Multiobjects to Ease Schema Evolution
in an OODBMS

Lina Al-Jadir, Michel Léonard

Centre Universitaire d'Informatique (C.U.l.), Université de Genéve
24 rue Général-Dufour, 1211 Geneve 4, Switzerland
{aljadir, leonard}@cui.unige.ch

Abstract. The multiobject mechanism is a pertinent way to implement speciali-
zation in an object database and differs from the classical mechanism used in
most object-oriented database systems. It supports multiple instantiation, auto-
matic classification and object migration. Consequently it is well suited to take
into account schema evolution. It makes schema changes more pertinent, easier
to implement, and less expensive than with the classical implementation of spe-
cialization indeed. The multiobject mechanism is implemented in the F2 database
system which supports schema evolution.

1 Introduction

In the classical implementation of specialization in object-oriented database systems
(OODBMS) an object is an instance of one most specific class. It is completely stored
in this class, i.e. all attribute values on local and inherited attributes are present in the
object. This has several shortcomings for object modelling and object evolution. Since
an object is an instance of only one class, one must use multiple inheritance to model
real-world entities that have many facets at once. This can lead to a combinatorial ex-
plosion of sparsely populated classes, as pointed out in [34] [33] [27] [28]. Once an ob-
jectis created in a class, it stays in that class until it is deleted from it. This is a serious
limitation, since one is forced to model real-world entities that evolve dynamically with
objects that can not, as pointed out in [30] [33] [2] [28]. Several approaches (see section
4) have been proposed to overcome these shortcomings. In this paper we address other
shortcomings of the classical implementation of specialization which are related to
schema evolution.

Schema evolution is an essential feature of a database system to allow database ap-
plications to run in a dynamic environment. Updating the schema of a populated data-
base has repercussions on database objects in order to keep the database in a consistel
state. Supporting single-instantiated and static objects restricts schema changes. More-
over, it requires to copy data when modifying the schema which is extremely time-con-
suming. Suppose for example that a classssis added as a subclassRafrson With
a classical implementation, it is not possible to make some of the eX@stisgnob-
jects belong now to thewisssubclass. For all swiss citizens, the database administrator
has to create copies of tRersonobjects in the new subclaSsvissand to delete the

T.W. Ling, S. Ram, and M.L. Lee (Eds.): ER'98, LNCS 1507, pp. BI§-333, 1998.
O Springer-Verlag Berlin Heidelberg 1998

Multiobjects to Ease Schema Evolution in an OODBMS17

corresponding objects in claBsrson This may be a very expensive operation if there
are many sSwiss persons.

Supporting classical inheritance makes many schema changes difficult to understand
and to implemenOrion [8] requires complex propagation rules to disambiguate the ef-
fect of schema chang&semston¢29] does not support some schema changes because
their motivation is to only provide schema changes which are “well understood and
have a reasonable implementation”.

We propose the multiobject mechanism to implement specialization in an object-
oriented database system. This mechanism supports multiple instantiation, automatic
classification and object migration. It makes schema changes more pertinent, eases their
implementation and understanding, and reduces their execution time. The multiobject
mechanism is implemented in the F2 OODBMS. F2 is a general purpose database sys-
tem developed at C.U.l. and used to experiment several features such as: updatable
views [16], information system design methods [15], knowledge databases [17], data-
base integration [13], schema evolution [7] [6] [3]. It is written in Ada and runs under
SunOS, DEC/ALPHA, MacOS and Windows 95.

The remainder of the paper is organized as follows. In section 2, we present the
multiobject mechanism. In section 3, we show its advantages with respect to schema ev-
olution. In section 4, we describe related approaches and compare the multiobject
mechanism to them. In section 5 we conclude with a summary.

2 Multiobject Mechanism

We describe in this section the multiobject mechanism. We introduce first the multiob-
jects and describe then the methods to manipulate them.

2.1 Multiobjects

Defining a Multiobject. In the F2 model [6] anbjectis an instance of dass Objects
structure is defined by class attributes. Objects behaviour is defined by primitive
methods and triggered methods. A class, caflelclass can be declared as a
specialization of another class caltgerclassThe class hierarchy is a forest, i.e. a set

of specialization treesa subclass has only one superclass (single inheritance), and there
is not a root system-defined class. On a subclass may be defiaeidlization
constraints An object belongs to a subclass if and only if it satisfies the specialization
constraints of the subclass. Thacestorsof a subclass are its direct and indirect
superclasses. Thiescendantsf a class are its direct and indirect subclasses.

We assume that the reality consistewfities Entities have several facets. For ex-
ample, a human being may be seen as a person, an employee, a tennis player, a studen
etc. An entity is implemented in the multiobject mechanism by a set of objects in dis-
tinct classes of a specialization tré&, = {0c1, Oc, -.-,Ocp}, called multiobject Each
objectoc; denotes a facet of the entity and carries data specific to its corresponding class
C;. This is referred to as multiple instantiation. A multiobjdgtsatisfies the following
constraint: ifoc;, 1<i<n, belongs tdVl, andC; is a subclass df; then there must be

318 L. Al-Jadir and M. Léonard

an objecigj, 1<j <nandj #i, which belongs td/,. In other words, if an entity pos-
sesses an object in clasthen the entity must also possess objects for all the ancestors
of C. For example, the clag&udenis a subclass d?erson A student is implemented

by a multiobject containing two objeatsy,jend Studentndrpg,sonin Person.

Subclasses can be inclusive, i.e. a multiobject may contain two ofyjeetsdog;
whereC; andC; are sibling classes. For example, the dRessonhas another subclass
Employegsee fig. 1.a). A person who is a studamd an employee is implemented by
a multiobject containing three objeatsersonin Personrsygentn Studentindrgmpioyee
in Employee(see fig. 1.b). There is therefore no need to add an artificial intersection
classStudent&Employeas with the classical implementation of specialization.

/@ : class C) mmp: |S-A link \
(italic items next to C are its attributes)
I I 0id of fpgrson < idperson ity >,

| Perso | oid of rsyygent < idstudent idr >,
0id of femployee < idemployee idr >,
AN |
| (fEmployee™ Istudent = FALSE,

7/
| 7/ \
| 7/ \
(rEmployee@= Istudent = TRUE,
‘mé | | relatedTo(gy,qent Employee)

e Ikthf S%@Pf | Student Employee | = Memployee

K (a) classes (b) instances (c) operators /

Fig. 1.Implementing a student-employee

An objectoc in classC has the oid i, id,> whereid¢ is the class identifier and
id,, the instance identifier withi@ (as inOrion [8]). Two objectgg andgg arerelated
i.e. they belong to the same multiobject, if:

— their classe& andF are in the same specialization tree, and

- they have the same instance identifiég € idg).

Two objectgpe andqg areidentical if:

— they have the same oid (i.e. same class identifier and same instance identifier).
The operator “=" checks if two objects are identical, while the operator “@=" checks if
two objects are related. The functicelatedTo(g), C) returns the object in class
which is related t@p (C andD being two classes in the same specialization tree). In
other words, this function returns the object which has theidig #,>. If no such
object exists iI, it returns the unknown object. Note that in other approaches this func-
tion is called casting or coercion. Examples are given in figure 1.c.

Since an entity may gain and lose facets during its life-time, objects can be added
to and removed from its corresponding multiobject (see §2.2).

Querying a Multiobject. In the multiobject mechanism, attributes are not inherited in
the classical sense of inheritance; theyaaeheddy navigating in a specialization tree.
This contrasts with the classical implementation of specialization. For the objects of a
subclas<C, only the values on attributes locally define€are stored. The values on
attributes defined at the supercl&ssf C are not stored witlC objects but with their

Multiobjects to Ease Schema Evolution in an OODBMS19

relatedS objects. For example, in figure 1, if the namergfonis “Dupont” and
EmployeelN EMployeés related ta pgrsonthenrgmpioyeels Nameddupont. Thename
values are stored with the objects of cléssson

While traditional inheritance is upwards, reaching attributes in the multiobject
mechanism can be upwards, downwards and sidewaysgeTt{ag, att) primitive meth-
od reads the value that the multiobject containing the ohjgakes on the attribust.
Its algorithm (see appendix) is the followingaifis a local attribute of then it returns
the value ob¢ onatt, else ifattis a local attribute of a claBsbelonging to the special-
ization tree ofC then it returns the value of onatt whereop, is the object in clas®
which is related to.. Figure 2 shows some examples related to figure 1.

letrpersone Nnamed “Dupontt,gy genfraving the registration number 98755, a@qme
earning a salary of 2000 francs. Ipat,gen®e another student (not employee) aagdson
a baby (neither student nor employee).

name(giydent = ‘Dupont”, /* upwards */
salary(persop = 2000, /* downwards */
regist#(Employed = 98755, /* sideways */
emp#(Rudent raises errorz,

Operson
I'pe
Pperson Pgso

name:
"Dupont” I* pstudents Not related to an employee object */
! \ regist#(Gersop raises error2,
/ \ * Qperson'S NOt related to a student object */
Student - Employee birthdate(Empjoyed raises errorl.
LOYE) /* birthdate is not an attribute in the specializa-

i *
K regist#:98755 salary:2000 tion tree of Employee */ /

Fig. 2. Reaching attributes upwards, downwards and sideways

An attribute of clas€ is always reached in the descendant8 {fiecause each of their
objects is related to an object@) while it may bereached in the ancestors and sibling
classes o€ if some of their objects are related to an obje€.in

We forbid homonym attributes in classes belonging to the same specialization tree; nev-
ertheless we have the same potential of informatid,d%] andGoose[26].

2.2 Manipulating Multiobjects

The algorithms for creating, deleting and updating a multiobject are provided in the ap-
pendix and are implemented in the F2 OODBMS. We briefly describe them hereafter.

Creating a Multiobject. The create(C, [g:vy, ayiVy, ..., 3,:Vp]) primitive method
creates a multiobject including an object in cl&sThe automatic classification
algorithm searches the classes of the multiobject in the specialization ti@e of
(beginning from the rootpC={C4, C,, ...,C,}}, according to the attribute values v,,
aVy, ..., ayVpl and to the classes’ specialization constrain.dbes not belong t8C

or if the origin class of one of the attribuggsloes not belong 6C an error is returned.

320 L. Al-Jadir and M. Léonard

Otherwise, an objed; is added to each cla€s of SCand all these objects carry the
same instance identifier. Each attribute value is stored with the ogj&dtich belongs
to the origin class of the attribute. This contrasts with the classical implementation of
specialization where an object is created in one most specific class.

For example, in figure 3.a, the cld&rsonhas two subclasseEmployeewhich
in turn has two subclassegnEmp(for men employees) aMdlomEmgfor women em-
ployees), an&tudentvhich in turn has a subclaSsvissS{for swiss students). The fol-
lowing expression (in F2-DML) creates a multiobject containing four obj@stsonin
Person(root class of the specialization tre@)pioyedn Employegthe constrainjpbs
includes “employeeTs satisfied)Opanempin ManEmp(the constraingex = “m” is sat-
isfied) andogy,gentn Student(the constrainfobs includes “studentis satisfied) (see
fig. 3.b).

OEmployee = Create Employee’ [name: “Dupont’, sex: “m”,
nationality: “french”, jobs: (“employee”, “student”), emp#: 125,
salary: 2500];

/ name

sex .
nationality
jobs

name: “Dupont”

sex: ‘m”
Opfrso nationality: “french”
e

- lobs: (erpyge

scholarship
(a) classes (b) instances /

Fig. 3.Creating a multiobject

Note that if we did not give a value on fobsattribute, the creation would be rejected
because the multiobject would not include an objeEmployedEmployeeconstraint
not satisfied).

Deleting a Multiobject. The delete(@) primitive method deletes the multiobject
containing the objeabg, i.e. it remove® andall its related objects. The algorithm
searches the classes of the multiobject in the specialization t&évefjinning from

the root),SC= {Cy, C,, ...,C}, and removes its objed; from each clas€; of SC

This contrasts with the classical implementation of specialization where an object is
deleted from one class.

For example, the following expression (in F2-DML) deletes a multiobject (repre-
senting a male student-employee) by removing all its objesigon Oempioyee
OManEmp@NdOsygen(see fig. 4).

delete 0 gmployee

Multiobjects to Ease Schema Evolution in an OODBMS21

If instead one dismisses the employee, the
entity remains as a student and a person,

This can be done by updating tjubs at- / Pefso \
/AN

tribute of the corresponding multiobject.

Student, /

Updating a Multiobject. The update(e,
[att:val]) primitive method sets the value of
the multiobject containing the objeag on
the attributeatt to val. Like thegetmethod, w
update searches the attributt upwards, K SwissSt ManEmp WomEmpf
downwards and sideways. Since the
attributeatt could be used in specialization
constraints on the descendai8B of its
origin classOrig, the multiobject may gain new objects or/and lose existing objects in
SD because it may now (with the new valual) validate or invalidate those
specialization constraints. This is referred to as object migration. The automatic
classification algorithm searches in the specialization tré& lbéginning fromOrig:

(i) the set of gained classes and adds an object (carrying the same instance identifier as
0c) to each of them; (ii) the set of lost classes and removes the related obgefrbta

each of them. This contrasts with the classical implementation of specialization where
an object stays in its class until it is deleted from it.

For example, figure 5.a shows a swiss female student implemented by a multiob-
ject containing three object®derson Pstudent Pswissar The following expression (in
F2-DML) expresses that this person ceases to be a student and becomes an employee
As a result__(see fig. 5.0), @Employeels added tdEmponeeandeQmEmpis addgd to
WomEmMp (i) Psy,gen@NdPspisss@re removed fronstudentand SwissStespectively.

The multiobject contains now the objectiérson PEmployee Pwomemp:
update p person jobs:(‘employee”);

/ Perso

Fig. 4. Deleting a multiobject

sex: “f” sex: “f”
D _na)t(lonality: “swiss” Personp _nazf(lonality: “swig
jobs: (“student”) jobs: (“employee”)

7

Student, Employee \ . Employee

1
I
1

SwissSt ManEmp WomEmp SwissSt ManEmp WomEmp

K (a) before update (b) after update /
Fig. 5. Updating a multiobject (jobs attribute)

322 L. Al-Jadir and M. Léonard

3 Advantages of the Multiobject Mechanism for Schema Evolution

In this section we first provide briefly the framework of schema evolution in F2. Then
we discuss the advantages of the multiobject mechanism with respect to schema evolu-
tion.

3.1 Schema Evolution in F2

Set of Schema Changes in FAn important feature of the F2 DBMS is the uniformity

of its objects described in [6] [3]. We consider objects of three levels: database objects,

schema objects and meta-schema objects. Uniformity of objects in F2 includes:

— uniformity of representation. The same structures are used in F2 to represent data-
base objects, schema objects and meta-schema objects;

— uniformity of access and manipulation. The same primitive methods are used in F2
to access and manipulate database objects, schema objects and meta-schema ob
jects.

Thanks to the uniformity of the F2 DBMS, we built the set of schema changes in F2 as

follows [6] [3]: for eachclass of the F2 meta-schema we apply the primitive methods

create deleteandupdateon its objects (see fig. 6).

Semantics of Schema Change®/e defined the semantics of each schema change in

F2 with pre-conditions and post-actions [6] [3] such that the F2 model invariants are
preserved. Pre-conditions must be satisfied to allow a schema change to occur;
otherwise it is rejected. Post-actions are repercussions to be executed on schema objects
and database objects in order to keep the database structurally consistent. We
implemented pre-conditions and post-actions by triggered methods [6] [3].

Propagation of Schema Changedn F2 schema changes are propagated immediately
[3], i.e. the repercussions of a schema change are executed as soon as the schema chan
is performed.

3.2 Multiobject Mechanism and Schema Evolution

Since the multiobject mechanism implements specialization, we consider among the
schema changes of F2 (fig. 6) those which are involved in specialization: create a sub-
class (1.3), delete a class (2), change the superclass of a subclass (3.4), update a clas
from non-subclass to subclass (3.5) and the reverse (3.6), create (4) and delete an at-
tribute (5), change the domain class (6.4) and the origin class of an attribute (6.5), create
(10) and delete a specialization constraint (11), change the list of subclasses on which
is defined a specialization constraint (12.2). By examples we will show that the multi-
object mechanism makes these schema changes more pertinent and easier to implemen
than with the classical implementation of specialization. We will compare F2 with the
following OODBMS which support schema evoluti@rion [8], Gemstong29], OT-
Gen[23], Cocoon[37], Goose[26] andO, [18]. All these systems support the classical

Multiobjects to Ease Schema Evolution in an OODBMS23

(1) Create a new class (9.2) Change its attributes
(1.1) Create an atomic class (9.3) Enable / disable it
(1.2) Create a tuple class (10) Create a new specialization constraint
(1.3) Create a tuple subclass (11) Delete an existing spec. constraint
(2) Delete an existing class (12) Update an existing spec. constraint
(3) Update an existing class (12.1)Change its name
(3.1) Change its name (12.2)Change the list of subclasses |on
(3.2) Change its interval if atomic class which it is defined
(3.3) Change its maximal length ii(13) Create a new trigger
atomic string class (14) Delete an existing trigger
(3.4) Change its superclass (15) Update an existing trigger
(3.5) Make it a subclass, i.e. attach it t (15.1) Change the event for which it is
a specialization tree defined
(3.6) Make it a non-subclass, i.e. detac (15.2) Change the list of methods it trig-
it from a specialization tree gers
(4) Create a new attribute of a class (16) Create a new event
(5) Delete an existing attribute (17) Delete an existing event
(6) Update an existing attribute (18) Update an existing event
(6.1) Change its name (18.1) Change the class on which it is
(6.2) Change its maximal cardinality defined
(6.3) Change its minimal cardinality (18.2)Change its kind
(6.4) Change its domain class (18.3)Change its attribute
(6.5) Change its origin class (19) Create a new triggered method
(7) Create a new key of a class (20) Delete an existing triggered method
(8) Delete an existing key (21) Update an existing triggered method
(9) Update an existing key (21.1)Change its name
(9.1) Change the class on which it is
defined

Fig. 6. F2 schema changes

implementation, excefocoonwhich supports multiple instantiation, class predicates
and automatic classification.

Create a Subclass.Example: The clas$erson has several attributes including
nationality It has four objectsd, b, c, d, two of them {a, d} take the value “swiss” on
thenationality attribute. The clasSar has an attributewnerwhose domain iBerson
Now one creates the claSwissas a subclass &rson The wanted effect is thatand

d become objects of tHawissclass.

* Multiobject approach: The clag®rsonhas four objectsdp, bp, Cp, dp} (see fig.
7.a). When th&wisssubclassnd a specialization constraint on it are added, the objects
aganddgare automatically added to tBevisssubclass because they satisfy its special-
ization constraint (see fig. 7.b). Each of the multiobjeciadd contain now two ob-
jects. The attribute values of objeetsanddp are not copied because attribute values
are locally stored and attributesRérsonare reached iBwiss

Cocoonsupports this schema change.

324 L. Al-Jadir and M. Léonard

/ iclassC) o \
(underlined items next to C are its specialization constrajnts)

Persong, b.P:dCP
P

K (a) before (b) after /

Fig. 7. Add the Swiss subclass with a specialization constraint

« Classical approach: Most of the OODBMS supporting schema evolution leave a
subclass empty (without objects) when it is newly created. Thus in our example, a tool
should be developed to: i) create two new objec&niss ii) copy the value of objects
aandd, on all the attributes d?erson to the newly created objects respectively; iii) de-
lete the objecta andd in Person If the objectsa andd were referenced bgar objects
through theowner attribute, the tool has also to update these references (to reference
now the new objects iBwiss.

Only O, (thanks to migration functions) a@il Gen(thanks to boolean expressions) al-
low subclass creation with object migration down.

Delete a ClassExample: The clasSwissis a subclass d?ersonand has two objects
{a, d}. The clashalethas an attributewnerwhose domain iSwiss Now one is no
more interested to classify the swiss persons and decides to defetedhdass. The
wanted effect is tha andd become objects of tHeersonclass (keep the swiss people
as persons).

* Multiobject approach: Th8wissclass has two objects anddg which are related
to ap anddp respectively irPerson(see fig. 7.b). When the subcl&ssisss deleted, its
objects are removed while their related objeets §p} remain inPerson(see fig. 7.a).
The attributes oSwissare deleted and the domain of tvenerattribute is updated to
Person as with the classical approach. The values orowmeer attribute remain un-
changed (see update the domain of an attribute).

Cocoonsupports this schema change.

» Classical approach: Most of the OODBMS supporting schema evolution delete the
objects of a class when the class is delgBah{stong@revents the deletion of a class if

it is not empty). This implies loss of information. Thus in our example, a tool should be
developed to: i) create two new object$arson ii) copy the value of objectsandd,

only on the inherited attributes froRerson to the newly created objects respectively;

iii) delete theSwissclass (consequently its objects are deleted). If the olgemtsld

were referenced bghaletobjects through thewnerattribute, the tool has also to up-
date these references (to reference now the new objdssior).

Note that if the wanted effect in our example was not to keep the swiss persons, this
could be achieved in the multiobject approach by first deleting the multiobjects contain-
ing Swissobjects and then deleting tBevissclass. Thus both semantics are possible in

Multiobjects to Ease Schema Evolution in an OODBMS25

our approach and the database administrator can choose the most suitable for a given
situation.

Update the Superclass of a SubclasExample: The clasBersonhas two subclasses
StudenandEmployeeStudentas a subclas®ung(see fig. 8.a)Now one updates the
superclass ofoungfrom Studento EmployeeThe wanted effect is that tieungclass
stores the young employee objects instead of the young student objects, and that it
inherits the attributes dmployeeanstead of those ddtudent

« Multiobject approach: The cla¥®unghas the specialization constraage < 30
Changing its superclass Employeereclassifies automatically its objects: i) for each
object inYoung if it is not related to aBmployeeobject, it is removed frorvioung ii)

for each object iEmployeaevhoseagevalue is under 30, a related object to it is added
to Young(if it does not already exist). TM®ungclass reaches now another set of at-
tributes; the physical storage of its objects remains unchanged.

« Classical approach: Most of the OODBMS supporting schema evolution keep the
same objects in a subclass when modifying its superclass. This may lead to an incon-
sistent semantics. They re-evaluate the inheritance of the subclass according to defined
rules. In our example, théoung classnherits now the attributes &mployeenstead

of those ofStudentThis results in the modification of the physical storagéahgob-

jects. To reclassify objects in thieungclass, a tool should be developed to: i) migrate
theYoungobjects up t&tuden{like when deleting a class); ii) migrate some objects of
Employeaedown toYoung(like when creating a subclass). Note tBamstoneloes not
support this schema change in order to only provide well understood schema changes.

In F2, updating a subclass to non-subclass and the reverse are special cases of updating
the superclass of a subclass. Due to lack of space we do not describe them.

Create an Attribute. Example: One adds the attribinebbyto classPersonwhich has

several descendants. The wanted effect is that the descend@ertsominherithobby

« Multiobject approach: Adding the new attribliigbbyto classPersondoes not need
to be propagated to the descendan®en$on insteachobbywill be reached in them.

» Classical approach: Most of the OODBMS supporting schema evoluti@rjcas
andGemstonepropagate recursively this schema chandretsors subclasses accord-

ing to propagation rules. On storage, this requires to physically add the attribute to the
objects of each descendantRefrsoninheriting it.

Delete an Attribute. Example: One deletes the attribbtebbyfrom clasfPerson The

wanted effect is that the descendantBersondo no longer inherihobby

« Multiobject approach: Removing the attributebbyfrom classPersondoes not
need to be propagated to the descendar®ersbn insteachobbywill not be reached
in them.

« Classical approach: There are different approacdesn removes recursively the
attributehobbyfrom subclasses inheriting it whiemstoneloes not. In the latter case,

one has to delete thmbbyattribute from each class inheriting it. On storage, both ap-
proaches require to physically delete the attribute from the objects of each descendant
of Personinheriting it.

326 L. Al-Jadir and M. Léonard

Update the Domain Class of an Attribute Example: The clasBookhas an attribute
ownerwhose domain i®erson Studentis a subclass dPerson The bookbooklis
owned byc (student object) andook?2is owned byd (person object). Now one updates
the domain obwnerto Student

« Multiobject approach: As with the classical approach othieervalue ofbooklis
unchangedcgin Students related t@p in Personand they have the same instance iden-
tifier. In F2, only instance identifiers are physically stored in attribute values (the class
identifier is the same for all values on the same attribute; it can be obtained by getting
the domain class of the attribute). Tdwenervalue ofbook?2is replaced by the unknown
object. Updating the domain classanerdoes not need to be propagated to the de-
scendants dBook because thewnervalues are stored wiBookobjects. Note that one

can update the domain@ivnerto an ancestor, a descendant or a sibling cla@srebn

« Classical approach: All the OODBMS supporting schema evolution support this
schema change but some with restrictions. For exa@piten allows only to generalize

a domain whil&Gemstonean generalize and specializedtion propagates this sche-

ma change to subclasses inheriting the attribute according to propagation rules while
Gemstoneloes not.

Update the Origin Class of an Attribute. Example: The clasgoungis a subclass of
Studentwhich is a subclass #ferson(see fig. 8.a). Clad2ersonhas the objectsd,
classStudenthas {} and classrounghas fa, b}. ClassEmployeeanother subclass of
Person has the objects}. Hobbyis a local attribute ddtudentNow one wants to store

the hobbies of all persons and updates the origin cldssbbf/to Person Updating the

origin class of an attribute is very useful and is not equivalent to dropping the attribute
and adding it to another class because in this case the values taken on the attribute are
lost.

« Multiobject approach: The classes and their objects are shown in figure 8.a. When
the origin class of thieobbyattribute is updated t@erson(see fig. 8.b), the objecasp,

bp, cp keep the samiobbyvalue asag, bg, ¢ respectively. Théaobbyvalue ofdp and

ep is set to unknown. Thanks to the transposed storage of objects [6] in h2bthe

values are not copied. Note that one can update the origin clagklyffrom Student

to Person(ancestor), t¥oung(descendant) or employedsibling class). Changing the

origin class of an attribute does not need to be propagated to the descendants of its old
and new origin classes; the attribute will be reached in another set of classes.
Cocoonsupports this schema change.

e Classical approach: Most of the OODBMS supporting schema evolution do not sup-
port this schema change. In our example, a tool should be developed to: i) create a new
attributehobby?2in Person(it becomes inherited iStudentYoungandEmployeg ii)

copy thehobbyvalues on this new attribute fBtudentobjects £} and Youngobjects

{4, b}; iii) delete the attributdnobbyof Studentiv) rename the attributeobby2to hob-

by. Note that if instead one creates a new attribatbdbyin Person the semantics would

be different because the attribbtbbyof Studentvould not be considered as inherited

from Person

Only Gooseallows to update the origin class of an attribute with retaining values for
objects.

Multiobjects to Ease Schema Evolution in an OODBMS27

/ Pers

Student

0
°C
d:’ b.POdPP.eP
Employee

Young

KYoung (a) before (b) after /

Fig. 8.Update the origin class of the hobby attribute

Create/Delete a Specialization Constraintexample: The cladBersonhas a subclass
European(citizen of a country of the european community) which has a subclasg

(under 30 years old) (see fig. 9.a). CMmgnghas one objea (young european), class
Europeanhas one objedb (old european), clasBersonhas two objecte (young
african) andd (young swiss). Suppose now that Switzerland joins the european
community. One replaces (delete followed by create) then the specialization constraint
of Europearby a new one taking into account Switzerland. The wanted effect is that the
objectd belongs now t&ounginstead ofPerson

« Multiobject approach: The classes and their objects are shown in figure 9.a. Special-
ization constraints are defined on the subclassaspearandYoung When the special-
ization constraint oEuropeanis replaced, the objectiz anddy are automatically
added to the class&siropeanandYoungrespectively (see fig. 9.b).

Cocoonsupports class predicates and allows to change them.

Tenc french

“‘german’....,
SWISS

I
I
I o
European nag’g}onaliﬁ; in | European nationality in
I
I
I
|

K (a) before (b) after /

Fig. 9.Replace the specialization constraint of European

» Classical approach: Most of the OODBMS do not support specialization con-
straints. In our example, a tool should be developed to migrate the dlgeain to
Young

In F2, a specialization constraint (eage < 3Q can be defined on several subclasses
(e.g.YoungStuderdandYoungEmployge Changing the list of subclasses of a speciali-
zation constraint is similar to create/delete a specialization constraint.

328

4 Related Work

Approaches for Multi-faceted and Dynamic Entities We proposed and implemented

a previous version of the multiobject mechanism in the extended entity-relationship
DBMS Ecrins[20]. Several object approaches have been proposed to model the multi-
faceted and dynamic nature of entities. We summarize them in the following table. Then
we compare our approach to them. Null entries (--) mean not known (we do not have

L. Al-Jadir and M. Léonard

the data).
object
approach .
- . . internal | . .
(how an entity i creation extension inheritance
implemented) represen
tation
Object hier-{ entity: set of create an | add/remove an| local upwards in
archies [34] objects (object| object hierar{ object to/from an attributes| object hierar
hierarchy) chy object hierarchy chy (per-
(parent attribute)) object)
Roles in | entity: object off create an |add/remove arole -- no inheritance
ORM [30] | aclass +role| objectina | instance to/from
instances class an object
Aspects [33] entity: object gf create an | add an aspect t¢ - no inherit-
a class + aspe¢t objectina an object ance (aspec
instances class exports
(same oid) selected part
of a class)
Roles in entity: object create an |add/drop a role ta/ local upwards in
Fibonacci | with a set of | object with | from an object | attributes| role hierarchy
[2] roles several roles
(same identity)
Category | entity: object off create an |add/remove arole -- upwards in
classes [28] several classes$ object in sev{ to/from an object class hierar-
(roles) eral classes| (manual), or chy
(same oid) update an objec
(automatic)
Object- | entity: concep-| create a cont create/delete ar] local upwards in
slicing [22] | tual object + set ceptual object implementation | attributes| class hierar-
of implementa-| with imple- object chy
tion objects mentation
(bi-directional objects
link)

Our entity: set of |create a multi-update a multiobt local upwards,
approach: | objects (multi- | object (auto-| ject (objects are| attributes| downwards
Multiobjects object) matic added/removed to/ and sideways
(same instance classification) from a multiobject in specializa-
identifier) automatically) tion tree

Multiobjects to Ease Schema Evolution in an OODBMS29

The multiobject mechanism differs fro@RM rolesandaspectdecause they do
not integrate the class hierarchy. Asoinject hierarchiesFibonacci roles category
classesandobject-slicing an entity in our approach is implemented by a set of objects
which can be enlarged and reduced (automatically@ségory class@sHowever, our
approach has several differences:
— an object can access attribute values of related objects not only upwards but also
downwards and sideways in the class hierarchy.
— two related objects are neither linked by a parent attribute @sent hierarchies
nor by a bi-directional link via a conceptual object astiject-slicing Both objects
have the same instance identifier (same identitlyibonacci rolesand category
classey Thus there is no overhead when accessing related objects in our approach.
— we provide the algorithms to manipulate multiobjects.
— we use the multiobject mechanism not only to ease object modelling and object ev-
olution but also to ease schema evolution.

OODBMS Supporting Schema Evolution. Several OODBMS support schema
evolution. We can classify them in three categories: schema evolution without
versioning Qrion [8], Gemstong29], OTGen[23], Cocoon37], Goosg26], 02[18]),

schema evolution with versioningrcore [35], Orion, Goose Closql [25]), schema
evolution with views Contexts[7], Goose Views [11], TSE [32]). The two last
categories are out of the scope of this paper. Approaches of the first category differ by
the set of supported schema changes, the semantics of schema changes, and the
propagation of schema changes (immediate, deferred, mixed).

5 Conclusion

We presented the multiobject mechanism to implement specialization in object-oriented
databases. We described how this mechanism models multi-faceted and dynamic real-
world entities. We showed its advantages with respect to schema evolution. The multi-
object mechanism makes schema changes more pertinent than with the classical imple-
mentation of specialization. It makes them easier to implement and less time-
consuming since it needs neither to copy objects nor to propagate schema changes. It
makes schema changes easier to understand since it avoids complex propagation rules.
We implemented the multiobject mechanism in F2. We submitted the F2 DBMS to the
0OOQO7 benchmark [14]. We obtained in [3] good results for the queries and traversals, be-
cause objects in the multiobject approach have smaller size than objects in the classical
object model; this consequently reduces the number of input/output operations. For the
insert and delete operations of the benchmark, the multiobject approach is more expen-
sive than the classical object model; this is due to the automatic classification (which is
not supported in the classical object model) and to the fact that several objects are cre-
ated/deleted instead of one. The execution times could be improved by using a parallel
algorithm; this issue deserves to be investigated.

Extensions of the multiobject mechanism in F2 include: i) allow several objects of
the same class in a multiobject; ii) allow several attributes with the same name in a spe-

330 L. Al-Jadir and M. Léonard

cialization tree; iii) handle methods and virtual binding (see interpretation of messages
in [2]); iv) model the life-cycle of an entity [4] and restrict the way objects may be added
to and removed from a multiobject. Extensions of schema evolution in F2 include: i)
take into account schema changes on methods; ii) study the behavioural consistency of
the database,; iii) test schema changes in a real application.

References

1. Adiba M., Collet C.Objets et bases de données: le SGBDH&rmes, 1993.

2. Albano A., Bergamini R., Ghelli G., Orsini FAn object Data Model with RolgBroc. Int.
Conf. on Very Large Data Bases, VLDB, Dublin 1993.

3. Al-Jadir L., Evolution-Oriented Database Systenih.D. thesis, Faculty of Sciences,
University of Geneva, 1997.

4. Al-Jadir L., Falquet G. , Léonard MContext Versions in an Object-Oriented Mode@loc.

Int. Conf. on Database and Expert Systems Applications, DEXA, Prague 1993.

5. Al-Jadir L., Le Grand A., Léonard M., Parchet @ontribution to the Evolution of
Information Systemsin: Methods and Associated Tools for the Information Systems
Lifecycle, A.A. Verrijn-Stuart & T.W. Olle (eds), IFIP, Elsevier, 1994.

6. Al-Jadir L., Estier T., Falquet G., Léonard Byolution Features of the F2 OODBM&oc.

Int. Conf. on Database Systems for Advanced Applications, DASFAA, Singapore 1995.

7. Andany J., Léonard M., Palisser @anagement of Evolution in Databas@soc. Int. Conf.
on Very Large Data Bases, VLDB, Barcelona 1991.

8. Banerjee J., Kim W., Kim H-J., Korth H.FSemantics and Implementation of Schema
Evolution in Object-Oriented Database®roc. Int. Conf. on Management Of Data, ACM
SIGMOD, San Francisco 1987.

9. Barbedette GSchema Modifications in the LISPO2 Persistent Object-Oriented Language
Proc. European Conf. on Object-Oriented Programming, ECOOP, Geneva 1991.

10. Bellahsene Z.An Active Meta-model for Knowledge Evolution in an Object-oriented
Database Proc. Int. Conf. on Advanced Information Systems Engineering, CAISE, Paris
1993.

11. Bertino E.A View Mechanism for Object-Oriented Databa$&®c. Int. Conf. on Extending
Database Technology, EDBT, Vienna 1992.

12. Bertino E., Jajodia SModeling Multilevel Entities Using Single Level Objed®soc. Int.
Conf. on Deductive and Object-Oriented Databases, DOOD, Phoenix 1993.

13. Bonjour M., Falguet GConcept Bases: A Support to Information Systems Integr&tioc.

Int. Conf. on Advanced Information Systems Engineering, CAISE, Utrecht 1994.

14. Carey M.J., DeWitt D.J., Naughton J.Fhe OO7 BenchmarkProc. Int. Conf. on
Management Of Data, ACM SIGMOD, Washington 1993.

15. Estier T., Falquet G., Guyot J., Léonard Bix Spaces for Global Information Systems
Design in: The Object Oriented Approach in Information Systems, F. van Assche & B.
Moulin & C. Rolland (eds), IFIP, North-Holland, 1991.

16. Falquet G Interrogation de bases de données a I'aide d’'un modéle sémariiqu thesis,
Faculty of Sciences, University of Geneva, 1989.

17. Falquet G., Léonard M., SindayamazeF2Concept: a Database System for Managing
Classes’ Extensions and Intensipits Information modelling and knowledge bases V, H.
Jaakola et al. (eds), IOS Press, 1994.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Multiobjects to Ease Schema Evolution in an OODBMS31

Ferrandina F., Meyer T., Zicari R., Ferran G., MadeSchema and Database Evolution in
the O2 Object Database Systdhmoc. Int. Conf. on Very Large Data Bases, VLDB, Zirich
1995.

Hauck F.J.Inheritance Modeled with Explicit Bindings: An Approach to Typed Inheritance
Proc. Conf. on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA, Washington 1993.

Junet M., Falquet G., Léonard MCRINS/86: An Extended Entity-Relationship Data Base
Management System and its Semantic Query Lang&age. Int. Conf. on Very Large Data
Bases, VLDB, Kyoto 1986.

Kambayashi Y., Peng ZQbject Deputy Model and Its ApplicatignBroc. Int. Conf. on
Database Systems for Advanced Applications, DASFAA, Singapore 1995.

Kuno H.A., Ra Y-G., Rundensteiner E.Ahe Object-Slicing Technique: A Flexible Object
Representation and Its Evaluatiofechnical Report, CSE-TR-241-95, University of
Michigan, 1995.

Lerner B.S., Habermann A.MBeyond Schema Evolution to Database Reorganizafimrc.
Conf. on Object-Oriented Programming Systems, Languages and Applications, OOPSLA,
Ottawa 1990.

Ling T.W., Teo P.K.Object Migration in ISA HierarchigsProc. Int. Conf. on Database
Systems for Advanced Applications, DASFAA, Singapore 1995.

Monk S.R., Sommerville 1A Model for Versioning of Classes in Object-Oriented Datahases
Proc. British National Conf. on Databases, BNCOD, Aberdeen 1992.

Morsi M.M.A., Navathe S.B., Kim H-JA Schema Management and Prototyping Interface
for an Object-Oriented Database Environment Object Oriented Approach in I.S., F. Van
Assche & B. Moulin & C. Rolland (eds), IFIP, North-Holland, 1991.

Nguyen G.T., Rieu D., Escamilla An Object Model for Engineering DesigRroc.
European Conf. on Object-Oriented Programming, ECOOP, Utrecht 1992.

Odberg E.Category Classes: Flexible Classification and Evolution in Object-Oriented
DatabasesProc. Int. Conf. on Advanced Information Systems Engineering, CAISE, Utrecht
1994.

Penney D.J., Stein LJass Modification in the GemStone Object-Oriented DBRISC.
Conf. on Object-Oriented Programming Systems, Languages and Applications, OOPSLA,
Orlando 1987.

Pernici B.Objects with RolesProc. IEEE Conf. on Office Information Systems, 1990.
Peters R.J., Ozsu M. Bn Axiomatic Model of Dynamic Schema Evolution in Objectbase
SystemsACM Transactions on Database Systems, vol. 22, no 1, march 1997.

Ra Y.G., Kuno H.A., Rundensteiner E.A.Flexible Object-Oriented Database Model and
Implementation for Capacity-Augmenting ViewBechnical Report, CSE-TR-215-94,
University of Michigan, april 1994.

Richardson J., Schwarz Rspects: Extending Objects to Support Multiple, Independent
Roles Proc. Int. Conf. on Management Of Data, ACM SIGMOD, Denver 1991.

Sciore E.Object SpecializatioPACM Transactions on Information Systems, vol. 7, no 2,
april 1989.

Skarra A.H., Zdonik S.BType Evolution in an Object-Oriented Databas® Research
Directions in OO Programming, B. Shriver & P. Wegner (eds), MIT Press, 1987.

Smith J.M., Smith D.C.PDatabase Abstractions: Aggregation and Generalizatid@M
Transactions on Database Systems, vol. 2, no 2, june 1977.

Tresch M. A Framework for Schema Evolution by Meta Object Manipulatinoc. Int.
Workshop on Foundations of Models and Languages for Data and Objects, Aigen 1991.

332 L. Al-Jadir and M. Léonard

Appendix

1. Get Algorithm

Let att be an attribute and-de an object of class C
(an object carries the class it is instance of, thus |
can be known from ; origin_class(att) be a
function which returns the origin class of attribute
att; root(C) be a function which returns the root class
of the specialization tree of class C.

function get(aoc, att) return val is

begin
/* call the check_valid_attribute procedure which
checks that att is a local attribute of C (sets obj t
oc) or a reached attribute byco(sets obj to the
object in the origin class of att which is related tc

oc) */

cﬁeck_valid_attribute(attco obj);

return the value val of obj on att;
end get;

procedure check_valid_attribute(att, @, obj) is
begin
Orig := origin_class(att);
[* if att is a local attribute of class C */
if (C = Orig) then
obj == qz;
/* if classes Orig and C are in same spec. tree */
elsif (root(C) = root(Orig)) then
Opyrig = relatedTo(g, Orig);
[* if o¢ is related to an object in Orig */
if (0prig # unknown_object) then
obj = Quyigs
else error2;
end if;
else errorl,;
end if;
end check_valid_attribute;

2. Create Algorithm

Let C be a class and {a/, &:vy, ..., g:Vp] be an
array of <attribute:value> pairs; subclasses(C) be a
function which returns the direct subclasses of clas
C; satisfy_constraints([avy, a:v, ..., &:vp], C) be
a function which indicates whether the giver
attribute values satisfy all the spec. constraints ¢
(t:)lafss C; root() and origin_class() have been define
efore.

function create(C, [g&:vq, &V, ..., ap:vp]) return
oc is
begin

TheRoot := root(C);

/S*ci:nitialize SC to the empty set */

[* call the classify procedure which puts in SC the
classes of the néw multiobject */
classify(TheRoot, [avy, &:Vy, ..., @:Vp], SC);

[* check that C belongs to SC */
if (C not in SC) then errorl;

end if;
/* check that all the given attributes will be

reached by the new multiobject */
for each attribute;an [ag:vy, &:Vo, ..., &Vl
loop
if (origin_class(g not in SC) then error2;
end if;
end loop;

/* add objects, store attribute values */
ID :=the instance identifier for the objects of

the new multiobject;

for each class Gn SC loop

add an objectg (having the instance identifier
ID) to G;;

store the value ofg on the attributes whose
origin class is ¢

end loop;

return @;

end create;

procedure classify(C, [ga:vy, &V,
TheSet) is
begin
[* add class C to TheSet */
TheSet := TheSét C;
Sub := subclasses(C);
for each $in Sub loop
[* if the attribute values satisfy all the spec.
constraints of class;
if satisfy_constraints(favy, a:vy, ..., &Vyl,
S) then
classify($, [a;:vy, &:Vo, ..., &V,
TheSet); -- recursive call

e BVpl,

end if;
end loop;
end classify;

3. Delete Algorithm

Let o= be an object of class C; root() and
subclasses() have been defined before.

procedure delete(g) is
begin
TheRoot := root(C);
ORoot := relatedTo(g, TheRoot);
/* initialize SC to the empty set */
SC:={;

/* call the facets procedure which puts in SC the
classes of the multiobject containing.g:*/
facets(@qop SC);

/* remove objects */
for each class Gn SC loop

oc;j := relatedTo(g, G);
remove the objectg from G;
end loop;
end delete;

procedure facets(g, TheSet) is
begin
/* add class C to TheSet */
TheSet := TheSéti C,;
Sub := subclasses(C);

Multiobjects to Ease Schema Evolution in an OODBMS33

for each $in Sub loop
Og;j := relatedTo(g, S);
[* if an object in $is related to @ */
if (0gj# unknown_object) then

facets(g;, TheSet); -- recursive call

end if;

end loop;

end facets;

4. Update Algorithm

Let o= be an object of class C and [a:v] be an
<attribute:value> pair; constraint_on_att(C, att) be
a function which indicates whether class C has
specialization constraint involving the attribute att;
satisfy_constraints_att([a:v], C) be a function which
indicates whether the value v satisfies th

continue to true if the related object;exists
and stays in S/
migrate(@, [a:v], S, TheSetAdd,
TheSetRemove, continue);
if continue then
reclassify(e, [a:v], §, TheSetAdd,
TheSetRemove); -- recursive call
end if;
/* else if an object in;3s related to g_*/
elsif (relatedTo(g, §) # unknown_object) then
reclassify(e, [a:v], S, TheSetAdd,
TheSetRemove); -- recursive call
end if;
end loop;

end reclassify;

specialization constraints of class C involving theProcedure migrate(q:, [a:v], D, TheSetAdd,
attribute a; check_valid_attribute(), origin_class(), TheSetRemove, continue) is

subclasses(), satisfy_constraints(),
classify() have been defined before.

procedure update(g, [a:v]) is
begin
check_valid_attribute(a,o obj);
Orig := origin_class(a);

/* initialize ToAdd and ToRemove to empty set */
ToAdd = {};

ToRemove := {};

[* call the reclassify procedure which puts_in
ToAdd the classes to which a related object will b
added and in ToRemove the classes from which
related object will be removed */

reclassﬁyg@, [a:v], Orig, ToAdd, ToRemove);

/* add objects */
for each class Gn ToAdd loop
add an objectg (having the same instance
identifier as g) to G;
end loop;

/* remove objects */
for each class {Gn ToRemove loop

oc;j := relatedTo(g, G);
remove the objectg from G;
end loop;

[* store the new attribute value */ .
store the new value v of the object obj on the

attribute a;
end update;

procedure reclassify(e, [a:v], D, TheSetAdd,
TheSetRemove) is
begin
Sub := subclasses(D);
for each $in Sub loop
[* if class $ has a spec. constraint involving the
attribute a */
if constraint_on_att(Sa) then
/* call the migrate procedure which (i) adds
% and possibly its descendantszj tc
heSetAdd if a related objecgishould be
added, (i) adds ;S (and possibly its
descendants) to TheSetRemove if the relat
object @; should be removed, (iii) sets

facets() anbegin

continue := false;

[*is_related indicates if @is related to an object.
in D ﬁbefore update); will_be_related indicates if
oc wi | be related to an object’in D (after update)

0p := relatedTo(g, D);
is_related := (g # unknown_object);
if is_related then

* does the new attribute value satisfy the spec.
constraints of D involving the attribute a */
will_be_related :=

satisfy_constraints_att([a:v], D);
else

* does the object@®(take into account the new
attnbyte value) satisfy all the spec. constraints

0
will_be_related := satisfy_constraints(
attribute values of @ D);
end if;

/* case 1. there is a related object in D and it will
stay in it */)
if (is_related and will_be_related) then
continue := true;
[* case 2: there is a related object in D but it will
be removed from it */)
elsif (is_related and not will_be_related) then
/* add D and each of its descendants where an
object is related to @to TheSetRemove */
tempRemove := {};
facets(g, tempRemove);
TheSetRemove := TheSetRemadve
tempRemove;
[* case 3: no related object in D but a new one will
be added to it */)
elsif (not is_related and will_be_related) then
[* add D and possibly its descendants to
TheSetAdd */
tempAdd := {};
classify(D, attribute values ogptempAdd);
TheSetAdd := TheSetAdd tempAdd;
[* case 4: no related object in D and no one will
be added to it */
else null; -- nothing to do

end if;

end migrate;

	1 Introduction
	2 Multiobject Mechanism
	2.1 Multiobjects
	2.2 Manipulating Multiobjects

	3 Advantages of the Multiobject Mechanism for Schema Evolution
	3.1 Schema Evolution in F2
	3.2 Multiobject Mechanism and Schema Evolution

	4 Related Work
	5 Conclusion
	References

