
Multiobjects to Ease Schema Evolution
in an OODBMS

Lina Al-Jadir, Michel Léonard

Centre Universitaire d’Informatique (C.U.I.), Université de Genève
24 rue Général-Dufour, 1211 Genève 4, Switzerland

{aljadir, leonard}@cui.unige.ch

Abstract. The multiobject mechanism is a pertinent way to implement speciali-
zation in an object database and differs from the classical mechanism used in
most object-oriented database systems. It supports multiple instantiation, auto-
matic classification and object migration. Consequently it is well suited to take
into account schema evolution. It makes schema changes more pertinent, easier
to implement, and less expensive than with the classical implementation of spe-
cialization indeed. The multiobject mechanism is implemented in the F2 database
system which supports schema evolution.

1 Introduction

In the classical implementation of specialization in object-oriented database systems
(OODBMS) an object is an instance of one most specific class. It is completely stored
in this class, i.e. all attribute values on local and inherited attributes are present in the
object. This has several shortcomings for object modelling and object evolution. Since
an object is an instance of only one class, one must use multiple inheritance to model
real-world entities that have many facets at once. This can lead to a combinatorial ex-
plosion of sparsely populated classes, as pointed out in [34] [33] [27] [28]. Once an ob-
ject is created in a class, it stays in that class until it is deleted from it. This is a serious
limitation, since one is forced to model real-world entities that evolve dynamically with
objects that can not, as pointed out in [30] [33] [2] [28]. Several approaches (see section
4) have been proposed to overcome these shortcomings. In this paper we address other
shortcomings of the classical implementation of specialization which are related to
schema evolution.

Schema evolution is an essential feature of a database system to allow database ap-
plications to run in a dynamic environment. Updating the schema of a populated data-
base has repercussions on database objects in order to keep the database in a consistent
state. Supporting single-instantiated and static objects restricts schema changes. More-
over, it requires to copy data when modifying the schema which is extremely time-con-
suming. Suppose for example that a class Swiss is added as a subclass of Person. With
a classical implementation, it is not possible to make some of the existing Person ob-
jects belong now to the Swiss subclass. For all swiss citizens, the database administrator
has to create copies of the Person objects in the new subclass Swiss and to delete the

T.W. Ling, S. Ram, and M.L. Lee (Eds.): ER’98, LNCS 1507, pp. 316−333, 1998.
 Springer-Verlag Berlin Heidelberg 1998

corresponding objects in class Person. This may be a very expensive operation if there
are many swiss persons.
Supporting classical inheritance makes many schema changes difficult to understand
and to implement. Orion [8] requires complex propagation rules to disambiguate the ef-
fect of schema changes. Gemstone [29] does not support some schema changes because
their motivation is to only provide schema changes which are “well understood and
have a reasonable implementation”.

We propose the multiobject mechanism to implement specialization in an object-
oriented database system. This mechanism supports multiple instantiation, automatic
classification and object migration. It makes schema changes more pertinent, eases their
implementation and understanding, and reduces their execution time. The multiobject
mechanism is implemented in the F2 OODBMS. F2 is a general purpose database sys-
tem developed at C.U.I. and used to experiment several features such as: updatable
views [16], information system design methods [15], knowledge databases [17], data-
base integration [13], schema evolution [7] [6] [3]. It is written in Ada and runs under
SunOS, DEC/ALPHA, MacOS and Windows 95.

The remainder of the paper is organized as follows. In section 2, we present the
multiobject mechanism. In section 3, we show its advantages with respect to schema ev-
olution. In section 4, we describe related approaches and compare the multiobject
mechanism to them. In section 5 we conclude with a summary.

2 Multiobject Mechanism

We describe in this section the multiobject mechanism. We introduce first the multiob-
jects and describe then the methods to manipulate them.

2.1 Multiobjects

Defining a Multiobject. In the F2 model [6] an object is an instance of a class. Objects
structure is defined by class attributes. Objects behaviour is defined by primitive
methods and triggered methods. A class, called subclass, can be declared as a
specialization of another class called superclass. The class hierarchy is a forest, i.e. a set
of specialization trees: a subclass has only one superclass (single inheritance), and there
is not a root system-defined class. On a subclass may be defined specialization
constraints. An object belongs to a subclass if and only if it satisfies the specialization
constraints of the subclass. The ancestors of a subclass are its direct and indirect
superclasses. The descendants of a class are its direct and indirect subclasses.

We assume that the reality consists of entities. Entities have several facets. For ex-
ample, a human being may be seen as a person, an employee, a tennis player, a student,
etc. An entity is implemented in the multiobject mechanism by a set of objects in dis-
tinct classes of a specialization tree, Mo = {oC1, oC2, ..., oCn}, called multiobject. Each
object oCi denotes a facet of the entity and carries data specific to its corresponding class
Ci. This is referred to as multiple instantiation. A multiobject Mo satisfies the following
constraint: if oCi, 1 ≤ i ≤ n, belongs to Mo and Ci is a subclass of Cj then there must be

317Multiobjects to Ease Schema Evolution in an OODBMS

an object oCj, 1 ≤ j ≤ n and j ≠ i, which belongs to Mo. In other words, if an entity pos-
sesses an object in class C, then the entity must also possess objects for all the ancestors
of C. For example, the class Student is a subclass of Person. A student is implemented
by a multiobject containing two objects rStudent in Student and rPerson in Person.

Subclasses can be inclusive, i.e. a multiobject may contain two objects oCi and oCj
where Ci and Cj are sibling classes. For example, the class Person has another subclass
Employee (see fig. 1.a). A person who is a student and an employee is implemented by
a multiobject containing three objects: rPerson in Person, rStudent in Student and rEmployee
in Employee (see fig. 1.b). There is therefore no need to add an artificial intersection
class Student&Employee as with the classical implementation of specialization.

An object oC in class C has the oid <idC, ido> where idC is the class identifier and
ido the instance identifier within C (as in Orion [8]). Two objects pE and qF are related,
i.e. they belong to the same multiobject, if:

− their classes E and F are in the same specialization tree, and
− they have the same instance identifier (idp = idq).

Two objects pE and qF are identical, if:
− they have the same oid (i.e. same class identifier and same instance identifier).

The operator “=” checks if two objects are identical, while the operator “@=” checks if
two objects are related. The function relatedTo(oD, C) returns the object in class C
which is related to oD (C and D being two classes in the same specialization tree). In
other words, this function returns the object which has the oid <idC, ido> . If no such
object exists in C, it returns the unknown object. Note that in other approaches this func-
tion is called casting or coercion. Examples are given in figure 1.c.

Since an entity may gain and lose facets during its life-time, objects can be added
to and removed from its corresponding multiobject (see §2.2).

Querying a Multiobject. In the multiobject mechanism, attributes are not inherited in
the classical sense of inheritance; they are reached by navigating in a specialization tree.
This contrasts with the classical implementation of specialization. For the objects of a
subclass C, only the values on attributes locally defined at C are stored. The values on
attributes defined at the superclass S of C are not stored with C objects but with their

oid of rPerson: < idPerson, idr >,
oid of rStudent: < idStudent, idr >,
oid of rEmployee: < idEmployee, idr >,

(rEmployee = rStudent) = FALSE,
(rEmployee @= rStudent) = TRUE,
relatedTo(rStudent, Employee)

= rEmployee.

Person

Student

Fig. 1. Implementing a student-employee

Employee

name
nationality

regist# emp#
salary

Person

Student Employee

jobs

rPerson

rEmployeerStudent

hobby

(a) classes (b) instances

: class CC
(italic items next to C are its attributes)

: IS-A link

(c) operators

318 L. Al-Jadir and M. Léonard

related S objects. For example, in figure 1, if the name of rPerson is “Dupont” and
rEmployee in Employee is related to rPerson then rEmployee is named Dupont. The name
values are stored with the objects of class Person.

While traditional inheritance is upwards, reaching attributes in the multiobject
mechanism can be upwards, downwards and sideways. The get(oC, att) primitive meth-
od reads the value that the multiobject containing the object oC takes on the attribute att.
Its algorithm (see appendix) is the following: if att is a local attribute of C then it returns
the value of oC on att, else if att is a local attribute of a class D belonging to the special-
ization tree of C then it returns the value of oD on att where oD is the object in class D
which is related to oC. Figure 2 shows some examples related to figure 1.

An attribute of class C is always reached in the descendants of C (because each of their
objects is related to an object in C) while it may be reached in the ancestors and sibling
classes of C if some of their objects are related to an object in C.
We forbid homonym attributes in classes belonging to the same specialization tree; nev-
ertheless we have the same potential of information as O2 [1] and Goose [26].

2.2 Manipulating Multiobjects

The algorithms for creating, deleting and updating a multiobject are provided in the ap-
pendix and are implemented in the F2 OODBMS. We briefly describe them hereafter.

Creating a Multiobject. The create(C, [a1:v1, a2:v2, ..., ap:vp]) primitive method
creates a multiobject including an object in class C. The automatic classification
algorithm searches the classes of the multiobject in the specialization tree of C
(beginning from the root), SC = {C1, C2, ..., Cn}, according to the attribute values [a1:v1,
a2:v2, ..., ap:vp] and to the classes’ specialization constraints. If C does not belong to SC
or if the origin class of one of the attributes aj does not belong to SC, an error is returned.

Fig. 2. Reaching attributes upwards, downwards and sideways

Person

Student Employee

rPerson

rEmployee
rStudent

qPerson
pPerson

pStudent

regist#:98755 salary:2000

name:

let rPerson be named “Dupont”, rStudent having the registration number 98755, and rEmployee
earning a salary of 2000 francs. Let pStudent be another student (not employee) and qPerson
a baby (neither student nor employee).

name(rStudent) = “Dupont”, /* upwards */
salary(rPerson) = 2000, /* downwards */
regist#(rEmployee) = 98755, /* sideways */
emp#(pStudent) raises error2,

/* pStudent is not related to an employee object */
regist#(qPerson) raises error2,

/* qPerson is not related to a student object */
birthdate(rEmployee) raises error1.

 /* birthdate is not an attribute in the specializa-
tion tree of Employee */

”Dupont”

319Multiobjects to Ease Schema Evolution in an OODBMS

Otherwise, an object oCi is added to each class Ci of SC and all these objects carry the
same instance identifier. Each attribute value is stored with the object oCi which belongs
to the origin class of the attribute. This contrasts with the classical implementation of
specialization where an object is created in one most specific class.

For example, in figure 3.a, the class Person has two subclasses: Employee which
in turn has two subclasses ManEmp (for men employees) and WomEmp (for women em-
ployees), and Student which in turn has a subclass SwissSt (for swiss students). The fol-
lowing expression (in F2-DML) creates a multiobject containing four objects: oPerson in
Person (root class of the specialization tree), oEmployee in Employee (the constraint jobs
includes “employee” is satisfied), oManEmp in ManEmp (the constraint sex = “m” is sat-
isfied) and oStudent in Student (the constraint jobs includes “student” is satisfied) (see
fig. 3.b).

oEmployee := create Employee’ [name: “Dupont”, sex: “m”,
nationality: “french”, jobs: (“employee”, “student”), emp#: 125,
salary: 2500];

Note that if we did not give a value on the jobs attribute, the creation would be rejected
because the multiobject would not include an object in Employee (Employee constraint
not satisfied).

Deleting a Multiobject. The delete(oC) primitive method deletes the multiobject
containing the object oC, i.e. it removes oC and all its related objects. The algorithm
searches the classes of the multiobject in the specialization tree of C (beginning from
the root), SC = {C1, C2, ..., Cn}, and removes its object oCi from each class Ci of SC.
This contrasts with the classical implementation of specialization where an object is
deleted from one class.

For example, the following expression (in F2-DML) deletes a multiobject (repre-
senting a male student-employee) by removing all its objects oPerson, oEmployee,
oManEmp and oStudent (see fig. 4).

delete o Employee ;

Fig. 3. Creating a multiobject

oPerson

oEmployee

jobs
Person

Student Employee

(a) classes (b) instances

ManEmp WomEmp

sex
nationality

SwissSt

jobs: (“employee”,

sex: “m”
nationality: “french”

oStudent

oManEmp

emp#
salary

emp#: 125
salary: 2500

name

regist#
hobby

scholarship

name: “Dupont”

“student”)

320 L. Al-Jadir and M. Léonard

If instead one dismisses the employee, the
entity remains as a student and a person.
This can be done by updating the jobs at-
tribute of the corresponding multiobject.

Updating a Multiobject. The update(oC,
[att:val]) primitive method sets the value of
the multiobject containing the object oC on
the attribute att to val. Like the get method,
update searches the attribute att upwards,
downwards and sideways. Since the
attribute att could be used in specialization
constraints on the descendants SD of its
origin class Orig, the multiobject may gain new objects or/and lose existing objects in
SD because it may now (with the new value val) validate or invalidate those
specialization constraints. This is referred to as object migration. The automatic
classification algorithm searches in the specialization tree of C, beginning from Orig:
(i) the set of gained classes and adds an object (carrying the same instance identifier as
oC) to each of them; (ii) the set of lost classes and removes the related object to oC from
each of them. This contrasts with the classical implementation of specialization where
an object stays in its class until it is deleted from it.

For example, figure 5.a shows a swiss female student implemented by a multiob-
ject containing three objects {pPerson, pStudent, pSwissSt}. The following expression (in
F2-DML) expresses that this person ceases to be a student and becomes an employee.
As a result (see fig. 5.b), (i) pEmployee is added to Employee and pWomEmp is added to
WomEmp, (ii) pStudent and pSwissSt are removed from Student and SwissSt respectively.
The multiobject contains now the objects {pPerson, pEmployee, pWomEmp}.

update p Person jobs:(“employee”);

Fig. 4. Deleting a multiobject

oPerson

oEmployeeoStudent

oManEmp

X
Person

Student

SwissSt

Employee

ManEmp WomEmp

X

X X

Fig. 5. Updating a multiobject (jobs attribute)

Person

Student Employee

pPerson

pEmployee

jobs: (“student”)
Person

Student Employee

pPerson

pStudent

(a) before update (b) after update

ManEmp WomEmp

pSwissSt

sex: “f”
nationality: “swiss”

SwissSt

jobs: (“employee”)

sex: “f”
nationality: “swiss”

ManEmp WomEmp

pWomEmp
SwissSt

321Multiobjects to Ease Schema Evolution in an OODBMS

3 Advantages of the Multiobject Mechanism for Schema Evolution

In this section we first provide briefly the framework of schema evolution in F2. Then
we discuss the advantages of the multiobject mechanism with respect to schema evolu-
tion.

3.1 Schema Evolution in F2

Set of Schema Changes in F2. An important feature of the F2 DBMS is the uniformity
of its objects described in [6] [3]. We consider objects of three levels: database objects,
schema objects and meta-schema objects. Uniformity of objects in F2 includes:
− uniformity of representation. The same structures are used in F2 to represent data-

base objects, schema objects and meta-schema objects;
− uniformity of access and manipulation. The same primitive methods are used in F2

to access and manipulate database objects, schema objects and meta-schema ob-
jects.

Thanks to the uniformity of the F2 DBMS, we built the set of schema changes in F2 as
follows [6] [3]: for each class of the F2 meta-schema we apply the primitive methods
create, delete and update on its objects (see fig. 6).

Semantics of Schema Changes. We defined the semantics of each schema change in
F2 with pre-conditions and post-actions [6] [3] such that the F2 model invariants are
preserved. Pre-conditions must be satisfied to allow a schema change to occur;
otherwise it is rejected. Post-actions are repercussions to be executed on schema objects
and database objects in order to keep the database structurally consistent. We
implemented pre-conditions and post-actions by triggered methods [6] [3].

Propagation of Schema Changes. In F2 schema changes are propagated immediately
[3], i.e. the repercussions of a schema change are executed as soon as the schema change
is performed.

3.2 Multiobject Mechanism and Schema Evolution

Since the multiobject mechanism implements specialization, we consider among the
schema changes of F2 (fig. 6) those which are involved in specialization: create a sub-
class (1.3), delete a class (2), change the superclass of a subclass (3.4), update a class
from non-subclass to subclass (3.5) and the reverse (3.6), create (4) and delete an at-
tribute (5), change the domain class (6.4) and the origin class of an attribute (6.5), create
(10) and delete a specialization constraint (11), change the list of subclasses on which
is defined a specialization constraint (12.2). By examples we will show that the multi-
object mechanism makes these schema changes more pertinent and easier to implement
than with the classical implementation of specialization. We will compare F2 with the
following OODBMS which support schema evolution: Orion [8], Gemstone [29], OT-
Gen [23], Cocoon [37], Goose [26] and O2 [18]. All these systems support the classical

322 L. Al-Jadir and M. Léonard

implementation, except Cocoon which supports multiple instantiation, class predicates
and automatic classification.

Create a Subclass. Example: The class Person has several attributes including
nationality. It has four objects {a, b, c, d}, two of them {a, d} take the value “swiss” on
the nationality attribute. The class Car has an attribute owner whose domain is Person.
Now one creates the class Swiss as a subclass of Person. The wanted effect is that a and
d become objects of the Swiss class.
• Multiobject approach: The class Person has four objects {aP, bP, cP, dP} (see fig.
7.a). When the Swiss subclass and a specialization constraint on it are added, the objects
aS and dS are automatically added to the Swiss subclass because they satisfy its special-
ization constraint (see fig. 7.b). Each of the multiobjects a and d contain now two ob-
jects. The attribute values of objects aP and dP are not copied because attribute values
are locally stored and attributes of Person are reached in Swiss.
Cocoon supports this schema change.

(1) Create a new class
(1.1) Create an atomic class
(1.2) Create a tuple class
(1.3) Create a tuple subclass

(2) Delete an existing class
(3) Update an existing class

(3.1) Change its name
(3.2) Change its interval if atomic class
(3.3) Change its maximal length if

atomic string class
(3.4) Change its superclass
(3.5) Make it a subclass, i.e. attach it to

a specialization tree
(3.6) Make it a non-subclass, i.e. detach

it from a specialization tree
(4) Create a new attribute of a class
(5) Delete an existing attribute
(6) Update an existing attribute

(6.1) Change its name
(6.2) Change its maximal cardinality
(6.3) Change its minimal cardinality
(6.4) Change its domain class
(6.5) Change its origin class

(7) Create a new key of a class
(8) Delete an existing key
(9) Update an existing key

(9.1) Change the class on which it is
defined

(9.2) Change its attributes
(9.3) Enable / disable it

(10) Create a new specialization constraint
(11) Delete an existing spec. constraint
(12) Update an existing spec. constraint

(12.1)Change its name
(12.2)Change the list of subclasses on

which it is defined
(13) Create a new trigger
(14) Delete an existing trigger
(15) Update an existing trigger

(15.1)Change the event for which it is
defined

(15.2)Change the list of methods it trig-
gers

(16) Create a new event
(17) Delete an existing event
(18) Update an existing event

(18.1)Change the class on which it is
defined

(18.2)Change its kind
(18.3)Change its attribute

(19) Create a new triggered method
(20) Delete an existing triggered method
(21) Update an existing triggered method

(21.1)Change its name

Fig. 6. F2 schema changes

323Multiobjects to Ease Schema Evolution in an OODBMS

• Classical approach: Most of the OODBMS supporting schema evolution leave a
subclass empty (without objects) when it is newly created. Thus in our example, a tool
should be developed to: i) create two new objects in Swiss; ii) copy the value of objects
a and d, on all the attributes of Person, to the newly created objects respectively; iii) de-
lete the objects a and d in Person. If the objects a and d were referenced by Car objects
through the owner attribute, the tool has also to update these references (to reference
now the new objects in Swiss).
Only O2 (thanks to migration functions) and OTGen (thanks to boolean expressions) al-
low subclass creation with object migration down.

Delete a Class. Example: The class Swiss is a subclass of Person and has two objects
{ a, d} . The class Chalet has an attribute owner whose domain is Swiss. Now one is no
more interested to classify the swiss persons and decides to delete the Swiss class. The
wanted effect is that a and d become objects of the Person class (keep the swiss people
as persons).
• Multiobject approach: The Swiss class has two objects aS and dS which are related
to aP and dP respectively in Person (see fig. 7.b). When the subclass Swiss is deleted, its
objects are removed while their related objects {aP, dP} remain in Person (see fig. 7.a).
The attributes of Swiss are deleted and the domain of the owner attribute is updated to
Person, as with the classical approach. The values on the owner attribute remain un-
changed (see update the domain of an attribute).
Cocoon supports this schema change.

• Classical approach: Most of the OODBMS supporting schema evolution delete the
objects of a class when the class is deleted (Gemstone prevents the deletion of a class if
it is not empty). This implies loss of information. Thus in our example, a tool should be
developed to: i) create two new objects in Person; ii) copy the value of objects a and d,
only on the inherited attributes from Person, to the newly created objects respectively;
iii) delete the Swiss class (consequently its objects are deleted). If the objects a and d
were referenced by Chalet objects through the owner attribute, the tool has also to up-
date these references (to reference now the new objects in Person).

Note that if the wanted effect in our example was not to keep the swiss persons, this
could be achieved in the multiobject approach by first deleting the multiobjects contain-
ing Swiss objects and then deleting the Swiss class. Thus both semantics are possible in

Person aP

(a) before

bP
cP

dP

(b) after

Person

Swiss

aP

aS

bP
cP

dP

nationality = ”swiss”dS

Fig. 7. Add the Swiss subclass with a specialization constraint

: class C
(underlined items next to C are its specialization constraints)

324 L. Al-Jadir and M. Léonard

our approach and the database administrator can choose the most suitable for a given
situation.

Update the Superclass of a Subclass. Example: The class Person has two subclasses
Student and Employee. Student has a subclass Young (see fig. 8.a). Now one updates the
superclass of Young from Student to Employee. The wanted effect is that the Young class
stores the young employee objects instead of the young student objects, and that it
inherits the attributes of Employee instead of those of Student.
• Multiobject approach: The class Young has the specialization constraint age < 30.
Changing its superclass to Employee reclassifies automatically its objects: i) for each
object in Young, if it is not related to an Employee object, it is removed from Young; ii)
for each object in Employee whose age value is under 30, a related object to it is added
to Young (if it does not already exist). The Young class reaches now another set of at-
tributes; the physical storage of its objects remains unchanged.

• Classical approach: Most of the OODBMS supporting schema evolution keep the
same objects in a subclass when modifying its superclass. This may lead to an incon-
sistent semantics. They re-evaluate the inheritance of the subclass according to defined
rules. In our example, the Young class inherits now the attributes of Employee instead
of those of Student. This results in the modification of the physical storage of Young ob-
jects. To reclassify objects in the Young class, a tool should be developed to: i) migrate
the Young objects up to Student (like when deleting a class); ii) migrate some objects of
Employee down to Young (like when creating a subclass). Note that Gemstone does not
support this schema change in order to only provide well understood schema changes.

In F2, updating a subclass to non-subclass and the reverse are special cases of updating
the superclass of a subclass. Due to lack of space we do not describe them.

Create an Attribute. Example: One adds the attribute hobby to class Person which has
several descendants. The wanted effect is that the descendants of Person inherit hobby.
• Multiobject approach: Adding the new attribute hobby to class Person does not need
to be propagated to the descendants of Person; instead hobby will be reached in them.

• Classical approach: Most of the OODBMS supporting schema evolution, as Orion
and Gemstone, propagate recursively this schema change to Person’s subclasses accord-
ing to propagation rules. On storage, this requires to physically add the attribute to the
objects of each descendant of Person inheriting it.

Delete an Attribute. Example: One deletes the attribute hobby from class Person. The
wanted effect is that the descendants of Person do no longer inherit hobby.
• Multiobject approach: Removing the attribute hobby from class Person does not
need to be propagated to the descendants of Person; instead hobby will not be reached
in them.

• Classical approach: There are different approaches, Orion removes recursively the
attribute hobby from subclasses inheriting it while Gemstone does not. In the latter case,
one has to delete the hobby attribute from each class inheriting it. On storage, both ap-
proaches require to physically delete the attribute from the objects of each descendant
of Person inheriting it.

325Multiobjects to Ease Schema Evolution in an OODBMS

Update the Domain Class of an Attribute. Example: The class Book has an attribute
owner whose domain is Person. Student is a subclass of Person. The book book1 is
owned by c (student object) and book2 is owned by d (person object). Now one updates
the domain of owner to Student.
• Multiobject approach: As with the classical approach, the owner value of book1 is
unchanged: cS in Student is related to cP in Person and they have the same instance iden-
tifier. In F2, only instance identifiers are physically stored in attribute values (the class
identifier is the same for all values on the same attribute; it can be obtained by getting
the domain class of the attribute). The owner value of book2 is replaced by the unknown
object. Updating the domain class of owner does not need to be propagated to the de-
scendants of Book, because the owner values are stored with Book objects. Note that one
can update the domain of owner to an ancestor, a descendant or a sibling class of Person.

• Classical approach: All the OODBMS supporting schema evolution support this
schema change but some with restrictions. For example, Orion allows only to generalize
a domain while Gemstone can generalize and specialize it. Orion propagates this sche-
ma change to subclasses inheriting the attribute according to propagation rules while
Gemstone does not.

Update the Origin Class of an Attribute. Example: The class Young is a subclass of
Student which is a subclass of Person (see fig. 8.a). Class Person has the objects {d},
class Student has {c} and class Young has {a, b}. Class Employee, another subclass of
Person, has the objects {e}. Hobby is a local attribute of Student. Now one wants to store
the hobbies of all persons and updates the origin class of hobby to Person. Updating the
origin class of an attribute is very useful and is not equivalent to dropping the attribute
and adding it to another class because in this case the values taken on the attribute are
lost.
• Multiobject approach: The classes and their objects are shown in figure 8.a. When
the origin class of the hobby attribute is updated to Person (see fig. 8.b), the objects aP,
bP, cP keep the same hobby value as aS, bS, cS respectively. The hobby value of dP and
eP is set to unknown. Thanks to the transposed storage of objects [6] in F2, the hobby
values are not copied. Note that one can update the origin class of hobby from Student
to Person (ancestor), to Young (descendant) or to Employee (sibling class). Changing the
origin class of an attribute does not need to be propagated to the descendants of its old
and new origin classes; the attribute will be reached in another set of classes.
Cocoon supports this schema change.

• Classical approach: Most of the OODBMS supporting schema evolution do not sup-
port this schema change. In our example, a tool should be developed to: i) create a new
attribute hobby2 in Person (it becomes inherited in Student, Young and Employee); ii)
copy the hobby values on this new attribute for Student objects {c} and Young objects
{ a, b}; iii) delete the attribute hobby of Student; iv) rename the attribute hobby2 to hob-
by. Note that if instead one creates a new attribute hobby in Person, the semantics would
be different because the attribute hobby of Student would not be considered as inherited
from Person.
Only Goose allows to update the origin class of an attribute with retaining values for
objects.

326 L. Al-Jadir and M. Léonard

Create/Delete a Specialization Constraint. Example: The class Person has a subclass
European (citizen of a country of the european community) which has a subclass Young
(under 30 years old) (see fig. 9.a). Class Young has one object a (young european), class
European has one object b (old european), class Person has two objects c (young
african) and d (young swiss). Suppose now that Switzerland joins the european
community. One replaces (delete followed by create) then the specialization constraint
of European by a new one taking into account Switzerland. The wanted effect is that the
object d belongs now to Young instead of Person.
• Multiobject approach: The classes and their objects are shown in figure 9.a. Special-
ization constraints are defined on the subclasses European and Young. When the special-
ization constraint of European is replaced, the objects dE and dY are automatically
added to the classes European and Young respectively (see fig. 9.b).
Cocoon supports class predicates and allows to change them.

• Classical approach: Most of the OODBMS do not support specialization con-
straints. In our example, a tool should be developed to migrate the object d down to
Young.

In F2, a specialization constraint (e.g. age < 30) can be defined on several subclasses
(e.g. YoungStudent and YoungEmployee). Changing the list of subclasses of a speciali-
zation constraint is similar to create/delete a specialization constraint.

Fig. 8. Update the origin class of the hobby attribute

Person

Student Employee

aY

Young

aP bP
cP

dP

aS bS cS eE

bY

Person

Student Employee

aY

Young

aP bP
cP

dP

aS bS cS eE

bY

(a) before (b) after

hobby

hobbyeP eP

Fig. 9. Replace the specialization constraint of European

Person

European

aP

aE

(a) before

aY
Young

bP
cP

dP

bE

(b) after

nationality in
{“french”,

Person

European

aP

aE

aY
Young

bP
cP

dP

bE

nationality in
{“french”,dE

dY

“german”,...} “german”,...,
“swiss”}

age < 30 age < 30

327Multiobjects to Ease Schema Evolution in an OODBMS

4 Related Work

Approaches for Multi-faceted and Dynamic Entities. We proposed and implemented
a previous version of the multiobject mechanism in the extended entity-relationship
DBMS Ecrins [20]. Several object approaches have been proposed to model the multi-
faceted and dynamic nature of entities. We summarize them in the following table. Then
we compare our approach to them. Null entries (--) mean not known (we do not have
the data).

approach
(how an entity is

implemented)
creation extension

object
internal

represen-
tation

inheritance

Object hier-
archies [34]

entity: set of
objects (object

hierarchy)
(parent attribute)

create an
object hierar-

chy

add/remove an
object to/from an
object hierarchy

local
attributes

upwards in
object hierar-

chy (per-
object)

Roles in
ORM [30]

entity: object of
a class + role

instances

create an
object in a

class

add/remove a role
instance to/from

an object

-- no inheritance

Aspects [33] entity: object of
a class + aspect

instances
(same oid)

create an
object in a

class

add an aspect to
an object

-- no inherit-
ance (aspect

exports
selected parts

of a class)

Roles in
Fibonacci

[2]

entity: object
with a set of

roles
(same identity)

create an
object with
several roles

add/drop a role to/
from an object

local
attributes

upwards in
role hierarchy

Category
classes [28]

entity: object of
several classes

(roles)
(same oid)

create an
object in sev-
eral classes

add/remove a role
to/from an object

(manual), or
update an object

(automatic)

-- upwards in
class hierar-

chy

Object-
slicing [22]

entity: concep-
tual object + set
of implementa-

tion objects
(bi-directional

link)

create a con-
ceptual object
with imple-
mentation

objects

create/delete an
implementation

object

local
attributes

upwards in
class hierar-

chy

Our
approach:

Multiobjects

entity: set of
objects (multi-

object)
(same instance

identifier)

create a multi-
object (auto-

matic
classification)

update a multiob-
ject (objects are

added/removed to/
from a multiobject

automatically)

local
attributes

upwards,
downwards

and sideways
in specializa-

tion tree

328 L. Al-Jadir and M. Léonard

The multiobject mechanism differs from ORM roles and aspects because they do
not integrate the class hierarchy. As in object hierarchies, Fibonacci roles, category
classes and object-slicing, an entity in our approach is implemented by a set of objects
which can be enlarged and reduced (automatically as in category classes). However, our
approach has several differences:
− an object can access attribute values of related objects not only upwards but also

downwards and sideways in the class hierarchy.
− two related objects are neither linked by a parent attribute as in object hierarchies,

nor by a bi-directional link via a conceptual object as in object-slicing. Both objects
have the same instance identifier (same identity in Fibonacci roles and category
classes). Thus there is no overhead when accessing related objects in our approach.

− we provide the algorithms to manipulate multiobjects.
− we use the multiobject mechanism not only to ease object modelling and object ev-

olution but also to ease schema evolution.

OODBMS Supporting Schema Evolution. Several OODBMS support schema
evolution. We can classify them in three categories: schema evolution without
versioning (Orion [8], Gemstone [29], OTGen [23], Cocoon [37], Goose [26], O2 [18]),
schema evolution with versioning (Encore [35], Orion, Goose, Closql [25]), schema
evolution with views (Contexts [7], Goose, Views [11], TSE [32]). The two last
categories are out of the scope of this paper. Approaches of the first category differ by
the set of supported schema changes, the semantics of schema changes, and the
propagation of schema changes (immediate, deferred, mixed).

5 Conclusion

We presented the multiobject mechanism to implement specialization in object-oriented
databases. We described how this mechanism models multi-faceted and dynamic real-
world entities. We showed its advantages with respect to schema evolution. The multi-
object mechanism makes schema changes more pertinent than with the classical imple-
mentation of specialization. It makes them easier to implement and less time-
consuming since it needs neither to copy objects nor to propagate schema changes. It
makes schema changes easier to understand since it avoids complex propagation rules.
We implemented the multiobject mechanism in F2. We submitted the F2 DBMS to the
OO7 benchmark [14]. We obtained in [3] good results for the queries and traversals, be-
cause objects in the multiobject approach have smaller size than objects in the classical
object model; this consequently reduces the number of input/output operations. For the
insert and delete operations of the benchmark, the multiobject approach is more expen-
sive than the classical object model; this is due to the automatic classification (which is
not supported in the classical object model) and to the fact that several objects are cre-
ated/deleted instead of one. The execution times could be improved by using a parallel
algorithm; this issue deserves to be investigated.

Extensions of the multiobject mechanism in F2 include: i) allow several objects of
the same class in a multiobject; ii) allow several attributes with the same name in a spe-

329Multiobjects to Ease Schema Evolution in an OODBMS

cialization tree; iii) handle methods and virtual binding (see interpretation of messages
in [2]); iv) model the life-cycle of an entity [4] and restrict the way objects may be added
to and removed from a multiobject. Extensions of schema evolution in F2 include: i)
take into account schema changes on methods; ii) study the behavioural consistency of
the database; iii) test schema changes in a real application.

References

1. Adiba M., Collet C., Objets et bases de données: le SGBD O2, Hermès, 1993.
2. Albano A., Bergamini R., Ghelli G., Orsini R., An object Data Model with Roles, Proc. Int.

Conf. on Very Large Data Bases, VLDB, Dublin 1993.
3. Al-Jadir L., Evolution-Oriented Database Systems, Ph.D. thesis, Faculty of Sciences,

University of Geneva, 1997.
4. Al-Jadir L., Falquet G. , Léonard M., Context Versions in an Object-Oriented Model, Proc.

Int. Conf. on Database and Expert Systems Applications, DEXA, Prague 1993.
5. Al-Jadir L., Le Grand A., Léonard M., Parchet O., Contribution to the Evolution of

Information Systems, in: Methods and Associated Tools for the Information Systems
Lifecycle, A.A. Verrijn-Stuart & T.W. Olle (eds), IFIP, Elsevier, 1994.

6. Al-Jadir L., Estier T., Falquet G., Léonard M., Evolution Features of the F2 OODBMS, Proc.
Int. Conf. on Database Systems for Advanced Applications, DASFAA, Singapore 1995.

7. Andany J., Léonard M., Palisser C., Management of Evolution in Databases, Proc. Int. Conf.
on Very Large Data Bases, VLDB, Barcelona 1991.

8. Banerjee J., Kim W., Kim H-J., Korth H.F., Semantics and Implementation of Schema
Evolution in Object-Oriented Databases, Proc. Int. Conf. on Management Of Data, ACM
SIGMOD, San Francisco 1987.

9. Barbedette G., Schema Modifications in the LISPO2 Persistent Object-Oriented Language,
Proc. European Conf. on Object-Oriented Programming, ECOOP, Geneva 1991.

10. Bellahsene Z., An Active Meta-model for Knowledge Evolution in an Object-oriented
Database, Proc. Int. Conf. on Advanced Information Systems Engineering, CAISE, Paris
1993.

11. Bertino E., A View Mechanism for Object-Oriented Databases, Proc. Int. Conf. on Extending
Database Technology, EDBT, Vienna 1992.

12. Bertino E., Jajodia S., Modeling Multilevel Entities Using Single Level Objects, Proc. Int.
Conf. on Deductive and Object-Oriented Databases, DOOD, Phoenix 1993.

13. Bonjour M., Falquet G., Concept Bases: A Support to Information Systems Integration, Proc.
Int. Conf. on Advanced Information Systems Engineering, CAISE, Utrecht 1994.

14. Carey M.J., DeWitt D.J., Naughton J.F., The OO7 Benchmark, Proc. Int. Conf. on
Management Of Data, ACM SIGMOD, Washington 1993.

15. Estier T., Falquet G., Guyot J., Léonard M., Six Spaces for Global Information Systems
Design, in: The Object Oriented Approach in Information Systems, F. van Assche & B.
Moulin & C. Rolland (eds), IFIP, North-Holland, 1991.

16. Falquet G., Interrogation de bases de données à l’aide d’un modèle sémantique, Ph.D. thesis,
Faculty of Sciences, University of Geneva, 1989.

17. Falquet G., Léonard M., Sindayamaze J., F2Concept: a Database System for Managing
Classes’ Extensions and Intensions, in: Information modelling and knowledge bases V, H.
Jaakola et al. (eds), IOS Press, 1994.

330 L. Al-Jadir and M. Léonard

18. Ferrandina F., Meyer T., Zicari R., Ferran G., Madec J., Schema and Database Evolution in
the O2 Object Database System, Proc. Int. Conf. on Very Large Data Bases, VLDB, Zürich
1995.

19. Hauck F.J., Inheritance Modeled with Explicit Bindings: An Approach to Typed Inheritance,
Proc. Conf. on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA, Washington 1993.

20. Junet M., Falquet G., Léonard M., ECRINS/86: An Extended Entity-Relationship Data Base
Management System and its Semantic Query Language, Proc. Int. Conf. on Very Large Data
Bases, VLDB, Kyoto 1986.

21. Kambayashi Y., Peng Z., Object Deputy Model and Its Applications, Proc. Int. Conf. on
Database Systems for Advanced Applications, DASFAA, Singapore 1995.

22. Kuno H.A., Ra Y-G., Rundensteiner E.A., The Object-Slicing Technique: A Flexible Object
Representation and Its Evaluation, Technical Report, CSE-TR-241-95, University of
Michigan, 1995.

23. Lerner B.S., Habermann A.N., Beyond Schema Evolution to Database Reorganization, Proc.
Conf. on Object-Oriented Programming Systems, Languages and Applications, OOPSLA,
Ottawa 1990.

24. Ling T.W., Teo P.K., Object Migration in ISA Hierarchies, Proc. Int. Conf. on Database
Systems for Advanced Applications, DASFAA, Singapore 1995.

25. Monk S.R., Sommerville I., A Model for Versioning of Classes in Object-Oriented Databases,
Proc. British National Conf. on Databases, BNCOD, Aberdeen 1992.

26. Morsi M.M.A., Navathe S.B., Kim H-J., A Schema Management and Prototyping Interface
for an Object-Oriented Database Environment, in: Object Oriented Approach in I.S., F. Van
Assche & B. Moulin & C. Rolland (eds), IFIP, North-Holland, 1991.

27. Nguyen G.T., Rieu D., Escamilla J., An Object Model for Engineering Design, Proc.
European Conf. on Object-Oriented Programming, ECOOP, Utrecht 1992.

28. Odberg E., Category Classes: Flexible Classification and Evolution in Object-Oriented
Databases, Proc. Int. Conf. on Advanced Information Systems Engineering, CAISE, Utrecht
1994.

29. Penney D.J., Stein J., Class Modification in the GemStone Object-Oriented DBMS, Proc.
Conf. on Object-Oriented Programming Systems, Languages and Applications, OOPSLA,
Orlando 1987.

30. Pernici B., Objects with Roles, Proc. IEEE Conf. on Office Information Systems, 1990.
31. Peters R.J., Özsu M.T., An Axiomatic Model of Dynamic Schema Evolution in Objectbase

Systems, ACM Transactions on Database Systems, vol. 22, no 1, march 1997.
32. Ra Y.G., Kuno H.A., Rundensteiner E.A., A Flexible Object-Oriented Database Model and

Implementation for Capacity-Augmenting Views, Technical Report, CSE-TR-215-94,
University of Michigan, april 1994.

33. Richardson J., Schwarz P., Aspects: Extending Objects to Support Multiple, Independent
Roles, Proc. Int. Conf. on Management Of Data, ACM SIGMOD, Denver 1991.

34. Sciore E., Object Specialization, ACM Transactions on Information Systems, vol. 7, no 2,
april 1989.

35. Skarra A.H., Zdonik S.B., Type Evolution in an Object-Oriented Database, in: Research
Directions in OO Programming, B. Shriver & P. Wegner (eds), MIT Press, 1987.

36. Smith J.M., Smith D.C.P., Database Abstractions: Aggregation and Generalization, ACM
Transactions on Database Systems, vol. 2, no 2, june 1977.

37. Tresch M., A Framework for Schema Evolution by Meta Object Manipulation, Proc. Int.
Workshop on Foundations of Models and Languages for Data and Objects, Aigen 1991.

331Multiobjects to Ease Schema Evolution in an OODBMS

Appendix

1. Get Algorithm
Let att be an attribute and oC be an object of class C
(an object carries the class it is instance of, thus C
can be known from oC); origin_class(att) be a
function which returns the origin class of attribute
att; root(C) be a function which returns the root class
of the specialization tree of class C.

function get(oC, att) return val is
begin

/* call the check_valid_attribute procedure which
checks that att is a local attribute of C (sets obj to
oC) or a reached attribute by oC (sets obj to the
object in the origin class of att which is related to
oC) */
check_valid_attribute(att, oC, obj);
return the value val of obj on att;

end get;

procedure check_valid_attribute(att, oC, obj) is
begin

Orig := origin_class(att);
/* if att is a local attribute of class C */
if (C = Orig) then

obj := oC;
/* if classes Orig and C are in same spec. tree */
elsif (root(C) = root(Orig)) then

oOrig := relatedTo(oC, Orig);
/* if oC is related to an object in Orig */
if (oOrig ≠ unknown_object) then

obj := oOrig;
else error2;
end if;

else error1;
end if;

end check_valid_attribute;

2. Create Algorithm
Let C be a class and [a1:v1, a2:v2, ..., ap:vp] be an
array of <attribute:value> pairs; subclasses(C) be a
function which returns the direct subclasses of class
C; satisfy_constraints([a1:v1, a2:v2, ..., ap:vp], C) be
a function which indicates whether the given
attribute values satisfy all the spec. constraints of
class C; root() and origin_class() have been defined
before.

function create(C, [a1:v1, a2:v2, ..., ap:vp]) return
oC is
begin

TheRoot := root(C);
/* initialize SC to the empty set */
SC := {};
/* call the classify procedure which puts in SC the
classes of the new multiobject */
classify(TheRoot, [a1:v1, a2:v2, ..., ap:vp], SC);

/* check that C belongs to SC */
if (C not in SC) then error1;
end if;
/* check that all the given attributes will be

reached by the new multiobject */
for each attribute ai in [a1:v1, a2:v2, ..., ap:vp]
loop

if (origin_class(ai) not in SC) then error2;
end if;

end loop;

/* add objects, store attribute values */
ID := the instance identifier for the objects of

 the new multiobject;
for each class Ci in SC loop

add an object oCi (having the instance identifier
ID) to Ci;

store the value of oCi on the attributes whose
origin class is Ci;

end loop;
return oC;

end create;

procedure classify(C, [a1:v1, a2:v2, ..., ap:vp],
TheSet) is
begin

/* add class C to TheSet */
TheSet := TheSet ∪ C;
Sub := subclasses(C);
for each Si in Sub loop

/* if the attribute values satisfy all the spec.
constraints of class Si */
if satisfy_constraints([a1:v1, a2:v2, ..., ap:vp],

Si) then
classify(Si, [a1:v1, a2:v2, ..., ap:vp],

TheSet); -- recursive call
end if;

end loop;
end classify;

3. Delete Algorithm
Let oC be an object of class C; root() and
subclasses() have been defined before.

procedure delete(oC) is
begin

TheRoot := root(C);
oRoot := relatedTo(oC, TheRoot);
/* initialize SC to the empty set */
SC := {};
/* call the facets procedure which puts in SC the
classes of the multiobject containing oRoot */
facets(oRoot, SC);

/* remove objects */
for each class Ci in SC loop

oCi := relatedTo(oC, Ci);
remove the object oCi from Ci;

end loop;
end delete;

procedure facets(oC, TheSet) is
begin

/* add class C to TheSet */
TheSet := TheSet ∪ C;
Sub := subclasses(C);

332 L. Al-Jadir and M. Léonard

for each Si in Sub loop
oSi := relatedTo(oC, Si);
/* if an object in Si is related to oC */
if (oSi ≠ unknown_object) then

facets(oSi, TheSet); -- recursive call
end if;

end loop;
end facets;

4. Update Algorithm
Let oC be an object of class C and [a:v] be an
<attribute:value> pair; constraint_on_att(C, att) be
a function which indicates whether class C has a
specialization constraint involving the attribute att;
satisfy_constraints_att([a:v], C) be a function which
indicates whether the value v satisfies the
specialization constraints of class C involving the
attribute a; check_valid_attribute(), origin_class(),
subclasses(), satisfy_constraints(), facets() and
classify() have been defined before.

procedure update(oC, [a:v]) is
begin

check_valid_attribute(a, oC, obj);
Orig := origin_class(a);

/* initialize ToAdd and ToRemove to empty set */
ToAdd := {};
ToRemove := {};
/* call the reclassify procedure which puts in
ToAdd the classes to which a related object will be
added and in ToRemove the classes from which a
related object will be removed */
reclassify(oC, [a:v], Orig, ToAdd, ToRemove);

/* add objects */
for each class Ci in ToAdd loop

add an object oCi (having the same instance
 identifier as oC) to Ci;

end loop;
/* remove objects */
for each class Ci in ToRemove loop

oCi := relatedTo(oC, Ci);
remove the object oCi from Ci;

end loop;

/* store the new attribute value */
store the new value v of the object obj on the
attribute a;

end update;

procedure reclassify(oC, [a:v], D, TheSetAdd,
TheSetRemove) is
begin

Sub := subclasses(D);
for each Si in Sub loop

/* if class Si has a spec. constraint involving the
attribute a */
if constraint_on_att(Si, a) then

/* call the migrate procedure which (i) adds
Si (and possibly its descendants) to
TheSetAdd if a related object oSi should be
added, (ii) adds Si (and possibly its
descendants) to TheSetRemove if the related
object oSi should be removed, (iii) sets

continue to true if the related object oSi exists
and stays in Si */
migrate(oC, [a:v], Si, TheSetAdd,

TheSetRemove, continue);
if continue then

reclassify(oC, [a:v], Si, TheSetAdd,
TheSetRemove); -- recursive call

end if;
/* else if an object in Si is related to oC */
elsif (relatedTo(oC, Si) ≠ unknown_object) then

reclassify(oC, [a:v], Si, TheSetAdd,
TheSetRemove); -- recursive call

end if;
end loop;

end reclassify;

procedure migrate(oC, [a:v], D, TheSetAdd,
TheSetRemove, continue) is
begin

continue := false;
/* is_related indicates if oC is related to an object
in D (before update); will_be_related indicates if
oC will be related to an object in D (after update)
*/
oD := relatedTo(oC, D);
is_related := (oD ≠ unknown_object);
if is_related then

/* does the new attribute value satisfy the spec.
constraints of D involving the attribute a */
will_be_related :=

satisfy_constraints_att([a:v], D);
else

/* does the object oC (take into account the new
attribute value) satisfy all the spec. constraints
of D */
will_be_related := satisfy_constraints(

attribute values of oC, D);
end if;

/* case 1: there is a related object in D and it will
stay in it */
if (is_related and will_be_related) then

continue := true;
/* case 2: there is a related object in D but it will
be removed from it */
elsif (is_related and not will_be_related) then

/* add D and each of its descendants where an
object is related to oC to TheSetRemove */
tempRemove := {};
facets(oD, tempRemove);
TheSetRemove := TheSetRemove ∪

tempRemove;
/* case 3: no related object in D but a new one will
be added to it */
elsif (not is_related and will_be_related) then

/* add D and possibly its descendants to
TheSetAdd */
tempAdd := {};
classify(D, attribute values of oC, tempAdd);
TheSetAdd := TheSetAdd ∪ tempAdd;

/* case 4: no related object in D and no one will
be added to it */
else null; -- nothing to do
end if;

end migrate;

333Multiobjects to Ease Schema Evolution in an OODBMS

	1 Introduction
	2 Multiobject Mechanism
	2.1 Multiobjects
	2.2 Manipulating Multiobjects

	3 Advantages of the Multiobject Mechanism for Schema Evolution
	3.1 Schema Evolution in F2
	3.2 Multiobject Mechanism and Schema Evolution

	4 Related Work
	5 Conclusion
	References

