
Int. J. Computer Applications in Technology, Vol. 13, Nos. 1/2, 2008 83

Copyright © 2008 Inderscience Enterprises Ltd.

Automated responsive web service evolution
through generative aspect-oriented component
adaptation

Xiaodong Liu*, Yankui Feng and Jon Kerridge
School of Computing,
Napier University,
Edinburgh EH10 5DT, UK
E-mail: x.liu@napier.ac.uk E-mail: y.feng@napier.ac.uk
E-mail: j.kerridge@napier.ac.uk
*Corresponding author

Abstract: When building service oriented systems, it is often the case that existing web services
do not perfectly match user requirements in target systems. To achieve smooth integration and
high reusability of web services, mechanisms to support automated evolution of web services are
highly in demand. This paper advocates achieving the above evolution by applying a highly
automated aspect-oriented adaptation approach to the underlying components of web services by
generating and then applying the adaptation aspects under designed weaving process according to
specific adaptation requirements. An expandable library of reusable adaptation aspects at multiple
abstraction levels has been developed. A prototype tool is developed to scale up the approach.

Keywords: web service evolution; web service integration; aspect-oriented programming;
aspect reuse and generative component adaptation.

Reference to this paper should be made as follows: Liu, X., Feng, Y. and Kerridge, J. (2008)
‘Automated responsive web service evolution through generative aspect-oriented component
adaptation’, Int. J. Computer Applications in Technology, Vol. 31, Nos. 1/2, pp.83–93.

Biographical notes: X. Liu received his PhD in Computer Science from De Montfort University,
UK. He is an academic member of the School of Computing, Napier University. As an active
researcher, his current research focuses on software evolution, software reuse, component-based
development and formal methods.

Y. Feng is a PhD researcher in software reuse. He received his MSc in Software Engineering
from the University of Edinburgh. He had seven years experience as a System Developer of
information systems, web-based applications and control systems prior to joining Napier.

J. Kerridge received his PhD in Computing from the University of Manchester, UK. He is an
active researcher in database systems, modelling, and software engineering. He has been the
Leader of more than 20 research projects.

1 Introduction
Currently, web services provide a model for design and
implementation of distributed applications by loosely
and dynamically linking a number of smaller web
services that can inter-operate regardless of how they are
implemented and where they are hosted. Based on web
services, Service Oriented Architecture (SOA) (Ferris and
Farrell, 2003; Kleijnen and Raju, 2003; Kreger, 2003) is the
latest evolution in distributed computing.

However, the increasing popularity of web services and
SOA imposes new challenge on the evolution of web
services due to their unique characteristics (Arsanjani, 2002;
Baldwin et al., 2002; Bennett and Xu, 2003; Litoiu, 2004;
Kajko-Mattsson and Tepczynski, 2005). The users of a web
service may distribute globally and are very diverse in their
detailed requirements. Web services are normally linked
into applications loosely and the linking is very changeable.

In reality, it is often the case that an existing web service
does not perfectly match user requirements in a target
system although it is generally qualified. All the above
factors incur frequent and imminent evolution of web
services. Multiple versions of a web services need co-exist.
To assure seamless composition and wide reusability of web
services, mechanisms to support rapid automated evolution
of web services in either functional or non-functional
aspects are highly in demand.

This paper presents an approach to achieve web
service evolution at the above level. The approach, namely a
Generative Aspect-oriented component adaptatIoN (GAIN),
is based on the successful points in a few technologies,
i.e., Aspect Oriented Programming (Mezini and Ostermann,
2005; Kiczales et al., 2001; Sullivan, 2001; Viega and Voas,
2000), Software Product Line (Batory et al., 2002;
Diaz-Herrera et al., 2000) and Generative Component

84 X. Liu, Y. Feng and J. Kerridge

Adaptation (Batory et al., 2000; Cleaveland, 1998).
In GAIN approach, web service evolution is carried out by
adapting the underlying components of web services within
an aspect-oriented component adaptation framework by
generating and then applying the adaptation aspects under
designed weaving process according to specific adaptation
requirements. The generation absorbs the variation concept
of software product line and assures the perfect suitability of
adaptation aspects for the specific adaptation requirements
of aimed reuse context. Compared with traditional AOP,
the weaving process of aspects in GAIN supports
more complicated control flow, i.e., not only sequence,
but also switches, synchronisation and multiple threads, to
make the adaptation more accurate and efficient for
components reused in more complicated environments
such as concurrent dynamic applications. To facilitate the
reusability of adaptation knowledge, an expandable library
of reusable adaptation aspects at multiple abstraction levels
has been developed. A prototype tool is developed to scale
up the approach.

The remainder of the paper is organised as follows:
Section 2 discusses the related work. Section 3 describes the
approach framework. Section 4 presents how to generate
and apply reusable adaptation aspects under the designed
weaving process. Section 5 introduces the prototype tool,
and Section 6 presents an example to demonstrate the
approach. Finally, Section 7 presents the conclusion.

2 Related work

2.1 Achieving extensibility through product-lines
and Domain-Specific Languages (DSL)

In Batory’s et al. (2002) approach, system extensibility and
understandability can be achieved through an integration of
Product-Line Architectures (PLA) and DSL technologies.
GenVoca PLA is developed to express the building
blocks as layers or refinements, whose addition or removal
simultaneously impacts the source code of multiple,
distributed programs. They extended the Java language with
a domain-specific language, to express state machines and
their refinements, and wrote their components in this
extended language.

The above work represents a working approach to
software system evolution with generative programming
and product line technology; however, the approach is very
domain specific, which may limit its applicability.

2.2 Feature analysis for service-oriented
reengineering

Chen et al. (2005) introduced an approach to supporting
service-oriented reengineering from non-service-oriented
software systems by using feature analysis. With
feature-based information, service identification and
packing processes are performed and result into a service

delegation, which integrates reusable software components
into service construction.

Instead of direct evolution of web services, the
work focused on reengineering legacy software into
service-oriented systems.

2.3 Semantically extensible schemas for web service
evolution

Wilde (2004) presented a framework for semantically
extensible schemas for Web service evolution. The basic
idea is to construct a framework which augments the almost
non-existent support for versioning of web services in the
Simple Object Access Protocol (SOAP) and the Web
Service Definition Language (WSDL). Versioning not only
covers controlled ways to deal with different version of
a service’s vocabulary, but also means to semantically
describe extensions, so that older software versions can
‘understand’ newer versions of the service vocabulary.

2.4 Superimposition
Superimposition (Bosch, 1999) is a novel black-box
adaptation technique proposed by Bosch at University of
Karlskrona/Ronneby. Software developers are able to
impose a number of predefined, but configurable types
of functionality on reusable components. The notion of
superimposition has been implemented in the Layered
Object Model (LayOM), an extensible component object
language model. The advantage of layers over traditional
wrappers is that layers are transparent and provide reuse and
customisability of adaptation behaviour.

Superimposition uses nested component adaptation
types to compose multiple adaptation behaviours for
a single component. However, due to lack of component
information, modification is limited at simple level, such as
conversion of parameters, and refinement of operations.
Moreover, with more layers of code imposed on original
code, the overhead of the adapted component increases
heavily, which degrades system efficiency.

2.5 SAGA project
Scenario-based dynamic component Adaptation and
GenerAtion (SAGA) (Liu et al., 2005; Wang et al.,
2004) at Napier University developed a deep level
component adaptation approach with little code overhead
through XML-based component specification, interrelated
adaptation scenarios and corresponding component
adaptation and generation.

SAGA project focused on mainly generative component
adaptation at binary code level, i.e., the adapted part
of the component will be generated as new blocks of binary
code and these blocks will then be composed with
other unchanged blocks of code to form a new adapted
component. However, automation is a challenge in SAGA
approach because it is always complex to generate blocks of
code according to scenarios and original component code.

 Automated responsive web service evolution through generative aspect-oriented component adaptation 85

To reach high automation, a large set of adaptation rules and
domain knowledge has to be developed to support the
process, and probably the application domains has to be
restricted as well.

2.6 Aspectual component
To achieve reusable aspects, Lieberherr et al. (1999)
introduced the concept of Aspectual Components. Aspects
are specified independently as a set of abstract join points.
Using this model, an aspect is described as a set of abstract
join points which are used when an aspect is combined with
the base-modules of a software system. In this way, the
aspect-behaviour is kept separate from the core components,
even at run-time.

It distinguishes between components that enhance
and cross-cut other components and components that only
provide new behaviour. An aspectual component has
a provided and a required interface. Connectors connect the
provided and required interfaces of other components.
The connection process starts with a level-zero components
consisting of very simple class definition.

2.7 JAsCo

JAsCo (Suvee et al., 2003; Vanderperren et al., 2005)
is an aspect based research project for component based
development, in particular, the Java Beans component
model. JAsCo combines the expressive power of AspectJ
with the aspect independency idea of Aspectual Component.
The JAsCo language introduces two concepts: aspect beans
and connectors. An aspect bean is used to define aspects
independently from a specific context, which interferes with
the execution of a component by using a special kind of
inner class, called a hook. Aspect beans can be reused and
applied upon a variety of components. A connector allows
specifying precedence and combination strategies between
the aspects and components.

However, JAsCo is not suitable for specific modification
requirements since it does not provide a mechanism for
conducting users’ requirements. In addition, the way to
apply aspects on target components/systems is based on
traditional AOP process, and therefore, may result in lower
readability, maintainability and performance. Moreover, the
current implementation of JAsCo has been bounded to Java,
which limits its usability.

2.8 Summary
Although web service evolution is highly in demand,
this issue has not been addressed enough by research

communities, which are mainly focusing on direct web
service composition. Probably this situation is due to the
short history of service-oriented technology. One solution
is to apply adaptation to the underlying components of web
services with appropriate component adaptation techniques,
for example, generative aspect-oriented component
adaptation.

Some AOP based frameworks have been developed to
achieve reusable aspects. However, an AOP platform
independent framework is still desired in a heterogeneous
distributed environment to solve crosscutting problem since
a programming language independent AOP framework
is still missing. Furthermore, current AOP techniques
only support weaving aspects sequentially. To cope with
complex adaptation, it often requires weaving aspects in
more sophisticated control flow, e.g., dynamically deciding
whether to invoke a particular aspect, and synchronising in
multi-thread applications.

3 The approach framework
The general process of the proposed approach is given
in Figure 1. We presume that a web service has been
found potential suitable to be used in a service oriented
application, however, the consumer indicated some
mismatches between the web service and the requirements
of the target application, and wishes to have a new adapted
version of the web service.

The mismatches will be eliminated by applying
aspect-oriented adaptation to the underlying components
that implement the web service because the woven aspects
will change the interface and behaviour of the components
and hence change the behaviours and attributes of web
services. At start, the components relevant to the possible
adaptation are analysed with the component analyser, which
analyses the source or binary code of the component
and extracts component specification information, e.g., class
names and method signatures. The component specification
will be used to guide component adaptation. If the
components already have well defined specification, this
step can be skipped.

Then based on the adaptation requirements, a
Process-based Component Adaptation Specification (PCAS)
will be composed by software engineers, who select aspects
defined at the abstraction level of Abstract Aspect Frames
(AAF). The selection of aspects is actually the process to
determine functional variation of a specific adaptation.
An AAF is considered as a template to coin out specific
aspects. The composition of PCAS is supported by an
interactive IDE called PCAS Editor, which supports both
graphical and XML source view of the PCAS.

86 X. Liu, Y. Feng and J. Kerridge

Figure 1 The Generative Aspect-oriented component adaptatIoN (GAIN)

A PCAS is an XML formatted document, which includes
the details of component adaptation, such as the target
component, the weaving process, and the abstract aspects to
be applied. In a PCAS, sequence and switch structure are
supported to achieve flexible adaptation on components.
In PCAS, the adaptation process is depicted with only the
ID of the selected aspects. Full details of the aspects are still
kept in Aspect Repository.

Based on PCAS and the lower level aspect definition,
namely Aspect Frame (AF) in the aspect repository,
executable Aspects Instances (AInsts) are generated by the
aspect generator according to different AOP implementation
specifications. As result, platform variation is achieved
during aspect generation. The input for the aspect generator
is AF, which is determined at adaptation design stage, and
the output is AInsts.

The aspect repository supports highly and incrementally
reusable aspects. Reusable aspects are defined at different
abstraction levels and kept in the repository as AAF, AF,
and AInst. The reusable assets in the repository include both
primitive and composite aspect types. A composite aspect
type is a composition of primitive or composite aspects
under an adaptation process defined in PCAS.

The aspect manager is a tool to manage reusable aspects
in the aspect repository, and to present graphical views of
aspects at various abstraction levels.

The generated executable aspects are applied to the
component by the aspect weaver. A new adapted version of
the component is then created through the aspect weaving.
Since current AOP platform like AspectJ does not support
complicated flow control such as switch in weaving process,

post-processing is applied to enable process-based weaving
in our framework.

Finally, by re-deploying the adapted components a new
adapted version of the web service is created with the
mismatches eliminated.

4 Aspect-oriented generative adaptation

4.1 Capturing adaptation knowledge in aspects

A challenge with software product line approach is to model
the variability between the core assets and the applications
(Batory et al., 2002, Diana and Webber, 2004; Diaz-Herrera
et al., 2000). Parameterisation is a variability mechanism
that allows a software engineer to change the values of the
attributes in a core asset component. Modelling variability
with parameterisation allows a software engineer to
populate attributes. Modelling variability with variation
points is where the core asset components consist of
variation points and the software engineer may build target
system components using unique variants built from the
variation points. This approach provides software engineers
with the most flexibility as it allows them to create and
maintain their unique variants.

As shown in Figure 2, parameterisation and variation
points have been applied in our approach to achieve highly
reusable aspects. The adaptation knowledge is captured in
aspects and aims to be reusable in various adaptation
situations. As shown in Figure 2, to achieve automated and
precise adaptation, these aspects are defined at three
abstraction levels, i.e., AAF, AF and AInsts.

 Automated responsive web service evolution through generative aspect-oriented component adaptation 87

Figure 2 Multiple abstraction levels of reusable aspects in Software Product Line view

AAF are the fundamental and the most abstract level of the
Aspect Repository. As XML schema files, AAFs are used to
define the structure of different aspects. According to the
functionality, the AAFs form a hierarchical structure that
reflects functional variations of different adaptations.
Adaptation aspects are modelled into different types,
for example, logging, caching, authentications, etc. Each
aspect type is then refined into a group of sub-types.
For example, aspects about authentication may consist of
operating-system-based authentication and database-based
authentication.

AAFs are a hierarchical aspect type system defined in
XML schema format. This type hierarchy includes many
levels of aspect types and sub-types, which capture various
functionalities of the adaptation aspects.

Each AAF may have many AFs. AFs are the second
abstraction layer in aspect definition. AFs are the instances
of related AAFs. Compared with its AAF, an AF has the
details of a concrete aspect populated into it by assigning
a value to the parameters. User interaction is required to
create an AF from an AAF. Defined in XML format,
AFs are independent from concrete AOP platforms such
as AspectJ.

An AF is not executable until it is mapped onto
a concrete AOP platform. The result of this mapping
is a family of Aspect Instances based on various AOP
platforms. An Aspect Instance is executable and specific to
a concrete AOP platform, and it reflects platform variations
of an aspect on different AOP platforms. The agent to
generate Aspect Instances from their AF is called Semantic
Interpreter. The generation process is fully automatic.

The three abstraction levels of aspects facilitate the
reusability of adaptation aspects as they realise different
variations of these aspects, including functional variations,

parameter variations and platform variations. At each level,
a pair, namely (CAS, AA) is used to describe Common
Aspect Structure (CAS) and Aspect Actions (AA). Common
core assets are defined in Common Aspect Structures and
variations are defined in Aspect Actions.

CAS provides the basic information of an aspect,
e.g., which component to be adapted (target component),
pointcut name, etc. All aspects have the same CAS at
AAF level no matter how different these aspects are in
functionality and implementation platform.

On the other hand, Aspect Actions provides the
information of the variations of different aspects of the same
or different aspect types. For instance, for an aspect of
logging type, an output file name must be provided;
similarly a database connection pool aspect must be
supplied with a capacity.

4.2 Process based Component Adaptation
Specification (PCAS)

To satisfy the adaptation requirements for a particular reuse
context, it often requires performing complex adaptation to
multiple components with a set of generated aspects applied
to these components under a specially designed process
containing conditions, synchronisation and other flow
controls. PCAS is developed to describe the above
complicated adaptation details.

The elements in a PCAS include target component(s)
(‘class’ and ‘method’), information of aspect(s) to be
applied such as aspect id, type, and level (‘aspect_level’),
and process control information, such as execution
mode (‘Sequence’, ‘Switch’ and ‘Case’), conditions, and
synchronisation support (‘synchronised’). Flow control

88 X. Liu, Y. Feng and J. Kerridge

elements are used to provide advanced weaving process,
and synchronisation support enables multiple accesses to the
same resource such as a file or a database from different
aspects.

A sample of PCAS structure is given in Figure 3 with
the data detail omitted, and a full example of the definition
is given in Section 6.

If a PCAS is found common and reusable in the
future, its process control part can be regarded as a
composite aspect type. Composite aspects are supported in
AAF level to achieve advanced reuse in typical aspect using
cases.

Figure 3 A sample of Process-based Component Adaptation
Specification structure

To implement PCAS in weaving process, a post-weaving
technique is developed. The post-weaving tool gets class
files for aspects generated by AOP platform such as AspectJ
as input, and then modifies those class files to generate new
class files that support complicated flow control and
synchronisation according to PCAS.

5 The prototype tool

A CASE tool has been developed to scale up the proposed
approach. With this tool, service developers define aspect
weaving process by drag-and-drop in a graphical interface;
they select candidate aspects and fill in necessary details of
CAS and AA. The semantic interpreter will generate AInsts
automatically. According to the defined PCAS, Aspect
Weaver will complete the aspect weaving and generate
adapted components.

The tool includes the following parts:

• PCAS editor, which provides an edit environment for
PCAS both in graphical interface and at XML level.
A screen dump is shown in Figure 4.

• Aspect manager, which supports the management and
retrieval of reusable aspects in Aspect Repository and
the graphical view of different levels of aspects.
Aspects at different levels can be created, removed, and
edited in Aspect Manager, either in the graphical user
interface, or at XML level. Aspect Manager provides
two retrieval modes of AAFs/AFs, that is, search by
keywords and search by classification category.
A screen dump of Aspect Manager is shown in
Figure 5.

• Semantic interpreters, which translate AFs to AInsts
based on selected specific AOP platform and aspects.
If there are m different AOP platforms and n different
aspects in the tool, there will be m × n different
interpreters.

• Component analyser, which analyses component and
gets necessary information such as the class names and
method names, for component adaptation.

• Aspect generator, based on AFs and corresponding
Semantic Interpreters, executable aspect instances will
be generated by Aspect Generator. The result
executable aspects will be saved into aspect repository
as AInsts.

• Aspect weaver, which is used to generate new
components by weaving generated AInsts into original
components.

 Automated responsive web service evolution through generative aspect-oriented component adaptation 89

Figure 4 A screen dump of PCAS editor (for colours see online version)

Figure 5 A screen dump of aspect manager

90 X. Liu, Y. Feng and J. Kerridge

6 An example
Two case studies have been done to evaluate the proposed
approach. In this section, based on one case study – a stock
trading system, an intuitive example is given to demonstrate
the proposed approach in web service evolution.

Prior to doing the case study, a share analysis
component has been published as a web service to provide
share information such as company name, share quote and
analysis charts.

In the case study, we have found the web service is
potentially suitable for our new share trading system and
wish to integrate the web service into our new share trading
system, which will be heavily accessed by many users
simultaneously. It is identified that this web service may be
less dependable because the heavy access load often causes
access failure due to the connection time-out problem.
In addition, to increase the system security, access to share
information also needs to be restricted to approved users
and monitored by logging the access time.

To meet the above evolution requirements, the service
developer plans to introduce the following aspect-oriented
adaptation actions to the underlying component: firstly,
to add authentication to the component prior to using
it; secondly, to set up a database connection pool to
relieve the access load; finally, to monitor the access
detail with logging. According to the result of monitoring,
the capacity of and the life span of individual connections
in the connection pool are subject to constant adjustment
to reach the best correction to the access failure
problem.

Four aspects are applied to the component to implement
the above adaptation actions, namely authentication, logging
if authenticated successfully, logging if authenticated
unsuccessfully, and database connection pool. These
adaptation actions are then described in a PCAS shown in
Figure 6. As shown in Figure 4, the specification is created
with the PCAS Editor by finding appropriate AAFs,
i.e., either primitive types or composite types of aspects,
and putting these AAFs into an adaptation process.
Functional variation of adaptation is implemented through
the selection of appropriate AAFs and the composition of
PCAS.

The specification in PCAS is at a rather overview level
and does not contain the details of individual aspects.
Developers need to provide parameter value for each aspect.
Common AFs can be saved into Aspect Repository for
further reuse. In this example, four AFs will be generated
for each of the above aspects accordingly. Due to the
structural similarity of AFs of different aspects, we only
give the AF for database connection pool in Figure 7
as an example.

Figure 6 The Process-based Component Adaptation
Specification

 Automated responsive web service evolution through generative aspect-oriented component adaptation 91

Figure 7 Aspect frame of DB connection pool

From AFs, Aspect Generator generates aspect instances
(AInsts) that are specific to a selected AOP platform.
The generated AInst of the AF of DB Connection Pool is
given in Figure 8.

Figure 8 Aspect instance of DB connection pool

The Aspect Weaver weaves the generated aspect instances
into the underlying component of the original web service
according to the PCAS. The final adapted component source
code is invisible to the developer. By deploying the adapted
component, the new version of the web service is built and
published to the service consumer.

Compared with other approaches, the benefits of GAIN
are summarised below:

• the automated adaptation process will decrease the
workload on software engineers and scale up the
capacity of the approach

• since aspects are generated with SPL technique in
response to specific adaptation requirements, these
aspects will be very suitable for the particular target
application.

92 X. Liu, Y. Feng and J. Kerridge

7 Conclusions

Despite the increasing popularity of web services, the
current state of art is that the service consumer has to use
the web services as what they are because of the lack of
adequate web service evolution mechanisms. In most cases,
web services are subject to frequent evolution requirements
and multiple versions need to co-exist due to the large
diversity of potential users. The evolution may occur to both
functional and non-functional aspects of a web service and
requires to be done rapidly at low cost.

The proposed approach applies aspect-oriented
generative adaptation to the underlying components of a
web service to meet the evolution requirements of the web
service so that the web service can be integrated into the
target application smoothly. Automation and aspect-oriented
deep level adaptation are the benefits of the approach.
This is achieved with the following key techniques in an
aspect-oriented component adaptation framework:

• the generation of adaptation aspects based on specific
evolution requirements and selected abstract aspects as
templates

• the advanced aspect weaving process definition
mechanism that supports switch and synchronisation

• an expandable library of reusable adaptation aspects at
multiple abstraction levels.

The approach enables web service developers to adapt their
published web services to meet the integration requirement
of specific web service applications. The benefits of the
approach include deeper adaptability, higher automation and
therefore smooth web service composition and wider
reusability. As consequence, the target web service oriented
systems will have better quality and more suitable
functionality. Our case studies have shown that the
approach and tool are promising in their ability and
capability to meet the evolution requirements of web
services.

References
Arsanjani, A. (2002) ‘Developing and integrating: enterprise

components and services’, Communications of the ACM,
Vol. 45, No. 10, pp.31–34.

Baldwin, A., Shiu, S. and Mont, M.C. (2002) ‘Trust services:
a framework for service-based solutions’, Proceedings of
26th Annual International Computer Software and
Applications Conference, Oxford, England, August,
pp.507–513.

Batory, D., Chen, G., Robertson, E. and Wang, T. (2000) ‘Design
wizards and visual programming environments for GenVoca
generators’, IEEE Transactions on Software Engineering,
Vol. 26, No. 5, May, pp.441–452.

Batory, D., Johnson, C., MacDonald, B. and Heeder, D.V.
(2002) ‘Achieving extensibility through product-lines and
domain-specific languages: a case study’, ACM Transactions
on Software Engineering and Methodology (TOSEM),
Vol. 11, No. 2, April, pp.191–214.

Bennett, K.H. and Xu, J. (2003) ‘Software services and software
maintenance’, Proceedings of 7th European Conference on
Software Maintenance and Re-engineering (CSMR’03),
Benevento, Italy, March, pp.3–12.

Bosch, J. (1999) ‘Superimposition: a component adaptation
technique’, Information and Software Technology, Vol. 41,
No. 5, pp.257–273.

Chen, F., Li, S., Yang, H., Wang, C. and Chu, W. (2005) ‘Feature
analysis for service-oriented reengineering’, Proceedings of
IEEE 12th ASIA-PACIFIC Software Engineering Conference,
December, Taipei.

Cleaveland, J.C. (1998) ‘Building application generators’,
IEEE Software, Vol. 5, No. 4, July, pp.25–33.

Diana, L. and Webber, H.G. (2004) ‘Modeling variability
in software product lines with the variation point model’,
ELSEVIER, Science of Computer Programming, Vol. 53,
pp.305–331.

Diaz-Herrera, J.L., Knauber, P. and Succi, G. (2000) ‘Issues and
models in software product lines’, International Journal on
Software Engineering and Knowledge Engineering, Vol. 10,
No. 4, pp.527–539.

Ferris, C. and Farrell, J. (2003) ‘What are web services?’,
Communications of the ACM, Vol. 46, No. 6, June, p.31.

Kajko-Mattsson, M. and Tepczynski, M. (2005) ‘A framework for
the evolution and maintenance of Web services’, Proceedings
of the 21st IEEE International Conference on Software
Maintenance, Budapest, Hungary, September, pp.665–668.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W. (2001) ‘Getting started with AspectJ’,
Communications of the ACM, Vol. 44, No. 10, October,
pp.59–65.

Kleijnen, S. and Raju, S. (2003) ‘An open web services
architecture’, ACM Queue, Vol. 1, No. 1, March, pp.38–46.

Kreger, H. (2003) ‘Fulfilling the web services promises’,
Communications of the ACM, Vol. 46, No. 6, June, pp.29–34.

Lieberherr, K., Lorenz, D. and Mezini, M. (1999) Programming
with Aspectual Components, March, Technical Report,
College of Computer and Information Science, Northeastern
University, NU-CCS-99-01.

Litoiu, M. (2004) ‘Migrating to web services: a performance
engineering approach’, Journal of Software Maintenance
and Evolution Research and Practice, Vol. 16, Nos. 1–2,
pp.51–70.

Liu, X., Wang, B. and Kerridge, J. (2005) ‘Achieving seamless
component composition through scenario-based deep
adaptation and generation’, Journal of Science of
Computer Programming (Elsevier), Special Issue on New
Software Composition Concepts, Vol. 56, Nos. 1–2,
pp.156–170.

Mezini, M. and Ostermann, K. (2005) ‘A comparison of program
generation with aspect-oriented programming’, Lecture Notes
in Computer Science, Vol. 3566, pp.342–354.

Sullivan, G.T. (2001) ‘Aspect-oriented programming using
reflection and meta object protocols – providing programmers
with the capability to modify the default behaviour of
a programming language’, Communications of the ACM,
Vol. 44, No. 10, October, pp.95–97.

Suvee, D., Vanderperren, W. and Jonckers, V. (2003) ‘JAsCo: an
aspect-oriented approach tailored for component based
software development’, Proceedings of the 2nd International
Conference on Aspect-oriented Software Development,
Boston, USA, pp.21–29.

 Automated responsive web service evolution through generative aspect-oriented component adaptation 93

Vanderperren, W., Suvée, D., Verheecke, B., Cibrán, M.A.
and Jonckers, V. (2005) ‘Adaptive programming in
JAsCo’, Proceedings of the 4th International Conference on
Aspect-oriented Software Development, Chicago, USA,
March, pp.75–86.

Viega, J. and Voas, J. (2000) ‘Quality time – can aspect-oriented
programming lead to more reliable software?’, IEEE
Software, Vol. 17, No. 6, November–December, pp.19–21.

Wang, B., Liu, X. and Kerridge, J. (2004) ‘Scenario-based
generative component adaptation in .NET framework’,
Proceedings of the IEEE International Conference on
Information Reuse and Integration, Las Vegas, USA,
November, pp.73–78.

Wilde, E. (2004) ‘Semantically extensible schemas for web
services evolution’, Proceedings of European Conference on
Web Services (LNCS), Vol. 3250, pp.30–45.

