A Versioning and Evolution Framework for RDF
Knowledge Bases

Soren Auer and Heinrich Herre

University of Leipzig, 04109 Leipzig, Germany,
auer@informatik.uni-leipzig.de,
WWW home page: http://www.informatik.uni-leipzig.de/ auer/

Abstract We present an approach to support the evolution of online,
distributed, reusable, and extendable ontologies based on the RDF data
model. The approach works on the basis of atomic changes, basically ad-
ditions or deletions of statements to or from an RDF graph. Such atomic
changes are aggregated to compound changes, resulting in a hierarchy
of changes, thus facilitating the human reviewing process on various lev-
els of detail. These derived compound changes may be annotated with
meta-information and classified as ontology evolution patterns. The in-
troduced ontology evolution patterns in conjunction with appropriate
data migration algorithms enable the automatic migration of instance
data in distributed environments.

1 Introduction

The goal of the envisaged next generation of the Web (called Semantic Web [2])
is to smoothly interconnect personal information management, enterprise appli-
cation integration, and the global sharing of commercial, scientific, and cultural
data'. In this vision, ontologies play an important role in defining and relat-
ing concepts that are used to describe data on the web [4]. In a distributed,
dynamic environment such as the Semantic Web, it is further crucial to keep
track of changes in its documents to ensure the consistency of data, to docu-
ment their evolution, and to enable concurrent changes. In areas such as soft-
ware engineering, databases, and web publishing versioning and revision control
mechanisms have already been developed and successfully applied. In software
engineering versioning is used to track and provide controls over changes to a
project’s source code. In database systems versioning is usually provided by a
database log, which is a history of actions executed by a database management
system. For web publishing the Web-based Distributed Authoring and Versioning
(WebDAV) standard was released as an extension to the Hyper Text Transfer
Protocol (HTTP) supporting versioning and with the intention of making the
World Wide Web a readable and writable medium.

For revision control of semantic-web data, unfortunately these developed
technologies are insufficient. In software engineering and web publishing revision

! http://www.w3.org/2001 /sw/Activity

control is based on unique serializations, enabled by their data models. Such
unique serializations are not available for Semantic Web knowledge bases, usually
consisting of unordered collections of statements. Database logs on the other
hand cope with a multitude of different interrelated objects of their data model
(e.g. databases, tables, rows, columns/cells) in contrast to just statements of the
RDF data model.

In this paper, we present an approach for the versioning of distributed knowl-
edge bases grounded on the RDF data model with support for ontology evolution.
Under ontology versioning we understand to keep track of different versions of
an ontology and possibly to allow branching and merging operations. Ontol-
ogy evolution additionally shall identify and formally represent the conceptual
changes leading to different versions and branches. On the basis of this infor-
mation, ontology evolution should support the migration of data adhering to a
distinct ontology version.

This paper is structured as follows: Our approach works on the basis of atomic
changes which are determined by additions or deletions of certain groups of state-
ments to or from an RDF knowledge base (Section 2). Such atomic changes are
aggregated to more complex changes, resulting in a hierarchy of changes, thus
facilitating the human reviewing process on various levels of detail (Section 3).
The derived compound changes may be annotated with meta-information such
as the user executing the change or the time when the change occurred. We
present a simple OWL ontology capturing such information, thus enabling the
distribution of change sets (Section 5). Assuming that there will be no control of
evolution, it must be clarified which changes are compatible with a concurrent
branch of the same root ontology. We present a compatibility concept for ap-
plying a change to an ontology on the level of statements (Section 4). To enable
the evolution of ontologies with regard to higher conceptual levels than the one
of statements we introduce evolution patterns (Section 6) and give examples for
appropriate data migration algorithms (Section 7). We further give account of
the successful implementation of the approach in Powl, summarize related work
and give an outlook on planned directions for future work (Section 8).

2 Atomic Changes on RDF Graphs

To introduce our notion of atomic changes on RDF graphs we need recall some
preliminary definitions from [5]. Some of the main building blocks of the semantic-
web paradigm are Universal Resource Identifier (URI) and their RDF counter-
parts URI References, whose quite technical definitions we omit here.

Definition 1 (Literal) A Literal is a string combined with either a language
identifier (plain literal) or a datatype (typed literal).

Definition 2 (Blank Node) Blank Nodes are identifiers local to a graph. The
set of Blank Nodes, the set of all URI references, and the set of all literals are
pairwise disjoint. Otherwise, the set of blank nodes is arbitrary.

Definition 3 (Statement) A Statement is a triple (S, P,O), where

— S is either a URI reference or a blank node (Subject).
— P is a URI reference (Predicate).
— O is either a URI reference or a literal or a blank node (Object).

Definition 4 (Graph) A Graph is a set of statements.

The set of nodes of an graph is the set of subjects and objects of triples in the
graph. Consequently the blank nodes of a graph are the members of the subset
of the set of nodes of the graph which consists only of blank nodes.

Definition 5 (Graph Equivalence) Two RDF graphs G and G' are equiva-
lent if there is a bijection M between the sets of nodes of the two graphs, such
that:

1. M maps blank nodes to blank nodes.

2. M(lit) = lit for all literals lit which are nodes of G.

3. M (uri) = urt for all URI references uri which are nodes of G.

4. The triple (s,p,0) is in G if and only if the triple (M(s),p, M (0)) is in G'.
Based on these definitions we want to discuss the possible changes on a
graph. RDF statements are in [7] identified to be the smallest manageable piece
of knowledge. This view is justified by the fact that there is no way to add,
remove, or update a resource or literal without changing at least one statement,
whereas the opposite does not hold. We adopt this view but require the small-
est manageable pieces of knowledge to be somehow closed regarding the usage
of blank nodes. Moreover we want to be able to construct larger changes out
of smaller ones, and since the order of additions and deletions of statements
to a graph may matter, we distinguish between Positive and Negative Atomic
Changes.

Definition 6 (Atomic Graph) A graph is atomic if it may not be split into
two nonempty graphs whose blank nodes are disjoint.

Obviously, a graph without any blank node is atomic if it consists of exactly
one statement. Hence, any statement which does not contain a blank node as
subject or object is an atomic graph.

Definition 7 (Positive Atomic Change) An atomic graph C¢ is said to be
an Positive Atomic Change on a graph G if the sets of blank nodes occurring in
statements of G and C¢ are disjoint.

The rationale behind this definition is the aim of applying the positive atomic
change C¢ to the graph G. Hence, a positive atomic change on a graph G can
be applied to G to yield a new graph as a result. For this purpose we introduce
a (partial) function Apl™(X,Y) whose arguments are graphs.

Definition 8 (Application of a Positive Atomic Change) Let Cg be a pos-
itive atomic change on the graph G. Then the function Apl™ is defined for the
arguments G,Cq and it holds Apl*(G,Cg) = GUCg = G’ which is symbolized

by G % G we say that Cg 1is applied to the graph G with result G'.

Application of the positive atomic change Cg to G yielding G’ is just identi-
fying the union of Cg and G with G’. Of course a graph may not only be changed
by adding statements leading to the notion of a negative atomic change.

Definition 9 (Negative Atomic Change) A subgraph Cq of G is said to be
a Negative Atomic Change on G if Cg is atomic and contains all statements of
G whose blank nodes occur in the statements of Cg.

Analogously to the case of positive changes we introduce a function Apl~ (G, Cg)
which pertains to negative atomic changes.

Definition 10 (Application of a Negative Atomic Change) Let Cg be a
negative atomic change on the graph G. Then the function Apl~ is defined for
the arguments G,Cq and is determined by Apl~ (G,Cq) = G\Cg = G’ which is

symbolized by G % G We say that Cqg is applied to G with result G'.

These definitions require changes involving blank nodes to be somehow inde-
pendent from the graph in the sense that blank nodes in the change and in the
(remaining) graph do not overlap. This is crucial for changes being exchangeable
between different RDF storage systems, since the concrete identifiers of the blank
nodes may differ. It may have the negative effect though that large subgraphs,
which are only interconnected by blank nodes, have to be deleted completely
and added - slightly modified - afterwards.

3 Change Hierarchies

The evolution of a knowledge base typically results in a multitude of sequentially
applied atomic changes. These are usually small, and may often contain only a
single statement. On the other hand, in many cases multiple atomic changes
form one larger ‘logical’ change. Consider for example the case where the arrival
of the information of ‘being of German nationality’ for a person, results not only
in adding this fact to the knowledge base, but also in using the right spelling
for the persons name using umlauts. As shown in Example 1 this could result
in three atomic changes. The information that those three changes somehow
belong together should not be lost, as we would like to enable human users to
observe the evolution of a knowledge base on various levels of detail. This could
be achieved by constructing hierarchies of changes on a graph.

To achieve this goal first of all Atomic Changes are called Changes of Level
0 and then changes of higher levels are defined inductively. Let At be the set of
atomic changes. General changes, which are simply called changes, are defined
as sequences over the set At. The set Changes(At) of changes over At is the

CA
C3

c2
C4 Cb

Figure 1. Schematic visualisation of a change hierarchy. Black dots represent
atomic changes and gray triangles compound changes.

smallest set containing the empty sequence () and closed with respect to the
following condition: if {C4,...Cx} C Changes(At) U At, then (Cy,...,C) €
Changes(At). An annotated change is an expression of the form C4 where
C € Change(At), and A is an annotation object. No restriction is imposed
on the annotation object A which is attached to a change. In Section 5 we
present a simple ontology schema, which may be used for capturing such change
annotations.

The changes of level at least n, denoted by Ch(n), are defined inductively.
Every change has a level at least 0, i.e Ch(0) = Changes(At). If Cy,...,Cy
are changes in Ch(n), then (C1,...,C%) € Ch(n + 1). A change C is of level
(exactly) n if C € Ch(n)\Ch(n + 1), i.e. C has level at least n but not level at
least n+1. The application functions App™, App~ may be extended to a function
App(G, C) whose first argument is a graph, and second argument is a change.
App is recursively defined on the level of the second argument C. Now we would
like to apply a change C' of level > 0 to a graph. Since C is a sequence of changes
of smaller level, these changes — being components of C' — can be consecutively
applied to intermediate graphs. This is demonstrated in the following for the
change from Example 1.

C1 is applied to some graph G containing information about people and
results in a new revision of G, namely G':

e=yel
Since C'1 consists of C2 and C'3, C'1 it may be resolved into:
el YelORsiyel
And finally since C3 = (C4, C5):
leRcNelORE N e ORiNe]

C2, C4, and C5 are atomic changes and may be applied as proposed in Defini-
tions 8 and 10.

Example 1 (Change Hierarchy) Consider the following update of the de-
scription of a person:

Resource changed (c)
Resource classified (c2)
http://auer.cx/Soeren hasNationality German
Labels changed (C3)
Label removed (Cc4)
http://auer.cx/Soeren rdfs:label "Soeren Auer"
Label added (C5)

X g O TR W N

http://auer.cx/Soeren rdfs:label "Sdren Auer"

C1 represents a compound change with C1 = (C2,C3) and C3 = (C4,C5); C2,
C4, and C5 here are atomic changes. It may be visualized as in Figure 1.

We call a change of a level n > 1 a Compound Change. As visualized in Figure
1 it may be viewed as a tree of changes with atomic changes on its leafs. This
enables the review of changes on various levels of detail (e.g. statement level,
ontology level, domain level) and thus facilitates the human reviewing process.

A further advantage in addition to improved change examination is, that
on their basis a knowledge transaction processing may be implemented. Assum-
ing that a Relational Database Management System supporting transactions is
used as a triple store for knowledge bases, every compound change may then be
encapsulated within a database transaction. Meanwhile the repository will be
blocked for other write accesses. Compound Changes thus should not be nested
arbitrarily deep but up to some compound change, which was for example trig-
gered by a user interaction. We call such a top-level compound change Upper
Compound Change. Multiple, possibly semantically related compound changes
can be collected in a Patch for easy distribution, for example in a Peer-to-Peer
environment.

4 Change Conflict Detection

Tracking additions and deletions of statements as described in the last section
enables the implementation of linear undo / redo functionality. In distributed or
web-based environments usually several people such as knowledge engineers and
domain experts contribute changes to a knowledge base. In such a setting it is
highly demandable to rollback only distinct earlier changes. Of course, this will
not be possible for arbitrary changes.

Consider the case when some statements were added to a graph in the change
C7 and removed later in the change Cs. The rollback of the change C should not
be possible any longer after C5 took place. In the opposite case when statements
are removed from the knowledge base first and added again later, the rollback of
the deletion should not be possible either. The following definitions clarify which
atomic changes are compatible with a distinct knowledge base in this sense.

Definition 11 (Compatibility of a Positive Atomic Change with a Graph)
A Positive Atomic Change Cg is compatible with a graph G', iff Cq is not equiv-
alent to some subgraph of G'.

Definition 12 (Compatibility of a Negative Atomic Change with a Graph)
A Negative Atomic Change Cq is compatible with a graph G', iff Cq is equivalent
to some subgraph of G'.

If a positive (negative) atomic change C¢ is compatible with some graph G’
then it may be easily applied to G’ by simply adding (respectively removing)
the statements of Cg to G’. Possibly blank node identifiers have to be renamed
in Cg if the same occurs in G’.

The notion of compatibility may be easily generalized to compound changes.
Since the changes belonging to a compound change are ordered, every com-
pound change may be broken up into a corresponding sequence of atomic changes
(C1,...,Cy). If we consider the compound change from Example 1, the corre-
sponding sequence of atomic changes will be (C2,C4,C5).

Definition 13 (Compatibility of a Compound Change with a Graph)
A compound change Cg: is compatible with a graph G, iff

— the first atomic change in the corresponding sequence of atomic changes
(C1, ..., Cy) is compatible with G and results in G*

— every following atomic change C; (1 < i < n) from the sequence is compatible
with the intermediate graph G~ and its application results in G°.

The compatibility is especially interesting if G’ is some prior version of G,
since it supports the decision if the change may be rolled back. However, this
compatibility concept only deals with possible conflicts on the level of statements.
In the remaining part of this section we point out directions how we can cope
with incompatibilities on higher conceptual levels than the one of statements.

In [6] the impact of distinct change patterns on instance data is studied.
Change patterns include all elementary operations on an OWL ontology such as
adding, deleting of classes, properties or instances. The effects on instances are
categorized into change patterns which result in information preserving, trans-
latable or information-loss changes. If a compound change contains an atomic
change matching a change pattern of one of the latter two categories, this can
be indicated to the user and possible solutions could be offered (cf. Section 6 for
details on ontology evolution patterns). If the graph represents some Web Ontol-
ogy Language (OWL) knowledge base, furthermore a description logic reasoner
may be used to check whether a model is consistent after a change is applied or
not. Ideally an evolution enabled knowledge base editor provides an interface to
dynamically plug-in functionality to check the applicability of a distinct change
with respect to a certain graph.

5 Represention of Changes

To distribute changes on a graph (e.g. in a client server or peer-to-peer set-
ting), a consistent representation of changes is needed. We propose to represent
changes as instances of a class log:Change. Statements to be added or deleted

by atomic changes are represented as reified statements and referenced by the
properties log:added and log:removed from a change instance. The property
log:parentChange relates a change instance to a compound change instance of
higher level.

To achieve our goal of enhanced human change review, it should be possi-
ble to annotate changes with information, such as about the user making the
change, the date and time on which the change took place, a human-readable
documentation about why the change was made, and which effects it may have,
just to mention a few. Table 1 summarizes important properties attached to
log:Change. The complete OWL ontology schema for capturing the change in-
formation is provided at http:/powl.sf.net/log0nt.

Property Description Example

Action A string or URI identifying ”Resource changed”
predefined action classes.

User A string or URI identifying the http://auer.cx/Soeren
editing user.

DateTime The timestamp in xsd:DateTime 720050320T16:32:11”
format when the change took
place.

Documentation A string containing a human Nationality added and
readable description of the change. name typing corrected

correspondingly.

ParentChange Optional URI identifying a
compound change this change
belongs to.
Table 1. Properties for representing and annotating changes

6 Evolution Patterns

The versioning and change tracking strategy presented so far is applicable to
arbitrary RDF graphs but also enables the representation and annotation of
changes on higher conceptual levels than the one of pure RDF statements. In this
section we demonstrate how it may be used and extended to support consistent
OWL ontology and instance data evolution.

OWL ontologies consist of classes arranged in a class hierarchy, properties
attached to those classes, and instances of the classes filled with values for the
properties. Now we classify changes operating on OWL ontologies according
to specific patterns reflecting common change intentions. The positive atomic
change (hasAddress,rdf :type,owl:0bjectProperty) for example can be clas-
sified to be an object property addition, since the predicate of the statement in

the change is rdf:type and the object is owl:0bjectProperty). Complemen-
tary there is a category of object property deletions for negative atomic changes
with that predicate and object. Such categories of changes can be described more
formally and generally by our notion of Evolution Patterns.

Definition 14 (Evolution Pattern) A positive (negative) evolution pattern is
a triple (X,G(X), A(X)), where X is a set of variables, G(X) is a graph pattern
characterizing a positive (resp. negative) change with the variables X and A(X)
being an appropriate data migration algorithm.

Graph patterns are essentially graphs where certain URI references are re-
placed by placeholders (i.e. variables). The precise definition is omitted here but
can be found in [8]. As an example we consider the following positive atomic
change of adding a cardinality restriction to the property nationality attached
to the class Person:

1 Person owl:subClassOf 1

2 T rdf:type owl:Restriction
3 11 owl:onProperty nationality

4 i 1 owl:maxCardinality 2

The corresponding evolution pattern will be AddM axCardinality = (X, G(X), A(X))
with X = (class, property, maxCardinality), the graph pattern G(X) will be:

1 ?class owl:subClassOf ?restriction

2 ?restriction rdf:type owl:Restriction
3 ?restriction owl:onProperty ?property

4 7restriction owl:maxCardinality ?maxCardinality

Finally, the data migration algorithm A(class, property, maxCardinality)
will iterate through all instances of class and remove property values of property
exceeding mazCardinality.

Beside facilitating the review of changes on a knowledge base the classifi-
cation of changes into such evolution patterns enables the automatic migration
of instance data, even in settings where instance data is distributed. General
evolution patterns can be constructed out of sequences of positive and nega-
tive evolution patterns. The modification of a owl:maxCardinality restriction
can thus be made up by sequentially applying changes belonging to the nega-
tive evolution pattern DelMaxCardinality and the positive evolution pattern
AddM axCardinality.

In [4] a taxonomy of change patterns for OWL ontologies and their pos-
sible effects on instance data is given. However, from our point of view these
change patterns will not be sufficient to capture change intentions and to enable
automatic instance data migration. Intentions of changes can be made explicit
by precisely describing effects on instance data, e.g. by providing instance data
migration algorithms. We illustrate possible intentions for class deletions and
re-classifications in the next two subsections.

Class deletions The deletion of some entity from an ontology corresponds to
the deletion of all statements from the graph where an URI referencing the entity
occurs as subject, predicate, or object. The deletion of a distinct class thus will
result in the following serious effects:

— former instances of the class are less specifically typed,

— former direct subclasses become independent top level classes,

— properties having the class as domain become universally applicable,
— properties having the class as range will lose this restriction,

In most cases some or all of these effects are not desired to be that rigorous,
but have to be mitigated. Before actually deleting the class, we then have to
cope with the following aspects of the classes usage.

— What happens with instances of the class? If instances of a class C' should
be preserved they may be reclassified to be instances of a superclass of C
(labeled Ig). If C' has no explicit direct superclass the instances may be
classified to be instances of the implicit superclass owl:Thing. Otherwise all
its instances may be deleted (Ip).

— How to deal with subclasses? Subclasses may be deleted (Sp), reassigned in
the class hierarchy (Sg) or kept as independent top level classes (Sk).

— How to adjust properties having the class as domain (or range)? The do-
main (or range) of properties having the class as domain (or range) may be
extended (i.e. changed to a superclass - Pg) or restricted (i.e. changed to a
subclass - Pr). A further possibility is to delete those properties (Pp).

Some combinations of those evolution strategies obviously do not make sense
(i.e. (Ip,Sp, Pr) - deleting all instances and subclasses and restricting the do-
main and range of directly attached properties) while others are heavily needed
(see also Figure 2):

— (IR, Sk, Pr) - merge class with superclass

— (Ip,Sp, Pg) - cut class off

— (Ip,Sp, Pp) - delete complete subtree including instances and directly at-
tached properties

c)

Figure 2. Different intentions for deleting a class: a) merge with superclass, b)
cut class off, ¢) delete subtree.

As those different class deletions illustrate, different intentions to delete a
class result in different combinations of data migration strategies and finally in
different evolution patterns. Some other example for a complex ontology evolu-
tion pattern is the reclassification of a complete sub-class tree.

Reclassification Often the distinction between abstract categories and con-
crete entities is not easy, resulting in different modeling possibilities, when it
is required to stay within OWL DL: representation as classes or instances. In
a later modeling or usage stage the selected representation strategy (classes or
instances) may turn out to be suboptimal and reclassification is required.

If all classes in a whole class tree below a class C' have no instances and
directly attached properties, then they may be converted into instances. This
can be done by defining a functional property P, which is used to preserve the
hierarchical structure formerly encoded in the subclass-superclass relationship.
Then for all classes C; in the the subtree:

— add (Ci,rdf:type,C),

— if C; is a direct subclass of C, then delete the statement (Ci,rdfs:subClass0f,C),
else delete all statements (Ci,rdfs:subClass0f,Cj) and correspondingly
add (Ci,P,Cj).

Conversely assuming we have a class C' and a functional property P with
C as domain and range, which does not reference instances in cycles. Then the
instances of C then may be converted into subclasses of C' as follows:

— every statement (I1,P,]5) is converted into (I;,rdfs:subClassOf, 1),
— if there is for I no triple (I1,P,I5) add (I,rdf:type,C).

Beside class deletions and reclassification there are other ontology evolution
patterns such as:

— Mowe a property A property P may be moved from a class C; to a referenced
class Cs (labeled log:PropertyMove).

— "Widden” a restriction For a property P we may increase the number of
allowed values or decrease the number of required values.

— "Narrow” a restriction For a property P we may decrease the number of
allowed values or increase the number of required values.

— Split a class A class C' may be split into two new classes C; and C5 related
to each other by some property P (labeled log:ClassSplit).

— Join two classes Two classes C7 and Cy referencing each using a functional
property may be joined.

These examples show that the basic change patterns from [4] are not sufficient
to capture the intentions for ontology changes. To support independently, but
synchronously evolving schema and instance data, as visualized at the example
of splitting a class in Figure 3, we propose to annotate compound (schema)
changes with their respective evolution patterns. Corresponding data migration
algorithms then can be used to migrate instance data agreeing to a former version
of the ontology. However, it is future work to provide a complete library of
ontology evolution patterns.

The annotation of compound changes with ontology evolution patterns can
be easily achieved within the framework showcased in Section 5. The move of a
property P1 from a class C'1 to a class C'2 referencing each other by a property
P2 could be represented for example as follows:

OO0~ U WN —

Schema-Ontelogy V.2
Person Person o
name
nar!'1e . Schema- ti lit
nationality sepln i nationality
street hasAddress
town
zip Address ity
~ sireet
A T town
T zi
rdf:type P
Data V.1 : Data V.2
_ instance1
instance1 .Soren Auer”
,Soren Auer' german
german instance2
Wettiner-Str. 8*
JLeipzig® instance2
,04105" Wettiner-Str. 8
.Leipzig”
,04105"

Figure 3. Ontology evolution and instance data migration at the example of
splitting a class.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#
O@prefix log: <http:/powl.sf.net/logOnt>

Cl1 rdf:type log:PropertyMove

Cl1 log:pmProperty Pl

Cl1 log:pmFrom Cc1

C1 log:pmTo Cc2

Cl1 1log:pmReference P2

Cl1 log:removed S1

Cl 1log:added S2

S1 rdf:type rdf:Statement

S1 rdf:subject P1

S1 rdf:predicate rdfs:domain

S1 rdf:object C1

82 rdf:type rdf:Statement

S2 rdf:subject P1

S2 rdf:predicate rdfs:domain

S2 rdf:object Cc2

7 Data Migration Strategies

One of the main advantages of using ontologies in a distributed environment as
the World Wide Web is the reuse of structural information (schemata) encoded in
an ontology. If such an ontology representing structural information evolves, on-
tologies containing data bound to this structural information have to be adopted

QU W N =

as well. To automate this task as much as possible it is therefore desirable to
have instance data migration algorithms for evolution patterns available. In the
following two subsections we give examples for data migration algorithms for the
common evolution patterns log:PropertyMove and log:ClassSplit.

Moving a Property Assuming we have a change on a graph G belonging to
the evolution pattern log:PropertyMove moving a directly attached property
P; from a class C'; to some other class Cs using a property Ps relating Cy to Cs.
A data migration algorithm can be given as follows:

foreach triple (?7il,rdf:type,Cl) in G
find triple (i1,P1,?v) in G
foreach triple (i1,P2,7i2) in G

add triple (i2,P1,v) to G
del triple (i1,P1,v) from G

It moves the P; property values of instances of C'; to the related instances of

Cs.

Splitting a Class Since splitting a class requires to move properties, an appro-
priate data migration algorithm for the log:ClassSplit evolution pattern may
make use of the log:PropertyMove data migration:

add triple (C1,rdf:type,owl:class) to G
foreach triple (7il,rdf:type,C) in G
create new instance identifier i
add triple (i,rdf:type,Cl) to G
add triple (i1,R,i) to G
foreach moved property P
PropertyMove(C,C1,P)

N RWN

First a class C1 is created (line 1), thereafter for every instance of C a
corresponding instance of C; is created, whereas the relation between both is
established by the property R (lines 3-5) and finally the log:PropertyMove data
migration algorithm is used for every moved property (lines 6,7).

8 Related Work and Summary

The versioning strategy described in this paper was implemented in the web ap-
plication development framework Powl [1], which provides a comprehensive web
user interface for collaborative knowledge base authoring as well as an applica-
tion programming interface for PHP developers. To every change on the knowl-
edge base using Powl, an optional versioning comment can be attached describing
the change for review by humans. The user interface of Powl’s versioning module
then enables users to review changes chronologically, their compatibility with the
current version is indicated and distinct changes may be rolled back. Changes
may be filtered according to user, ontology, and date. Compound changes may be
expanded up to the atomic change level indicating added (respectively removed)
statements.

pOWL - Semantic Web Platform: |hnp:m:is_infurmatik.uni—|eipzig_defviewB|370w -

@2 Models «3 Triples (ci])Classes [FIl| Properties I3 Instances % RDOL Search | Version |

RDF Versioning
Filter: model: http:#his. informatik uni-leipzig. desriewBIS_OWWL owl |

Search returned 7 results.[c]

S N Date User Action Rollback
[] 6764 20050317 13:00:47 127.0.0.1 E-Property values changed: rcfs:comment [R]
[J 6763 200503417 12:69:35 127.0.0.1 E-Statement added: [R]

E-Property values changed: swrfax
6762 2005/0347 12:58:04 127.0.0.1 - — R]
+ http: /. informatik. uni-leipzig. def~auer swro:fax +48 (341) 97-32322

B761 2005/0345 11:34:58 127.0.0.1 E-Property values changed: worksinRoom [R]
6760 2005/03415 11:34:43 127.0.0.1 Property values changed: worksinRoom
B759 2005/03415 11:34:18 127.0.0.1 B-Property values changed: worisfnRoom [R]
B758 2005/03/15 11:34:02 127.0.0.1 BProperty values changed: worisfnRoom

O T Rl A

ollhack selected actions

Figure 4. Reviewing changes with Powl.

Other approaches targeting to support ontology evolution and versioning can
be roughly divided into two categories:

— Approaches which are aware of the trace of changes which result in a new
version and

— Approches which compare ontologies and compute differences or mappings
between them.

Ognyanov and Kiryakov in [7] (falling in the first category) define a formal
model for tracking changes in graph-based data models. Higher-level evaluation
or classification of the updates are beyond the scope of their work. Those are
studied and discussed in depth, for example, in [3]. Our contribution here is
a way to easily relate low-level changes on the statement level to higher-level
changes on the level of complex operations. In [6] (falling in the second category)
automatic techniques based on heuristic comparisons for finding similarities and
differences between versions are developed. [10] develop a merging method for
ontologies following a bottom-up approach which offers a structural description
of the merging process. These approaches are complementary to the presented
one, since they are applicable even if ontology editors or storage systems do
not support a finely grained change tracking. Ljiljana Stojanjovic’s work [9] on
ontology evolution gives an overview over current developments.

We presented a method for specifying complex changes by means of less com-
plex changes and finally atomic changes on a graph. This method is especially
suited to be implemented in ontology editors and storage systems. In a dynamic
distributed environment sets of changes may then independently spread out from
the originating ontologies. A user of some ontology may decide for every single

change whether he accepts it or not. Assistance for this decision is provided
by the compatibility concept between an ontology and a change. Annotation
of changes on OWL ontologies with corresponding ontology evolution patterns
further enables automatic data migration of independently stored instance data
agreeing on the changed ontology. In this context the development of an ex-
haustive library of ontology evolution patterns with appropriate data migration
algorithms is planned.

References

10.

Soren Auer. Powl: A web based platform for collaborative semantic web devel-
opment. In Séren Auer, Chris Bizer, and Libby Miller, editors, Proceedings of
the Workshop Scripting for the Semantic Web, number 135 in CEUR Workshop
Proceedings, Heraklion, Greece, 05 2005.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web. Scientific
American, 284(5):34-43, May 2001.

Ying Ding, Dieter Fensel, Michel Klein, and Borys Omelayenko. Ontology man-
agement: survey, requirements and directions. Technical report, IST 1999-10132
Ontoknowledge Project, Deliverable 4, 2001.

Michel Klein, Dieter Fensel, Atanas Kiryakov, Natasha F. Noy, and Heiner Stuck-
enschmidt. Wonderweb deliverable D20. versioning of distributed ontologies, De-
cember 18 2002.

Graham Klyne and Jeremy J. Carroll. Resource Description Frame-
work (RDF): Concepts and abstract syntax. W3C Recommendation
(http://www.w3.org/TR/rdf-concepts), 2 2004.

Natalya Fridman Noy, Sandhya Kunnatur, Michel C. A. Klein, and Mark A. Musen.
Tracking changes during ontology evolution. In Sheila A. Mcllraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors, Proceedings of the Third International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November 7-11, 2004,
volume 3298 of Lecture Notes in Computer Science, pages 259-273. Springer, 2004.
Damyan Ognyanov and Atanas Kiryakov. Tracking changes in RDF(S) repositories.
In Asuncién Gémez-Pérez and V. Richard Benjamins, editors, EKAW, volume 2473
of Lecture Notes in Computer Science, pages 373-378. Springer, 2002.

. Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF.

W3C Working Draft (http://www.w3.org/TR/rdf-sparql-query/), 2005.

Ljiljana Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, Insti-
tut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universitét
Karlsruhe (TH), 2004.

Gerd Stumme and Alexander Maedche. FCA-Merge: A bottom-up approach for
merging ontologies. In JCAI ’01 - Proceedings of the 17th International Joint
Conference on Artificial Intelligence, Seattle, USA, August, 1-6, 2001, San Fran-
cisco/CA: Morgen Kaufmann 2001/07/04, 2001.

