increase the

likelihood of choosing positive examples.

Select Highly Ranked Examples The first step is for the system to select

out a small set of high quality examples from the complete set of examples

computed by the candidate generator. This is accomplished by enforcing an

at-most-one relationship on the set of mappings. This problem of finding an

at-most-one mapping that maximizes the total mapping assignment can be

viewed as a weighted bipartite matching assignment problem (Figure 3.6),

where the total object similarity scores of each of the candidate mappings

serve as weights. The learner can solve this problem using a technique

called the Hungarian method [70].

Disagreement of Committee Votes The disagreement of committee votes,

as described previously (Figure 3.4), is considered for each mapping of the

set computed in step 1. The examples are ranked according to the disagree-

ment of the committee votes. If there is only one example with the highest

level of disagreement than that example is chosen for the user to label.

Dissimilarity to Previous Queries If there are a set of examples with the

same disagreement on the committee votes then in order to reduce this
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Select Highly Ranked Examples

Disagreement of Committee Votes

Label

Choosing Next Example

Dissimilarity to Previous Queries

Highest Ranked Example

Label Example

USER

((A3 B2,   (s1 s2 sk), W3 2, matched)
(A45 B12 , (s1 s2 sk),W45 12)...)

(Object pairs, Similarity Scores, Total Scores, User Labels)

(Similarity Scores, Total Scores, Committee Votes, User Labels)
((A3 B2,   (s1 s2 sk), W3 2, (y,n,y,n,n,n,y,y,y,y) ),matched)
(A45 B12 , (s1 s2 sk),W45 12 ,,(y,n,n,y,n,n,y,y,n,n))...)

Figure 3.5: Choosing Next Example

set we examine these examples to choose the example that is most unlike

or dissimilar to previous examples labeled by the user. The learner de-

termines dissimilarity by applying the Autoclass clustering system to the
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(Name,      Street,            Phone)
(Art’s Deli, 1745 Ventura Boulevard, 756-4124)
(Citrus,       267 Citrus Ave.,              879-4523)
(Spago,       456 Sunset Bl.,                874-7687) 
( Zname,       Zstreet,  Zphone )
.
.
.
(      not in source         )

.

Zagat’s Dept of Health

(Name,           Street,        Phone) 
(Art’s Delicatessen, 12224 Ventura Blvd,755-4100)
(Ca’ Brea,              6743 La Brea Ave.,    879-4523)
(Patina,               342 Melrose Ave.,          874-6787)
( Dname,             Dstreet,  Dphone )
.
.
.
(        not in source         )

.
Wn2

W1

Figure 3.6: Object Identification as Weighted Bipartite Graph

initial candidate mappings. Similar examples will be in the same cluster,

so the system keeps track of the clusters that previous labeled examples are

in, in order to choose an example which is not in one of those clusters.

Highest Ranked Example If there are set of examples with the same dissim-

ilarity, (i.e. from the same cluster) then they are ranked according to their

total object similarity score. The highest ranked example is chosen from

the set. Again, since there are a sparse number of positive examples in the

set of candidate mappings, we would like to increase the chances of choosing

a positive example for the committee to learn from.

Once an example is chosen, the user is asked to label the example. If it

is known that there is an at-most-one relationship between the objects, then

for each example positively labeled by the user the system automatically labels

the remaining unlabeled examples containing the mapped objects as negative

56



examples. After the user labels the query example, the learner updates the

committee and learns new mapping rules in order to reclassify the examples.

This learning process is repeated until either all learners in the committee

converge to the same decision tree or the user threshold for labeling examples

has been reached. When learning has ended, the mapping-rule learner outputs

a majority-vote classifier that can be used to classify the remaining pairs as

mapped or not mapped. At this point if it is known that there is an at-most-

one relationship between the objects, then this relationship can be enforced in

the remaining mappings positively classified. Because this problem of mapping

two sets of objects can be viewed as a weighted bipartite matching assignment

(Figure 3.6) problem the system uses the Hungarian method to find the maximal

total matching assignment. After the total mapping assignment is complete, new

information sources (mapping tables) can be created for use by an information

mediator.

3.2 Transformation Weight Learning

The purpose of optimizing the transformation weights is to reduce the number of

labeled examples needed by the system to achieve high accuracy mapping. The

transformation weight learner must learn how to increase the similarity scores

for the correct mappings, while decreasing the scores for the incorrect mappings.
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Having the correct mapping scores higher than the incorrect mapping scores will

allow the mapping-rule learner to construct higher accuracy decision trees with

fewer labeled examples.

(Similarity Scores, Total Scores, Committee Votes, User Labels)
((A3 B2,   (s1 s2 sk), W3 2, (y,n,y,n,n,n,y,y,y,y) ),matched)
(A45 B12 , (s1 s2 sk),W45 12 ,,(y,n,n,y,n,n,y,y,n,n))...)

Compute Attribute 
Similarity Scores

Transformation Weight Learner

((A3 B2 ((T1,T4),(T3,T1,Tn),(T4)))
(A45 B12 , ((T2,),(T3,,Tn),(T1 

T8)))...)

Transformations(Committee Votes, User Labels)
((A3 B2,(y,n,y,n,n,n,y,y,y,y),matched)
(A45 B12,,(y,n,n,y,n,n,y,y,n,n))
…)

Recalculate Transformation
Weights

Figure 3.7: Transformation-Weight Learner
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Given as input to the transformation weight learner are the mapping-rule

learner’s classifications of the examples or committee votes and the set of applied

transformations for each example collected by the candidate generator. With

this input the transformation weight learner first calculates the transformation

weights for each transformation and then uses these new probability scores to

recalculate the attribute similarity scores for each example. Once all of the at-

tribute similarity scores are calculated for every attribute, the examples are then

ranked according to their total object similarity scores.

3.2.1 Calculating Transformation Weights

The method for calculating the new transformation weights takes into consider-

ation the classifications of both the user-labeled and unlabeled examples. The

transformation weights measure the likelihood that a given transformation, like

“Equality” or “Acronym,” participates in a correct mapping between two objects.

Tabel 3.2.1 shows the example input to the transformation weight learner from

the mapping-rule learner.

Restaurant Mappings Label Labeled by
(“Carnegie Deli”,“Trattoria Dell’Arte”) No Learner

(“Art’s Delicatessen”,“Art’s Deli”) Yes Learner
(“Spago”,“Spago (Los Angeles)”) No Learner

(“California Pizza Kitchen”,“CPK”) Yes User
(“Jan’s Restaurant”,“Joe’s Restaurant”) No Learner

Table 3.2: Candidate Mappings with Classifications

59



Because initially it is not known which transformations are appropriate for the

application domain, the initial attribute similarity scores determined by the can-

didate generator do not accurately represent the true similarity between all of the

objects. Therefore, due to the inaccuracy of the initial attribute similarity scores,

there is some error in the mapping rules and the classifications of the examples

by the mapping-rule learner. While there are some misclassifications of the unla-

beled data, they still help to increase the accuracy of the transformation weights.

Using an active learning approach reduces the number of user-labeled data, so

there are sparse number of labeled examples to learn the correct transformation

weights from.

The unlabeled data augments the information about transformations known

from the labeled examples. Yet, because there are misclassifications on the unla-

beled examples they should not have the same impact on the computation of the

transformation weights as the labeled examples, as discussed in previous work on

combining labeled and unlabeled examples [68]. In order for the labeled examples

to have greater importance than the unlabeled ones, the population of the labeled

examples is increased by adding α duplicates of each of the labeled examples to

the set of training data.

Given the classifications of the examples the transformation weights can be

tailored to the application domain. The likelihood that the transformation t
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will participate in a mapping Äm between two objects can be estimated using the

following formula:

p(m | ti) =
positive classifications with transformationi

total number of transformationi

p(m | ti) is calculated for each of the general transformations detailed in Chap-

ter 2, i.e. Equality, Acronym, etc. Therefore, the instantiated transformations,

like (Equality “Art” “Art”) and (Equality “s” “s”), of the general transforma-

tion Equality will have the same transformation weight, and the classifications of

mappings which use these instantiated transformations will contribute to the cal-

culation of the transformation weight of the general transformation, i.e. Equality.

Once all of the transformation weights have been calculated then the attributes

similarity scores are computed.

3.2.2 Re-computing Attribute Similarity scores

To determine the attribute similarity scores for each candidate mapping, first the

product of the probabilities of the applied transformations is computed, and then

normalized.

AttributeSimilarityScore(A,B) =
n∏

i=1

ti

Given the set of transformations computed for the mapping by the candidate gen-

erator and the newly calculated transformation weights (Table 3.3) the attribute
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similarity score is computed and then normalized. Table 3.3 shows an example of

how the attribute similarity scores are recalculated for the candidate mapping of

“Art’s Deli” and “ Art’s Delicatessen.” The computing of the attribute similarity

scores is repeated for each attributes.

Example:
Mapping: “Art’s Deli” and “ Art’s Delicatessen”

Transformation p(m | t) ¬p(m | t)
(EQUAL ”Art” ”Art”) .9 .1

(EQUAL ”s” ”s”) .9 .1
(PREFIX ”Deli” ”Delicatessen”) .3 .7

Total mapped score m = .243
Total not mapped score n = .007

NormalizedAttributeSimilarityScore =
m

(m + n)

=
.243

(.243 + .007)

AttributeSimilarityScore = .9612

Table 3.3: Recalculating Attribute Similarity Scores

When the attribute similarity scores have been calculated then the total object

similarity scores are again computed for each candidate mapping as shown in

section 2. These candidate mappings are ranked according the new total object

similarity scores. The new scores, attribute and object similarity scores, are given

to the mapping-rule learner in order to create more accurate mapping rules. They
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play an important factor in increasing the mapping accuracy and deciding the

next example to be labeled.
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Chapter 4

EXPERIMENTAL RESULTS

In this section we present the experimental results that we have obtained from

running Active Atlas across three different application domains: Restaurants,

Companies and Airports. Three different variations of Active Atlas have been

created to compare against the full version of Active Atlas across all three do-

mains. The first variation does not perform transformation weight learning, while

the second does not use the dissimilarity of examples to previous queries to assist

in choosing examples for the user to label. The third variation of Active Atlas

does not enforce the at-most-one relationship on the mapping assignment.
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We have included results from two baseline experiments as well. For each

domain, we ran experiments for a system called Passive Atlas. The Passive Atlas

system includes the candidate generator for proposing candidate mappings and

a single C4.5 decision tree learner for learning the mapping rules. The second

baseline experiment runs the candidate generator only and requires the user to

review the ranked list of candidate mappings to choose an optimal mapping

threshold. In this experiment only the stemming transformation is used, which

is similar to an information retrieval system, such as Whirl [22]. We will refer to

this experiment as the IR system.

Once the transformation weights and mapping rules have been tailored to a

specific application domain we would like to be able to reuse this learned in-

formation in order to classify the mappings of new objects. This would avoid

the expense of rerunning Active Atlas to learn to classify the new objects. The

last set of experiments measure the accuracy of learned weights and rules on

classifying new objects for each of the domains.

4.1 Restaurant Domain

For the restaurant domain, the shared object attributes are Name, Street, and

Phone. Many of the data objects in this domain match almost exactly on all

attributes, but there are types of examples that do not, as shown in Figure 1.1.
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Because of these four types of examples, the system learns two mapping rules:

if the restaurants match highly on the Name & Street or on the Name &

Phone attributes then the objects should be mapped together. The example

“Art’s Deli” is an example of the first type of mapping rule because its Name

and Street attribute values match highly. The “Les Celebrites” example is an

example of the second type of mapping rule, because its Name and Phone

attribute values match highly. These two mapping rules are used to classify all

of the candidate mappings. Any candidate mapping that fulfills the conditions

of these rules, will be mapped. Because in our application we are looking for

the correct health rating of a specific restaurant, examples matching only on the

Name attribute, like the “Teresa’s” example, or only on the Street or Phone

attribute, like “Steakhouse The” are not considered mapped.

4.1.1 Experimental Results

In this domain the Zagat’s website has 331 objects and the Dept of Health has 533

objects. There are 112 correct mappings between the two sites. When running

the IR system experiment, the system returns a ranked set of all the candidate

mappings. The user must scan the mappings and decide on the mapping thresh-

old or cutoff point in the returned ranked list. Every candidate mapping above

the threshold is classified as mapped and every candidate mapping below the

66



threshold is not mapped. The optimal mapping threshold has the highest ac-

curacy. Accuracy is measured as the total number of correct classifications of

the candidate mappings divided by the sum of the total number of candidate

mappings and the number of true object mappings not proposed. This method

is comparable to the Whirl system [19].

Listed in the following table is the accuracy information at specific thresholds

for the IR system experiment (Figure 4.1). The mapping threshold with the

highest accuracy is highlighted. In Figure 4.1 the optimal mapping threshold

is at rank 111 in the list, and therefore, the top 111 examples in the list are

considered mapped together. The table shows that at this optimal threshold,

only 109 examples of the 111 are correct mappings, 3 true examples have been

missed and 2 false examples have been included; therefore, 5 examples in total are

incorrectly classified. In this domain application, a threshold can not be chosen

to achieve perfect accuracy. In general, selecting the optimal threshold to obtain

the highest possible accuracy is an unsolved problem.

111

# of Ranked
Examples

#  of  Correct 
Mappings

# of Missed 
Mappings

# of False 
Mappings

Accuracy

70 70 42 0 0.9873

92 91 21 1 0.9934

109 3 2 0.9985

116 110 2 6 0.9976

119 111 1 8 0.9973

128 112 0 16 0.9952

Figure 4.1: IR System Results
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We compared the accuracy of the IR system results against the accuracy of

the two learning systems. The purpose of the Passive Atlas experiments are to

show that learning the mapping rules can achieve higher accuracy than the IR

system experiment, while also demonstrating that Active Atlas can achieve the

higher accuracy with fewer labeled examples. The goal of both learning systems

is to deduce more information about how the objects match in order to increase

the accuracy of the total mapping assignment. The results of these experiments

are shown in Figure 4.2.
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Figure 4.2: Restaurant Domain Experimental Results
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The accuracy results from the three types of experiments are shown in relation

to the number of examples that were labeled. For the two learning systems the

results have been averaged over 10 runs, and the learners classified 3310 candidate

mappings proposed by the candidate generator. Figure 4.2 shows that learning

the mapping rules increases the accuracy of the mapping assignment. In the

Active Atlas experiments, the system achieved 100% accuracy at 45 examples,

while Passive Atlas surpassed the IR system results at 1594 and reached 100%

accuracy at 2319 examples. The graph also shows that Active Atlas requires

fewer labeled examples than Passive Atlas.

The active learner is able to outperform the passive learner because it is able

to choose examples that give it the most information about the domain and guide

the learning process. The passive learner chooses examples in a random manner,

independent of the actual data. Because these domains have a sparse number of

positive (mapped) examples, on the order of 1% of the data, it is harder for the

passive learner to randomly choose positive examples that lead to high accuracy

mapping rules; and therefore, it requires more examples.

Another factor in the dramatic improvement of Active Atlas over the these

two baseline experiments is transformation weight learning. The same set of

general transformations is applied in every application domain and for every at-

tribute. These transformations can suggest possible relationships between tokens,

e.g. (Abbreviation “Deli”, “Delicatessen”) or between phrases, e.g. (Acronym
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“California Pizza Kitchen”, “CPK”), but these relationships may not accurately

represent the true relationship between the tokens. Therefore, the initial attribute

similarity scores calculated by the candidate generator may inaccurately reflect

the similarity of the attribute values. The two baseline approaches must classify

examples with inaccurate similarity scores, while Active Atlas can learn to adjust

the similarity scores to more accurately capture the true similarity between the

attribute values.

Figure 4.3 presents the results of the variations of Active Atlas. There are

four experimental results shown in the figure: Active Atlas as shown in Fig-

ure 4.2, Active Atlas without the transformation weight learning, Active Atlas

without dissimilarity for choosing the next example, and Active Atlas without

enforcing the at-most-one relationship between the objects. For all Active Atlas

experiments there were 10 learners on the committee and 20 user-labeled initial

training examples chosen by the system to optimize the transformation weight

learning.

The full Active Atlas system achieves 100% accuracy using the fewest number

of examples (45). Active Active Atlas without dissimilarity achieves 100% accu-

racy with 192 examples. Using the dissimilarity of examples to previous queries

has more influence in the Airport domain. Atlas without the transformation

weight learning takes 289 examples to achieve 100% accuracy. In the Restau-

rant domain there are fewer text inconsistencies than the other two domains,
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Figure 4.3: Restaurant Domain Active Atlas Results

and therefore, there are fewer types of transformations applied by the candidate

generator. This makes learning the transformation weights possible with fewer

examples.

Also, in this domain when the clustering algorithm is applied to the examples

to determine their similarity, the majority of positive examples are contained in

one cluster, meaning that majority of positive examples are similar to each other.

The main advantage of using dissimilarity is to catch the unusual examples that

might not have high total object similarity scores and that are contained in a

variety of clusters.
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Active Atlas without enforcing the at-most-one relationship achieves 100%

accuracy at 343 examples. It initially has difficulty classifying the examples as

shown in Figure 4.3, where it took 45 examples to achieve accuracy comparable

to the other versions of Active Atlas (i.e., greater than .98). This is because

without the at-most-one enforcement the initial training set chosen to optimize

the transformation weight learning consists almost completely of positive exam-

ples. With the at-most-one enforcement for each positive example labeled by the

user all other examples which proposed between either of the mapped objects

will be labeled as a negative examples by the system. Therefore, the committee

of learners would be initialized with a large number of negative examples as well

and the transformation weights can be more accurately computed. The initial

examples impacts this domain more than the other two domains again because

there are only a few types of transformations applied in this domain.

4.2 Company Domain

In the company domain there are two websites, HooversWeb and IonTech, which

both contain information on companies (Name, Url and Description). This

domain was provided by William Cohen [19]. In this domain the Url attribute

is usually a very good indicator for companies to match on, e.g. “Soundworks”

(Figure 4.4). There are examples where the Name matches very well, but the
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Url is not an exact match (“Cheyenne Software”); or, where the Url matches

exactly, but the names are not matched at all (“Alpharel” & “Altris Software”).

Atlas, therefore, learns the thresholds on the combination of the attributes Name

and Url, where one attribute needs to be highly matched and the other partially

matched in order for there to be a mapping between the objects.

Name Url Description

Soundworks, www.sdw.com ,    Stereos

Cheyenne Software,www.chey.com, Software

Alpharel,       www.alpharel.com,  Computers

Name Url Description

Soudworks,          www.sdw.com,  AV  Equipment 

Cheyenne Software,www.cheyenne.com,  Software

Altris Software,     www.alpharel.com,  Software 

HooversWeb IonTech

Figure 4.4: Company Domain Examples

4.2.1 Experimental Results

In this domain HooversWeb has 1163 objects and the IonTech site has 957 objects.

There are 294 correct mappings between the sites. The results for the IR system

case are shown in Figure 4.5. The optimal threshold is at rank 282, where 20

examples are incorrectly classified and 5% of the object mappings are missing.
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282

Ranked 
Examples

Correct 
Mappings

Missed 
Mappings

False 
Mappings

Accuracy

50 50 244 0 0.9829

223 222 72 1 0.9949

278 16 4 0.9986

396 287 7 82 0.9938

4236 294 0 3942 0.7244

Figure 4.5: IR System Results

Figure 4.6 shows the results for the learning experiments. For these experi-

ments in the company domain, the candidate generator proposed 14303 candi-

date mappings, and the results have been averaged over 10 runs. Similar to the

Restaurant domain, Figure 4.6 shows that learning the mapping rules increases

the accuracy of the mapping assignment. Active Atlas achieves higher accu-

racy than the IR system experiments immediately (at 7120 examples for Passive

Atlas). The graph clearly demonstrates that the active learner requires fewer

labeled examples than Passive Atlas, as well as demonstrating the effect of the

inaccuracies of the initial attribute similarity scores on being able to classify the

mappings.

The transformations have more influence in this domain. The transformations

are able to resolve the spelling mistake between “Soundworks” and “Soudworks”

(Figure 4.4) using the Soundex transformation, which made the difference in it be-

ing mapped or unmapped. In the Active Atlas experiments, the system achieved
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Figure 4.6: Company Domain Experimental Results

100% accuracy at 95 examples (Figure 4.7). Active Atlas without the transfor-

mation weight learning takes the most examples to achieve 100% accuracy. Using

the dissimilarity of the examples has more impact in this domain. The variation

of Active Atlas which did not use dissimilarity achieved 100% accuracy at 142

examples. Without using dissimilarity to assist in choosing examples the system

labels more examples in order to choose examples that the committee disagrees

equally on, but have lower total object similarity scores.
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Figure 4.7: Company Domain Active Atlas Results

4.3 Airport/Weather Domain

We have a list of 428 airports in the United States and a list of over 12,000

weather stations in the world. In order to determine the weather at each airport,

we would like to map each airport with its weather station. The airports and the

weather stations share two attributes (Code and Location). The airport code

is a three letter code (e.g., ADQ), and the weather station code is a four letter

code (e.g., PADQ). In the majority of examples the airport code is the last three

letters of the weather station code, like the “Kodiak” example in Figure 4.8.
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Code             Location     

PADQ,           KODIAK,                     AK

KIGC, CHARLESTON AFB    SC   

KCHS, CHARLESTOWN  MUNI   SC

Code             Location 

ADQ,                Kodiak,    AK    USA 

CHS, Charleston   SC    USA

Weather Stations Airports

Figure 4.8: Airport/Weather Domain examples

4.3.1 Experimental Results

The results in this domain for the IR system at the selected threshold are shown

in Figure 4.9. The optimal threshold is set at rank 438, where 220 examples are

incorrectly classified and 24% of the object mappings are missing.

438

Ranked 
Examples

Correct 
Mappings

Missed 
Mappings

False 
Mappings

Accuracy

19 19 399 0 0.9767

355 276 142 79 0.9870

318 100 120 0.9871

479 331 87 148 0.9852

1667 400 18 1267 0.9249

Figure 4.9: IR System Results

In this domain the set of transformations plays a larger role in increasing the

accuracy of the object mappings, as clearly shown by the IR system results. The
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main reason for the lower accuracy of the experiments with stemming is because

the IR system is not able to recognize that the airport code is a substring of

the weather code for the Code attribute. It, therefore, only uses the Location

attribute to match objects, so it makes mistakes, like mapping the “KIGC” and

“CHS” objects. There are 18 object mappings that were not proposed by the

candidate generator because it did not have the necessary transformations.

Like the other domains, Figure 4.10 shows that learning the mapping rules

increases the accuracy of the mapping assignment. Active Atlas achieves 100%

accuracy at 294 examples, and Passive Atlas achieves higher accuracy than the

IR system results after only 80 examples.
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Figure 4.10: Airport/Weather Domain Experimental Results
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Figure 4.11 presents the Active Atlas experiments. The dissimilarity of exam-

ples and the at-most-one relationship features have more impact on the systems

accuracy in this domain. The majority of positive examples match highly on the

Code attribute, yet approximately 25% of the positive examples do not match

on the Code attribute or have missing Code attribute values. These positive

examples would have attribute similarity code similar to the negative example

“KIGC” and “CHS” in Figure 4.8. Using dissimilarity of examples assists in find-

ing these unusual positive examples, while enforcing a at-most-one relationship

reduces the negative examples, like “KIGC” and “CHS.”
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Figure 4.11: Airport/Weather Active Atlas Results
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4.4 Applying Learned Weights and Rules

to New Sources

Once the transformation weights and mapping rules have been tailored to a spe-

cific application domain we would like to be able to reuse this learned information

in order to classify the mappings of new objects. There are two specific cases of

information integration in which applying learned weights and rules would be de-

sired. The first case is when the information sources (e.g., Zagat’s and the Health

Dept) for which the weights and rules were learned are updated with new ob-

jects, i.e. restaurants, and the second case is when a new information source with

a similar domain is to be integrated into the application, such as the CuisineNet

website which lists restaurants.

Being able to reuse the learned weights and rules to achieve high accuracy

mapping of unseen objects would avoid the cost of rerunning Active Atlas to

learn to classify the new objects. In order to measure how well weights and rules

learned by Active Atlas classify unseen data, we performed a set of 5-fold cross-

validation experiments for all three domains (Table 4.1). For each domain the

set of training examples was partitioned into five sets. Active Atlas was trained

on four sets of examples and tested on the fifth unseen set of examples. This was

repeated so that each subset of examples was used as a test set.
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Total Number Number of Average
Domain of Examples Test Examples Accuracy

Restaurant 3310 662 .9968
Company 14303 2861 .9980
Airport 17120 3624 .9951

Table 4.1: Accuracy of Learned Weights and Rules on Unseen Data

Table 4.1 shows the results of these experiments averaged over 5 complete

runs for each domain. The experimental results demonstrate that applying the

learned weights and rules to unseen data from a similar domain can achieve high

accuracy mapping of objects.
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Chapter 5

RELATED WORK

Previous work on object identification has either employed manual methods to

customize rules for each domain or has required the user to apply a fixed threshold

to determine which objects are considered mapped together. These systems gen-

erally require heavy user interaction in order to achieve high accuracy mapping.

None of the previous work apply general domain-independent transformations

that are then adjusted to fit the specific application domain. The main advan-

tage of our system is that it can, with high accuracy, learn to simultaneously
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tailor mapping rules and transformations to a specific domain, while limiting

user involvement.

The object identification problem occurs as a part of larger application areas,

such as multi-source integration, automatic domain modeling, and data ware-

housing. There are four solution approaches that included the problem of object

identification (Figure 5.1): databases, information retrieval, sensor fusion, and

record linkage.

Databases

Solution Approaches

Object Identification

Multi-Source
Integration

Data
Warehousing

Application Areas

Sensor
Fusion

Record
Linkage

Automatic
Domain Modeling

Information
Retrieval

Figure 5.1: Related work graph
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5.1 Application Areas

Research in multi-source integration [86] is concerned with dynamically and effi-

ciently accessing, retrieving and integrating information from multiple informa-

tion sources. The problem of object identification can appear when integrating

information from sources that use different formatting conventions [6, 36, 81].

General information integration systems, like Pegasus [2], TSIMMIS [33], In-

fomaster [34], InfoSleuth [7], COIN [13], and Information Manifold [54], were

developed to manage objects from multiple information sources, but they do not

offer a general method to determine the mapping of objects which contain text

formatting differences. There are a few general systems [72, 71, 91, 48, 26] that

allow for user-defined domain-specific functions to determine how to map objects

with formatting differences.

Current work on the problem of automatic domain modeling or schema inte-

gration [24, 25, 55, 63, 79] focuses on generating a global model of the domain

for single, as well as multiple information sources. Domain models contain infor-

mation about the relationships in the data. To create an abstract model or set

of classification rules, these domain modeling tools compare the data objects in

the sources using statistical measurements. When the information sources con-

tain text formatting differences, these tools are not able to generate the correct

domain model because the data objects cannot be mapped properly. The text
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formatting differences must be resolved before using the domain modeling tools or

capabilities to handle these formatting differences. In this context the objection

identification problem can be considered a data cleaning technique [27].

Data warehousing creates a repository of data retrieved and integrated from

multiple information sources given a common domain model or global schema.

Research on data warehousing concentrates on efficient methods to merge and

maintain the data [38, 83, 14, 15]. When merging the data from the target

information sources, problems can occur if there are errors and inconsistencies

in the data. To improve the integrity of the data warehouse, the data can be

first filtered or cleaned before the repository is created [84]. Object identification

techniques can be applied here to assist in cleaning the data [32].

5.2 Solution Approaches

The following solution approaches for object identification were developed by the

database, information retrieval and statistical communities.

5.2.1 Databases

In the database community the problem of object identification is also known as

the merge/purge problem, a form of data cleaning. Domain-specific techniques

for correcting format inconsistencies [17, 9, 10, 37, 51, 75] have been applied by
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many object identification systems to measure text similarity [32, 31, 41, 39, 40,

46, 90]. The main concern with domain specific transformation rules is that it is

very expensive, in terms of user involvement, to generate a set of comprehensive

rules that are specific not only to the domain, but also to the data in the two

information sources that are being integrated.

There are also approaches [66, 65, 64, 73, 74] that use a single very general

transformation function, like edit distance, to address the format inconsistencies.

In our research we show that having a single general transformation function is

not flexible enough to optimize the mappings across several domains. The same

format inconsistencies can occur in many different domains, but they may not be

appropriate or correct for all of those domains.

Recent work by Hernandez and Stolfo [41, 39, 40], Lu et al [53, 60, 61], Chat-

terjee and Segev [16], and Pu [77] have used mapping rules or templates to deter-

mine mapped objects, but these rules are hand tailored to each specific domain

or limited to only the primary key. Work conducted by Pinheiro and Sun [73, 74]

and Ganesh et al [32, 31] used supervised learning techniques to learn which

combinations of attributes are important to generate a mapping. Both of these

techniques assume that most objects in the data have at least one duplicate or

matching object. They also require that the user provides positive examples of

mapped objects, and in some cases the user labels as much as 50% of the data.
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These techniques are most similar to the passive Atlas system, because they

require either that the user choose the examples or they are randomly selected.

Another form of object identification focuses on comparing objects using at-

tribute value conflict resolution rules [48, 59, 57, 56, 58, 85, 14, 15]. These rules

do not judge attributes by their textual similarities, but by knowledge that they

contain about how to compare attribute values when there is a conflict. For ex-

ample, an object from one source may have the attribute Age, which holds the

value for the age of a person, and an object from the other source may have the

attribute BirthDate, which holds the value for the person’s birthday. If there

was an attribute value conflict resolution rule that could convert the BirthDate

to Age, then the attribute values could be compared. This type of domain-

specific data translation rule would be helpful for object identification, but is not

the focus of our work. In our system a user-defined transformation function must

be added for the two attributes BirthDate and Age to be correctly compared.

5.2.2 Information Retrieval

The problem of object identification has also appeared in the information re-

trieval community [80, 69]. When determining relevant documents to satisfy a

user’s query, words or tokens from the documents are compared. If there are

text formatting differences in the documents, then relevant documents can be

87



missed. Closely related work on the Whirl object identification system by Co-

hen [20, 21, 18, 19, 23] views data objects from information sources as short

documents. In this work the object mappings are determined by using the in-

formation retrieval vector space model to perform similarity joins on the shared

attributes. A single transformation Stemming [76] is the only transformation used

to calculate similarity between strings; therefore, in Figure 2.4 “CPK” would not

match “California Pizza Kitchen.” The similarity scores from each of the shared

attributes are multiplied together in order to calculate the total similarity score

of a possible mapping. This requires that objects must match well on all at-

tributes. The total similarity scores are then ranked and the user is required to

set a threshold determining the set of mappings. To set the threshold the user

scans the ranked set of objects [19, page 9]. Setting a threshold to obtain optimal

accuracy is not always a straightforward task for the user.

Work by Huffman and Steier [45, 44] on integrating information sources for

an information retrieval system, uses domain-specific normalization techniques

to convert data objects into a standard form for performing the mapping. This

work involves maintaining a dictionary of domain-specific normalizations to apply

when appropriate.

The Citeseer project [11, 35, 52] is a web-based information agent that finds

relevant and similar papers and articles, where similarity is based on the set of

citations listed in the articles. In order to determine identical citations, CiteSeer
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first uses citation-normalization techniques to standardize article citations. The

Identical Citation Grouping (ICG) method is then applied to group the identical

citations. CiteSeer performs this method on the entire collection of citations, so

that the similarity between the papers can be pre-computed. The ICG method

focuses on addressing the addition and omission of words from the citations when

measuring their similarity. Therefore, this method uses only one type of text

transformation, i.e. ”Equality,” to compare the words and phrase of the citations.

Work conducted by McCallum et al [62] used a two step process of applying

transformations in their approach to performing object identification on citations.

Similar to our method in that they first apply less computationally expensive

transformations to determine the initial set of mappings and then apply the

more expensive transformation, edit distance, to compute the similarity metric

between the objects. This requires the user to manually set the transformation

weights for each new domain application.

5.2.3 Sensor Fusion

Related work conducted by Huang and Russell [42, 43] on mapping objects across

information sources uses a probabilistic appearance model. Their approach also

compares the objects based on all of the shared attributes. To determine similar-

ity between two objects, they calculate the probability that given one object it
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will appear like the second object in the other relation. Calculating these proba-

bilities requires a training set of correctly paired objects (like the objects in the

Figure 2.1). Unfortunately, appearance probabilities will not be helpful for an

attribute with a unique set of objects, like restaurant Name. Since “Art’s Deli”

only occurs once in the set of objects, knowing that it appears like “Art’s Deli-

catessen” does not help in mapping any other objects, like “CPK” and “California

Pizza Kitchen.”

In our approach we use a general set of transformations to handle this problem.

The transformations are able to compare the textual similarity of two attribute

values independent of other attribute value matches. If the transformation exists

between the two attribute values, e.g. (Abbreviation - “Deli” “Delicatessen”),

then it has a transformation weight associated with it. Because transformation

weights should reflect the importance of the transformation for the matching of

the attribute values, Active Atlas learns to adjust these weights to fit the specific

domain.

5.2.4 Record Linkage

Probabilistic models of the data are also used within the record linkage commu-

nity [3, 28, 47, 67, 89, 87]. Work in the record linkage community grew from

the need to integrate government census data; therefore, they have developed

domain-specific transformations for handling names and addresses. In a record

90



linkage system, the user is required to make several initial passes reviewing the

data in order to improve and verify the accuracy of the transformations. Once the

user is satisfied with the accuracy of the transformations, “blocking” attributes

are chosen. Choosing blocking attributes is a way to reduce the set of candidate

mappings by only including the pairs that match on the chosen attributes. The

EM algorithm is then applied to learn the attribute weightings and classify the

candidate mappings into one of three classes: mapped, not mapped, or to be

reviewed by the user.

The main problem that the record linkage community [88, 47] found with the

use of the EM algorithm is that because it is an unsupervised learning technique it

may not divide the data into the desired classes. This problem does not occur with

our approach because we incorporate the user’s input into the learning process, as

opposed to after the learning has completed. Another key difference between this

approach and ours is that Active Atlas begins with set of domain-independent

transformations and learns to tailor them to the specific domain, while the record

linkage approach uses a set of static domain-specific transformations.
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Chapter 6

CONCLUSIONS

For handling the problem of object identification there are two types of knowledge

necessary: (1) the importance of the different attributes for deciding a mapping,

and (2) the text formatting differences or transformations that may be relevant

to the application domain. It is very expensive, in terms of the user’s time, to

manually encode these types of knowledge for an object identification system.

Also, due to errors that can occur in the data, a user may not be able to provide

comprehensive information without thoroughly reviewing the data in all sources.
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We have adopted a general domain-independent approach for incorporating

the user’s knowledge into the object identification system. The Active Atlas sys-

tem employs an object identification method that learns the mapping information

necessary to properly integrate web sources with high accuracy. To achieve high

accuracy object identification Active Atlas simultaneously learns to tailor both

domain-independent transformations and mapping rules to a specific application

domain through limited user input.

As shown in Figure 1.8, there are two stages in this method, computing the

attribute similarity scores and learning objection identification rules and trans-

formations to properly map the objects between the sources. In the first stage the

candidate generator employs several information retrieval techniques to apply a

general set of domain-independent transformations to the datasets. It uses these

transformations to propose the set of possible mappings between the two sets of

objects by comparing the attribute values and compute the similarity scores for

the proposed mappings.

In the next stage the mapping learner determines which of the proposed map-

pings are correct. The mapping learner learns to tailor the appropriate mapping

rules and transformations to the application domain. The mapping-rule learner

computes which attributes or combination of attributes are appropriate for the

specific application domain based on the attribute similarity scores and limited
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input from the user. With this information the learner can accurately classify

the proposed mappings.

Some transformations may also be more appropriate for a specific application

domain than others. This error or bias in token relationships proposed by the

transformations is not reflected in the initial attribute similarity scores calcu-

lated by the candidate generator. Therefore, in order to increase the accuracy

of the similarity scores, as well as the mapping accuracy, it is important for the

transformation weight learner to calculate domain appropriate weights for the

transformations.

The mapping learner combines both types of learning to iteratively refine

the mapping information necessary to accurately map the two sets of objects.

As shown by the experimental results Active Atlas was able to achieve 100%

accuracy while minimizing user involvement.

Some of the limitations of this work are linked to the assumptions that we have

made about the nature of the problem of object identification. We have assumed

that user would be able to give accurate labels to the example mappings chosen

as queries by the learner, but this is not always the case as described further

in the future work section. Another assumption is that the correct attribute

information would be extracted from the websites for each object. Depending on

the domain extracting the attribute information can be difficult. This is the main

reason that the CiteSeer system compares objects as a whole instead of dividing
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citations into attributes. The attributes of citations may not appear in the same

order nor are the delimiters between attributes standard.

Other limitations of our system is that it requires the user to align the at-

tributes that are to be compared. Future work on automatically aligning the

attributes is needed. The problem of granularity can occur in a variety of do-

mains. A few examples from the restaurant domain are that some restaurants

would list there cuisine type as “Asian” while another would list “Japanese” or

the city would be “Hollywood” while others would list it as “Los Angeles.” The

attribute values being compared do not share textual similarity and have different

levels of granularity. A method to partially address this issue is described below.

6.1 Future Work

There are several avenues and issues for future work. Three of the more immediate

issues that we are planning to address are: Noise or error in the labels provided

by the user, learning domain-specific transformations weights, and learning to

generate new transformations.

6.1.1 Noise in User Labels

When the user is asked for input by the mapping-rule learner the system, the

user is presented with a single mapping of two objects. The user then labels the
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example as mapped or not mapped. Upon being presented with the following

query the user might be tempted to label it as mapped.

“Ritz-Carlton Cafe (Atlanta) 181 Peachtree 404-659-0400”

“Restaurant Ritz-Carlton Atlanta 181 Peachtree St. 404/659-0400”

Yet, the following example is the correct mapping for the objects for which

the user may not ever be asked to label.

“Ritz-Carlton Restaurant 181 Peachtree St. 404-659-0400”

“Restaurant Ritz-Carlton Atlanta 181 Peachtree St. 404/659-0400”

In the company domain there are these two examples for the company “Gen-

sym” which may cause some error on the part of the user:

Example pair 1:

“Gensym Corporation

http://www.gensym.com Computers/miscellaneous software”

“GENSYM CORP

http://www.gensym.com Software -Industrial-Scientific-Govt”
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Example pair 2:

“Gensym Corporation

http://www.gensym.com Computers/ miscellaneous software”

“GENSYM CORP

http://www.gensym.com Software - Software-Solutions”

To practically address this problem of accurately labeling examples, Active

Atlas could present the user with multiple queries to label at the same time.

This will help to increase accuracy and reduce labeling confusion. Future work

will focus on how to efficiently choose a set of queries while still minimizing user

involvement.

6.1.2 Learning Specific Transformations Weights

The two restaurant objects shown below have been mapped together by Active

Atlas. The set of transformations describing the relationship between the two

restaurant’s names is: (Equal “Katsu”,“Katsu”) and (Drop “Restaurant”). The

transformation weight learner only calculates the weights for the general trans-

formations, so that the specific transformations (Equal “Katsu”,“Katsu”) and

(Equal “Art”,“Art”) have the same transformation weight. This is because these

specific transformations will occur only once in all of the set of mappings. Due
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to the small number of labeled examples and the error in the mappings classified

by the mapping-rule learner, the transformation weights for these specific trans-

formations can not be reliably calculated.

”Restaurant Katsu 1972 N. Hillhurst Ave. 213/665-1891 Asian”

”Katsu 1972 Hillhurst Ave. 213-665-1891 Japanese”

Yet, there are some specific transformations that occur frequently in the data,

such as (Drop “Restaurant”). This specific transformation occurs several times

for positive mappings, and therefore should have a greater transformation weight

than the general transformation Drop. Future work will be needed to determine

how to choose which specific transformations weights should be calculated.

6.1.3 Learning to Generate New Transformations

In the example mapping shown above for the restaurant “Katsu,” the words

“Asian” and “Japanese” for the cuisine type do not have any general trans-

formation relating them, but they co-occur for many other positively classified

restaurant mappings. Learning a transformation that relates the cuisine types

“Asian” and “Japanese” can help in classifying new restaurant objects that may
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be added later to the website or when mapping the objects from a new informa-

tion source. The issue for future work will be to develop a method for learning

when to create these new types of transformations.

6.1.4 Long Term Issues

These are some of the long term issues that we plan to address in the future:

• Scaling: Approach currently applied to sets of examples on the order of

10,000. What are the issues for millions of examples?

• Applying Active Atlas to other types of related research problems, such

as sensor fusion, objection identification for images, or creating bilingual

corpora for machine translation

• Reconciling textual differences: Active Atlas recognizes differences and

makes mappings between objects, but each object may still contain po-

tentially conflicting information, e.g. the conflicting address information

for the restaurant “Les Celebrites” (Figure 1.1). This problem is related to

tracking objects over time. The restaurant “Les Celebrites” has changed

locations, keeping track of this restaurant over time as more sources and

information is added can help in developing a method for the system to

properly reconcile the textual differences.
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