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Zusammenfassung

Neuartige Datenbank-Anwendungen wie Data Warehousing und OLAP (Online Analytical
Processing) verwenden zur Beschreibung der Anwendungsdomäne das multidimensionale
Datenmodell. OLAP Systeme weisen daher ein multidimensionales Datenbank-Schema auf, um
die Anwendungs-Semantik adäquat darzustellen. Mit FIESTA wird eine Methodik zur
Schema-Evolution solcher multidimensionaler Schemata vorgestellt. Kern der Arbeit ist eine
Schema-Evolutions-Algebra, die eine Formalisierung des multidimensionalen Datenmodells
zusammen mit darauf aufbauenden Schema-Evolutions-Operationen beinhaltet. Da OLAP-
Systeme meist als Zusatzschichten-Architektur für relationale Datenbanksysteme implementiert
werden, wird die Verarbeitung von Sequenzen solcher Schema-Evolutions-Operationen in
einem relationalen Datenbanksystem vorgestellt. Dazu wird formal beschreiben, wie ein multi-
dimensionales Schema auf ein entsprechendes relationales DB-Schema abgebildet werden
kann.  Damit bei dieser Transformation die volle multidimensionale  Semantik erhalten bleibt,
wird ein entsprechendes Metaschema als Erweiterung des relationalen Systemkatalogs einge-
führt. Zur konsistenten Umsetzung von Evolutions-Operationen-Sequenzen erfolgt eine
Transformation in entsprechende relationale Evolutions-Kommandos, die neben dem eigentli-
chen relationalen Datenbankschema auch die Instanzen und die Inhalte des Metaschemas an-
passen.

FIESTA wurde im Rahmen einer graphischen Data Warehouse-Entwurfsumgebung prototyp-
isch implementiert. Dabei werden die multidimensionalen Schemata an der Benutzer-
Schnittstelle mit einer speziellen grafischen Notation, die eine Erweiterung des bekannten E/R
Ansatzes ist, dargestellt. Diese grafische Darstellung wird intern zur Verarbeitung in eine alge-
braische Beschreibung des multidimensionalen Schemas transformiert.



Abstract

New application areas for databases like data warehousing and OLAP (Online Analytical Proc-
essing) deploy the multidimensional data model in order to describe the application domain.
Consequently, OLAP systems are represented by a multidimensional database schema to ade-
quately reflect the application semantics.

FIESTA presents a methodology for the evolution of such multidimensional schemas. Core of
the thesis is a schema evolution algebra which comprehends a formal multidimensional data
model together with corresponding schema evolution operations. Since OLAP systems are
typically implemented as additional layer for relational database systems, the processing of se-
quences of schema evolution operations in a relational database system is presented. To this
end, we formally describe how a multidimensional schema can be mapped to a corresponding
relational database schema. In order to fully maintain the multidimensional semantics during
this transformation, a corresponding meta schema is introduced as extension of the relational
system catalogue. For a consistent processing of evolution operation sequences, a transforma-
tion to corresponding relational evolution commands is performed. These relational evolution
commands adapt the relational database schema together with the instances and update the
contents of the meta schema accordingly.

A prototype for FIESTA has been implemented as part of a graphical design environment for
data warehouses. In this environment, multidimensional schemas are presented at the user in-
terface by means of a specialized graphical notation. This notation is an extension of the well-
known Entity/Relationship approach. For internal processing the graphical representation is
transformed to an algebraic description of the multidimensional schema.
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Introduction 1

1.  Introduction

)act is that today’s economy is characterized by a constantly growing competition among
enterprises. Only correct strategic decisions made by its managers can keep a business alive. As
a consequence, reliable information as base for strategic decisions become an essential produc-
tion factor. Trends that have been leading to this situation are according to [Kur99] the in-
creasingly complex structures of enterprises through mergers together with the increasing rela-
tionships between companies, the introduction of new business processes as well as the re-
direction of existing business processes to a strongly customer-oriented view, the globalisation
of markets, customers and enterprises, and new technologies like the internet/world-wide web
or electronic commerce.

Enterprises have collected huge amounts of data in OLTP databases for performing their daily
business, but this data is neither integrated nor cleansed and thus not suitable for analytical
queries. In order to provide reliable, integrated and up-to-date information that can serve as
base for analytical evaluations, data is extracted, transformed, cleansed and integrated to a
dedicated data warehouse database. This data warehouse can then be queried by a manager for
assistance with his strategic decisions which is commonly known as Online Analytical Proc-
essing (OLAP). The warehouse database is typically modeled using a multidimensional view on
the data because this corresponds to the manager’s understanding of his problem domain.
Typically, a manager sees his business as facts (e.g. sales figures, repair facts) that are de-
scribed in the context of dimensions (e.g. customers, location, time). Dimensions are organized
using classifications, i.e. the single dimension elements (e.g. the day 06/30/2000) can be classi-
fied according to its month (June) or year (2000). This understanding of the application do-
main is commonly referred to as a multidimensional schema in the database literature. Despite
the multidimensional view on the conceptual layer, OLAP systems are typically implemented
using relational database systems because of their proven scalability and reliability [Kim96a],
[Kur99], [BG+00].

Since the modeling of such a conceptual multidimensional schema is the central task of the
OLAP system design and because of the frequent changes of this schema due to the trends
mentioned above, this thesis deals with the modeling process of such a multidimensional
schema of a data warehouse and focuses on the efficient processing of schema modifications

If an elderly but distinguished scientist says
that something is possible he is almost cer-
tainly right, but if he says that it is impossi-
ble he is very probably wrong.

(Arthur C. Clarke)
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that lead to a so-called schema evolution. The complexity of schema evolution in OLAP sys-
tems arises basically from the mapping of the semantically rich multidimensional data model to
the relational schema on the database system layer. As a consequence of this mapping, a given
schema evolution task comprises not only modifications of the relational database schema, but
also the adaptation of existing data (commonly denoted as instance adaptation).

FIESTA, the name of our work, stands for “A Framework for Schema Evolution in Multidi-
mensional Databases”.

The introduction given here sketches briefly the design process of multidimensional schemas
and derives the overall objective of the thesis. The ideas and visions introduced here will be
extended to greater detail in sections 2.1 (role of the conceptual multidimensional data model),
3.1 (motivation for FIESTA), and 3.3 (detailed objectives for our approach). The introduction
also presents the relevant state of the art in the areas of schema evolution (in relational and
object-oriented database systems), schema modification approaches for data warehousing and
OLAP, multidimensional data models, and graphical modeling notations for warehouse design.
We conclude this chapter by giving an outline of the thesis.

1.1. The Multidimensional (MD) Schema Design Process

Following traditional database design techniques, a well-defined and purely conceptual data-
base schema of the warehouse database consitutes the necessary starting point for building any
warehouse solution and offers additional advantages during later modifications. Surprisingly,
this modeling issue receives only little attention both in industry and academia, although exist-
ing conceptual modeling techniques cannot be directly applicated due to the peculiarities of the
multidimensional data model [SBHD98] (see chapter 2.4). As a consequence, many industrial
projects skip the conceptual modeling phase and start either with the logical design (i.e., mod-
eling a relational star or  snowflake schema) or – even worse – with the design of a tool-
specific database schema. Only recently some approaches have come up in the scientific litera-
ture. Yet it is unclear which impact these approaches will have to industrial projects.

In order to fill this gap, we briefly sketch our vision of the ideal data warehouse design process
and derive peculiarities for data warehouse schema design and maintenance.

The typical process of the schema design in such an environment is shown in figure 1-1, taken
from [SBHD98]. The schema is mainly influenced by user requirements and the availability and
structure of the data in operational systems. Most data warehousing projects take an evolu-
tionary approach, both in the warehousing literature ([Kim96a], [Inm96]) and from our experi-
ence in several industrial projects (see e.g. [HBD+97]). The projects  start with a prototype
providing a certain functionality and set of data. This prototype will be further adopted ac-
cording to the changing and growing requirements gained from users’ feedback. Thus, in
warehouse maintenance, the user requirements are subject to frequent changes.

In order to assure the flexibility and re-usability of the schema in such an environment, the
schema must be specified on a conceptual level. This means especially that it must not assume
any facts that are the result of further design steps e.g. the decision which database technology
is to be used (multidimensional vs. relational).
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figure 1-1 : schema design process in data warehousing environments

We assume that a conceptual data model reflects the application scenario and deals with no
implementation or tool specific details (like the selection of an OLAP tool). For example, an
Entity/Relationship diagram is a conceptual model (in the case of relational database design)
for us. We will see later why standard E/R models do not reflect the peculiarities of the multi-
dimensional data model adequately. The conceptual model leads to a logical model which cor-
responds to a database schema. The logical model is implemented through a physical schema
which comprises e.g. the disk pages with database tuples and indexes.

As said before, this schema design process has to be performed several times because of the
iterative approach that most data warehousing projects pursue. The two main reasons for this
very dynamic behavior are:

� the interactive multidimensional analysis technology is new to the knowledge worker. This
means that it is impossible for him to state his requirements in advance.

� the business processes in which the analyst is involved are subject to frequent changes.
These changes in business processes are reflected in the analysis requirements. New types
of queries that require different data become necessary. Since the multidimensional  schema
of an OLAP system determines the possible analysis capabilities, the new query require-
ments lead to changes of the MD database schema.

As a consequence, the process of figure 1-1 has to be modified to a more cycle oriented proc-
ess model which is shown in figure 1-2. This cycle model for warehouse design and mainte-
nance basically consists of the following phases:

� during ‘Requirement Analysis’, the requirements of the users concerning data scope,
granularity, structure and quality are collected. The result is typically a set of multidimen-
sional views (external schemas) which have to be supported by the information system.

� the main goal of the ‘Conceptual Design’, is to consolidate the required views into a sin-
gle conceptual multidimensional model. During the first iteration a conceptual model is
created. During each further iteration of the cycle, the schema developed during the previ-
ous iteration has to be modified in order to fulfill the new requirements. The conceptual de-
sign is the most important step of the data modeling process as the conceptual schema
serves as a basis for the next steps of the cycle and for further iterations.

� during ‘Logical and Physical (Technical) Design’, implementation decisions are taken.
Typical decisions are: which products and architectures to use or which optimization and
tuning measures are to take (e.g. denormalisation, precomputation).

� the following ‘Implementation’  is a rather mechanic realization of the specifications de-
veloped during the technical design phase. Included in this phase is the initial data load (for
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the first iteration) or the adaptation of the existing database schema and contents (schema
evolution during subsequent iterations).

� during the ‘Operation’  phase new data is loaded to the database on a regular basis and the
users analyze data. During this phase new requirements for different or differently struc-
tured data arise. If a certain amount of new requirements is reached, a new iteration is
started.

Requirement
Analysis

Conceptual Design
(Implementation 

Independent)

Implementation

Operation
(Querying and

Data Maintenance)

Logical & Physical Design
(Implementation decisions)

figure 1-2 : enhanced schema design process as design and maintenance cycle

As already mentioned, the conceptual multidimensional data model is the central part of the
design and maintenance cycle as it already contains a consolidation of all user requirements
(thus describing the business context) but does not yet contain implementation details. All  data
models that occur later in the design process (e.g. the tool specific database schema) are re-
finements of the conceptual model.

1.2. Overall Objective of the Thesis

FIESTA aims at a framework supporting schema evolution for OLAP systems.

To that end, FIESTA is embedded in a tool-supported environment which allows the ware-
house modeler to specify and maintain his multidimensional schema on a purely conceptual
level, thus providing a single point of control to the warehouse modeler. The FIESTA envi-
ronment automatically propagates the schema modifications (which are expressed by a se-
quence of schema evolution operations) to the underlying database system. As we will see
later, this task comprises modifications of the database schema, an adaptation of existing in-
stances representing OLAP data, and updates of the contents of the FIESTA meta schema.

This high-level vision will be refined to detailed objectives in chapter 3.3.

The following chapter will focus on different research areas that have to be considered for the
FIESTA approach. We will elaborate the current state of the art in research and, in our conclu-
sions, show the gaps between this state of the art and our overall vision for FIESTA.
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1.3. State of the Art

The objective of this chapter is the presentation of the relevant state of the art for FIESTA.
Since FIESTA discusses a research issue (schema evolution) which has been thoroughly inves-
tigated in other areas of database research and presents a solution of this issue for an emerging
new kind of databases, we present the state of the art in the following areas:

� schema evolution in relational databases (chapter 1.3.1): this is the starting point for all
discussions of schema evolution issues. Schema evolution for RDBMS is not only inter-
esting because of historical reasons (i.e. RDBMS have been the first kind of database sys-
tems with considerable commercial impact that lasts until today and will still hold for the
future),  but also because of the poor support of commercial products for schema evolution
and instance adaptation.

� schema evolution in object-oriented databases (chapter 1.3.2): in the area of object-
oriented database systems, schema evolution became a research topic because the support
for schema evolution was a strong request from the application areas of OODBMS. Espe-
cially, the complex inheritance hierarchies in object-oriented database schemas were a spe-
cial case for all approaches dealing with schema evolution issues. As a consequence, nu-
merous publications (some of which lead to commercial products) on this field have been
published.

� schema modification approaches for data warehousing and OLAP (chapter 1.3.3): this is
the research area in the field of data warehouse research which comes closest to our own
approach. However, there are bigger differences that will be pointed out. Especially, we do
not follow the viewpoint that reduces a data warehouse to be merely a materialized view.
This viewpoint does not adequately reflect the peculiarities and semantics of the multidi-
mensional data model. The versioning approaches are to some extent a generalization of
our approach, but we see our approach closer to the user requirements of the specific area
of deployment.

� multidimensional data models (chapter 1.3.4): the first step when regarding schema evolu-
tion issues from a scientific viewpoint is to fix the meaning and extent of schemas and in-
stances. Thus, when investigating multidimensional schema evolution, the starting point is a
formal multidimensional data model. Since there is no commonly accepted multidimen-
sional data model (or, more precisely: formalization of the multidimensional data model),
we briefly present the relevant state of the art including our own research results in the
larger project context.

For each approach discussed as state of the art, we introduce the main concepts and ideas and
try to match the approach with our overall vision for FIESTA, as presented in chapter 1.2.

Finally, we conclude our state of the art presentation with a summary of the main results.

1.3.1. Schema Evolution in Relational Databases

Schema evolution is only poorly supported in relational database systems which constitutes to
some degree the root problem for schema evolution in general. Of course, schema evolution in
relational databases can always be performed. The DDL and DML commands offer the re-
quired expressiveness to adopt a relational table together with its instances. But, due to the
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generality of the relational model, there is no means to check consistency for a given applica-
tion area but this resides in the responsibility of the database administrator.

Modifications of a database schema happen quite often. A study measuring the frequency of
schema evolution has been done in the context of a health management system [Sjo93]. The
result of this study revealed that the number of relations increased by 139% (during the sys-
tem’s lifetime), the number of attributes by  274%, and that every relation had been modified.
Another report [Mar93] concluded that 59% of the attributes are changed in the average case.

The standard SQL DDL allows for changes of a table definition by adding, removing or re-
naming attributes (columns), setting (or changing) default values, and by modifying constraints
(adding/removing primary or foreign key constraints,   check constraints). The typical SQL
ALTER TABLE command (cited from [Vos94]) is shown in figure 1-3.

ALTER TABLE table-name

{ ADD [ COLUMN ] column-name data-type

| ALTER [ COLUMN ] column-name

{ SET default-definition | DROP DEFAULT }

| DROP [ COLUMN ] column-name

| ADD [ CONSTRAINT constraint-name ]

{ { PRIMARY KEY | UNIQUE } ( list-of-column-names )

   | FOREIGN KEY ( list-of-column-names ) REFERENCES ...

   | CHECK ( condition )

 }

| DROP CONSTRAINT constraint-name

}

figure 1-3 : standard SQL ALTER TABLE command

As an example of a commercial system, we refer to the ALTER TABLE of the Informix Dy-
namic Server [Inf98a]: the ALTER TABLE  command allows to add, drop, or modify col-
umns. Modifications extend to a rename, changes of the default-value, constraint definitions
and other typical examples. The support for an adaptation of the existing instances basically
consists of defining default values for newly added columns or SQL UPDATE queries.

We conclude that schema evolution in relational database systems is somehow trivial (adding
or deleting tables and attributes) and can always be done by the database administrator. How-
ever, the DBA is responsible for maintaining consistency, especially w.r.t. to the instance ad-
aptation. Typically, this leads to a change specific workaround. We state that the support for
the semantics of schema changes offered by today’s commercial products is still poor.

Since RDBMS still are typically the backbone of every database application, it is more urgently
needed than ever. If relational schema evolution would have been clearly solved, all other di-
rections of schema evolution would be easier because the different application semantics (in
our case, the semantics of the MD data model) would only have to be mapped to the existing
schema evolution support.
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1.3.2. Schema Evolution in Object-Oriented Databases

Schema evolution support became a research issue (with strong impact on commercial prod-
ucts) with the upcoming object-oriented database systems. Object-oriented database systems
provide a semantically rich data model, compared to conventional relational database systems.

As a drawback of the object-oriented data model, schema modifications made on one schema
entity can have impacts on other schema entities. More precisely, when e.g. the schema of a
class is modified, schema modifications of all subclasses have to be performed as non-local
changes of the schema. Schema evolution support is an important requirement for object-
oriented databases due to the highly dynamic applications (that require frequent schema modi-
fications) for which object-oriented DBS are used.

Similar to the case of OLAP databases, most object-oriented database systems are imple-
mented as an additional layer on top of a relational DBS.

[BKK+87] was the first approach that presented a classification of schema evolution opera-
tions for the OODBS ORION (base for the commercial product ITASCA). These operations
included e.g. re-naming of classes, adding or deleting attributes, creation or deletion of meth-
ods, changes in the inheritance hierarchy, or even defining a new class. As can easily be seen,
the type of schema evolution operations depend strongly on the underlying data model (here,
the object-oriented data model) [Höf96]. We will come back to this data model dependency of
the schema evolution operations in chapter 3.1.

Schema evolution results in OODBS pointed out that schema evolution always comprises the
modification of the (database) schema, the adaptation of existing instances, and ensuring a
certain well-defined consistency criterion (e.g., a correct association of instances to their
classes). Several publications discuss different execution models for the instance adaptation,
namely an immediate adaptation, delayed (e.g., at the first writing access), or never. In the last
case, specialized filters are constructed (this approach was called screening) in order to ensure
correct instances. The contradictory objectives flexibility vs. runtime performance of the over-
all application favor either one instance adaptation model or another. For the task of schema
transformation, most approaches select either a sophisticated view model or version the data-
base schema (or classes, resp.). Another important research issue is the compatibility of appli-
cation programs during schema evolution (referred to as forward compatibility): how can it be
ensured that an application program still works with the modified schema?  Here, the sophisti-
cated versioning and view mechanisms find their application.

Schema evolution for object-oriented database systems has been a very busy research area in
the beginning 1990’s. Numerous results in form of conference and workshop papers, PhD the-
ses (e.g., [Sch93], [Tre95], [Höf96] to name the most popular theses), and research prototypes
have been published. Many of the prototypes were further developed to commercial products.

1.3.3. Schema Modification Approaches for Data Warehousing and OLAP

All the research work mentioned above was dealing with schema evolution, but had no direct
relationship with data warehousing. Now, we turn to the core research results in the area of
data warehousing.
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An excellent overview of research problems in data warehousing is given in [Wid95]. Here,
support for schema changes during warehouse evolution was requested for the first time. An-
other overview of research activities is given in [CD97], whereas a more recent summary of
advances and open research issues is given in [SMK+98].

The busiest area in data warehouse research is the view maintenance problem. An extended
overview of the view maintenance problem (not only in the context of data warehouses) is
given in [GM95]. The general idea is to assume the data warehouse database as materialized
view over the operational data sources. When data is updated in the data sources, the view has
to be updated accordingly. In order to avoid the full recomputation of the materialized view,
specialized maintenance techniques have been developed. Incremental view maintenance has
become a busy research area, see [GM95] as index to further publications. An interesting case
is the issue of the self-maintainability of views. A view is called self-maintainable if it can be
maintained using only the materialized view and key constraints [GJM96], [QGM+96]. How-
ever, since the view maintenance problem focuses on maintaining the warehouse data during
data changes in the sources and not on maintaining data during schema modifications of the
warehouse database, it complements the research contribution of FIESTA, but is not directly
relevant as state of the art.

Nevertheless, there are several approaches in materialized view and data warehousing research
that are relevant for FIESTA. We briefly introduce the following approaches:

� the view adaptation and synchronization approaches of Bellahsene, Mohania/Dong, and the
Rundensteiner research group,

� the temporal approach of Chamoni and Stock,

� the TEMPS approach of Günzel,

� the approach of Hurtado/Mendelzon/Vaisman, and

� the approach of Quix.

1.3.3.1. View Adaptation Approach of Bellahsene
The approach of Bellahsene [Bel98] distinguishes two kinds of schema changes: changes in the
operational data sources that lead to changes in the materialized view and direct changes of the
materialized view definition.

The paper introduces an extended relational view model which e.g. allows for adding or hiding
attributes in the view definition. Hiding is used to simulate deletions of attributes in the view.

Additionally to the view model, operations for schema changes are introduced. The operations
concerning schema changes in the operational sources comprise adding and deleting attributes
or changing the type of an attribute. Depending on the effects to consistency, these schema
changes are reflected in the view definition.

Similarly, the operations for direct changes of the view definition allow for adding or deleting
attributes and again for type modifications of an attribute. Changes in the view definition are
simulated using the extended view model.

The approach presents a model which is strongly oriented to the semantics of the relational
model. Especially, it only focuses on general attributes (of relational tables) and does not treat
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the specialized semantics of the multidimensional data model. There is no operation to change
e.g. the classification in a hierarchy, or to introduce a new fact.

1.3.3.2. View Adaptation Approach of Mohania and Dong
The view adaptation approach after redefinitions of the view was first introduced in [GMR95]
and then enhanced and extended in [MD96]  and [Moh97].

The warehouse is assumed to be a materialized (SPJ) view. The problem is how to adapt the
view data when changes of the view definitions occur. The key question is of course how to
avoid the costly re-computation of the modified view. Thus, adapting the contents of the mate-
rialized view seems a promising approach. To that end, [MD96] introduce adaptation algo-
rithms for changes in the SELECT, FROM, or WHERE clause of the view definition. The em-
ployed base technique is to add join count attributes to the schemas of the base relations and
derive count attributes to the schemas of the views. Sophisticated view maintenance algorithms
use this additional information to adapt the view contents without re-computing the view
wherever possible.

1.3.3.3. View Synchronization Approach of Rundensteiner/Lee/Nica/Koeller
The database research group of E. Rundensteiner at the Worcester (Massachusetts) Polytech-
nic Institute has a long lasting tradition in schema evolution research. Starting with lots of pub-
lications in the area of object-oriented schema evolution, the group continues their work (see
e.g. [CNR99] for a recent publication on object-oriented schema evolution) and transfers ex-
isting results to the area of view synchronization during warehouse evolution ([RLN97],
[KRH98], [LKN+98], [NR99], [RKZ+99], [LKN+99], [Zha99], [Nic99]).

Numerous publications cover a wide range of different issues, including wrappers for view
maintenance [DZR99], general data warehouse maintenance [ZR99] or in the context of
schema and data updates [ZR98], parallel view maintenance [ZRD99], and query rewriting
[LKN+99].

[RLN97] proposes a taxonomy of view adaptation problems and identifies the view synchroni-
zation problem which arises with changes in the source schemas, as a new view adaptation
problem. The Evolvable View Environment EVE is introduced as a framework for solving this
problem.

Any changes to the view definition or the view extent (i.e., materialized view data) are referred
to as view adaptation process in EVE. The proposed taxonomy covers materialized view
maintenance [GM95], view redefinition [GMR95], [MD96] (called view adaptation in the
original publications), and of course view synchronization.

View synchronization is a dynamic process that adapts the view definition triggered by capa-
bility (i.e., schema) changes in the data sources (e.g., the deletion of an attribute). More pre-
cisely, the view definition is not changed explicitly (e.g., by the warehouse admin), but by a
trigger that was fired due to schema changes in the sources. Additionally, it is assumed that the
view extent (i.e., materialized view data) has to be maintained acoording to this view definition
change. The latter process is called view maintenance after synchronization and can be com-
pared to the instance adaptation phase in the schema evolution literature.

The traditional materialized view problem [GM95] is called materialized view maintenance
after base relation updates in the taxonomy of [RLN97] and mainly characterized by changes
in the source data and no changes in the view definition. The view maintenance after view re-
definition problem of [MD96] (also renamed from the original approach) is characterized by
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explicit changes of the view definition and no (data) changes in the operational sources. This
problem comes close to the issue of self-maintainability of views which corresponds to the
characterization in the original publication [MD96].

1.3.3.4. Temporal Approach of Chamoni and Stock
The approach of Chamoni and Stock ([CS98], [CS99], also in [BG+00]) aims at modeling
temporal multidimensional data in OLAP systems.

Basic idea is to assign a valid time interval (w.r.t. a selected granularity, called chronon) to
every classification of a dimension. Thus, the complete classification hierarchy (i.e., not only
the classification nodes (dimension elements), but also their classification information) is re-
lated to the time dimension. When considering e.g. the product dimension as example, not only
the insertion or deletion of new products can be modeled, but also re-assigning a product to
another product group. Additionally, new classification hierachies can be modeled and repre-
sented.

A time stamping technique represents the evolution of data. For every classification relation
between two classification nodes, the valid time for this classification is stored, leading to a
consolidation tree for the dimension. An equivalent representation are matrices for valid time
stamps which have all classification nodes as rows and columns and the time stamps as matrix
entries. As drawback, the overall valid time of a classification node cannot be determined be-
cause a product may still exist but has not been produced during a certain period or in a certain
production plant. Thus, an additional valid time matrix for the consolidation tree has to be pro-
vided representing the overall valid time for each classification node of a dimension.

The approach is purely conceptual. So far, no implemented prototype exists, but an imple-
mentation on top of a temporal DBS seems promising. Experiences of this implementation
could serve not only warehouse research, but would also be useful for the area of temporal
DBS as application. Further, performance results in a real OLAP scenario might be interesting.

1.3.3.5. Versioning Approach of Günzel
The latest approach that is relevant as state of the art for FIESTA, is the TEMPS approach of
Günzel (published in [Gün00] and in [BG+00]). TEMPS stands for Time-enhanced Multidi-
mensional Processing System and focuses on providing time information for both schema and
base data versioning.

The requirements that lead to TEMPS are complex schema changes (e.g., a new product hier-
archy every month, yearly new dimensions, changes in the granularity) and changes in the base
data (e.g., changes in geographical assignments like villages to counties or variants of analysis).
These requirements are motivated from industrial projects with a large market research com-
pany. Core of TEMPS is a framework for data warehouses, including versioning aspects (“any
data, any time, any analysis”).

To that end, TEMPS defines a temporal multidimensional data model and offers versioning
(using time stamps) for classification schemas and hierarchies as well as for the multidimen-
sional cube schema and instances. Specialized evolution operations that describe changes of
both the classification schemas and the cube schema are introduced.
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1.3.3.6. Dimension Updates of Hurtado/Mendelzon/Vaisman
The approach of Hurtado et al. ([HMV99a] and [HMV99b]) proposes a set of schema evolu-
tion operations that are designed specifically for the multidimensional data model (implemented
as a materialized view). The multidimensional data model of [CT98] is used.

The authors introduce a formal model of changes in the dimensions (but not the facts) of a
multidimensional schema. A distinction is made between changes in the classification hierarchy
(schema of the dimension) and changes of the classification nodes (dimension members / in-
stances of the dimension levels). To that end, special operations are introduced that perform
the effects of the operations on a materialized view. This materialized view is responsible for
the persistent storage of the data.

Further, algorithms are presented to efficiently maintain the materialized view. It is assumed
that a fully materialized data cube [GBL+96] is responsible for storage of the view. Especially,
all possible aggregates of this data cube have been pre-computed and must be maintained.

1.3.3.7. Warehouse Evolution Approach of Quix
The work of Quix is embedded in the DWQ framework. DWQ is an European research proj-
ect, dealing with Data Warehouse Quality. The main topics and issues covered by the DWQ
project can be found as an in-depth project overview in [JLV+00].

The DWQ framework contains among other a detailed quality meta model and as refinement a
quality-oriented data warehouse process model [JJQ+99]. [Qui99] extends this prcoess modell
and proposes a framework for data warehouse evolution. The paper regards the crea-
tion/update of materialized views, adding/deleting data sources, or changes in the enterprise
business model as typical evolution cases that have impacts on the overall quality goals.

In order to control this warehouse evolution, specialized meta data is provided which tracks
the history of changes and provides consistency rules to enforce consistency when certain
quality factors have to be re-evaluated. To that end, a meta model for the data warehouse
evolution as specialization of the data warehouse process model is introduced.

As an example, the evolution of materialized views is discussed. Here, the framework is ap-
plied for monitoring data warehouse quality under evolution. Schema evolution operations
defined on the relational view model like add base relation/view and their impacts on quality
factors are discussed. Mostly, these operations affect the quality factors completeness, correct-
ness, and consistency between the conceptual and logical schema.

The approach has been implemented using the repository system ConceptBase [JGJ+95].

1.3.4. Multidimensional Data Models
A multitude of multidimensional data models (or more precisely: formalizations of the multidi-
mensional data model) has been published in the last few years. Surprisingly enough, there is
still no commonly accepted multidimensional data model as this is the case for the relational
model.

Surveys and in-depth comparisons of the existing approaches can be found in [BSHD98],
[SBH99], [VS99], and [BG+00]. We refer the interested reader to these comprehensive publi-
cations for further details.

Here, we do not aim at providing a full in-depth overview, but try to introduce the most
prominent models or the models that have been used as base for other approaches. Therefore,
some newer approaches like [PJ99] or [DKPW99] are not presented here. We also focus on
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the data model and omit the OLAP operations which most approaches also introduce because
the operations are not relevant for FIESTA. The considerations and presentations given here
may serve as base for the understanding of the FIESTA multidimensional data model in chapter
3.5.

Our idea of the MD data model history and how some models seem (in our opinion) to have
influenced other approaches is sketched in figure 1-4. In the beginning, there was the data cube
operator of Gray et al. (published in [GBL+96] and [GCB+97]). This approach was closely
related to the relational data model and the SQL language. Soon after this approach, the
grouping algebra of Li and Wang [LW96], the approach of Agrawal, Gupta and Sarawagi
[AGS97], the approach of Gyssens and Lakshmanan [GL97], and the first version of the Cab-
bibo and Torlone approach [CT97] were published. Whereas the grouping algebra of Li and
Wang and the approach of Gyssens and Lakshmanan basically constitute an extension of the
relational algebra, the approaches of Agrawal, Gupta, and Sarawagi and Cabbibo and Torlone
prefer a pure cube-oriented model.

Thereafter, both refinements of the existing approaches (like [CT98] or [Vas98]) and models
providing extended concepts like features [Leh98] or nested cubes [DKPW99] were devel-
oped.

A graw al, G upta, Sarawagi
[AG S97 ]

re lational-o rien ted
m odels

cube-oriented
m odels

G yssens, Lakshm anan
[G L97]

G roup ing  A lgebra
Li, W ang
[LW 96 ]

C abbibo, To rlone
[C T 98]

extended concepts

Vassiliad is
[Vas98 ]

Featu re E xtended M odel
Le hn er [Leh 98]

N ested Dim ensional C ubes
D e keyser, K uijp ers e t al.

[D KP W 9 9]

D ata C ub e O perator
G ray, Bosw orth et. a l.

[G BL+9 6]

figure 1-4 : overview of MD data model history

In the following paragraphs, we will briefly introduce the multidimensional data models of

� Agrawal, Gupta, and Sarawagi (chapter 1.3.4.1)

� Cabbibo and Torlone (chapter 1.3.4.2)

� Li and Wang (chapter 1.3.4.3)
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� Gyssens and Lakshmanan (chapter 1.3.4.4)

� Lehner, Ruf, and Teschke (chapter 1.3.4.5) and

� Vassiliadis (chapter 1.3.4.6)

Due to the strongly relation-oriented view, we do not introduce the approach of Gray et al.
([GBL+96], [GCB+97]). As already mentioned, we do also not introduce some newer ap-
proaches for rather specific requirements like [PJ99] or [DKPW99]. These approaches do not
support our reader in understanding the FIESTA multidimensional data model.

For the reader who is rather new to the area of multidimensional data models, we recommend
reading one of the overviews ([BSHD98], [SBH99]) or chapter 2 of this thesis first in order to
understand the terms and requirements.

1.3.4.1. Model of Agrawal/Gupta/Sarawagi
In [AGS97] a pragmatic multidimensional data model and an algebra are presented. It organ-
izes data in one or more hypercubes. All cell values can either be an n-tuple or from the set
{0,1}. A cell containing “1” means that this combination of dimension values exists. An n-tuple
represents the existence of a record with n measures and a “0” marks cells with no contents.
The dimensions have no structure or order and the elements are addressed by their name.

A k-dimensional cube C with n-tuples as cell values is formally defined as a triple (D, E(C), N)
where D is a set of k dimension names. Each dimension has a domain domi. E(C) is a function
mapping dom1 x...x domk to an n-tuple (the cell values of the cube C) or to {0,1}. N is an n-
tuple containing the names of the members of the n-tuples contained in the cube.

The approach does not explicitly distinguish between structure and contents. The model does
not contain any information about the structure of the dimensions. Especially, there is no static
construct representing dimension levels. That means all of the structural and functional infor-
mation has to be included in the query. For this purpose, the merge operation allows to supply
a dimension merging function (for the structural mapping) and an element combining function
(for functional definition).

As n-tuples are allowed as cube elements, record structured measures can be expressed easily.
Derived measures can be expressed by using a self-join operation on the cube. In this case the
definition of the calculation has to be given in the query. The expressive power of the model is
at least as powerful as the relational algebra as the relational operators projection, union, inter-
sect and difference can be expressed using the basic operator set.

1.3.4.2. Model of Cabbibo and Torlone
L. Cabbibo and R. Torlone proposed a formal multidimensional model and a corresponding
descriptive query language based on a logical calculus ([CT97], [CT98]). The multidimensional
data model is defined by the notion of f-tables as basic data structure. F-tables are relations that
contain a tuple for each cell of the data cube containing a value. Dimensions are defined by
graph (DAG)-structure containing dimension levels as nodes.

Formally a dimension is defined as a triple (L, �� R-UP). L is the finite set of levels which is
partially ordered by the relation � �H�J� garage � region means level garage rolls up to level
region) . R-UP is a collection of roll-up functions that define the mapping of lower level ele-
ments to higher level elements (e.g. garage A, B and C belong to region bavaria). Each level
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l�L is associated with a countable set of values called the domain of L (e.g. dom(garage) =
{A,B,C...}).

N-dimensional f-tables, the central modeling entity have the following form: f[A1:l1,...,An:ln]:l0. f
is the name of the f-table, li (0 � L � Q� LV WKH QDPH RI D GLPHQVLRQ OHYHO DQG $j (1 � M � Q� LV WKH

name of an attribute.

A multidimensional scheme is defined as a tuple (D,F) where D is a finite set of dimensions and
F is a finite set of f-tables over these dimensions.

The treatment of multiple hierarchies on one dimension is easily possible as the relation � Ge-
fines only a partial order on dimension levels. The formalism does not introduce explicit names
for the different possible aggregation paths.

Complex measures can be treated in two different ways. First a single f-table can be defined for
each measure. This does not allow derived measures. Another possibility is to define the meas-
ures as an own dimension. With this solution it is possible to express derived measures by us-
ing dimension levels with the disadvantage that the functional definition of the levels has to be
included in every query accessing the derived measure. But then all atomic measures must be
of the same domain (e.g. numeric).

In [CT98] an extension of the approach is published. It extends the MD model to support rec-
ord structured measures and defines an algebraic and a graphical query language. The algebra
makes use of ten operators many of which are similar to relational operators (e.g. join, carte-
sian product, selection etc.)

1.3.4.3. Model of Li and Wang
The work of Li and Wang [LW96] formalizes a multidimensional data (MDD) model for
OLAP applications. Core of the approach is an algebraic query language, called grouping alge-
bra. Basic concept is a multidimensional cube consisting of a number of relations, the dimen-
sions, and for each combination of dimension tuples, an associated (scalar) data value repre-
senting a single fact attribute. The paper introduces an MD cube algebra for manipulating such
cubes.

An n-dimensional cube scheme is a set {(D1,R1),..., (Dn,Rn)} with Di being the dimension
names and Ri being sets of attribute names. An MD cube on such a scheme is a pair (F, P)
where F={(D1,r1), ..., (Dn,rn)} with r i being a relation on Ri for each i and P is a mapping from
{{(D 1,t1), ... ,(Dn,tn)}| � 1d i d n: ti � ri} to V (set of scalar values). Informally, a cube is a set
of dimension relations ri and a mapping from an n-dimensional tuple (coordinate) to a scalar
value. The paper introduces a grouping algebra on MD cubes with relational operations (re-
name), order-oriented operations (roll) and an aggregation operator.

A multidimensional database is a finite set of MD cubes and a finite set of grouping relations.
The MD cube algebra serves as query language. Operations of the MD cube algebra are add
dimension, transfer, union of cubes, cube aggregation, rc-join (join a relation into a dimension
of a cube), and construct a cube from a relation. One of the main features of the approach is
the fact that it includes ‘regular relations’ so that the algebra can be seen as an extension of the
relational algebra.

The grouping algebra provides an implementation independent, declarative approach to multi-
dimensional analysis and OLAP applications. Queries can be specified straightforwardly as can
be seen in the examples given below. Since currently only a mapping to a scalar value is al-
lowed, it is not possible to express complex measures. A possible solution is to build a separate
cube for each measure attribute. Derived measures have to be computed separately.
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Dimension hierarchies and multiple hierarchies can be expressed by using the very powerful
grouping mechanism and the corresponding operators (roll, order, aggregation). The expres-
siveness of the proposed operators is strong and specifically designed for typical OLAP appli-
cations including e.g. TopN or cumulative sums.

As a shortcoming of the approach we remark that as fact attribute there is only a single scalar
value allowed. Therefore, for facts with a set of measures, a separate cube has to be defined for
every single measure.

Summarized, we may say that the model of Li and Wang is a real conceptual model, has a
strong expressiveness through the powerful operators, but needs an extension to provide more
complex fact values instead of just a single scalar value. This would allow to model complex
facts in one cube instead of multiple cubes based on the same dimensions.

1.3.4.4. Model of Gyssens and Lakshmanan
Gyssens and Lakshmanan introduce a conceptual multidimensional data model for OLAP ap-
plications in [GL97]. The authors see the main benefit of their work in a clear separation be-
tween structural aspects and contents. They  propose an algebra and an equivalent calculus for
their model. There are no implementation issues mentioned because the main focus is on the
conceptual part.

The basic formalism is as follows: Let N be a set of names, V be a set of values.

An n-dimensional table schema is a triple <D,R,par> where

D={d1, ... ,dn} is a set of dimension names,

R={A1, ... , Am} is a set of attributes, and

par: D o 2{A1, ... ,Am}, such that for all i,j=1,...,n, izj, par(di) � par(dj)=�, and �
Dd

Rdpar
�

�)( .

par(di) is denoted by Xi. Let M = R - �
ni

iX
dd1

.

An instance of an n-dimensional table schema ¢D,R,par² is a set of n+1 finite relations of the
form rd1(Tid,X1),...,rdn(Tid,Xn), rm(rd1.Tid,..., rdn.Tid,M) such that

� the join STid(rd1) u ... u STid(rdn) equals Srd1.Tid, ..., rdn.Tid (rm), i.e., for every combination of
Tid values in the relations rd1, ... ,rdn, there is at least one corresponding tuple in rm, and
every tuple in rm corresponds to some combination of Tid values in the relations
rd1, ... ,rdn;

� for all i=1, ... ,n, Tid is a key of the relation rdi ; and

� for all i,j = 1, ..., n, izj, STid(rdi) � STid(rdj) = �, i.e., the Tid values in different rela tions rdi

and rdj a re dis joint.

A multidimensional tabular database (MDD) is a set of tables. This definition of an MD table
schema reminds of the common star schema, however, defined on a conceptual level: par as-
signs the dimension attributes to a dimension table, the rdi are the dimension tables, rm is the
fact table, the condition (i) models a foreign key relation conceptually, condition (ii)  assures
the key property for the dimension tables, and (iii)  ensures unique Tid values or keys. The ap-
proach distinguishes between parameters (i.e., dimension attributes Xi) and measure attributes
(elements of M in rm).
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figure 1-5: tabular (left side) vs. relational representation (right side)

It is shown [GL97] that every MDD table can be represented by a classical relation and vice-
versa: an example of an MDD table corresponds to the set of tables on the left side in figure
1-5. This tabular representation is shown to be equivalent to the single (classical) denormalized
relation (on the right side in figure 1-5 for the example) where the full join (on the Tid values)
over all tables has been computed. Consequently, this equivalence allows to base the approach
on the relational algebra.

Derived measures must be materialized and stored in the fact table rm. Dimension hierarchies
are modeled in the attribute names, i.e., every hierarchy is stored as separate attribute of a di-
mension. Same applies to multiple hierachies on a dimension. Complex measures can be mod-
eled as additional attributes in the fact table rm.

As it can be seen, the simplicity of the approach guarantees simple definitions of the operators
as well as simple definitions of the database schema. Specifying queries makes things a bit
more complicated, because the tabular algebra provides only the basic constructs (no join op-
erators, no predefined aggregation functions). Anyway, since [GL97] incorporates all first-
order definable classification and aggregation functions, all these constructs can be expressed
in the approach.

1.3.4.5. Model of Lehner/Ruf/Teschke
[LRT96] contains an extension of the multidimensional model by providing two orthogonal
structuring mechanisms for dimensions: classification hierarchies and features. In [BL97] a
query language (called CQL) for this enhanced multidimensional data model is presented.
[Leh98] contains a formal description of the nested multidimensional data model which sup-
ports this extension and an algebra for data manipulation.

Let us first take a look at the structue of a single dimension. According to this approach a di-
mensional structure (e.g. vehicle) contains a finite number of dimensional elements (or basic
objects). Each dimension is characterized by a primary attribute (e.g. Vehicle Id_Nr). The di-
mensional elements are instances of this attribute (e.g. 10123). Furthermore, a dimension has a
list of classification attributes (e.g. vehicle type and brand). Each of these attributes represents
a level in the dimensional hierarchy. Instances of these classification attributes represent nodes
of the classification tree.
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figure 1-6: The instances of classification attributes span the classification tree

Each node (not level) of the classification tree is characterized by a set of dimensional attrib-
utes (or features). Notably, the structure of a dimension (containing classification nodes and
dimension attributes) is only described informally in the paper.

The approach distinguishes primary and secondary multidimensional objects (MO). A primary
MO is formally defined as a quintuple (M, DS, D, tA, tD), where

� M is a unique cell identifier and contains the name of the measure

� DS is an n-tuple which contains the dimensions of the cube and their granularity. Each ele-
ment of the n-tuple is either a primary attribute or a categorization attribute (DS is called
context descriptor schema).

� D is a context descriptor (the instance of a context descriptor schema) specifying the selec-
tion criteria. This context descriptor corresponds to the WHERE clause in SQL.

� tA is an aggregation type (sum, avg or none)

� tD is the data type of the numeric measure

A primary multidimensional object represents the structure of a data cube of a certain granu-
larity according to the classification hierarchies. Thus, it corresponds to the ‘classical’ multidi-
mensional cube definition as it is used by the other approaches. The paper does not formalize
the contents of the cube.

Secondary multidimensional objects are used to formalize  the extension of the classical multi-
dimensional model by features. Formally, such an object is defined as follows:

� D is a context descriptor which identifies a node of the classification tree and

� DA is a set of dimensional attributes that are applicable to the context descriptor (node of
the classification tree)

A multidimensional object corresponding to a cube (containing classification hierarchies and
features) is defined by a primary multidimensional object P and a set of dimensional attributes
for defining the corresponding nested secondary multidimensional objects.

Compared to other approaches this model seems rather complex. This is partly due to the fact
that an extended multidimensional model is formalized.

Only single numerical values are allowed as cell entries, which does not allow the natural mod-
eling of record structured cell values. A distinctive feature of the model is the inclusion of in-
formation about the additivity of a measure. Thus, additional application semantics are cap-
tured by the model. Albeit, the additivity can only be modeled for a whole cube. Real world
applications often require to distinguish additivity along different dimensions (e.g. the sum of
“parts in stock” is meaningful along the garage dimension but not meaningful along the time
dimension)
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As dimension levels are linearly ordered (which is a consequence of modeling levels as a list of
attributes), only balanced tree-structured hierarchies can be modeled. As the dimensional
structures are only described informally, it remains open if multiple classification hierarchies
per dimension are allowed.

1.3.4.6. Model of Vassiliadis
The intention of the Vassiliadis approach [Vas98] is to provide a model which contains the
natural OLAP operations (like slicing and drilling) as operators. The author introduces a for-
mal data model and an algebra which can be mapped to the relational algebra as well as to na-
tive array data structures.

The basic formal definition of dimensions is very similar to the MD model of [CT97]. A dimen-
sion is defined as a lattice (H, d). H = {DL1,..,DLm}is a set of levels with a domain dom(DLi)
attached to each level DL1. A distinctive feature is the use of multivalued dimensions (i.e., di-
mensions that contain members more than once). This allows for elegant operator definitions.
The relation d defines a partial order on the dimension levels. Additionally, the notion of di-
mension path is introduced as a linear, totally ordered subset of the level set. Each dimension
contains a set of dimension paths (with only one element if no multiple hierarchies are defined
on the dimension). The dimension levels of different dimensions have to be disjoint.

The mapping between dimension members of different levels that belong to the same dimen-
sion is defined by the two functions ancestor and descendants.

The multidimensional data is contained in cubes. The approach distinguishes between cubes
and basic cubes. A basic cube Cb is formally defined as a triple <Db,Lb,Rb>. Db is a list of the
dimensions characterizing the cube and also contains a special measure dimension M. Lb lists
the atomic dimension levels for each dimension. Rb is a set of cell data containing the tuples of
the data cube.

From this base cube further cubes can be derived by a set of operations. Thus, a cube formally
is a 4-tuple <D,L,Cb,R>, where Cb is the base cube from which the cube was computed. A
multidimensional database is defined as a tuple <D, C> with D being a set of dimensions and C
representing a basic cube.

The paper does not give a clear separation of structure and contents as the definition of (basic)
cubes contains the dimension structure as well as the data tuples. Furthermore, no user-defined
aggregate functions are allowed in the model. By only allowing one multidimensional cube per
database, multi-cube models that contain several cubes sharing dimensions cannot be ex-
pressed.

According to the authors, a distinctive feature of their work is the inclusion of an explicit drill-
down operation into their model. While it is correct that such an operator is not expressed in
most of the models, an equivalent operation has also been introduced in [Leh98]

1.3.5. Summary

After having presented the relevant state of the art in several rather different areas, we want to
elaborate where the introduced approaches fail in fulfilling the overall objective of our ap-
proach. To that end, we have listed criteria of the FIESTA objective (see chapter 1.2) and
evaluated the related approaches together with FIESTA in a table (see figure 1-7).
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The criterion “purely conceptual approach” refers to the question whether the approach is de-
fined on a purely conceptual layer and does not assume any implementation decisions like the
use of an RDBS. The criterion “complete schema evolution algebra” refers to the question if a
formal algebra for schema evolution is provided, i.e. a formal data model with schema evolu-
tion operations defined on that data model. The next criterion “automatic adaptation of schema
and instances” shows if the system environment automatically adapts the database schema and
existing data or of this is left to the user / admin. The criterion “tool-supported environment”
corresponds to our vision of the “single point of control”, i.e. an environment which allows for
schema design and maintenance on the conceptual layer, using a graphical modeling tool.

The different multidimensional data models (chapter 1.3.4) are not contained in the table be-
cause none of them deals with schema evolution in general. The presentation of these models
shall only assist in understanding the FIESTA multidimensional data model (as part of the FI-
ESTA schema evolution algebra, see chapter 3.5).

The “approach” schema evolution support in RDBMS may seem a little strange here, but since
the relational model offers basic schema evolution support and because many approaches are
implemented as additional layer on top of an RDBS (and then use the schema evolution sup-
port of the RDBS), it must be contained in the table.
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figure 1-7: FIESTA vision opposed to state of the art

Basic observation is that only the approaches based on a multidimensional data model can and
must be compared with the FIESTA approach. As pointed out before (and also shown in
chapter 3.1), schema evolution is always strongly specific for a data model.

Thus, the versioning approaches of Chamoni / Stock and Günzel and the approach of Hurtado
et al. must be compared with the FIESTA solution. We refer to chapter 5.2 where we discuss
what the approaches have in common and where they differ.
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1.4. Outline of the Thesis

Chapter 2 provides necessary prerequisites for the understanding of FIESTA. First, the overall
vision of FIESTA within the research project BabelFish is presented. Then, we introduce the
BabelFish layer model and define basic terminology of the multidimensional data model. Fi-
nally, the ME/R modeling technique for multidimensional schema design is presented.

Chapter 3 presents the first part of the FIESTA core, the conceptual schema evolution meth-
odology. Starting with a motivation for FIESTA and a generic roadmap to schema evolution,
detailed objectives for FIESTA and a formal approach to multidimensional schema evolution
are derived. Next, the schema evolution algebra, consisting of the multidimensional data model
and the schema evolution operations are introduced. Since MD schemas are visualized by
ME/R graphs in the graphical schema design and maintenance environment, the dualism be-
tween MD schemas and ME/R graphs is formally introduced. The chapter concludes with con-
siderations on the processing of schema evolution jobs, corresponding to a sequence of schema
evolution operations.

Chapter 4 as second core part describes how MD schema evolution operations can be proc-
essed in a relational DBS. To that end, a formal mapping between MD schemas and relational
schemas is defined. In order to maintain the multidimensional semantics, the FIESTA meta
schema is designed. Next, the mapping is refined to a formal consistency criterion between the
conceptual multidimensional layer and the logical database layer. Thereafter we present the
transformation of conceptual schema evolution operations to corresponding logical evolution
operations. These logical evolution operations transform the relational database schema, adapt
the existing data, and update the contents of the meta schema accordingly. The transformation
algorithm with its main design decisions and concepts is explained in detail.

Chapter 5 discusses the FIESTA solution. To that end, the BabelFish environment including
the FIESTA implementation is introduced. We discuss related approaches and show why and
how FIESTA fulfills our overall objective and vision.

Chapter 6 concludes the thesis with a summary of the main contributions of FIESTA and an
outlook on future work.
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2. Basic Concepts of
Multidimensional Data Modeling

,n t

his section, necessary prerequisites for the understanding of the thesis are provided. To that
end, we first sketch the overall vision of the project BabelFish into which this thesis is embed-
ded. We informally explain the general idea of a conceptual multidimensional data model and
set its focus and role for FIESTA. Next, we introduce the BabelFish layer model that is used
throughout the thesis and, consequently, serves as base for the understanding of FIESTA.
Since there is no common notion and terminology for multidimensional data models in the lit-
erature, we provide the basic terminology for our multidimensional data model (which is for-
mally introduced in chapter 3.5). Finally, we present the ME/R modeling technique (which has
been developed in the BabelFish project) and show how it is used for the design and mainte-
nance of conceptual multidimensional schemas within FIESTA.

2.1. Overall Vision and Role of the MD Data Model
tbd Forwiss-Report BF [BSH00]

As already mentioned, FIESTA (which is subject of this thesis) is embedded in the research
project BabelFish at the Knowledge Bases Group of FORWISS. Consequently, we start with
an introduction of the overall objective of BabelFish and derive the scope and contribution of
FIESTA. Further detailed information about BabelFish and its results is reported in [BSH00].

The overall objective of the BabelFish project is to provide a methodology and environment
for the tool-based design and maintenance of repository-driven data OLAP systems. Our un-
derlying vision is a tool-based environment where all necessary knowledge is visualized with
graphical models and stored in a repository. This environment enables a single point of control
for the design and maintenance of the OLAP system.To this end, different modeling and design
methodologies have been investigated with respect to their transferability in the warehousing
area [SBH99]. In order to capture all aspects of the OLAP design, we distinguish between two
orthogonal areas, namely

Get your facts first, and then you can distort
them as much as you please.

(Mark Twain)
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� static models: for the structure (schema) of the multidimensional cube

� dynamic models: to specify user behavior

When opposing the aspects design and maintenance with the orthogonal views static vs. dy-
namic, the following table gives an overview of the research activities under the umbrella of
BabelFish:

OLAP design OLAP maintenance

static aspects ME/R FIESTA

dynamic aspects PROMISE -

figure 2-1 : overview of the BabelFish activities

BabelFish started with static modeling techniques for the initial design of an OLAP system.
Since none of the examined methodologies fully reflected the peculiarities of the multidimen-
sional data model (for details, see [BSHD98] and [SBH99]), a specialized graphical notation
for the conceptual design of OLAP systems has been developed: the ME/R notation
[SBHD98], an extension of the well-known Entity/Relationship modeling technique [Che76].
We describe this modeling technique later in more detail.

Concerning the dynamic aspect of OLAP design, the PROMISE approach [Sap99], [Sap00]
investigates how user behavior can be specified (i.e., modeled) and deployed for the optimiza-
tion of query processing (e.g. by pre-computing the next probable user queries or parts of
these queries).

Picking up the idea of the single point of control, BabelFish investigates how conceptual mod-
els can be used for automatically generating and maintaining OLAP systems. The objective is
the overall maintenance of the OLAP system by the automated analysis and specialized com-
ponents for generating corresponding programs or parameters. This means that an OLAP de-
signer does not have to know all implementation decisions (e.g. which database system has
been used for the implementation, how are dimension hierarchies modeled in the database
schema), but the BabelFish tool environment manages the necessary knowledge about imple-
mentation decisions and details. This knowledge is stored as metadata in a repository system
[BD94].

FIESTA comes into play when the conceptual model is maintained and changed during the
lifetime of a running OLAP system [Bla99]. FIESTA formally defines what types of modifica-
tions occur on a multidimensional data model (which is visualized by an ME/R model) and
provides a tool that automatically propagates these modifications (which are specified using a
schema design tool) to the underlying implementation in the warehouse database.

Summarizing, the conceptual multidimensional schema and its modifications during lifetime
constitute the single point of control for schema maintenance and thus form the starting point
for the approach of FIESTA.

The core idea to manage the whole system using a conceptual design tool allows to derive our
layer model accordingly in the next chapter.
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2.2. Layer Model
As already mentioned, one of the main research areas and contributions of BabelFish is the
conceptual design of OLAP systems with ME/R models.

We assume that an OLAP modeler performs the conceptual design tasks (i.e., multidimensional
schema design for the focus of FIESTA) with a graphical modeling tool. Internally, the result-
ing ME/R diagrams are described by means of a multidimensional algebra. We call this layer
the conceptual OLAP layer. An overview of our BabelFish layer model can be seen in figure
2-2.

Layer Maintained by Tool / Component Formalism
Conceptual
OLAP layer

OLAP Modeler Modeling Tool
Graphical (ME/R),

MD Algebra
Logical OLAP

layer
OLAP

Administrator
RDBMS / MDDBMS

Relations /
Multidimensional Arrays

Physical OLAP
layer

Database
Administrator

RDBMS / MDDBMS
System specific

(e.g. relational tables with
indexes / MD tiles)

figure 2-2 : the BabelFish layer model

The persistent storage of the multidimensional OLAP data is typically performed by either a
relational DBMS or a purely multidimensional DBMS. Consequently, the conceptual multidi-
mensional schema is implemented either in a relational DBS or a multidimensional DBS. We
assign the corresponding logical database schema to the logical OLAP layer. Typically, this
logical schema is maintained by an OLAP administrator. Technically, it consists either of a set
of relational tables (in the structure of a so-called star or snowflake schema) or a set of multi-
dimensional arrays/cube definitions.

The end-users typically use OLAP tools as frontend applications. These OLAP tools store their
metadata (which e.g. represent the missing multidimensional semantics in case of a relational
structure of the warehouse database) also in the warehouse database. Consequently, we define
this metadata to be part of the logical (database) schema.

The physical layer is then the corresponding internal layer of the used DBMS. In case of a re-
lational DBMS, this extends to clustering strategies or index design, in case of an MDDBMS
to e.g. tiling strategies or sparsity handling. Informally, the physical OLAP layer is concerned
with the DBMS-internal storage and management of the data and outside the scope of this
thesis.

tbd: noch was zur Abbildung between conceptual and logical layer

2.3. MD Data Model: Basic Terminology
As shown in chapter 1.3.4, where we sketched several multidimensional data models (or more
precisely: variant formalizations of the multidimensional data model) that have been proposed
and discussed in the research community, there is no commonly accepted formalization and
terminology of the multidimensional data model.

In general, a data model provides means to define schemas together with specific operations
working on the instances (which are data satisfying the schema constraints). For the multidi-
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mensional data model,  there is no consensus both of the extent of this means and the terminol-
ogy.

This section overcomes the shortcoming of existing approaches formalizing the MD data
model (although we know that a definition at this point in the thesis is a chicken or egg prob-
lem, because for the description of existing approaches we informally used the terminology
without having it introduced before) and provides a clear definition of the single parts of a
multidimensional data model as well as a terminology which is used throughout this thesis.

The multidimensional data  model (like the relational data model) basically consists of a means
to define multidimensional schemas, a set of integrity constraints (which can be expressed by
means of the schema), and specific operations on the instances (e.g. slice, dice, pivot). For a
given schema, instances can be defined as data which is organized according to the schema (or
more formally, satisfies the schema constraints). A multidimensional schema together with the
multidimensional instances form a multidimensional database (analogously to the definition of a
relational database). In order to complete this enumeration from the schema evolution point of
view, we add specific operations on the schema (e.g. to change the structure of dimensions or
to add measures to a cube). In general, these operations are called schema evolution opera-
tions.

The peculiarities of the multidimensional data model arise from the division of the schema (and
consequently also the instances) in a dimensional part (often informally defined as qualifying
data) which describes the hierarchically ordered dimensions and the multidimensional measures
(or quantifying data) which describes the measured data organized in the multidimensional
space defined by the dimensions. This is usually visualized using the cube metaphor (see figure
2-3).

vehic le  
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A u stra lia country

m onth

35
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d im ension-
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G erm an y

30

25

figure 2-3 : the cube metaphor

In this example cube for vehicle repairs, the three dimensions country, month and vehicle
manufacturer span the multidimensional space. The dimension members (e.g. Mercedes) define
the coordinates of a cube cell. The highlighted cell has the coordinate (Australia, May, VW).
The measure value of this cell (e.g. 35 vehicle repairs) is depicted in the highlighted cell. A cell
can contain not only a single measure, but a set of measures, e.g. the number of repairs to-
gether with the total part costs and total personnel costs.
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Dimensions are hierarchically organized according to classification relationships. Graphically, a
dimension schema can be visualized by a directed, acyclic graph (DAG). A sample dimension
schema is shown in figure 2-4. The boxes represent the dimension levels and the arrows repre-
sent the classification relationships between the dimension levels.

lo ca tio n

g eo gra ph ica l
re g io n

fed era l
d is tr ic t

cou ntry

figure 2-4 : sample dimension schema

In addition to the dimension schema, the classification hierarchy for the instances of the corre-
sponding dimension levels has to be defined as well. A sample classification hierarchy is de-
picted in figure 2-5. Each day  (represented by a classification node) is assigned (visualized by
the edges) to a month which represents its classification according to the higher dimension
level month. Note that this hierarchy is not only used for aggregation (e.g. monthly car sales
figures), but also for navigation purposes.

yea r

m onth

a ll

day

figure 2-5 : sample classification hierarchy

The dimensional schemas for all dimensions together with all classification hierarchies (which
correspond to the dimensional instances) form a dimension.

The interesting issue in the case of the multidimensional data model is the dualism of the clas-
sification hierarchies. On one hand, they constitute the instances for the dimensions and on the
other hand, they are part of the multidimensional cube schema. The latter option is visualized
in the following figure 2-6:
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figure 2-6 : multidimensional cube with classification hierarchy

This visualization shows that depending on the selected granularity of the multidimensional
measures, the dimensional classification nodes define the schema (i.e., the coordinates of the
multidimensional space) of the multidimensional measures (represented by the cube cells).
Consequently, the schema of the single cells of the multidimensional cube is defined by the
dimensional classification nodes.

After having introduced the basic concepts and fixed our terminology for the multidimensional
data model, we now present a specialized technique for the design of multidimensional sche-
mas, the ME/R modeling technique.

The reader interested in our formalization of the multidimensional data model is referred to
chapter 3.5, where it is introduced as part of the FIESTA approach.

2.4. The  ME/R Modeling Technique for MD Schema Design
To reflect the peculiarities of multidimensional schema design for OLAP systems, the ME/R
modeling technique has been developed (together with C. Sapia) as part of the BabelFish proj-
ect. We present this modeling technique as part of the common core of all BabelFish activities.

2.4.1. The ME/R Modeling Technique
The schema design methodology that has been theoretically proposed within BabelFish has
also been deployed in several industrial projects, e.g. the OPAL-M project with ESG GmbH
and a project with Wacker Chemie GmbH.

Core of the methodology is the ME/R modeling technique [SBHD98] for multidimensional
schema design. The ME/R modeling technique is an extension of the well-known En-
tity/Relationship approach [Che76]. A lot of variations of the E/R model (for an overview see
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e.g. [Teo94]) have been published since the first proposal of Chen. The ME/R notation uses a
very basic version of the E/R model.

We formally describe our specialized E/R model using the meta modeling approach. We adhere
to the four layer technique of the ISO/IRDS standard for metadata [ISO90]. The meta model
of our M/ER model (according to the Dictionary Definition Layer of the IRDS) is shown in
figure 2-7. The part with the white background shows the meta model of the E/R model we
use as a foundation. For the purpose of describing the meta model, we make use of an ex-
tended version of the E/R model which allows the concept of generalization. This is done to
increase the readability of the meta model.

Following our key considerations in [SBHD98] and [SBH99], we introduce the following spe-
cializations:

� a special entity set: ‘dimension level’,

� two special relationship sets connecting dimension levels:

- a special n-ary relationship set: the ‘fact’ relationship set and

- a special binary relationship set: the ‘classification’ relationship set.

Since the semantic concept ‘dimension level’ is of central importance, we introduce a special
entity set for dimension levels.

To model the structure of qualifying data, we introduce a special binary relationship set: the
classification relationship. It relates a dimension level A to a dimension level B representing
concepts of a higher level of abstraction (e.g. city is classified according to country). The clas-
sification graph is defined as follows: RG = (E,V) with E being the finite set of all dimension
levels e1,..,ek and V = { (ei,ej) | izj � 1 d i,j d k  � ei is classified according to ej  }. Due to the
special semantics of the classification relation, no cycles must be contained in the graph as this
could lead to semantically not reasonable infinite roll-up paths (e.g. day is classified according
to month and month is classified according to day). This means the following global integrity
constraint must be fulfilled (o* denotes the transitive closure of the classification relation):

jieeEee jiji z�o��
*:,,

Thus, the classification graph RG is a directed acyclic graph (DAG). The name attribute of the
classification relation set describes the criteria of classification. (e.g. ‘lives in’ for the classifica-
tion relationship set connecting ‘customer’ and ‘geographical region’).

The fact relationship set is a specialization of a general n-ary relationship set. It connects n
different dimension level entities. Such a relation represents a fact (e.g. vehicle repair) of di-
mensionality n. A description of the fact is used as the name for the set. The directly connected
dimension levels are called atomic dimension levels.
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 figure 2-7 : the ME/R meta model as an extension of the E/R meta model

The fact relationship set models the inherent separation of qualifying and quantifying data. The
attributes of the fact relationship set model the measures of the fact (quantifying data) while
dimension levels model the qualifying data.

To distinguish our specialized elements from the native E/R modeling elements and to enhance
the understandability of the graphical model, we use a special graphical notation for dimension
level sets, fact relationship sets, and classification relationship sets (figure 2-8).

fact 
nam e

a fact re latio nsh ip set

leve l name

a d im ensio n le vel set
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figure 2-8 : the graphical notation of the ME/R elements

2.4.2. Example
After having formally introduced the ME/R modeling technique, we describe an example how
the technique is applied within FIESTA.

As already mentioned, for modeling of the static MD cube structure we use ME/R diagrams. A
typical example for the analysis of vehicle repairs is depicted in figure 2-9:
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figure 2-9 : sample ME/R diagram for vehicle repairs [SBHD98]

We assume the managers of a automobile manufacturer want to analyze the repair cases for
their vehicles. To this end, they model their universe of discourse as follows:

The measure data deals with vehicle repairs. We assume that a given repair is described ac-
cording to the dimensions

x vehicle: the specific vehicle that had to be repaired

x day: the date of the repair

x garage: the garage that performed the repair case

x customer: the customer who owns the car.

The classification structure of the four dimensions is as follows:

x vehicles are classified according to model and brand,

x customers and garages are classified according to their geographic region and country,

x garages can also be classified according to their type (e.g. contractor or freelancer),

x and days can be classified to months and years.

For a given repair case, the following information is relevant for our scenario: the part costs,
the wages, the total cost (sum of part and wages), the number of affected mechanics and the
duration of the repair case.

For the dimension level customer, the describing attributes age and income have been included
in the sample model.

2.4.3. The ME/R Graph Grammar: Syntax and Consistency of ME/R Graphs
Since the ME/R modeling notation is a graphical notation, one could also see a given ME/R
model as a typed graph. This idea to approach a visualization of a multidimensional schema
from a graph-oriented viewpoint, yields some interesting results. We will discuss some of them
later (see chapter 3.6) and focus on a graph-oriented formalism here. When regarding ME/R
models as typed graphs, graph grammars could be employed for the ME/R notation. The de-
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tails of this approach have been worked out together with C. Sapia and K. Hahn [Hah00],
[SBH00] within the BabelFish project.

We start with some basic definitions of typed graphs and graph grammars.

Definition 2-1: Typed graph

A typed graph G over a set of edge types 6E and a set of node types 6N is defined as a tuple
G= (N, E, tN, tE, s, t) with

x N is a finite set of nodes,

x E is a finite set of edges,

x tN: N o 6N assigns each node to its node type

x tE: E o 6E assigns each edge to its edge type

x s,t: E o N assigns each edge to its source and target.

¡

The actual values for N, E, tN, tE, s, and t correspond then to the objects of a ME/R model
(e.g. account, customer) whereas the definition of the edge and node types 6E and 6N (e.g.
objects, relationships) is part of the modeling notation (or meta-model, in this case the ME/R
notation) [SBH00].

If we regard ME/R models as typed graphs, we can use a graph grammar to describe the syn-
tactical constraints for the modeling notation. Graph grammars are a natural means for defining
the syntax of visual languages [RS97] and are typically used in graphical editors which support
free graph editing and parsing of the graph structures for further processing. Since this under-
lying idea perfectly matches our vision of a tool-supported environment for schema design and
maintenance, we adopt the concept of graph grammars for the use within FIESTA and Ba-
belFish. Consequently, we define a graph grammar for ME/R graphs that represent an MD
schema.

Definition  2-2: Graph Grammar

A graph grammar over a set of edge types 6E and a set of node types 6N is defined as a tuple
(d0, P) with

x d0 is a nonempty initial typed graph over (6E, 6N) called the axiom

x P is a finite set of productions. Each production p is of the form Lo R, where L and R are
typed graphs over (6E, 6N) with L being the left side and R being the right side. The re-
placement of non-terminals in graphs is far more complicated than in linear texts. There-
fore, different embedding strategies have been proposed to solve this problem. [Ehr79].
We use the concept of contexts [SBH00]. This means that both sides of the production
contain a common context graph that allows for defining to which part of the existing
graph the new elements should be connected.

¡

The parsing problem for context sensitive grammars is in general intractable. Therefore, we
restricted our approach to layered graph grammars as presented in [RS97] to allow parsing
ME/R graphs without restricting the expressiveness to context-free grammars.
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The first version of the ME/R graph grammar is shown in figure 2-10 and allows for a descrip-
tion of syntactically correct ME/R models. Here, the embedding problem is solved by defining
embedding points representing the context in the production rules (gray shaded elements in the
figure). All gray shaded parts in the left side of a production rule represent parts of the graph
that have a connection with the inserted partial graph after the usage of that rule. These parts
are again represented as gray shaded elements in the right side of the production rule.

The axiom is represented by rule 1 and creates a fact node with two dimensions (for pragmatic
reasons, we define a model to be multidimensional if it contains at least two dimensions). The
definition of the single rules is quite straightforward, consequently, we omit a detailed expla-
nation of the single rules and refer to [Hah00] for details.

O ::= LevelLevel Fact Relationship
dimensionsdimensions

Fact Relationship ::= LevelFact Relationship
dimensions

Fact Relationship ::= AttributeFact Relationship
has

::= Level
classifies

Level Level

::= Level
classifies

Level LevelLevel

::=Level Level Attribute
has

(1)

(2)

(3)

(4)

(5)

(6)

figure 2-10 : graph grammar for ME/R models

This version of the ME/R graph grammar still has some shortcomings because on one hand, it
allows for semantically wrong models and on the other hand, not all practically reasonable
models can be created by using the defined production rules:

x rule 5 allows to create cycles of dimension level nodes and classification relationships in a
dimension (figure 2-11). The classification graph of a dimension must be a directed, acyclic
graph. A check of this consistency rule is part of the semantics and therefore not possible
within the formalism of a graph grammar.

regiongarage...

country

figure 2-11 : semantically incorrect cycle in a ME/R graph
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x there is no possibility to create models with more than one fact node although this is quite
common in real world models [SBHD98].

x no rule allows fact nodes to share a dimension. This possibility is quite useful for the con-
ceptual model because typically the time dimension is contained in every fact relationship.
[SBHD98].

In order to overcome these problems, the ME/R graph grammar has been extended by the rules
in figure 2-12. Rule 7 allows to connect an existing fact node with an existing dimension level
node and thus the integration of a dimension into two fact relationships. Rules 8 and 9 allow
for more facts in a model with the condition that a fact must have at least two dimensions.

Fact Relationship ::= LevelFact Relationship
dimensions

Level (7)

::=
dimensions

Level Level Fact Relationship (8)Level
dimensions

::=LevelLevel
dimensions

Level Fact Relationship Level
dimensions

(9)

figure 2-12 : extensions of the ME/R graph grammar

The extended ME/R graph grammar has been used for the design and implementation of a
syntax parser for ME/R models [Hah00]. The question of semantical consistency (e.g. cycles in
the dimensions) has been excluded for the scope of this master thesis.

Checking a model for syntactical correctness corresponds to the construction of a parser for a
graph grammar. This problem is far from being trivial, [RS97] presents a parsing algorithm
trying to reduce the complexity using a breadth-first search and specialized filter rules for the
rules not to be used at a certain point in the parsing process.

For a quite simple graph grammar like the ME/R graph grammar, a sophisticated algorithm as
in [RS97] was not necessary. Using the production rules in a certain order and traversing the
graph for finding the next correct rule to be used allowed for the construction of a parser with-
out backtracking [Hah00]. The parser is a bottom-up parser, i.e., for a given model it reduces
the ME/R graph by applying the production rules in reverse order. This means that a right side
of a production rule identified in the graph is replaced by the expression on the left side of the
rule.

If the model is correct and the rules have been applied in the correct order, the graph can be
completely reduced to the empty model. Concerning the correct order of the rule appliance, a
multiple traversal of a given graph is necessary. Since most models are of restricted complexity
(typically less than 100 nodes), this workaround leads not to remarkable performance loss. The
detailed algorithm of the parser is given in [Hah00].

2.4.4. Tool Support
Concerning tool support for the conceptual design of OLAP systems, we started a study that
investigated the modeling facilities and techniques offered by commercial products [DSVH97].
This state of the art in commercial products  was compared with our requirements concerning
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conceptual warehouse design [DSBH98], [DSBH99]. This comparison can be seen as analogy
to the state of the art in the scientific approaches for warehouse design (see chapter 1.3).

Within the BabelFish tool environment, ME/R diagrams are edited with a graphical design tool.
Since the ME/R notation is still under evaluation at several industrial project partners, we de-
cided to build a modeling tool that stores not only the conceptual models (data), but also the
modeling technique itself (metadata). Both parts of information are stored in a repository
[Sof98]. This decision allows for easy changes of the modeling notation because the changed
modeling technique just has to be changed accordingly in the repository. Changes in the pro-
gram code of the model editor are superfluous. The tool asks at startup which modeling tech-
nique to use.

The design and implementation of this generic metadata-driven graphical Modeling Tool
(called GraMMi) has been developed as a master’s thesis, co-supervised by the author
[Haa99]. The description of the ME/R modeling technique together with the specific ME/R
models is stored in Softlab Enabler, a commercial repository. Experiences with the design of
the corresponding metamodels can be found in [SBH00]. A screen snapshot of the GraMMi
tool can be seen in figure 2-13.

figure 2-13 : screenshot of the GraMMi tool for ME/R design

The graphical modeling tool allows the OLAP designer to build the multidimensional structure
of the cube. For a running OLAP system, this multidimensional model must be mapped to a
given implementation. To this end, corresponding commands must be generated for the crea-
tion of the logical database schema. As subject of a master’s thesis [Hah00] (co-supervised by
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the author), a specialized generator component has been designed and implemented. The gen-
erator creates schema definitions for the following commercial OLAP products:

x Cognos Powerplay ([Cog98a], [Cog98b], [Cog98c])

x Informix MetaCube ([Inf98c], [Inf98d])

x Oracle Express [Ora97]

A prerequisite for the schema generator has been a thorough investigation of the modeling
capabilities and restrictions of these three commercial products. This work has been carried out
as a student project [Ulb99], co-supervised by the author.

2.5. Summary

In this section we provided necessary prerequisites for the understanding of the thesis. Starting
with the overall vision of the project BabelFish into which this thesis is embedded, we fixed the
conceptual multidimensional data model as the central point for the design and maintenance of
the OLAP system. According to our layer model, the conceptual data model is mapped to a
corresponding schema in the underlying database system. The database system is also respon-
sible for the persistent storage of the warehouse data. We call the database layer the logical
layer of the architecture and regard implementations using both a relational and a multidimen-
sional database system. The database system internal layer (called the physical layer) is not
within the scope of the thesis. Here, issues like the indexing strategies (in case of a relational
DBS) or tiling strategies (for a multidimensional DBS) are regarded.

A variety of formalizations for the multidimensional data model have been proposed in the lit-
erature. We contributed an overview of the elements of the multidimensional data model and
fixed the terminology (which is independent of any formalization) used in this thesis.

In our tool-supported environment we use ME/R diagrams to visualize and maintain the multi-
dimensional schema. Thus, we introduced the basics of the ME/R technique using both a meta-
modeling approach and a real world example. Since any graphical formalism like the ME/R
technique can also be regarded as a typed graph, we presented a graph grammar for ME/R
models. As an application of this graph grammar we developed a parser to detect correct
ME/R models. Finally, we sketched our overall tool environment by presenting results of the
BabelFish project, namely, the generic modeling tool GraMMi, its application for ME/R mod-
els, and a generation component that takes a given ME/R model as input and creates corre-
sponding database schemas for three commercial products.

After having introduced the basics for the understanding of the FIESTA approach and impor-
tant common research results of the BabelFish project, we now present the core ideas and
contributions of FIESTA in the next chapter.
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3. FIESTA: An MD Schema
Evolution Methodology

(volution of MD schemas is the central subject of FIESTA. After a motivation why a meth-
odology for multidimensional schema evolution is necessary and a valuable scientific contribu-
tion, we present an example for a schema evolution case. Next, we derive the objectives our
approach has to satisfy and introduce a formalization of our approach to schema evolution.
Then, we present our multidimensional data model for FIESTA and describe the dualism be-
tween ME/R models – regarded as typed graphs - and their algebraic representation – an MD
schema. The heart of FIESTA, the multidimensional schema evolution operations, follow in the
next section. We introduce sequences of schema evolution operations and show how to check
consistency in our graphical modeling environment. Finally, we conclude with a short sum-
mary.

3.1. Motivation
As already seen in chapter 1.3, schema evolution support became a requirement with upcoming
highly dynamic application domains that lead to frequent changes not only of the data itself,
but also of the structure (i.e., the schema) of the data. Especially design environments like
CASE and CAD systems are typically built on top of object-oriented database systems and
require support for frequent schema changes from the underlying database system [Cas92],
[BeLi91], [Höf96]. Another reason for the implementation on top of an object-oriented data-
base system (OODBS) is the strong ability to reflect the peculiarities of these so-called non-
standard applications [Sim95],[KhAb90]. Since the object-oriented data model contains con-
siderable semantic complexity (e.g. the complex inheritance hierarchies) that had to be ad-
dressed by the upcoming schema evolution approaches, schema evolution became an important
and still active research issue in the area of object-oriented database systems.

In addition to the state of the art shown in chapter 1.3 (which motivates why schema evolution
has been thoroughly investigated for e.g. object-oriented databases), we now discuss why
schema changes occur also quite often in the context of MDDBS and OLAP applications.

I must begin with a good body of facts and
not from a principle (in which I always sus-
pect some fallacy) and then as much deduc-
tion as you please.

(Charles Darwin)



FIESTA: An MD Schema Evolution Methodology38

In recent years, enterprises launched projects aiming at building global business process models
and data models covering the complete range of activities of an enterprise. However, most of
these projects failed due to the often underestimated complexity and the highly dynamic struc-
ture of today’s big enterprises [Dev97], [Inm96]. The experience gained from these projects
was that the next generation of decision support systems started with a smaller focus, e.g. a
departmental one. After having built a prototype, the scope and focus of the decision support
system were  extended. This iterative approach is often summarized in the motto of Bill Inmon,
the so-called father of the data warehouse: “think big, start small!” [Inm96].

This approach was also applied in several data warehousing projects that FORWISS performed
for industrial partners: the prototype OPAL-M for ESG GmbH and consulting services for
BMW AG and Wacker Chemie GmbH. The projects started with a limited prototype which has
been extended in its scope in further projects.

But even after the OLAP system is fully operational, schema changes still occur, because the
typical OLAP user works directly with the multidimensional schema. This is contrary to tradi-
tional applications where the user works with an application program encapsulating the schema
details of an relational or object-oriented database system. In the case of OLAP tools, the user
works with the different dimensions of a fact, rolls-up and drills-down along the dimension
hierarchies and selects slices/dices from his MD cube. Therefore, the user very often states new
requirements to the OLAP designer concerning the MD cube structure. These new require-
ments have to be reflected in the MD schema leading to a constant evolution of the MD
schema.

Summarizing these experiences collected both from the literature ([Inm96], [Sim95], [Dev97])
and industrial projects together with the existing research work, we draw our conclusion that
both the object-oriented and multidimensional paradigm are similar with respect to the complex
semantics of their data model and the often highly dynamic structure of the data (i.e., the data-
base schema).

Regarding the existing research work (as presented in chapter 1.3), the question arises how all
this existing work can be re-used and transferred to another context, e.g. to the multidimen-
sional paradigm. Consequently, the question refines to the research issue of a common meth-
odology for schema evolution which is independent of the underlying paradigm.

We developed such a “roadmap” to schema evolution and contribute a generic meta-model
consisting of several research issues that have to be developed and problems to be solved when
investigating schema evolution in general. The generic roadmap has then to be instantiated for
a given paradigm (e.g. object-oriented or multidimensional). FIESTA investigates this roadmap
to the case of the multidimensional data model.

Our roadmap of the schema evolution research process comprises:

1. Evolution Algebra: formal definition of the data model (schema and instances) and schema
evolution operations

The notion of a schema, in contrast  to the notion of instances has to be formally defined as
a prerequisite for all further steps. The same applies to the definition of schema consis-
tency, i.e., a set of integrity rules ensuring correct schemata of the instances and a correct
association of instances to their corresponding schema element. This first step has been
subject to numerous publications in the area of object-oriented databases (see chapter
1.3.2).
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In the case of MDDBS, there is still no common notion of MD schemas and MD instances
in the literature. Existing approaches differ widely in this issue [SBH99]. We will show
later how we deal with this first step in the case of multidimensional databases.

A set of schema evolution operations formally defines what types of modifications can oc-
cur on a given database schema. In addition to the syntax which e.g. defines how correct
formulae (composed of MD schemas and (nested) operations) can be built, the semantics
of each operation has to be defined as well. This is usually specified in terms of the data
model, e.g. by set transformations. For each operation, the semantics concerning the
schema (schema transformation) and existing instances (instance adaptation) must be for-
mally defined. An important issue are the integrity constraints guaranteeing that a consis-
tent schema is transformed to another consistent schema.

tbd <gemeinsamen Nenner consistency (relational / OO / MD) rausarbeiten>

2. Execution Model: Propagation Rules and Integrity Constraints

Changes of a conceptual data model have to be processed in the corresponding logical data
model (for definitions of the layers, see chapter 2.2). This means that the logical schema
and instances have to be adapted accordingly. Formal propagation rules describe how the
changes on the conceptual level are propagated to (i.e., executed in) the target (logical)
environment. The question how a given conceptual (object-oriented or multidimensional)
data model is implemented is a typical design decision. For both object-oriented and multi-
dimensional applications, implementations using the same paradigm (i.e., using an
OODBMS for an object-oriented data model and using an MDDBMS for a multidimen-
sional data model) are as common as implementations on top of an RDBMS. The decision
in favor of an RDBMS is often due to the proven reliability and scalability of today’s com-
mercial products. Consequently, the logical schema respectively instances may be either
within the same paradigm as the conceptual schema or it may be a relational schema with
relational instances.

If an RDBMS is used for the implementation, a mapping from the paradigm of the con-
ceptual level to the relational data model has to be defined. The formal propagation rules
then describe how the requested changes on the conceptual (e.g. object-oriented or multi-
dimensional) level are propagated to the relational schema and instances. Changes in the
conceptual model would in this case be transformed to a set of SQL commands.

But even if the logical data model is within the same paradigm as the conceptual data
model, propagation rules have to be defined. The changes at the conceptual level would
then generate corresponding DML/DDL commands for the deployed target system which
adapt the logical schema and instances.

Corresponding formal integrity constraints have to be defined in either case. These integrity
constraints guarantee the consistency between the conceptual and the logical layer. Basi-
cally, they guarantee that all conceptual model elements are reflected in the logical database
schema with the correct semantics. Examples are the foreign key relationships in a rela-
tional star schema. These constraints are the correspondence to the is-dimension-of rela-
tionship between a dimension (level) and a fact on the conceptual layer.

3. Software Architecture as refinement of the execution model

Finally, there must be a precise specification how this formal framework is implemented in
a given environment. Namely, the system architecture (describing different layers and pos-
sible client/server interfaces), and a component architecture (i.e., the different components
with their respective functionality, interface, and input/output data) have to be specified.
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This roadmap has been elaborated from existing research work and constitutes a result for pre-
sent and future research in the area of schema evolution.

However, since the single steps are generic, they have to be specified and worked out with
respect to the corresponding paradigm. This means that results from object-oriented schema
evolution can only be applied within the object-oriented paradigm. This means further that the
ideas and existing approaches from e.g. object-oriented schema evolution cannot be directly
transferred to the case of multidimensional databases because of the different semantics of the
two underlying paradigms (e.g. inheritance hierarchies play an important role in the object-
oriented paradigm whereas dimensions exist only in the multidimensional paradigm).

Speaking in terms of schema and instances, we know the “schema” for multidimensional
schema evolution (i.e., our roadmap), but we still need an “instantiation” of this meta-model
specifically designed for the multidimensional paradigm. This approach would then reflect the
peculiarities of the multidimensional data model and could be used to approach schema evolu-
tion for the case of multidimensional databases.

Such an approach is the subject and scientific contribution of this thesis. We call our approach
FIESTA (Framework for Schema Evolution in Multidimensional Databases).

3.2. MD Schema Evolution Example
According to our basic design principles introduced in chapter 2, the work of FIESTA starts
when the ME/R model (reflecting the multidimensional schema) has to be changed by the
OLAP designer due to new or changed user requirements. These modifications of the static
multidimensional cube structure constitute schema evolution jobs. The question arises how
these evolution jobs can be processed, i.e., mapped to the underlying logical schema and in-
stances. This task shall be performed automatically by our tool environment. Of course, the
efficient execution of schema evolution jobs is an important requirement and consequently the
efficient processing subject to optimization techniques. We will present our findings concerning
efficient execution and optimization in chapter 4.

As an example for an MD schema evolution case, we assume the following ME/R model for
the analysis of vehicle repairs as introduced in chapter 2.4.2, but in an earlier version. The dif-
ference is that the vehicle dimension consists only of the level vehicle. This is depicted in figure
3-1:
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figure 3-1 : ME/R model for vehicle repairs before schema evolution
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In order to show an example of an evolution job, we assume that we want to add the dimen-
sion levels vehicle model and brand to the vehicle dimension (which leads to the complete
ME/R model as introduced in chapter 2.4.2). This extended ME/R model is depicted in figure
3-2. The grey shaded parts on the left side show the new dimension levels vehicle model and
brand together with the corresponding rolls-up relationships.
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figure 3-2 : ME/R model for vehicle repairs after schema evolution

The evolution job is then specified by the OLAP designer on the ME/R graph using our
graphical modeling tool GraMMi (see chapter 2.4.4). This means that it is expressed by opera-
tions like adding or deleting an edge or a node. Since ME/R models only visualize a multidi-
mensional schema, FIESTA defines a set of 14 conceptual evolution operations that clearly
define the semantics of schema evolution cases, based on our multidimensional data model.
The GraMMi tool for schema design and maintenance records these modifications of the ME/R
model and generates corresponding evolution jobs (defined on the algebraic representation of
the ME/R model) which are then stored in the FIESTA repository for further processing.

In our example, the generated evolution job looks as follows2:

(1) add level (vehicle model)

(2) add level (brand)

(3) add classification relationship (vehicle, vehicle model)

(4) add classification relationship (vehicle model, brand)

The evolution jobs are then processed by a specialized evolution component that reads these
evolution jobs from the repository and generates commands that adapt the logical schema and
instances (including OLAP tool metadata) expressed in the target system (i.e., database sys-
tem) DML/DDL. Concerning logical schema transformation and metadata update, the design
and implementation have been done within a student project described in [Vet99]. Target sys-
tem for this project is Informix Metacube ([Inf98c], [Inf98d]), a ROLAP product. Basically,
                                               
2 In order to show the idea, we omit some details like the exact formal specification of the operations.
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the evolution component generates SQL DDL/DML commands that adapt the logical (star)
schema together with the instances in the Informix Dynamic Server Database ([Inf98a],
[Inf98b]) and update the Metacube metadata accordingly (which is also stored in the Dynamic
Server Database. This is again done by SQL DML commands).  A corresponding SQL code
fragment for the example above is shown in figure 3-3:

/* Schema transformation

ALTER TABLE VEHICLE ADD (MODEL CHARACTER);

ALTER TABLE VEHICLE ADD (BRAND CHARACTER);

/* Instance adaptation

UPDATE VEHICLE SET MODEL = ...;

UPDATE VEHICLE SET BRAND = ...;

/* Metadata update, insert level model

INSERT INTO DIM_EL ...;

INSERT INTO ATT ...;

INSERT INTO UI_ATT ...;

/* Metadata update, insert level brand

INSERT INTO DIM_EL ...;

INSERT INTO ATT ...;

INSERT INTO UI_ATT ...;

/* Metadata update, insert classification relationships

INSERT INTO ROLLUP ...;

figure 3-3 : generated SQL fragment for the evolution job

As a remark, we add that the generated DML commands updating the tool metadata are
strongly dependent from the employed tool. For details about these generated SQL commands,
we refer to chapter 4.4 or [Vet99].

After having explained the scope of an MD schema evolution case (both on the conceptual and
the logical layer), we now present the objectives for our approach.

3.3. FIESTA Objectives
tbd <objectives concerning software architecture>

The overall objective of FIESTA is to introduce a framework that supports schema evolution
for OLAP systems that are specified and managed on a conceptual level in a tool-supported
environment. Since the schema evolution jobs are specified on the conceptual multidimensional
layer, the task of FIESTA comprises an automatic adaptation of the schema and instances (in-
cluding tool metadata) on the logical layer, tailored to a given implementation.

Following the BabelFish idea and taking this overall objective for FIESTA into account, we
now derive detailed objectives for our work.
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Some of these objectives have their origin in existing research work for schema evolution (i.e.,
they also constitute a partial result from our roadmap to schema evolution). They have been
considered to be useful also for the case of multidimensional schema evolution and thus have
been adapted for FIESTA.

The objectives may be grouped in three main areas: first, objectives concerning the FIESTA
evolution algebra (multidimensional data model, evolution operations), second, objectives con-
cerning the execution of evolution jobs, and third, an objective concerning the software archi-
tecture.

3.3.1. Objectives concerning the FIESTA Evolution Algebra
� support of the full design and maintenance cycle:

Our evolution algebra supports all phases of the design and maintenance cycle. This means
that our evolution operations are suited both for initial schema design (where no data is
persistently stored in the warehouse system) and also for adaptations of a system populated
with data (i.e., our evolution operations describe the schema transformation as well as the
adaptation of existing instances).

� formal definition of semantics of evolution operations:

The informal semantics of a given schema evolution operation may offer more alternatives
concerning the execution. A typical example for different semantics of an evolution opera-
tion are cascading deletes. If we delete the lowest level of a dimension from a fact, there
are two different possible semantics: one is to delete the complete dimension from the fact,
the other is just to delete the lowest level of the dimension and use the next level in the di-
mension hierarchy as the base level for the fact. Additionally, if a dimension level or a fact
is deleted, the question of additionally deleting the instances or keeping them (as a matter
of optimization) has to be resolved.

We allow for a explicit description of the alternatives by the definition of fine grained op-
erations. Thus, our methodology removes ambiguities and defines the formal semantics of
the evolution operations.

The ambiguities may further extend to the management of the logical schema. For example,
if we delete a level from a dimension hierarchy, it is not stated if this necessarily leads to
deleting the respective attribute in the logical schema. Similarly, if a dimension is com-
pletely removed from a fact, the corresponding logical dimension table (if we assume a re-
lational logical schema) may still be persistently kept for reasons of optimization.

� definition of fine grained schema evolution operations:

FIESTA defines fine grained evolution operations that can be grouped to operation se-
quences. The user interactions can then be treated as a sequence of evolution operations.
This approach does not only allow to model the different alternatives explicitly (see item
above), but is also necessary when the sequence has to be processed, i.e. transformed to a
set of DDL/DML commands for the schema and instance adaptation on the logical layer.
Additionally, this allows for different variants of the graphical notation in the schema de-
sign tool. Finally, since a typical schema evolution session in the design tool leads to a se-
quence of operations, optimization techniques may be applied on this set of operations (e.g.
re-ordering to reduce execution time).
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3.3.2. Objectives concerning the FIESTA Execution Model
� automatic adaptation of logical schema, instances and tool metadata:

For a given evolution job, the logical schema must be adapted accordingly. Similarly, ex-
isting instances should be adapted to the new schema automatically. The necessary rules
for this adaptation (which have been defined by the evolution operations) are maintained
and applied by the system. Two alternatives for the instance adaptation shall be possible:
both physical adaptation (i.e., real modification of the persistent instances in the DBMS)
and logical adaptation (i.e., construction of a current filter or query rewriting for the access
of instances) shall be provided. Finally, the OLAP tool metadata should be adapted auto-
matically.

� formulation and check of integrity constraints:

In general, there is no formalism for e.g. expressing multidimensional constraints. There
exist many notions of consistency on different layers in the scope of FIESTA. FIESTA
allows not only for checking the (syntactical) correctness of multidimensional schemas and
evolution jobs (i.e., sequences of schema evolution operations) but also the consistency
between the conceptual and logical layer. Thus, we provide a formal foundation for
defining and checking consistency in every arising context.

3.3.3. Objective concerning the FIESTA Software Architecture
Concerning the software architecture, there was only one specific objective arising from the
BabelFish idea: the use of a repository system as central metadata management system.

Following the BabelFish idea of the repository-driven OLAP design, all metadata of the tool
environment is stored in a repository system. Examples of metadata within the scope of FI-
ESTA include a description of both the conceptual and the logical schema, the tool metadata,
schema evolution operations, and information about the mapping between the different layers.
Where possible, dedicated services of the repository system [BD94] (e.g. notification, ver-
sioning) are used to control the flow of data between the single software components.

Summarizing, our approach is used as a basis for tool-supported schema changes for OLAP
systems. The FIESTA implementation provides an easy-to-use tool environment allowing to
perform schema modifications without detailed knowledge about the specific implementation
and frontend tools. The schema designer does not have to adapt different configurations and
metadata of a frontend tool and a database schema which must be consistent for a given im-
plementation, but the tool environment of FIESTA is responsible for performing the necessary
steps in a consistent and semantically correct way providing a single point of control accessible
via a graphical formalism.

3.4. Formal Approach to MD Schema Evolution
Tbd: andere formale Definitionen für MDDBMS zitieren, falls es welche gibt.

After having motivated our work and described the objectives for FIESTA, we now give a
precise formulation of the research problem that is addressed by FIESTA. To understand this
problem statement, the interrelationships between FIESTA and the BabelFish project (see
chapter 2) have to be briefly revisited.

We assume that the OLAP designer performs changes of the conceptual multidimensional
schema using a graphical design tool. The multidimensional schema is displayed in ME/R nota-
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tion [SBHD98], a multidimensional modeling technique. These multidimensional schema
changes, specified at the conceptual level by an ordered set of schema evolution operations,
must be propagated (i.e., mapped) to a given implementation, i.e., the schema changes have to
be executed in the underlying (logical) database which is e.g. an MDDBMS or an RDBMS.
However, since the end-user works with this conceptual multidimensional schema in an OLAP
tool, the tool metadata has to be adapted. This leads not only to modifications of the logical
schema, but additionally, existing instances and OLAP tool metadata have to be adapted as
well. The OLAP schema designer does not have to modify the logical schema, instances, and
metadata himself, but FIESTA has the necessary knowledge to automatically adapt the logical
schema, metadata, and logical instances with respect to the defined notion of consistency be-
tween the conceptual and logical layer.

Starting from our BabelFish layer model and abstracting from OLAP systems to a more ge-
neric architecture (which could also be used in the area of e.g. scientific and statistical data-
bases) we want to introduce the term Multidimensional Information System (MDIS) for
this kind of software systems. MDIS fulfill the following characteristics:

� A database system (as component of the overall architecture) stores the data in permanent
fashion and offers access to this data.

� Specialized frontend tools (e.g. OLAP tools) present the data to the user using the multi-
dimensional paradigm (e.g. by the cube metaphor). This view reflects the end-users under-
standing of the problem domain.

� An MDIS designer is responsible for modeling the end-users problem domain. This multi-
dimensional conceptual schema can be designed and maintained by a graphical design tool.

� The system offers facilities to interactively manipulate and query the data using multidi-
mensional operations (e.g. slicing and drilling).

tbd <Bild MDIS>

Typical application areas for MDIS are OLAP / Data Warehousing or Scientific & Statistical
Databases. FIESTA focuses on OLAP applications and investigates specifically not the issue of
querying the database with an OLAP tool, but addresses the issue of conceptual schema design
and maintenance for MDIS.

Following the BabelFish idea, we use conceptual schemas to describe which classes of entities
and propositions are of importance for a particular universe of discourse (UoD) of our appli-
cation area (according to the role of a conceptual schema as defined in [ISO82], [Eic91]).

A conceptual schema must be able to yield benefits in the following three areas [ZaMe82]:

� data independence: the conceptual schema must provide a high degree of physical and logi-
cal data independence. This is extremely important in the area of MDIS for OLAP and data
warehousing, because common design methodologies mix up design decisions (e.g. the
question whether an RDBMS or an MDDBMS is used) with the conceptual multidimen-
sional schema (i.e., the task of defining the multidimensional cube structure).

� design aid: the conceptual schema constitutes a typically graphical formalization of the re-
quired universe of discourse which is needed to get feedback from the end-users of an
MDIS. Using the visualized conceptual schema, the OLAP designer is able to check if he
meets the user requirements with his proposed design.

� liaison to the enterprise world: a conceptual model is often advocated as a successful
means of communication between the IT department and the rest of an enterprise. Al-
though this seems to be a rather historic argument, it regains importance in today’s quickly
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changing business processes. Consequently, the BabelFish approach supports this idea by a
graphical visualization of the conceptual schema.

According to our layer model introduced in chapter 2.2, we define a conceptual MDIS schema
CS as a multidimensional schema. Similarly, we define the set of conceptual instances Ics as the
set of multidimensional instances according to the schema CS. Following our idea of a tool-
based environment for conceptual design, we visualize the conceptual model as ME/R diagram
(for a sample ME/R diagram, see chapter 2.4.2 or [SBHD98]). Formal definitions of multidi-
mensional schema and instances will be given in chapter 3.5. Basically, they will be expressed
by means of a multidimensional algebra similar to those introduced in chapter 1.3.4.

The logical schema is used for persistent storage of the conceptual schema in a database sys-
tem. Consequently, we define a logical schema LS as a database schema (e.g. a relational data-
base schema or a multidimensional database schema) which persistently stores the conceptual
schema CS. The logical instances ILS are the instances persistently stored in the DBS according
to LS. For the focus of FIESTA, LS is a relational schema and ILS are the corresponding rela-
tion instances.

Conceptual multidimensional schemas are implemented in an RDBMS as so-called star and
snowflake schemas and their variants [Inm96], [McG96], [Kim96a], [Sir97]. Since the trans-
formation of a conceptual multidimensional schema into a star schema looses parts of the mul-
tidimensional semantics (e.g. the information whether an attribute of a dimension level is used
for the classification hierarchy or as describing information), OLAP tools store this semantics
as part of the logical schema in the corresponding database. Consequently, we regard this
metadata as part of the logical schema.

tbd <Vorteil: einfaches Handling, Nachteil: produktspezifisch, zumindest P.klassenspezifisch
(d.h. MDDBS, RDBS)>

tbd <der Wolfi Lehner macht hier folgendes: star schema und snowflake [Kimball, Inmon, ich
ergänze: McGuff, Holger] sind definiert. RM eignet sich für die persistente Ablage von MD
Strukturen. Abb. von MD auf star schema ist in Gyssens/Laks beschrieben. Dort sind auch die
Konsistenzbedingungen beschrieben (Fremdschlüssel etc.). und damit war’s das.>

tbd <muß ich jetzt auch star/snowflake schemata formal definieren? eigentlich wird das formal
definiert beim Algo für D in Kap.5  -> siehe Lehner -> Verweis auf Gyssens, inhaltlich siehe
Beschreibung von D in Kap. 5!>

We now derive our layered formal model for schema evolution of an MDIS. To this end, we
introduce the required concepts and definitions step by step. The overview is shown in figure
3-4 and formally described thereafter.

Definition 3-1: Conceptual state of an MDIS, conceptual consistency

We define the conceptual state of an MDIS as a tuple 66c= <CS, ICS> with CS being a concep-
tual multidimensional schema and ICS being the data (set of instances) according to the schema
CS.

Let CC be the set of multidimensional schema constraints. We define 6C to be consistent (or
speak of conceptual consistency) iff each c � CC holds.

¡

Formal definitions of conceptual schemas and instances within FIESTA will be given in chap-
ter 3.5, where we introduce our multidimensional data model. The schema constraints CC  basi-
cally constitute a set of rules ensuring correct multidimensional schemas. In general, there are
different types of constraints, e.g. model constraints (which basically come from the node/edge
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type in an ME/R graph of a multidimensional model) or domain constraints (which are espe-
cially interesting in the case of the instance adaptation). We refer to chapters 3.5 to 3.8 for
details on constraints.

Definition 3-2: Logical state of an MDIS, logical consistency

We define the logical state of an MDIS as a tuple 66L= <LS, ILS> with LS being a logical (i.e.,
relational) schema and ILS being the set of instances with schema LS.

Let CL be the set of constraints ensuring the correctness of the logical schema. We define 6L

to be consistent (or speak of logical consistency) iff each c � CL holds.

¡

Examples for CL are the foreign key constraints if the logical schema is implemented as a so-
called star schema. Another example are the relationships between this star schema and the
corresponding entries in the OLAP tool metadata tables.

Definition 3-3: Mapping function of an MDIS

Since the logical state of an MDIS is used for persistent storage of the conceptual state, a
mapping function D is defined that maps the conceptual state w.r.t. a set of design decisions D
to a logical state. Formally: D: 6C  x D o 6L

¡

Informally, the design decisions constitute e.g. the different possibilities of the mapping be-
tween the multidimensional and relational layer (e.g. star vs. snowflake schema or the different
alternatives for modeling the dimension tables [Sir97], [McG97]).

According to this definition, D is a generic mapping function from the multidimensional data
model  to the relational data model. As we will see later (in chapter 4.1), D has to satisfy cer-
tain integrity constraints to guarantee the correctness of the mapping from a given multidimen-
sional schema to a relational schema (including tool metadata).

Definition 3-4: Consistency of an MDIS

An MDIS with a conceptual state 6C, a logical state 6L and a mapping D  from the conceptual
to the logical state is defined to be consistent iff

�¦¦ :Dunderwithconsistentis LC

(1) 6C is consistent

(2) 6L is consistent

(3) ¦ ¦ou LC D:D is defined in a way that each integrity constraint c � CD holds.

¡

The set of mapping constraints CD ensures the correctness of the mapping from the conceptual
to the logical layer. We will formally introduce the set CD in chapter 4.1.

Definition 3-5: State of an MDIS

The state 6 of an MDIS is defined as 6 := <6C , 6L ,D>

¡

Definition 3-6: Conceptual Schema Evolution
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A conceptual schema evolution is an ordered set of operations J = (co1,co2, ... ,con) with
each coi: ¦o¦

�1i
C

i
C , i=1, ..., n-1, where ¦ i

C denotes the state before the evolution opera-

tion coi and ¦ �1i
C the state after the evolution operation coi.

We also say that !� !� !� '
21 ,'),(),( CSCSnCS ICSICScococoICS �$$J  or

¦ ¦
')( CCJ  when speaking of a given schema evolution job.

¡

Examples for conceptual schema evolution operations are given in chapter 3.7. Informally,
they consist of modifications of the corresponding ME/R graph (e.g. add dimension to fact,
insert classification relationship, insert dimension level) which represents the multidimensional
schema and its components.

Definition 3-7: Logical Schema Evolution

A logical schema evolution is an ordered set of operations O = (lo1,lo2, ... ,lon) with each loi :

¦o¦
�1i

L
i
L , i=1, ..., n-1, where ¦ i

L  denotes the state before the evolution operation loi and

¦
�1i
L the state after the evolution operation loi.

We also say that !� !� !� '
21 ,'),(),( LSLSnLS ILSILScococoILS �$$O  or

¦ ¦
')( LLO  when speaking of a given schema evolution job.

¡

For the scope of FIESTA, logical schema evolution operations are e.g. sequences of SQL
DML/DDL commands that adapt the logical schema and instances (including the OLAP tool
metadata).

Example: tbd <Grafik bzw. bei Monika extrahieren>

Definition 3-8: Consistency of MDIS Evolution

An MDIS Evolution that transforms the MDIS from the state 6 := <6C , 6L ,D , IC> to the
state !¦¦ �¦ ICLC ,,,: ''' D  by using a conceptual schema evolution J and a logical schema

evolution O is defined to be consistent iff

(1) 6C is consistent with 6L under D and IC

(2) ¦
'
C is consistent with ¦ '

L under D and IC

(3) ¦ ¦ ')( CCJ  and

(4) ¦ ¦ 
')( LLO

¡

tbd Carsten: was is consistent under D?

The given definitions are necessary prerequisites for explaining figure 3-4 and deriving a formal
problem statement for FIESTA (figure 3-5). The overall evolution scenario for an MDIS is
depicted in the following figure 3-4.
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figure 3-4: FIESTA schema evolution scenario for MDIS

We assume the OLAP designer works with the conceptual multidimensional schema of the
MDIS. For this schema, instances (cells of the cube) can be defined accordingly, but the OLAP
designer works only with the conceptual multidimensional schema, because he does not need
the conceptual instances for his schema design task. The conceptual state before the evolution
is depicted as 6C = <CS, ICS>, the state after the evolution as 6C‘= <CS’,I’ CS’> (as defined
above).

We further assume that according to our definition of an MDIS, we have a persistent storage
in an DBS on the logical OLAP layer. The logical state before the evolution is depicted as
6L=<LS, ILS>, the state after the evolution as 6L’ = <LS’,I’ LS’>.

The function D maps between the conceptual and logical layer as defined above and ensures
consistency between the two layers. The evolution is depicted both on the conceptual level (by
J) and the logical level (by O).

For defining the research problem of FIESTA, we assume the following:

Given: CS and J are given3 (resulting from the schema design work in our graphical design
tool which shows CS’ after the necessary transformations are done), LS and ILS are persistently
stored in the database system. 6C is consistent with 6L.

Required: the logical evolution O that adapts our persistent storage of the logical schema and
instances and is consistent with J w.r.t. D.

This is depicted in figure 3-5. The grey shaded parts are given, the logical evolution O is re-
quired and leads to the target 6L’. The constraint that the target has to fulfill is the consistency
with 6C’ resulting in a consistent MDIS evolution.

                                               
3 CS and CS’ allow for a computation of J (except for the order), CS’ and J let us derive CS. Our graphical schema design

environment stores CS and records J.
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figure 3-5: FIESTA schema evolution problem description

Formally, we may define

Definition 3-9: FIESTA Schema Evolution Problem

We assume a consistent MDIS with state 6 := <6C , 6L ,D> and a set of consistent conceptual
schema evolution operations J = (co1,co2, ... ,con) that transform 6C to 6C‘. We require the set
of logical schema evolution operations O = (lo1,lo2, ... ,lom) that transform 6L to 6L‘ such that
6C‘ is consistent with 6L’  under D.

¡

Note that for the computation of O we need the following data as input: 6C, 6L, J, D and our
notion of consistency defined by Cc, CL, CD. Basically, we transform the set of operations J

using the other data as additional input and compute O. The detailed algorithm for this com-
putation is presented in chapter 4.4.

Up to now, we have not yet detailed the definition of a conceptual schema CS and the accord-
ing set of instances ICS. In chapter 1.3.4 we presented several formalizations of the multidimen-
sional data model that have been discussed in the literature. This state of the art already intro-
duced formal definitions of a multidimensional schema and instances. In the next section, we
present our multidimensional data model that has been developed together with C. Sapia in the
BabelFish project.

3.5. Multidimensional Data Model
As a prerequisite for defining multidimensional schema evolution operations, formal definitions
of multidimensional schemas and instances have to be provided. To this end, we introduce our
multidimensional data model (or, more precisely: our formalization of the multidimensional
data model). Our survey [BSHD98], [SBH99] of the existing approaches (see chapter 1.3.4)
revealed several advantages and disadvantages of variant formalizations. On this base, we de-
veloped our own data model for FIESTA with a special focus on a comprehensive and easily
understandable definition of our schema evolution operations (which will be introduced in
chapter 3.7).
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The multidimensional data model has been published in [BSH99] together with a first version
of the schema evolution operations.

3.5.1. Requirements to a formal multidimensional data model
Before introducing our formal multidimensional data model, we start with a set of require-
ments that an ideal multidimensional data model should fulfill. These requirements are derived
from general design principles that have proven successful with the relational model and from
characteristics of OLAP applications we have developed for our industrial partners.

The requirements constitute to some degree an extension to chapter 2.3 (where we introduced
the basic terminology for the multidimensional paradigm) and have already been introduced in
[BSHD98], [SBH99]. Since their first introduction, they have proven their value by numerous
citations.

We introduce three groups of requirements: general requirements for a formal multidimen-
sional data model (the first three enumerated items), requirements concerning complex struc-
tured dimensions, and complex structured cube cells:

� Implementation independent formalism: The formal model must be purely conceptual,
thus not containing any details of the implementation. This is especially important in the
area of OLAP applications as some existing systems (ROLAP systems) implement multidi-
mensionality by mapping the conceptually multidimensional model to a relational model.

� Separation of structure and contents: The formalism should allow the separated defini-
tion of the data structure (i.e. the multidimensional cube and its dimensions) and the con-
tents (i.e. the cell values).

� Declarative query language: Analogous to SQL, the multidimensional query language
should be declarative to allow query optimization and data independence. A logical calcu-
lus or an algebra allowing optimizations are considered declarative for this purpose. Since
the main focus of our research work is schema evolution and not query processing, we do
not concentrate further on that issue.

� Complex structured dimensions: dimensions provide the context information about the
data that is to be analyzed. Technically speaking, the dimensions of a cube span the multi-
dimensional space. In classical arrays the dimensions of the multidimensional data space are
only structured by a linear order defined on the indexes (typically integer values). For
OLAP applications this is not sufficient because from the  view of the OLAP end-user, the
elements (respectively instances) of an OLAP dimension (dimension members) are not line-
arly ordered (e.g. garages). Instead, hierarchies containing dimension levels are used for the
structuring of a dimension (see also chapter 2.3).

Another way of structuring dimensions from a user’s point of view is the use of dimension
attributes. These attributes describe dimension members but do not define hierarchies (e.g.
it might be meaningful to store the name and address of a customer). Different levels of the
hierarchies can possess different dimension attributes.

Hierarchies and attributes structuring dimensions are part of the schema of the database
and it should not be necessary to include the structural or functional definition in any query.
As OLAP analysis is characterized by a high degree of interactivity it should nevertheless
be possible for the user to define an ad-hoc hierarchy when querying the database (e.g. for
a single query, a user wants to classify vehicles by price which is not modeled in the
schema).
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� Complex structured cell values (measures): The contents of a cell of the multidimen-
sional cube can also be structured in a complex way. Each cell can contain several meas-
ures that form a record structure. OLAP applications often contain a considerable amount
of derived measures. These are measures that are not atomic in the sense that they can be
computed from other measures (atomic or derived) in the cube. Depending on the calcula-
tion formula, derived measures can define hierarchies on atomic measures.

The treatment of complex measures in the context of aggregation is also interesting. The
computation of aggregation functions might not be semantically meaningful for all the
measures. E.g. the summarization of  “the number of persons” that participated in a repair
along the time dimension does not produce semantically meaningful results. On the other
hand, an aggregation using the sum operator along the garages dimension is sensible, as is
the computation of the average number of persons involved in a repair (that corresponds to
an aggregation along the time dimension using the avg-operator). Such constraints (often
referred to as additivity of a measure along a dimension) should be expressible in the con-
ceptual model.

The concept of derived measures is analogous to the view concept of relational systems.
Thus, the definition of derived measures (calculation formula) should be a part of the
schema of the database. Derived and atomic measures should be treated equally by the
query language. Nevertheless, the query language should also support ad-hoc calculations
defined within the query.
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These requirements are fulfilled to different degrees in the existing formal multidimensional
data models (see our survey and chapter 1.3.4). Consequently, for the objective to propose
schema evolution operations, we have developed a formal multidimensional data model which
is especially suited for a comprehensive and easily understandable definition of schema evolu-
tion operations. This FIESTA multidimensional data model is now introduced.

3.5.2. Multidimensional Schema
As mentioned above, several interpretations of the multidimensional paradigm can be found
both in the existing literature (e.g. [CT98], [DT97], [DKPW99], [Leh98], [Vas98]) and in
product implementations. A comparison of the formal approaches shows that most of them do
not formally distinguish between schema and instances [SBH99], as their main goal is a formal
treatment of queries using algebras and calculi. For our research work, we need a formalism
that can serve as a basis for defining the schema evolution operations (see chapter 3.7).
Therefore, this section contains a formal definition of a multidimensional schema and its in-
stances (which was inspired by the formal multidimensional models mentioned above, esp.
[CT98], [DT97], [Vas98]).

Since we require a clear separation between schema and instances, we provide separate con-
structs. From the approaches examined in chapter 1.3.4, only [LW96], [GL97], [CT98] and
[Leh98] explicitly make this distinction, too.

The schema (or MD model) of an MDIS contains the structure of the facts (with their attrib-
utes) and their dimension levels (with their attributes) including different classification paths
(that reflect the hierarchical structure of the dimensions).

Definition 3-10: Alphabet, Character Sequences:

We assume a finite alphabet Z and denote the set of all finite sequences over Z as Z*.

¡

Before formally introducing our definition of an MD schema, we explain and introduce the
components informally. We will define three distinct sets to model facts, dimension levels and
attributes. Facts constitute the subject of the analysis, i.e. ‘sales’ or ‘repairs’ are typical exam-
ples for facts. Dimension levels reflect the elements of dimension hierarchies (see chapter 2.3
for the terminology). Attributes may be either measures of a fact or describing attributes of a
dimension level. We will introduce a dedicated function that assigns an attribute either to a fact
or to a dimension level. To reflect the dimension hierarchies, we will introduce a relation on
the level names that relates two levels by a corresponding classification hierarchy. Finally, we
define a  function that assigns the base dimension levels (i.e. the finest granule of the dimen-
sions) to the corresponding fact, e.g. for our vehicle repair example, the base levels of the four
dimensions are day, vehicle, customer and garage. We remark that this function represents the
structural relationship between the fact and its “lowest” or “finest” dimension levels. This
structural relationship has to be seen independently from the possible aggregations which are
typically of interest when processing queries. Of course, the measures can also be queried at a
higher dimension level than the base level (e.g. vehicle repairs by month, customer, and geo-
graphic region of the garage). The calculation of the necessary aggregation is not within the
scope of FIESTA.
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Definition 3-11: MD Model, MD Schema:

An MD model (or MD schema)4 _ is a 6–tuple <F, L, A, gran, class, attr> where

(1) F � Z* is a finite set of m fact names {f1,},fm} where fi � Z* for  1 d i d m

(2) L  � Z* is a finite set of k dimension level names {l1,},lk} where li � Z* for  1 d i d k.

(3) A � Z* is a finite set of p attribute names {a1,},ap} where ai � Z* for  1 d i d p. Each
attribute name ai has a domain dom(ai) attached.

(4) The names of facts, levels and attributes  are all disjoint, i.e. L � F �  A = �

(5) gran: F o 2L is a function that associates a set of dimension level names with a fact. These
dimension levels gran(f) are called the base levels of fact f.

(6) class � L u L is a relation defined on the level names. Without imposing any restrictions,
we require class to be minimal w.r.t. transitivity. The transitive, reflexive closure class* of
class must fulfill the following property: (l1,l2) � class* � (l2,l1) � class*. This means that
class* defines a partial order on L. (l1,l2) � class* reads “l1 can be classified according to
l2.”

(7) attr: A o  F � L � {A} is a function mapping an attribute either to a fact (in this case the
attribute is called a measure), to a dimension level (in this case it is called dimension level
attribute) or to the special A symbol which means that this attribute is not connected at all.

¡

One bigger difference of this definition to almost all existing approaches is the fact that we
have no dedicated construct for the notion of a dimension. The reason is quite simple, but pos-
sibly not obvious at this early stage of our work: we do not need such an explicit formalization
of a dimension. We have the dimension levels and their classification relationships, both con-
structs together deliver the necessary information for a dimension.

We also explicitly allow for record structured measures, since the function attr may assign an
arbitrary number of attributes to a fact. From the other approaches listed in chapter 1.3.4, only
[DT97] and [GL97] allow more than a single measure. Similarly we also allow for describing
attributes of a dimension level which is not possible in the approaches of [AGS97], [CT98],
[Vas98].

Concerning the base levels for a fact, we decided to define a function instead of a simple set
because it comes closer to the underlying idea of an n-dimensional space. Additionally, the
function brings some basic constraints by definition which would have to be expressed by set
constraints otherwise. The dedicated set for attributes has its origin in the ME/R modeling no-
tation. Here, we wanted our algebraic formalization as close as possible to the graphical repre-
sentation. This approach delivers some benefits which will be pointed out later in this thesis.
Basically, it helps in defining a complete dualism between an ME/R model and the algebraic
representation of an MD schema. This is further elaborated in chapter 3.6.

Example: we use again the following example taken from [SBHD98]. A car manufacturer
wants to analyze vehicle repairs to improve the technical quality of its products, to evaluate the
warranty policy  and to assess the quality of different garages. After the first iteration of the
development cycle, the model shown in figure 3-6 was implemented.

                                               
4 We use the term MD model when we have a graphical multidimensional schema in mind, consequently, we speak of an

MD schema when thinking of an algebraic representation of the schema.
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figure 3-6: graphical representation of the MD schema (using the ME/R notation)

Formally, the example MD Model _ex=<Fex, Lex, Aex, granex, classex, attrex> has the following
components:
Fex = {vehicle repair}
Lex = {customer, vehicle, vehicle model, brand, day, month, year, garage, type of garage,
geogr. region, country }
Aex = {costs (part), costs (wages), costs (total), # of persons, duration, age, income}
granex(vehicle repair) = {customer, vehicle, day, garage}
classex = {(day, month), (month, year), (garage, type of garage), (garage, geogr. region),
(geogr. region, country), (customer, geogr. region), (vehicle, vehicle model),
(vehicle model, brand)}
Finally, attr is defined as follows5:
attrex(“costs (parts)” ) = vehicle repair,  attrex(“costs (wages)”)= vehicle repair,
attrex(“costs (total)”)= vehicle repair,  attrex (“# of persons”)= vehicle repair,
attrex (duration)= vehicle repair, attrex (age) = customer, attrex (income) = customer

¡

3.5.3. Cube Instances
The MD model formalizes the schema of a multidimensional database. We use this formalism
later to define a set of schema evolution operations. As we also want to analyze the effects of
schema evolution operations on the instances of the schema, this section presents a formal
model for instances. We start with some base definitions as prerequisites.

                                               
5 We have used the quotation marks (“) to avoid confusion with the arguments of attr, where necessary.
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Definition 3-12: Domain of a Dimension Level:

The domain of a dimension level l � L is a finite set dom(l) = {m1, } ,mq} of dimension mem-
ber names. 

¡

To represent the structure for the fact instances, we introduce a domain and a co-domain. The
domain of a fact is the cross-product of all base dimension levels (representing the coordinates
of the cube cell), whereas the co-domain is the cross-product of all measures for this fact (rep-
resenting the record structure of this cube cell).

Definition 3-13: Domain and Co-domain of a fact:

For a fact f, the domain dom(f) and co-domain codom(f) are defined as follows:

)(:)(
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)(:)(
})(|{
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We remark that the implicit order of the cartesian products in this definition are not relevant
and will consequently be ignored.

¡

In the definition of MD instances, we will introduce the following components: first, a set of
functions (one for each classification) that represent the classification relationship for the ele-
ments (instances) of the two dimension levels. This formalizes the structural assignment be-
tween the instances of the two dimension levels. Next, for every fact a function that maps the
coordinates of the cube to the measures, i.e. a mapping from the instances of the base levels to
the measures. Finally, for every describing dimension attribute, we need a function that assigns
the value of this attribute to every dimension member (instance).

Definition 3-14: Instance of MD model:

The instance of an MD model _ = <F, L, A, gran, class, attr> is a triple

>_ = <R-UP, C, AV> where

(1) R-UP = { 2
1

lev
levupr � }is a finite set of functions with )2()1(:2

1 levdomlevdomupr lev
lev o� for

all (lev1, lev2) � class

(2) },...,{
1 mff ccC  ; fi � F �1 d i d m is a finite set of functions cf: dom(f) o codom(f); f �

F. C maps coordinates of the cube to measures, thus defining the contents of the data cube.

(3) AV = { av1, }, avr } is a finite set of functions which contains a function ava for each at-
tribute a that is a dimension level attribute, i.e., attr(a) � L. The function ava:
dom(attr(a))o dom(a) assigns an attribute value (for attribute a) to each member of the
corresponding level.

¡



FIESTA: An MD Schema Evolution Methodology 57

Our definition of MD cube instances is quite different from other formalizations. The main
reason for this is the proximity to our MD schema definition. Of course, we also aimed at a
comprehensive and easily understandable definition of the instance adaptation for the schema
evolution operations. Thus, we have to refer the reader to chapter 3.7 for a discussion of the
benefits of our instance formalization.

Example (Instances):
A possible instance of the MD model _ex is <R-UPex, Cex, AVex > as defined above.
Let us assume the following domains for the levels:

dom(customer) = { “Mr. Burns”, “Mr. Simpson”};
dom(garage) = { “Springfield”, “Los Angeles”, “New York” };
dom(geogr. region) = { “USA West”, “USA East” };
dom(day) = { “01/01/97”, “01/02/97” ... };

According to our definitions, the domain and co-domain of the fact vehicle repair are5:
dom(vehicle repair) = dom(customer) u dom(garage) u dom(day) u dom (vehicle)
codom(vehicle repair)=dom(“costs (parts)”)udom(“costs (wages)”)udom(“costs (total)”)

u dom (“# of persons”) u dom (duration)

R-UPex = { regiongeogr
garageupr .

� , garageoftype
garageupr � , country

regiongeogrupr .� , regiongeogr
customerupr .

� , elvehicle
vehicleupr mod

� ,
brand

elvehicleupr mod� , month
dayupr � , year

monthupr � } where 2
1

level
levelupr � is a function mapping the members of

level1 to members of the higher level2. Some examples are
regiongeogr

garageupr .
� (“Springfield”) = “USA West”

regiongeogr
garageupr .

� (“New York”) = “USA East”

Cube schema: Cex = {cvehicle repair} with
cvehicle repair: dom(vehicle repair) o codom(vehicle repair).

As an example, we define 
cvehicle repair (“Mr. Burns”, “Springfield”, “06/27/1998”, “car4711”) = ( $500, $200,  $700, 2, 8 )

AVex = {avage, avincome } with avage: dom(customer) o dom(age) and
avincome:dom(customer) o dom(income)

As some examples, we may define
avage (“Mr. Burns”) = 70
avage (“Mr. Simpson”) = 41
avincome (“Mr. Burns”) = 1 M$
avincome (“Mr. Simpson”) = 25 k$

¡

In contrast to other formalizations of the multidimensional data model (as those introduced in
chapter 1.3.4), we do not propose special multidimensional operations (like slice, dice, pivot)
working on the instances. These operations are of interest when regarding queries on the mul-
tidimensional data model. Since multidimensional queries are not within the scope of FIESTA,
we do not introduce instance operations here.
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Nevertheless, FIESTA also defines multidimensional operations, but the operations work with
the multidimensional schema, not the instances. These schema evolution operations will be
introduced in chapter 3.7.

For a complete formal multidimensional data model, there is still a missing issue: the formal
definition of consistency. This is subject to the following chapter.

3.5.4. MD Schema Integrity Constraints
In general, multidimensional schemas described by our algebra can be inconsistent. For exam-
ple, it is possible to define “empty” facts, i.e. facts without dimension attached or isolated di-
mension hierarchies that have no relationship to a fact. Also, since we want to introduce
schema evolution operations that may lead to temporarily inconsistent schemas, we have to
provide a formal notion of consistent multidimensional schemas.

Consequently, we define the following consistency constraints for multidimensional schemas.

A consistent MD schema _ = <F, L, A, gran, class, attr> must fulfill the following con-
straints:

(1) every fact must be connected to at least one dimension level:

� f � F: gran(f) must be well-defined and |gran(f)| t 1

(2) every dimension level must be part of a classification hierarchy or connected to a fact (or in
other words: isolated dimension levels must not exist):

� l � L: (� f � F with l � gran(f)) � (� x � L with either (l,x) � class or (x,l) � class)

(3) every attribute must be connected to either a fact or a dimension level

� a � A: attr(a) must be well-defined, attr(a)zA and |attr(a)| =1

(4) finally, we do not allow isolated dimension hierarchies that are not connected to a fact:

� l � L: (� f � F with l � gran(f)) � (� m � L, � g � F with m � gran(g) � (m,l) � class*)

Basically, constraint (4) is an extension of constraint (2). Since class* is the reflexive and tran-
sitive closure of class, we could also combine constraints (2) and (4) to the condition (2’)
which would then replace both conditions:

(2’) � l � L: � m � L, � g � F with m � gran(g) � (m,l) � class*

For the rest of this chapter, we will either use the minimal version of the constraints or the ex-
tended version depending on the intuitiveness we need.

After having introduced our formalization of the multidimensional data model together with a
definition of consistent multidimensional schemas, we now show the relationship between a
given ME/R model and its counterpart, the algebraic representation of a multidimensional
schema.
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3.6. The Dualism on the Conceptual OLAP Layer: ME/R Graphs
and MD Schemas

We show that the ME/R graph of a given multidimensional data model can be equivalently
expressed by a multidimensional schema using the algebra defined in chapter 3.5.

Since an algebraic description of a given MD schema is typically difficult to handle, we now
want to show that both the algebraic description and the ME/R representation of a given MD
schema can be used equivalently, at least under some conditions that can be easily fulfilled.

Informally, we already used this dualism between ME/R graphs (as introduced in chapter
2.4.3)  and our formal MD algebra in the example of chapter 3.5. There we showed our sample
ME/R diagram and presented an algebraic description of the visualized MD schema.

Now, we want to formalize this relationship and introduce an isomorphism between ME/R
graphs and algebraic MD schemas. To this end, we will prove that both representations of an
MD can be transformed into the other, without any loss of information.

In our graphical modeling environment (see chapter 2.4), we use ME/R models to visualize an
MD schema. In chapter 2.4.3 we have introduced a graph grammar for checking the correct-
ness of these ME/R models by parsing.

Here, we follow a different, graph-oriented approach for the correctness. We consider ME/R
models as typed graphs and present certain criteria for their correctness. Then we prove that an
ME/R graph satisfying these criteria can be transformed into a consistent MD schema (using
our algebraic MD data model). We go even further and prove that this transformation is an
isomorphism between an ME/R graph and the algebraic schema representation. When trans-
forming a correct ME/R graph to an MD schema, its consistency is guaranteed by the isomor-
phism. In other words, the correctness of the ME/R graph assures certain conditions of the
MD schema. Later, in chapter 4, we will exploit these fulfilled conditions on the MD schema
for the processing of our schema evolution operations.

But now back to the isomorphism between ME/R graphs and MD schemas. We start with the
definition of ME/R graphs.

3.6.1. ME/R graphs

As the first step, we show that every ME/R graph can be equivalently expressed by an alge-
braic description of the MD schema. Since the ME/R modeling notation is a graphical notation,
one could also see a given ME/R model as a typed graph. Typed graphs have been defined in
chapter 2.4.3 (Definition 2-1). We just repeat the contents of the definition here.

A typed graph G over a set of edge types 6E and a set of node types 6N is defined as a tuple
G= (N, E, tN, tE, s, t) with

x N is a finite set of nodes,

x E is a finite set of edges,

x tN: N o 6N assigns each node to its node type

x tE: E o 6E assigns each edge to its edge type

x s,t: E o N assigns each edge to its source and target.
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The actual values for N, E, tN, tE, s, and t correspond then to the objects of a ME/R model
(e.g. account, customer) whereas the definition of the edge and node types 6E and 6N (e.g.
objects, relationships) is part of the modeling notation (or the meta-model, in this case the
ME/R notation) [SBH00].

For ME/R graphs, we define:

Definition 3-15: ME/R graph

An ME/R graph  G = (N, E, tN, tE, s, t) is a typed graph over a set of edge types 6E and a set of
node types 6N defined as

6N  := {dim_level, fact, attribute} for the three different types of nodes and

6E := {is_classified_by, is_dimension_of, is_measure_of, is_attribute_of} for the different
types of edges.

¡

In the example of figure 3-6, a possible ME/R graph definition would be:

N ={customer, region, .... , day, month, year, ....} for the set of nodes and

E = {coststotal_repair, vehicle_brand, day_month, month_year, customer_repair, ....} for the
set of edges.

The set of edges could also be just a set of numbers, one for every edge. Here, we used a tex-
tual description of the two connected nodes with an underscore (“_”). There is no condition
how the elements of E must look like.

The function tN must assign the value ‘fact’ to every fact node, the value ‘dim_level’ to every
dimension level node, and the value ‘attribute’ to every attribute node in the ME/R model.
Thus, in the example, we have:

tN (customer)= dim_level, tN (vehicle_repair)= fact, tN (cost_total)= attribute, .....

Similarly, tE assigns the corresponding edge types to the edges. Each edge between two dimen-
sion levels is assigned the value ‘is_classified_by’, each edge between a fact and its base level is
assigned the value ‘is_dimension_of’, each edge between an attribute and a fact is assigned the
value ‘is_measure_of’, and each edge between an attribute and an dimension level is assigned
the value ‘is_attribute_of’. As examples, we enumerate

tE (coststotal_repair)= is_measure_of, tE (day_month)=is_classified_by,

tE (customer_repair)= is_dimension_of, .....

Finally, the functions s and t assign the start and end node to every edge. Consequently, in our
example, we have:

s(customer_repair)=vehicle_repair, t(customer_repair)=customer
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3.6.2. Correctness of ME/R graphs
So far, the definition of the ME/R graph is quite open. Especially, there are no constraints how
the types of edges and nodes may be assigned. We use the basic understanding of the edge and
node types from the definition of the ME/R notation, but still have not defined any correctness
criteria for ME/R models or graphs yet.

Thus, we propose the following criteria for the correctness of an ME/R graph:

1) no isolated nodes exist, every edge connects exactly two nodes.

2) the types of edges and nodes are assigned correctly (w.r.t. the definition of ME/R models)

3) every node is reachable from a fact by a sequence of arbitrary edges and nodes of arbitrary
type.

4) there exist no cycles of  is_classified_by edges between dimension levels.

We explain these informal conditions before we clearly define them formally for ME/R graphs.

Condition (1) simply requests that no nodes without edges or edges connected only to a single
node exist. We admit that this is a restriction, but we think that a valid ME/R model simply
contains no isolated elements. Discussing whether a partial graph describing only a dimension
hierarchy (which is not attached to a fact) is already a correct ME/R model, is a rather aca-
demic discussion in our opinion.

Condition (2) is very important and delivers a simply expressible, but very powerful condition.
Its satisfaction guarantees a lot a variants of incorrect edge types, e.g. not two attribute nodes
can be connected, no classification edge connects a fact with a dimension level and so on.

Condition (3) guarantees that each partial ME/R graph is completely connected and contains at
least a fact. This condition prohibits ME/R models consisting only of a dimension hierarchy or
of some dimension levels with attributes. On the other hand, it explicitly allows for different
partial ME/R graphs with a fact relationship as the “heart” of every partial graph. In the for-
malization for ME/R graphs, we will extend this condition to two sub-conditions: first (condi-
tion 3-1), the condition that a minimal ME/R graph consists of a fact node and a dimension
level node, connected by an is_dimension_of edge. Second (condition 3-2), every  node is
reachable by a sequence of nodes and edges from a fact node as starting point.

Condition (4) avoids cycles in the classification hierarchy of a dimension. As we will see later,
this is a necessary prerequisite for our normalization of ME/R graphs (see chapter 3.6.3). Cy-
cles in the classification hierarchy would also neglect the partial order within a classification
hierarchy and are thus prohibited.

For our formalization, we need a predicate path (a,b) that evaluates to TRUE iff there is a path
from node a to node b in the corresponding ME/R graph. Formally, we define:

path (a,b) with a,b � N is TRUE iff

(� e � E with s(e)=a and t(e)=b) �

(� (n1, n2, .... , nm) with ni � N, m>0 and � (e1, e2, .... , em+1) with ei � E:

s(e1)=a, t(e1)=n1,

s(e2)=n1, t(e2)=n2,

.......

s(em)=nm-1, t(em)=nm,
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s(em+1)=nm, t(em+1)=b)

otherwise, path (a,b) is FALSE.

The conditions for ME/R graphs are formalized as follows:

(1) every node is either source or target of at least one edge:

� n�N: � e � E with either s(e)=n or t(e)=n

(2) every edge connects exactly two nodes and the correctness of the edge and node types is
guaranteed:

� e � E: � n,m �N with s(e)=n and t(e)=m ,

if t E(e)= is_classified_by then tN(n) = dim_level and tN(m) = dim_level

if t E(e)= is_dimension_of then tN(n) = fact and tN(m) = dim_level

if t E(e)= is_measure_of then tN(n) = attribute and tN(m) = fact

if t E(e)= is_attribute_of then tN(n) = attribute and tN(m) = dim_level

(3-1) |{n�N with tN(n)=fact}|t1 and � f�N with tN(f)=fact : there is at least one e � E with
tE(e)= is_dimension_of, s(e)=f, t(e)=n for an n � N with tN(n)= dim_level.

(3-2) � n�N with tN(n)= dim_level or tN(n)= attribute:

� f � N with tN(f)= fact and  path (f,n).

(4) � n�N with tN(n)= dim_level: path (n,n) = FALSE.

After having provided a means for correctness of ME/R graphs, we see that we need another
prerequisite for our dualism between ME/R graphs and MD schemas: a normal form for ME/R
graphs which prevents us from two different graph representations of the same MD schema.

3.6.3. Normalization of ME/R graphs
After having addressed the issue of correctness criteria for ME/R graphs, we have to deal with
a different problem: the issue of uniqueness of an ME/R graph which leads us to a normal form
for ME/R graphs. The basic problem are redundant edges in the classification hierarchy of a
dimension. These edges do not constitute cycles in the classification hierarchy because of the
direction of the classification edges. They may exist because the classification relationships are
transitive. Since the schema designer may not be aware of the transitivity, he may add these
redundant edges to make the ME/R model reflect his universe of discourse. The following ex-
ample shows an redundant edge between day and year in the time dimension:

veh ic le
repa ir

yea rda y m onth

figure 3-7: redundant edge in the time dimension



FIESTA: An MD Schema Evolution Methodology 63

As shown in figure 3-7, a redundant edge constitutes a loop (not a cycle) without intermediate
nodes (i.e. of length 1) in the ME/R graph.

Redundant edges lead to the observation that there are several syntactically different ME/R
graphs representing the same semantics (i.e. the dimension hierarchy). This would constitute a
problem for our idea of an isomorphism between ME/R graphs and MD schemas, because the
class relationship of an MD schema must always be minimal by definition. Therefore, we could
have different ME/R graphs for the same MD schema.

Consequently, we define normalized ME/R graphs to resolve this problem. When working with
ME/R graphs in our graphical modeling environment, we simply include a normalization step
which removes redundant edges before further processing of an ME/R graph.

Definition 3-16: Normal Form of ME/R graph, Normalization of ME/R graphs

A correct ME/R graph G = (N, E, tN, tE, s, t) is defined to be in normal form iff

� e� E with tE(e)= is_classified_by and s(e)=a and t(e)=b and azb:

�� [(n1, n2, .... , nm) with ni � N, m>0,

(e1, e2, .... , em+1) with ei � E, ez ei ,  eiz ej for izj and tE(ei)= is_classified_by] with:

s(e1)=a, t(e1)=n1,

s(e2)=n1, t(e2)=n2,

.......

s(em)=nm-1, t(em)=nm,

s(em+1)=nm, t(em+1)=b

The normalization of a correct ME/R graph G = (N, E, tN, tE, s, t) removes all redundant
edges. Formally, we define the new set of edges E’ as

E’ := E \ { e� E with tE(e)= is_classified_by �

� [(n1, n2, .... , nm) with ni � N, m>0,

(e1, e2, .... , em+1) with ei � E and tE(ei)= is_classified_by] with:

s(e)=a and t(e)=b,

s(e1)=a, t(e1)=n1,

s(e2)=n1, t(e2)=n2,

.......

s(em)=nm-1, t(em)=nm,

s(em+1)=nm, t(em+1)=b }

¡
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Theorem 3-1: Existence and Uniqueness of normalized ME/R graph

To every correct ME/R graph G = (N, E, tN, tE, s, t) there exists a normalized ME/R graph
G’=(N, E’, tN, tE’, s’, t’) which is uniquely determined.

¡

Proof  3-1: Existence and Uniqueness of normalized ME/R graph

The existence proof is a direct consequence of the definition of normalized ME/R graphs: ei-
ther the ME/R graph is already in normal form or construct G’ by removing the redundant
edges.

When it comes to the uniqueness of the normalized ME/R graph, we see that the correctness
criterion (4) which prevents cycles in the classification hierarchy, is useful here. Let us assume
the following situation for a classification hierarchy of a dimension:

a

Tw o re du ndant e dg es

veh ic le
re pa ir

cb

figure 3-8: two redundant edges in a dimension

In this example, there exist two different paths from a to c and from a to b: c can be reached
from a either directly or via b. Similarly, b can be reached from a either directly or via c. Thus,
we have two redundant edges. If we would remove the edge from a to b, we would get a dif-
ferent normalized graph as if we would remove the edge from a to c. This result would be in
contrast to the uniqueness of the normalized ME/R graph.

This example revealed the only case where the uniqueness of the resulting normalized ME/R
graph could be endangered. The cycle between b and c (represented by the two classification
edges) in this incorrect ME/R graph lead to the situation where we had two conflicting redun-
dant edges. Consequently, since cycles are prohibited in a correct ME/R graph, we conclude
that the resulting normalized ME/R graph is always uniquely determined.

q.e.d. ¡

For reasons of completeness, we have to prove that a correct ME/R graph is still correct after
normalization:

Theorem 3-2: Normalization and Correctness of ME/R graphs

An ME/R graph G = (N, E, tN, tE, s, t) which is correct according to conditions (1), (2), (3-1),
(3-2), (4) is still correct after normalization.

¡
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Proof  3-2: Normalization and Correctness of ME/R graphs

We omit the full formal proof. Basically, there are two cases: if G is already in normal form, it
is not transformed at all and therefore still correct. If G is being normalized, only redundant
edges are removed so that all conditions still hold (no isolated elements, correct types of edges,
existing paths are not deleted  and condition (3-1) is not endangered by normalization)

q.e.d. ¡

As a consequence of this theorem for the rest of this thesis, we only speak of an ME/R graph
and mean the corresponding normalized ME/R graph.

3.6.4. Mapping ME/R graphs to MD schemas

Now we show that a typed graph for a given ME/R model satisfying conditions (1) to (4) is
equivalent to an MD schema:

Theorem 3-3: Mapping ME/R graphs to MD schemas

Every typed, normalized ME/R graph G = (N, E, tN, tE, s, t) satisfying conditions (1) to (4) can
be mapped to an equivalent consistent MD schema _=<F, L, A, gran, class, attr>.

¡

Proof  3-3: Mapping ME/R graphs to MD schemas (by construction)

We build the MD schema as follows:

F := {n � N with tN(n)= fact}, L := {n � N with tN(n)= dim_level}

A := {n � N with tN(n)= attribute}

For the construction of gran, we define:

� f � F: define gran(f) := { n � N with tN(n)= dim_level �

(� e � E: s(e) = f � t(e) = n � tE(e) = is_dimension_of) }

class := { (l1,l2) with l1,l2 � L � tN(l1)= dim_level � tN(l2)= dim_level �

(� e � E: s(e) = l1 � t(e) = l2 � tE(e) = is_classified_by) }

The minimality of class and its transitive closure (especially the partial order defined by class) is
ensured by condition (4) (no cycles in the dimension hierarchy) and the normalization.

For the construction of attr, we define:
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After the construction of _, we have to show that it fulfills the four constraints for a consis-
tent MD schema (see chapter 3.5.4).

Condition (1) for correct MD schemas says that every fact must be connected to at least one
dimension level:

� f � F: gran(f) must be well-defined and |gran(f)| t 1

gran(f) is well-defined by construction and conditions (1) to (3-1) for correct ME/R graphs
guarantee that there is at least one dimension level connected to the fact, i.e. there is at least
one base dimension level for the fact.

Condition (2) for correct MD schemas requests that every dimension level must be part of a
classification hierarchy or connected to a fact (or in other words: isolated dimension levels
must not exist):

� l � L: (� f � F with l � gran(f)) � (� x � L with either (l,x) � class or (x,l) � class)

This is ensured by conditions (1) and (3-2) for correct ME/R graphs.

Condition (3) for correct MD schemas requests that every attribute must be connected to ei-
ther a fact or a dimension level:

� a � A: attr(a) must be well-defined, attr(a)zA and |attr(a)| =1

This is guaranteed by the conditions (1), (3-1) and (3-2) for correct ME/R graphs.

Finally, condition (4) for correct MD schemas prohibits isolated dimension hierarchies that are
not connected to a fact:

� l � L: (� f � F with l � gran(f)) � (� x � L, � g � F with m � gran(g) � (m,l) � class*)

This condition is satisfied by condition (3-2) in conjunction with conditions (1) and (2) for cor-
rect ME/R graphs.

q.e.d. ¡

3.6.5. Mapping MD schemas to ME/R graphs

Since the mapping between ME/R graphs and an MD schema should be bijective, we also
prove the reverse direction, i.e. for every consistent MD schema there exists a correct ME/R
graph:

Theorem 3-4: Mapping MD schemas to ME/R graphs

Every consistent MD schema _=<F, L, A, gran, class, attr> can be mapped to an equivalent
typed ME/R graph G = (N, E, tN, tE, s, t) satisfying the ME/R graph conditions (1) to (4).

¡

Proof  3-4: Mapping MD schemas to ME/R graphs (by construction)

Assume we have a consistent MD schema _=<F, L, A, gran, class, attr>, as defined in chapter
3.5.4. We now construct a typed ME/R graph (with ¦E and ¦N as defined above for ME/R
graphs) G = (N, E, tN, tE, s, t) as follows:

The set of nodes is simply the union of all MD schema ‘nodes’:
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N := F � L � A

The edge elements are tuples in this construction algorithm. This constitutes no restriction and
is merely used for notational convenience:

E:= { (l1,l2) with l1,l2 � L and  (l1,l2) � class } /* all classification edges */

� { (f,l) with f � F, l � L and gran(f)=l } /* all is_dimension_of edges */

� { (f,a) with f � F, a � A and attr(a)=f } /* all measure edges */

� { (l,a) with l � L, a � A and attr(a)=l } /* all attribute edges */

The type functions are defined as:
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Finally, we have to define the source and the target function. These definitions are quite
straightforward because we already have this information in our edge tuples. Thus, we define:
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After the construction of the ME/R graph, we have to prove that it fulfills the conditions for
correct ME/R graphs:

Condition (1) for correct ME/R graphs demands that every node is either source or target of at
least one edge:

This condition is satisfied by the constraints (1) to (3) for consistent MD schemas.

Condition (2) for correct ME/R graphs requests that every edge connects exactly two nodes
and the correctness of the edge and node types is guaranteed.

This condition is fulfilled by the definition of the functions gran, class and attr of the MD
schema together with constraints (1) to (3).

Condition (3-1) for correct ME/R graphs demands: � f�F: there is at least one e � E with
tE(e)= is_dimension_of, s(e)=f, t(e)=n for an n � N with tN(n)= dim_level.

This condition corresponds to constraint (1) for consistent MD schemas.

Condition (3-2) for correct ME/R graphs demands:

� n�N with tN(n)= dim_level or tN(n)= attribute:

� f � N with tN(f)= fact and  path (f,n).
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To guarantee this powerful condition, we basically need all constraints for consistent MD
schemas because constraint (4) only ensures that no isolated dimension hierarchies exist. For
the complete path from a fact or a dimension level, we need also the dimensionality of the fact
(constraint (1)), together with the connection criteria for all attribute and dimension level
nodes.

Finally, the minimality condition of class and its transitive closure guarantees that no redundant
edges exist and that there are no cycles in the dimension hierarchy (condition 4).

Consequently, the resulting ME/R graph is in normal form.

q.e.d. ¡

3.6.6. Isomorphism between ME/R graphs and MD schemas

The two mappings between ME/R graphs and MD schemas together with the normalization
step allow for a full isomorphism between correct ME/R graphs and consistent MD schemas.

We omit the complete formal proof here and only present the argument chain which provides
our reader with more intuitive understanding of the proof. The single arguments strongly rely
on the formal proofs of the mappings and the normalization, thus the proof of the isomorphism
basically would constitute a rather lengthy and straightforward extension of the three proofs
above.

In order to proof the isomorphism between correct ME/R graphs and consistent MD schemas,
we have to show that the mapping of a correct ME/R graph to a consistent schema is

(1) injective: if two ME/R graphs have been mapped to the same MD schema, the graphs must
be identical. The only case where two (or more) different ME/R graphs would be mapped
to the same MD schema, is prohibited by the normalization. Thus, using our normalization
step, we could show that the mapping is injective

(2) surjective: to show this, we have to prove that there exists a mapping from consistent MD
schemas to correct ME/R graphs (which we have defined in fact) and that the concatena-
tion of the two mappings delivers the identity. In other words, a consistent MD schema,
mapped to a correct ME/R graph, mapped again to a consistent MD schema would deliver
the identical MD schema. This can be proven by applying our two mappings (together with
the normalization) accordingly, except for different namings of the MD schema compo-
nents.

3.6.7. Discussion and conclusions drawn from the dualism

Although the isomorphism between an ME/R graph and its corresponding MD schema is quite
powerful, an interesting issue is not resolved (and can not be resolved) on this level. This may
cause problems when further processing an ME/R graph or MD schema. The issue is con-
cerned with merging dimensions, i.e. a classification relationship between dimension levels
belonging to different dimensions. For the task of conceptual design, this must be allowed (e.g.
it makes sense to classify both customers and garages according to their geographical region).
Nevertheless, no commercial tool is powerful enough to capture this semantics accordingly
(see chapter 4.1).
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As a result of this further core piece of FIESTA, we may use both formalizations of an MD
schema equivalently, either the ME/R model (ME/R graph) or the algebraic description of the
MD schema. This isomorphism is extremely useful, because the graphical formalism fits to our
approach of a schema design and maintenance tool, whereas the algebraic representation can
be used for internal representation and processing. Additionally, the semantics of a schema
evolution operation must be described in terms of the algebraic data model (especially for the
instance adaptation).

For our graphical design tool this means that we may use the ME/R graph as interface to the
user’s (i.e. the schema designer) interaction. The isomorphism guarantees a consistent MD
schema if we have a correct ME/R graph. The consistency of the MD schema will be further
exploited when we process the schema evolution operations and generate corresponding com-
mands for the adaptation of the logical schema and instances (see chapter 4).

3.7. Evolution of MD Schemas
tbd <Klassifikation der Evo-Ops gemäß der oben eingeführten Klassifikation (was gehört zu
welchem Bestandteil des MD Data Model)>

After having provided two necessary prerequisites, namely

� a formal definition of multidimensional schemas and instances (chapter 3.5), and

� the dualism of a conceptual multidimensional schema described by both its ME/R and alge-
braic representation (chapter 3.6),

we are now able to present a set of formal evolution operations for multidimensional schemas.

The schema evolution operations of FIESTA have been first introduced in [Bla99], [DSBH99]
and as a complete formal version in [BSH99].

Regarding our objectives introduced in chapter 3.3 and the overall idea of doing schema design
in a graphical modeling tool using the ME/R representation of an MD schema, we have de-
cided to define very fine-grained schema evolution operations. The operation definition is also
closely related to our formalization of the multidimensional data model and to the elements of
an ME/R model (or the ME/R graph, respectively).

This fine-grained approach yields the following benefits:

� easy use in a graphical modeling tool: since the definition of the evolution operations is
close to the graphical representation of MD schema elements using the ME/R notation, the
operations are close to the ME/R graph operations. Basically, the schema evolution opera-
tions work with the typed edges and nodes of an ME/R graph. Consequently, we can de-
rive the complete set of evolution operations just by the basic graph operations:

- inserting or deleting an ME/R node: since we have three special ME/R nodes (dimen-
sion level, fact, attribute) which we can insert or delete from an ME/R graph, we al-
ready have six operations.

- ME/R edges: there are four different edge types in the ME/R approach: the attribute
relationship between a dimension level and an attribute, the attribute relationship be-
tween a fact and an attribute, the classification relationship between two dimension lev-
els, and the is_dimension_of relationship between a fact and its base dimension levels.
The graph operations connect and disconnect for these four edge types deliver eight
further operations.

Summarizing, when regarding merely the typed ME/R graph with its specialized nodes and
edges and the basic operations of inserting and deleting nodes and edges, we already have
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the set of 14 operations. These graph operations constitute exactly the set of schema evo-
lution operations working on an MD schema. Consequently, the proposed set of evolution
operations will be complete in the sense that every correct ME/R graph (or consistent MD
schema) can be “constructed” using the schema evolution operations (will be proven in
chapter 3.8).

� The fine-grained approach allows to reflect different variants of the semantics of a schema
evolution operation. For example, it is possible to express a sequence of operations that
deletes a dimension from a fact together with the whole dimension hierarchy (i.e. all dimen-
sion levels together with the corresponding classification relationships). In other use cases,
this semantics may not be feasible. The fine-grained approach allows to define arbitrary se-
quences of schema evolution operations explicitly reflecting these different semantics.

� Prerequisite for processing schema evolution operations in the target database system (on
the logical layer): only the fine-grained approach allows to derive corresponding
DDL/DML commands according to the features of the target system. When processing
conceptual schema evolution operations on the logical layer, the fine-grained schema evo-
lution operations have to be grouped together. The grouping rules are different for differ-
ent target systems. Each grouping is then transformed to a corresponding set of
DML/DDL commands in the target system. Further, the fine-grained approach allows for
optimization of sequences of schema evolution operations. Details on these issues will be
given in chapter 4.

As already mentioned, the fine-grained approach typically leads to a sequence of schema evo-
lution operations. Since the single operations do not always guarantee the consistency of an
MD schema after their execution, we only check for consistency after an evolution session.
Chapter 3.8 further elaborates the issue of operation sequences and consistency.

Coming back to the atomic (or base) operations, we now present key ideas of our formaliza-
tion.

First of all, we introduce all our operations using the same layout and description. We start
with the name and a textual description of the operation. Then, we define pre- and post-
conditions for the execution. Finally, we formally define the syntax with input and output pa-
rameters and the semantics of the operation execution. To this end, figure 3-9 shows a sample
template for the definition of the syntax and semantics.

name of the operation

syntax with in-
put and output
parameters

operation (par1, par2, ... , parn )

input:  schema _� instances >_ � par1, par2, ...

output:  new schema _·, new instances >·_·

semantics Schema:
formal description of _·

Instances:
formal description of  >·_·

figure 3-9: template for the description of a schema evolution operation
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The table heading contains the name of the operation, whereas the two table lines present the
syntax and semantics, respectively. The syntax is defined like a function call, i.e. the operation
name together with all input parameters in brackets. The first two input parameters are always
the current schema and the current set of instances, followed by additional parameters like a
new dimension level to be inserted. The output of an operation is always the new schema (after
the execution of the operation) and the new set of instances.

Regarding the semantics of the execution of an operation, we present a formal description (in
terms of our multidimensional data model) of both the schema transformation and the instance
adaptation.

Appendix A provides a tabular enumeration of the complete definitions of all evolution opera-
tions.

Formally, a schema evolution operation op transforms an MD schema _ =<F, L, A, gran,
class, attr> to an MD schema _· =<F’, L’, A’ , gran’, class’, attr’>. Some operations also
require an adaptation of the instances >_ to >·_·� We always denote elements before the op-
eration execution with the regular letter (e.g. L), whereas a letter with an apostrophe (e.g. L’)
denotes the corresponding element after the operation execution.

Annotation: When a relation or function like class or attr changes only its definition or result
set (and not the mapping of the elements itself),  we say that e.g. class’ = class and omit the
strict formal definition including the definition set and result set.

For a function f:domocodom let 
'dom

f denote the restriction of f to dom’ � dom

We start with the operations describing modifications of a dimension level:

3.7.1. Modification of a dimension level
1. insert level: this operation extends an existing MD model by a new dimension level. The

operation extends the set of levels without changing the classification relationships, thus
creating an isolated level element. Classifications relationships for this new level have to be
defined separately.

Precondition: the new level may not be contained in the MD model yet.

Postconditions: after the application of the operation, the new level is part of the new MD
model. The new level has no instances because we regard the definition of instances as part
of the definition of corresponding classification relationships for this level.

Syntax and semantics:

insert_level

syntax with in-
put and output
parameters

insert_level (_�>_,lnew)

input:  schema _� instances >_ � new level name lnew

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L’, A, gran’, class’, attr’>
L’ := L � { lnew }
gran’:= gran (see annotation above)
class’ := class
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attr’:= attr

Instances:
No effects on instances because the operation inserts a new and
empty dimension level without instances. Thus:

>·_· = <R-UP, C, AV>

figure 3-10: syntax and semantics of the insert_level operation

2. delete level: deletes an existing, but isolated (i.e. not connected to any other element of the
MD model) dimension level ldel from an MD model. Instances are deleted automatically to-
gether with the dimension level..

Preconditions: the dimension level exists (ldel�L), the level must not be connected to a fact
(ldel �gran(f) �f� F) or via classification relationships ((ldel, l) �class �(l, ldel) �class
�l�L’). Further, the level must not have any attributes attached (attr(a) z ldel �a� A).

Postconditions: after the application of the operation, the level not contained in the MD
model. Existing instances are deleted.

Syntax and semantics:

delete_level

syntax with in-
put and output
parameters

delete_level (_�>_, ldel )

input:  schema _� instances >_ � level name ldel to be deleted

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L’, A, gran’, class’, attr’>.
L’ := L \ { l del }

gran’:= gran
class’ := class
attr’ := attr

Instances:
no effect because dimension members are deleted automatically.

Thus:

>·_· = <R-UP, C, AV>

figure 3-11: syntax and semantics of the delete_level operation

3.7.2. Modification of an attribute

3. insert attribute : creates a new attribute without attaching it to a dimension level or fact.
The assignment of the attribute to a dimension level or fact constitutes a separate opera-
tion. Especially, it is not defined if the new attribute is a measure or a dimension level at-
tribute.
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Precondition: the new attribute name  may not be part of the existing MD model (anew�A)

Postcondition: after the application of the operation, the new attribute is part of the MD
model. The new attribute has no values associated.

Syntax and semantics:

insert_attribute

syntax with in-
put and output
parameters

insert_attribute (_�>_,anew)

input:  schema _� instances >_ �

attribute anew with dom(anew) to be inserted

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A’,  gran, class, attr’>

A’ := A � { anew }
attr’:  A’ o F � L � {A}; attr’(a) := attr(a) � a � A’\{ a new },
attr’(anew) := A

Instances:
no effect, thus:

>·_· = <R-UP, C, AV>

figure 3-12: syntax and semantics of the insert_attribute operation

4. delete attribute: deletes an existing, but disconnected attribute (i.e., the attribute is not
attached to a dimension level or fact).
Preconditions: the attribute exists (adel�A) and must not be connected to a fact or to a di-
mension level (attr(adel) = A).

Postcondition: after the application of the operation, the attribute is not contained in the
MD model.

Syntax and semantics:

delete_attribute

syntax with in-
put and output
parameters

delete_attribute (_�>_, adel )

input:  schema _� instances >_ � attribute name adel  to be deleted

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A’,  gran, class, attr’>
A’ = A - { adel }

attr’:  A’ o F � L � {A}; attr’(a) := attr(a) � a � A’

Instances:
no effect, thus:

>·_· = <R-UP, C, AV>



FIESTA: An MD Schema Evolution Methodology74

figure 3-13: syntax and semantics of the delete_attribute operation

5. connect attribute to dimension level: connects an existing attribute anew to an existing
dimension level l. A function g assigns values (default or computed) for the new attribute
to every member (instance) of the dimension level.

Preconditions: the attribute and the dimension level exist (anew �A, l � L), the attribute
must not be connected to another element (attr(anew)=A). Further, g must be well-defined
for all dimension members of the level: g(m)=v  with v� dom(anew) �m � dom(l).

Postconditions: after the application of the operation, the attribute is not isolated anymore.
All dimension members have values for the new attribute. The resulting MD model is con-
sistent.

Syntax and semantics:

connect_attribute_to_dim_level

syntax with in-
put and output
parameters

connect_attribute_to_dim_level (_� >_, anew,  l, g )

input:  schema _� instances >_ � attribute anew to be connected, di-
mension level l to which anew is connected, function g for the compu-
tation of the anew values

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A ,  gran, class, attr’>

new
aa
new

aa

if

if

aattr

l
arattLFAratt

z

 

¯
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­
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Instances:
>·_· = <R-UP, C, AV'>,

AV': AV' := AV � {avanew}, define avanew: dom (l) o dom(anew)

with )()(:)( ldommmgmav newa �� 

figure 3-14: syntax and semantics of the connect_attribute_to_dim_level operation

6. disconnect attribute from dimension level: disconnects an attribute adel from a dimension
level l � L. The operation merely removes the is_attribute_of relationship, leaving both
the attribute and the dimension level as parts of the MD model.

Preconditions: the attribute and the dimension level exist (adel �A, l � L). Further, the at-
tribute and dimension level must be connected to each other (attr(adel)=l ).

Postconditions: after the application of the operation, both the attribute and the dimension
level still exist, but not connected to each other anymore (both may still be connected to
other MD model elements). In particular, the dimension members still exist.
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Syntax and semantics:

disconnect_attribute_from_dim_level

syntax with in-
put and output
parameters

disconnect_attribute_from_dim_level (_�>_, adel , l )

input:  schema _� instances >_ � attribute adel  and level name l to
be disconnected

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A,  gran, class, attr’>
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Instances:
>·_· = <R-UP, C, AV'>,

AV': AV' := AV - { av adel }with avadel being the corresponding at-
tribute value function for adel

figure 3-15: syntax and semantics of the disconnect_attribute_from_dim_level operation

7. connect attribute to fact: connects an existing attribute anew to an existing fact f. A func-
tion g assigns values (default or computed) for the new attribute to every instance of the
fact.

Preconditions: the attribute and the fact exist (anew �A, f � F), the attribute must not be
connected to another element (attr(anew)=A). Further, g must be well-defined for all fact in-
stances.

Postconditions: after the application of the operation, the attribute is not isolated anymore.
All fact instances have values for the new attribute. The resulting MD model is consistent.

Syntax and semantics:

connect_attribute_to_fact

syntax with in-
put and output
parameters

connect_attribute_to_fact (_� >_, anew,  f, g )

input:  schema _� instances >_ � attribute anew to be connected, fact
f to which anew is connected, function g for the computation of the
anew values

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A ,  gran, class, attr’>

new
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Instances:
>·_· = <R-UP, C’, AV>,
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C’ := C – {cf} � {cf'} with cf being the existing cube for f ;

define cf': dom(f) o codom(f) as

)()(),,(),,,(:)(' 1111 xgzandxczzwithzzzxc nfnnnf    
��

��

figure 3-16: syntax and semantics of the connect_attribute_to_fact operation

8. disconnect attribute from fact: disconnects an attribute adel from a fact f � F. The opera-
tion merely removes the is_attribute_of relationship, leaving both the attribute and the fact
as parts of the MD model.

Preconditions: the attribute and the fact exist (adel �A, f � F). Further, the attribute and
fact must be connected to each other (attr(adel)=f ).

Postconditions: after the application of the operation, both the attribute and the fact still
exist, but not connected to each other anymore (both may still be connected to other MD
model elements).

Syntax and semantics:

disconnect_attribute_from_fact

syntax with in-
put and output
parameters

disconnect_attribute_from_fact (_�>_, adel , f )

input:  schema _� instances >_ � attribute adel  and fact f to be dis-
connected

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A,  gran, class, attr’>
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Instances:
>·_· = <R-UP, C’, AV>,
C’ := C – {cf} � {cf'} with cf being the existing cube for f ;

define cf': dom(f) o codom(f) as

)(),,,(),,(:)(' 1111 xczzzwithzzxc fnnnf   
��

��

figure 3-17: syntax and semantics of the disconnect_attribute_from_fact operation

3.7.3. Modification of a classification relationship

9. insert classification relationship: this operations defines a classification relationship be-
tween two existing dimension levels. The dimension levels may be either isolated elements
of the MD model or already be connected by other relationships. If one or both dimension
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levels do not contain instances yet (because they are isolated elements), the corresponding
classification relationship for the instances has to be defined.

Preconditions: both dimension levels must exist (l1� L, l2 � L) and must not be connected
by an existing classification relationship (i.e. {(l1,l2)}� class and {(l2,l1)}� class). The clas-
sification relationship between the instances must be well-defined.

Postconditions: after the application of the operation, both dimension levels are connected
to each other. A classification between their instances is defined. If one or both of the di-
mension levels have been isolated elements before, the resulting MD model is consistent
after the operation execution.

Syntax and semantics:

insert_classification

syntax with in-
put and output
parameters

insert_classification (_�>_, l1, l2)

input:  schema _� instances >_ � two dimension level names l1, l2 to
be connected.

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A,  gran, class’, attr>
class’ = class � {(l 1,l2)}

Instances:
>·_· = <R-UP', C, AV>,

R-UP' := R-UP � { 2
1
l
lupr �  },

� m � dom(l1): 2
1
l
lupr �  (m):= k with k� dom(l2).

Additionally, 2
1
l
lupr �  (dom(l1))� dom(l2),

i.e., 2
1
l
lupr �  is well-defined � m � dom(l1).

figure 3-18: syntax and semantics of the insert_classification operation

10. delete classification relationship: removes an existing classification relationship between
two dimension levels without deleting the corresponding dimension levels. After this op-
eration, the dimension levels may be isolated elements. In particular, the classification in-
formation between the instances of the two dimension levels is lost.

Preconditions: both dimension levels exist (l1� L, l2 � L) and are connected by a classifica-
tion relationship (i.e. {(l1,l2)}� class).

Postconditions: after the application of the operation, both dimension levels are discon-
nected from each other. One or both dimension levels may be isolated elements after the
operation execution.
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Syntax and semantics:

delete_classification

syntax with in-
put and output
parameters

delete_classification (_�>_, l1, l2)

input:  schema _� instances >_ � two dimension level names l1, l2 to
be disconnected.

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F, L, A,  gran, class’, attr>
class’ = class – {(l1,l2)}

Instances:
>·_· = <R-UP', C, AV>,

R-UP' := R-UP - { 2
1
l
lupr �  }

figure 3-19: syntax and semantics of the delete_classification operation

3.7.4. Modification of a fact

11. insert fact: this operation extends an existing MD model by a new fact. The operation
extends the set of facts without attaching dimension levels to this fact, thus creating an
isolated fact element. Dimensions for this fact have to be defined separately.

Precondition: the new fact may not be contained in the MD model yet (fnew �F).

Postconditions: after the application of the operation, the new fact is part of the MD
model. The new fact has no instances.

Syntax and semantics:

insert_fact

syntax with in-
put and output
parameters

insert_fact (_�>_, fnew)

input:  schema _� instances >_ � fact name fnew to be inserted

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F’, L, A,  gran’, class, attr’>
F’ := F � {fnew},

new

newL

ffif

ffif

fgran
fngraFgran

z
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attr’ := attr

Instances:
>·_· = <R-UP, C', AV>,
C’:=  C �  {

newfc  },
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define 
newfc : dom (fnew) o  codom(fnew) as

c(x):= A � x� dom(fnew)

figure 3-20: syntax and semantics of the insert_fact operation

12. delete fact: removes an existing, but isolated  (i.e. not connected to any other element of
the MD model) fact fdel from an MD model. Instances are deleted automatically.

Preconditions: the fact exists (fdel � F). The fact must not be connected to a dimension
(gran(fdel)=�) and must also not contain any attributes (attr(a) z fdel � a�A).

Postconditions: after the application of the operation, the fact is not contained in the MD
model. Existing instances are deleted.

Syntax and semantics:

delete_fact

syntax with in-
put and output
parameters

delete_fact (_�>_, fdel)

input:  schema _� instances >_ � fact name fdel to be deleted

output:  new schema _·, new instances >·_·

semantics Schema:
_· <F’, L, A, 'F

gran , class, attr’ >

F’ := F - {f del},   
attr’ := attr

Instances:
>·_· = <R-UP, C', AV>,
C’:=  C -  {

delfc  }

figure 3-21: syntax and semantics of the delete_fact operation

13. insert dimension level into fact: inserts an existing dimension at the specified dimension
level into an existing fact (relationship), thus increasing the number of dimensions by one.
Parameters are the level name and the fact name that are to be connected.

Additionally, a function nv has to be provided defining how the new values for the fact can
be computed based upon the now extended set of dimensions and the old value of the fact.
Each cell of the old cube now becomes a set of cells, exactly reflecting the new dimension.
This means that each old value of the fact is now related to all elements of the new dimen-
sion. For instance, we assume daily repair cases of cars stored without the brand (i.e., we
have no distinction between the brand of cars). Now we want to include the brand meaning
that we insert a new dimension at the level brand (see figure 3-22).

To this end, we have to provide a function that computes the new fact (repair cases by
brand) based on the old dimensions (without brand) and the (old) number of repair cases.
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The old number of repair cases could be repair cases for a specific brand (alternative 1 in
figure 3-22), a summarization over all brands (alternative 2), or other. The idea how the
new values can be computed is stored in the function nv. For example, if we only had
BMW cars before, then we would use the old fact value for BMW and “A” for all other
cars (because the values cannot be computed, alternative 1). If the old value was a sum
over all brands, we could only take this value as a sum, whereas values for the single
brands are unknown (corresponding to “?” in figure 3-22).
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figure 3-22: different alternatives for the instance adaptation

Preconditions: both the fact and the dimension level must exist (l � L, fins � F) and may not
be connected in the MD model yet ( {l} � gran(fins) ). The function nv must be well-defined
for all existing fact instances.

Postconditions: after the application of the operation, the fact has been extended by one
more dimension. The existing fact instances have been adapted w.r.t the new dimension ac-
cording to function nv.

Syntax and semantics:

insert_dimension_into_fact

syntax with in-
put and output
parameters

insert_dimension_into_fact (_�>_, l , fins, nv )

input:  schema _� instances >_ � level name l and fact name fins to
be connected. Function nv to compute the distribution of existing fact
instances over the new dimension.

output:  new schema _·, new instances >·_·

semantics Schema:
_· < F, L, A,  gran’, class, attr>
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Instances:
>·_· = <R-UP, C', AV>
C’ := C – {cf} � {cf'} with cf denoting the existing cube for fins.

Although the fact fins itself does not change, its domain changes
and the values of  its co-domain have to be adapted. Conse-
quently, we define a new cube cf' and speak of f (or dom(f),
codom(f) ) if we refer to cf and speak of  f ’ (or dom(f ’), co-
dom(f ‘) ) if we refer to cf'.
We assume a dimensionality of n for cf and a dimensionality of
n+1 for cf'.

cf' is derived from cf as follows:

first, we compute the instances of dom(f ‘): for every combination
(x1,...,xn,xn+1) � dom(f) in cf, add | dom(l) | new cube cells
(x1,...,xn,xn+1, y) with y � dom(l) to cf'.

Second, compute the instances of codom(f ‘), i.e. adapt the
measures:

)),,,((),,,( 1111
'

��
 nnfnnf xxxcnvxxxc ��

with )'()()(: fcodomldomxfcodomnv o being the function
that distributes the existing measures over the new dimension.

figure 3-23: syntax and semantics of the insert_dimension_into_fact operation

14. delete dimension level from fact: deletes a dimension, specified by the dimension level,
from a fact. The operation disconnects the base level l for this dimension from the fact fdel .
Neither the fact nor the dimension level are deleted implicitly. Since the dimensionality of
the fact is reduced, an aggregation function agg has to be provided which defines how the
existing measures are aggregated over the deleted dimension (e.g. by summation).

Preconditions: both the fact and the dimension level must exist (l � L, fdel � F) and must be
connected to each other ( {l} � gran(fdel) ). The function agg must be well-defined for all
existing fact instances.

Postconditions: after the application of the operation, the dimensionality of the fact has
been reduced by one dimension, possibly leaving a zero-dimensional fact. The existing fact
instances have been aggregated w.r.t the function agg.



FIESTA: An MD Schema Evolution Methodology82

Syntax and semantics:

delete_dimension

syntax with in-
put and output
parameters

delete_dimension (_�>_, l , fdel, agg)

input:  schema _� instances >_ � level name l and fact name fdel to
be disconnected. Function agg to aggregate the existing fact instances
over the deleted dimension.

output:  new schema _·, new instances >·_·

semantics Schema:
_· < F, L, A,  gran’, class, attr>
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Instances:
>·_· = <R-UP, C', AV>
C’ := C – {cf} � {cf'} with cf denoting the existing cube for fdel.

Although the fact fdel itself does not change, its domain changes
and the values of  its co-domain have to be adapted. Conse-
quently, we again define a new cube cf' and speak of f (or dom(f),
codom(f) ) if we refer to cf and speak of  f ’ (or dom(f ’), co-
dom(f ‘) ) if we refer to cf'.
We assume a dimensionality of n for cf and a dimensionality of
n-1 for cf'. We further assume that the dimension to be deleted
corresponds to the n-th element in dom(f).

cf' is derived from cf as follows:
cf' : dom (f ‘) o codom (f ‘) with dom(f ‘) being the reduced do-
main and

)()),,((),,( 111
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figure 3-24: syntax and semantics of the delete_dimension operation

So far, we have introduced a set of 14 atomic schema evolution operations. As already said,
their main benefit is the proximity to the ME/R graph representation of a given MD schema.
But, as a drawback, the execution of such an operation may corrupt the consistency of a given
MD schema e.g. by  creating isolated elements that are not connected to any other MD schema
element. Since a typical schema design session delivers a sequence of schema evolution opera-
tions, we now close this gap by showing where and how we check consistency in this schema
design and evolution process. We also define some properties that a sequence of evolution
operations ideally should fulfill to allow for efficient processing in the target system on the
logical layer.
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3.8. Evolution Operation Sequences and Consistency

According to our formal approach defined in chapter 3.4 and having our vision of schema de-
sign with a graphical modeling tool in mind, we now present where and how we apply our
formal results in the overall user interaction scenario.

First of all, we note that the ME/R model, visualized as a typed graph constitutes the interface
to the user. There, he performs graph operations like adding or deleting nodes and/or edges.
Since the graph corresponds to the MD schema, he actually performs a sequence of schema
evolution operations, defined on the graphical representation of the MD schema. We assume
without loss of generality that he starts his schema design session with a consistent MD schema
(or a correct ME/R graph, accordingly). His graph operations correspond to a sequence of
schema evolution operations. Finally, when the modified conceptual MD schema fits the re-
quirements of the changed universe of discourse, he finishes his schema design session.

At this point, the resulting MD schema has to be checked for consistency. The check is per-
formed on the ME/R graph (by checking the correctness criteria for ME/R graphs). Then, we
use the isomorphism between an ME/R graph and its corresponding MD schema in the way
that the correctness of the ME/R graph assures certain properties on the MD schema, namely
the consistency of the MD schema. It also guarantees that the sequence of evolution operations
has transformed a consistent MD schema to another consistent MD schema. We will see later
(in chapter 4) how these properties are exploited for generating and optimizing the DDL/DML
commands to adapt the logical schema and instances.

Currently, we assume that the sequence of schema evolution operations is obtained by logging
the user’s graph operations, each of which corresponds to a schema evolution operation. Of
course, when only regarding the MD schema before the schema evolution session and after-
wards, there is in general an infinite number of operation sequences transforming an MD
schema to another. The approach of recording the user’s graph interactions delivers not neces-
sarily the optimal sequence. However, we do not focus on the issue of how to obtain the opti-
mal sequence (nevertheless, we discuss this question in chapter 5), but from the infinite number
of possible operation sequences, we mark one operation sequence J (see chapter 3.4) which is
optimal in the following sense:

(1) the sequence has minimal length. Especially, this means that the sequence contains no
compensating operations (e.g. an insert dimension level l operation, followed by a delete
dimension level l operation)

(2) the sequence transforms a correct ME/R graph to another correct ME/R graph.

(3) the sequence is ordered in a way that the pre- and post-conditions of the schema evolution
operations regarding other edges and nodes are fulfilled. A simple heuristics (nodes must
be inserted before edges between these nodes are defined) guarantees the fulfillment of this
requirement. The heuristics can be easily applied by re-ordering the operation sequence ac-
cordingly.

Chapter 4 shows how this optimal sequence of schema evolution operations can be automati-
cally processed by our tool environment.

We conclude with the formal theorems and proofs that form the fundamental for the rather
informal ideas presented in this chapter. First of all, we have to show that our schema evolu-
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tion operations are complete, i.e. that we can generate every possible consistent MD schema
by applying our operations:

Theorem 3-5: Completeness of the schema evolution operations

Every consistent MD schema _=<F, L, A, gran, class, attr> can be generated by a sequence of
schema evolution operations J.

¡

Proof  3-5: Completeness of the schema evolution operations

Since the proof makes strong use of the isomorphism between MD schemas and ME/R graphs,
we omit the full formal proof because it is very similar to the isomorphism proofs in chapter
3.6. Basically, when starting with an empty MD schema (or corresponding empty graph), we
can generate the ME/R graph that corresponds to the MD schema by applying our schema
evolution operations, expressed by adding corresponding typed nodes and edges. For example,
for every f � F we introduce a node of type fact and so on.

q.e.d. ¡

As a corollar, we conclude:

Theorem 3-6: Transformation between consistent MD schemas

There is always a (not necessarily unique) sequence of schema evolution operations J =
(co1,co2, ... ,con) with each coi being an operation as defined in chapter 3.7 that transforms a
consistent MD schema _�=<F1, L1, A1, gran1, class1, attr1> to another consistent MD schema
_�=<F1, L2, A2, gran2, class2, attr2>.

¡

Proof  3-6: Transformation between consistent MD schemas

The proof is a consequence of Theorem 3-5 and the isomorphism between ME/R graphs and
MD schemas. We denote the invariant part of the MD schema as I:= _�� _� (defined on the
components).

For every element of I (precisely: every element of a component of I) we then construct the
sequence of evolution operations as follows:

For every element (i.e. node or edge in the corresponding ME/R graph) contained in _� \ I ,
add the corresponding delete/disconnect operation.

For every element contained in _� \ I , add the corresponding insert/connect operation.

q.e.d. ¡

This theorem enables our approach presented above. Now we have formally proven that there
always exists a sequence of schema evolution operations (J) that transform the MD schema at
the beginning of the evolution session (6C)  to the MD schema at the end of the evolution ses-
sion (6C’). To complete our approach, we have to show that there exists at least one sequence
J which fulfills our criteria of optimality. We omit the formal proof and just sketch the under-
lying ideas which contribute much more to the understanding of our approach.
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The first property is minimality. Minimality in length can be easily achieved by deleting com-
pensating operations from the recorded sequence of operations.

Property two is the transformation of a correct ME/R graph to another correct ME/R graph.
The check of the ME/R graph before and after a schema evolution session ensures that we
have applied an operation sequence which maintains correctness. Another advantage of
checking the correctness of the resulting ME/R model at the end of a schema design session is
the fact that incorrect schemas or operation sequences are detected before the schema evolu-
tion operations are processed. If inconsistencies would be detected while processing the evolu-
tion in the target system, aborted transactions and corresponding rollbacks would decrease the
overall system performance.

Finally, the last property is concerned with the correct ordering within the operation sequence
w.r.t. the pre- and postconditions of the operations referring to existing nodes and edges. The
simple heuristics allows a re-ordering that exactly fulfills these pre- and postconditions. The
heuristics can also very easily be implemented in a graphical modeling tool: edges may only be
defined between already existing nodes. Especially, this does not restrict the tool capabilities,
but reflects the canonical and intuitive understanding of building and modifying graphs in a
modeling tool.

3.9. Summary

This chapter presented the formal core of FIESTA. Consequently, we summarize the main
contributions here.

After an extended motivation which presented as main contribution a generic roadmap to
schema evolution, we showed an example of a schema evolution case in our graphical model-
ing tool. We think that this example awoke a general, but still rather incomplete, idea and vi-
sion of the main scientific contributions of FIESTA and its implementation as part of the Ba-
belFish project. In particular, we sketched a code fragment of the generated DML/DDL com-
mands that perform the schema evolution on the logical OLAP layer, which leads us to chapter
4 where we describe how schema evolution operations are processed in the underlying  rela-
tional database and OLAP system configuration.

Next, we presented three groups of objectives for FIESTA: objectives concerning the evolu-
tion algebra, the execution model and the software architecture. These objectives are a neces-
sary prerequisite for the understanding of FIESTA’s vision and main contributions.

After the objectives, we formalized our approach to multidimensional schema evolution. To
that end, we introduced a kind of formalized bird’s view on the next chapters. We especially
pointed out our notions of consistency and the difference between schema evolution on the
conceptual and the logical layer, and concluded with a formal definition of the research prob-
lem that FIESTA addresses.

Our multidimensional data model presented the first refinement step of the formalized ap-
proach to multidimensional schema evolution. We put a special focus both on the informal in-
troduction to the underlying ideas of our formal data model and the main differences to other
formalizations that have been proposed in the literature. Our running example helped in under-
standing the corresponding definitions of MD schemas and MD instances. We also refined our
notion of consistency and presented a set of formal integrity constraints for consistent MD
schemas.
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The next chapter formalized a dualism which actually has been used informally during the
whole thesis so far: the dualism of an ME/R model and its algebraic counterpart in terms of our
MD data model. To that end, we introduced ME/R graphs as special case of typed graphs. We
showed that a normalization step for ME/R graphs is necessary to enable the isomorphism
between ME/R graphs and MD schemas and added special conditions guaranteeing correctness
for ME/R graphs. We then presented “construction plans” to map a correct ME/R graph to a
consistent MD schema and vice versa. All these prerequisites allowed us to define the isomor-
phism between the graph-oriented view and the algebraic description of a given MD schema.

As next core piece of FIESTA and as main research contribution, we introduced our schema
evolution operations. After an explanation why we used a very fine-grained approach, we for-
mally described a set of fourteen schema evolution operations for the multidimensional data
model. To facilitate the understanding, we added examples and informal explanations, where
necessary.

Finally, the last chapter closed the open bracket of how the evolution operations are used in
our graphical schema design and maintenance tool. We showed that a typical schema designer
session delivers a sequence of schema evolution operations. Since the user works with the
ME/R graph, his interactions are graph modifications which exactly correspond to the schema
evolution operations. At the end of his design or maintenance session, he “checks in” his
modified schema, visualized by the ME/R graph. We decided to check the correctness of the
resulting ME/R graph immediately, because inconsistencies detected during processing of the
evolution operations in FIESTA would need corresponding transactions on the logical layer
(i.e. in the underlying database) to be rolled back.

Chapter 4 will now describe how the schema evolution operations are transformed to corre-
sponding DML/DDL commands that adapt the logical schema and instances together with the
OLAP tool metadata. The main parameter for the next chapter, delivered from the formal core
presented here, is a sequence of fine-grained schema evolution operations together with the
(consistent) MD schema before and after the evolution session. For processing the schema
evolution operations, FIESTA can rely on certain properties of the two MD schema states and
the operation sequence. As we will see now, both the fine-grained approach and the properties
allow for an automated generation of the corresponding DML/DDL commands that perform
the schema evolution on the logical layer. Especially, we present how the fine-grained opera-
tions must be grouped together in order to enable the logical schema evolution according to
the capabilities and peculiarities of the target OLAP system and database.
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4. Processing MD Schema Evolution
Operations in a Relational DBS

6chema evolution operations are grouped to sequences. This chapter describes how the evo-
lution of a conceptual multidimensional schema – specified by a sequence of schema evolution
operations – can be processed in an underlying relational database system. According to our
layer model defined in chapter 2.2, the database system is responsible for the persistent storage
of the OLAP data together with the OLAP tool metadata.

To this end, we first introduce the classical approach to model multidimensional OLAP data in
a relational schema, the so-called star schema. As we will see, some semantics of the multidi-
mensional data model get lost when transforming an MD schema to such a relational structure.
The metadata represents exactly this information. Consequently, we introduce a meta schema
as an extension of the relational database system catalogue to store this information. Basically,
the meta schema consists of three parts: one part covers metadata to describe multidimensional
schemas. The next part is the corresponding section from the standard RDBMS system cata-
logue to describe relational tables with their columns. Finally, we need metadata to describe the
mapping between the conceptual (multidimensional)  and logical (relational) layer. This is done
by defining correspondences between elements on both layers.

We then use this mapping between the conceptual and the logical layer to define consistency
between the two layers. Basically, this is another view of the interrelationships between the
conceptual and logical layer.

We define how the conceptual schema evolution operations are transformed to logical evolu-
tion operations. These logical evolution operations adapt the structure of the star schema to-
gether with the data (instances) stored in it and update the metadata (stored in the meta
schema) accordingly. We will present transformations for sequences of evolution operations
(which then form complex operations) to specific logical evolution operations. In order to
show the correctness of the evolution, we use the consistency definition to check if the trans-
formations on both layers have according semantics. Finally, some further ideas for optimizing
evolution operation sequences will be given.

My theory of evolution is that Darwin was
adopted.

(Steven Wright)
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4.1. Mapping MD Schemas to Relational Database Schemas

As already introduced in chapter 2.2, the logical layer is responsible for the persistent storage
of the data in terms of relations or multidimensional arrays6. This task is done by a database
system. Thus, the logical layer comprises the database schema together with the set of in-
stances representing the actual OLAP data, but also metadata. This metadata represents de-
tailed information about the mapping from the conceptual multidimensional layer to the logical
database system layer.

4.1.1. The Relational Database Schema
For OLAP systems, there exist two classical alternatives for the underlying database system:
the first is to choose a relational database system (so-called ROLAP architecture) for storage
of the multidimensional data, the second is the use of dedicated multidimensional database
systems (so-called MOLAP architecture) which use specialized array structures for the persis-
tent storage of the multidimensional data. Since the ROLAP architecture has proven to be
more scalable and because relational database systems offer at least basic support for schema
evolution - as opposed to no support in multidimensional database systems, we decided to base
FIESTA on a ROLAP architecture.

The classical approach for a relational database schema to represent a multidimensional
schema, is the so-called star schema ([Kim96a], [Inm96], [Sir97], [McG96]). A star schema
organizes each fact (which represents the subject of the analysis) in a relational table, called the
fact table. For each dimension, the complete dimension hierarchy (i.e. all dimension levels with
their describing attributes) are combined in a relational dimension table. The relationship be-
tween the fact table and the dimension tables is maintained by foreign key relationships. This
means that the fact table has a combined key, composed of the set of all foreign keys of the
dimensions. A star schema template is depicted in figure 4-1:

fact tab le

1st dimension table

2nd  dimension table

3rd dimens ion table

Dim1_key
D im2_key
D im3_key
D im4_key

M easure  1
M easure  2
M easure  3
. . .

. . .

D im1_key

D im1_a ttribute

D im2_key

D im2_a ttribute

D im3_key

D im3_a ttribute

D im4_key

D im4_a ttribute

4th dimension tab le

figure 4-1: star schema

                                               
6 We remark that the physical organization of these relations or MD arrays, i.e. clustering techniques for disk storage or

indexing strategies, belongs to the physical layer.
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As can be easily seen, some semantics of the multidimensional data model are lost or at least
hidden in such a star schema. For example, there is no information representing the classifica-
tion hierarchy of a dimension (because the attributes of a dimension table have no inherent or-
der) or the distinction between dimension levels and describing attributes of a dimension level
(because they are both merely attributes in the relational table).

Nevertheless, OLAP tools need this information for mapping user queries which are specified
in terms of the multidimensional schema to queries for the underlying database system.

To solve this shortcoming of a star schema, this information is additionally stored as metadata.

As a consequence, we present a meta schema as extension of a standard relational database
system catalogue. The meta schema comprises information about the conceptual multidimen-
sional schema as well as information concerning the mapping from multidimensional schemas
to relational schemas.

4.1.2. A Meta Schema for MD Schemas
The meta schema part which represents the multidimensional schema is to some degree de-
pendent on the underlying MD data model7. Thus, the meta schema part describing MD sche-
mas contains entities that represent facts with measures, dimension levels, the classification
hierarchies of the dimensions and the dimensional mapping that assigns the different dimen-
sions to a fact (an E/R diagram of this part of the meta schema is shown in figure 4-2).

Dim ensionLevels Facts

M easuresAttributes

nn

n

n

m
m

11

Fact
has
Dim

Classifications

has
M easure

has
Attribute

figure 4-2: meta schema for MD schemas

This part of the meta schema represents our basic understanding of the FIESTA multidimen-
sional data model, as defined in chapter 3.5: an MD schema consists of multidimensional facts
with measures, the dimensions in turn consist of dimension levels with classification hierar-
chies. Each dimension level may have describing attributes. More specifically, the entity Facts
represents information about facts (fact nodes in the ME/R diagram). For each fact, there may
be an arbitrary number of Measures defined (relationship hasMeasure). Since we explicitly
allow for shared dimensions and multiple facts in a given model (see chapter 2.4.1), we have a

                                               
7 As a consequence, we note that in commercial tools this part of the meta schema varies slightly [Ulb99], [DSVH97].
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n:m relationship FacthasDim between Facts and DimensionLevels. The classification hierarchy
of dimension levels is represented by the relationship Classifications. Every dimension level
may have n (describing) Attributes (relationship hasAttribute).

We remark that some integrity constraints for an MD schema are not expressible by the mere
structure of the meta schema (e.g. prohibition of cycles in the classification hierarchy). In order
to check for consistency of an MD schema, additional predicates over the contents of the meta
schema would have to be defined and evaluated.

4.1.3. Adding the Relational Meta Schema
The part of the meta schema representing the relational database schema is covered by the
standard database system catalogue. The relevant section of this system catalogue consists of
relational Tables which are composed of Columns8.

The two different parts of the meta schema for both the conceptual multidimensional layer and
the logical relational layer are depicted in figure 4-3.
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figure 4-3: meta schema for MD schema and star schema

                                               
8 We use the terms tables and columns instead of relations and attributes to avoid confusion with other parts of the meta

schema.
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4.1.4. Adding the Mapping Information
For the processing of schema evolution operations, we need the correspondences between the
MD schema elements and the tables and columns on the relational layer (corresponding to the
mapping function D of figure 3-5 in chapter 3.4). Informally, this mapping seems rather
straightforward when regarding the classical star schema template (figure 4-1): each fact node
becomes a fact table with foreign key relationships to its dimension tables (represented by the
base levels of a dimension in the MD schema) and all its measure attributes. Each base level of
a fact is transformed to a dimension table, which attributes consist of all levels along the classi-
fication hierarchy together with all describing attributes of these levels.

Thus, we need the following mapping correspondances (see also figure 4-4 for the corre-
sponding grey shaded relationship names):

� from facts to fact tables (relationship FactTableMapping)

� from measures to columns in the corresponding fact table (relationship MeasureMapping)

� from base dimension levels (i.e. those l � L with � f � F and l � gran(f) ) of a fact to their
corresponding dimension tables (relationship DimTableMapping). Although this informa-
tion is redundant (each level is mapped to at least one column of a corresponding dimen-
sion table, see relations DimHierarchyMapping and hasColumn), it assists in transforming
conceptual schema evolution operations to corresponding logical evolution operations (see
chapter 4.4).

� from base dimension levels of a fact to the corresponding (foreign key) columns in the fact
table (relationship FactDimsMapping)

� from all dimension levels in a classification hierarchy to columns of the corresponding di-
mension table (relationship DimHierarchyMapping)9

� from describing attributes to columns in the corresponding dimension table (relationship
AttributeMapping)

The resulting overall meta schema including the mapping correspondences (grey shaded) is
depicted in figure 4-4:

                                               
9 We remark that another integrity constraint is not expressed here: the column representing dimension level l must be

part of the proper table, i.e. it must belong to a dimension table (see our naming conventions) and additionally to the
corresponding dimension table.
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figure 4-4: meta schema with mapping between MD schema and star schema

4.1.5. The complete Meta Schema
The complete meta schema (presented by its relations and attributes) together with the corre-
sponding ME/R elements or MD schema elements (where applicable) is shown in the following
figure 4-5.

We omitted surrogate keys (except for the relation Columns) which would be used as key at-
tributes in a real implementation. Since determining unique keys is an implementation concept
and not necessary for explaining the idea of the meta schema, we omit the surrogate keys here
and use the name attribute as keys instead. The only exception to that rule is the relation Col-
umns where we need an identifier (ID) as key attribute for explaining the concepts of the meta
schema. Column names in relational tables must not be unique and as we will see below, in a
typical star schema, the same column names may be defined in different tables. To make clear
which column is meant, we decided to use the identifier (ID) as key attribute.

Relation Name Attributes Corresponding
ME/R Element

Corresponding
MD Schema
Element

Facts name: string
table_name: string (FK)

fact node f � F

Measures name: string
fact: string (FK)
domain: string
column_ID: integer (FK)

attribute connected
to fact

a � A with
attr(a)= f
for f � F
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Dimension
Levels

name: string
is_base: bool
table_name: string
domain: string

dimension level l � L

FacthasDim fact: string (FK)
dim_level: string (FK)

dimension edge gran(f)

Classifications dim_level1: string (FK)
dim_level2: string (FK)

classification edge class

Attributes name: string
dim_level: string (FK)
domain: string

attribute connected
to dimension level

a � A with
attr(a)= l
for l � L

FactDimsMapping dim_level: string (FK)
column_ID: integer (FK)

n.a. (mapping of a base level to a foreign
key attribute in a fact table)

DimHierarchy
Mapping

dim_level: string (FK)
column_ID: integer (FK)

n.a. (mapping of dimension levels to cor-
responding columns in dimension tables)

AttributeMapping attribute: string (FK)
column_ID: integer (FK)

n.a. (mapping of attributes to corre-
sponding columns in dimension tables)

Tables name: string n.a. (standard DB system catalogue)
Columns ID: integer

name: string
table_name: string (FK)

n.a. (standard DB system catalogue)

figure 4-5: FIESTA meta schema

The table Facts represents information about the fact nodes of an ME/R model or the facts of
an MD schema, respectively. For a fact, we store its (conceptual) name and (as foreign key to
Tables) the name of the corresponding fact table in the database (1:1 relationship FactTa-
bleMapping). Since we regard the relations Tables and Columns as part of the DBMS system
catalogue, we decided to resolve this 1:1 relationship by storing the fact table name in the rela-
tion Facts.

The table Measures represents information about the measure attributes of a fact: the measure
name, the fact it belongs to, the domain of the measure, and the reference to the corresponding
column in the fact table (1:1 relationship MeasureMapping). Again, we decided not to extend
the DBMS system catalogue (the structure of which we regard as fixed), but to store the col-
umn in our meta schema relations which then constitute an extension (that can be easily imple-
mented) to the standard system catalogue.

The relation DimensionLevels records the following information: the name of the level and a
boolean value that indicates if the level is a base level of a fact. If the level is a base level (and
thus forms the lowest level of a dimension hierarchy) the name of the corresponding dimension
table is stored (1:1 relationship DimTableMapping). If the level is not a base level, the field
table_name is left empty (NULL value). Altough this information is redundant, it assists the
processing of logical evolution operations (see chapter 4.4): the dimension table name can be
directly evaluated from the meta schema only by querying the relation DimensionLevels. The
dimension table name to which a level belongs could also be reached by the relations DimHier-
archyMapping (to the corresponding column) and hasColumn (to the corresponding dimen-
sion table). Finally, the domain of the dimension level is stored.
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The relation FacthasDim represents the multidimensional fact relationships between the facts
and their dimensions (denoted by their base levels). To that end, the fact of the dimensional
relationship is stored together with every base dimension level.

The relation Classifications manages the classification relationships of the MD schema or
ME/R model. For every classification relationship, the two connected levels are stored.

The relation Attributes contains information about the describing attributes of dimension levels:
the attribute name, the dimension level to which the attribute belongs, and its domain.

The relations FactDimsMapping, DimHierarchyMapping, and AttributeMapping represent the
corresponding relationships in the E/R diagram. Although the cardinality of these relationships
is 1:n (from DimensionLevels (or Attributes, resp.) to Columns) and thus would be normally
modeled as foreign keys in Columns, we decided to provide separate relationships for them,
because we did not want to extend the standard database system catalogue to which the rela-
tion Columns belongs.

FactDimsMapping represents the relationship between base levels of a fact and the corre-
sponding foreign key columns (referencing these base levels) in the fact table. To that end, it
contains the base level and the corresponding column of the fact table.

DimHierarchyMapping represents the information which dimension level is mapped to which
column in a dimension table. Consequently, DimHierarchyMapping stores the dimension level
and the corresponding column of each dimension table it belongs to. The relationship between
DimensionLevels and the Columns is of cardinality 1:n, because there are two cases when a
dimension level is mapped to more than one column of dimension tables:

� merging dimensions and

� multiple facts with shared dimensions.

We briefly discuss these two cases.

Very often the same classification is needed for levels of different dimensions. A prominent
example is the geographical classification, which is useful not only for stores, but also for cus-
tomers, garages, salespersons etc. In figure 4-6 the dimensions customer and garage share the
same classification for the geography. In the ME/R model, this means a classification edge
between levels of different dimensions.

ga ra geveh ic le
re pa ir

cou ntryge og r. re g ion

custo m e r

figure 4-6: merging dimensions for geographical classification
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This case is called merging dimensions and cannot be directly transformed to a star schema,
because dimension tables cannot share their columns. Therefore, when such an ME/R diagram
is mapped to a relational star schema, the shared part of the classification hierarchy is dupli-
cated as attributes in the corresponding dimension tables. Consequently, the shared levels of
the classification hierarchy are mapped to more than one dimension table columns.

The next case arises when an ME/R model contains more than a single fact and these facts
share dimensions. Each of these facts is subject to a different analysis (e.g. vehicle sales and
vehicle repairs, see figure 4-7) and has its own measures. Nevertheless, the facts may share
dimensions (e.g. the time dimension is contained in almost every fact), either at the same level
(left side in figure 4-7: daily repair and daily sales figures) or at different levels (right side in
figure 4-7: daily repair, but monthly sales figures) of the dimension hierarchy.

a) shared dim ensions 
at the same level

b) shared dim ensions 
at d ifferent levels

y ea r

v eh ic le
re pa irs

v eh ic le
s a les

da y

m o n th

y ea r

v eh ic le
re pa irs

v eh ic le
s a les

da y

m o n th

figure 4-7: multiple fact nodes with shared dimensions

In the case of shared dimensions at the same level, only one dimension table may exist. Addi-
tionally, a dimension level (the shared level) is assigned to more than one fact (which explains
the 1:n cardinality of the relationship FactDimsMapping).

Shared dimensions at different levels always need separate dimension tables for each base level.
As a consequence, the dimension levels above the shared level (which is month in the example
of figure 4-7 b) are duplicated in the dimension tables (month and year in the example).

AttributeMapping represents the information which attribute is mapped to which column in a
dimension table. Consequently, AttributeMapping stores the attribute and the corresponding
column of each dimension table it belongs to. The relationship between Attributes and the Col-
umns is of cardinality 1:n, because the attribute may be assigned to a dimension level that be-
longs to more than one dimensions.

Finally, the relations Tables and Columns represent an excerpt from the standard database
system catalogue. Consequently, we omit a detailed explanation here. We only repeat that due



Processing MD Schema Evolution Operations in a Relational DBS96

to the explanations given above (concerning merging dimensions and multiple facts with shared
dimensions), the column names may not be unique for a given star schema. Thus, we intro-
duced the identifier ID as key attribute in Columns.

4.2. Example
As an example, we present the relational star schema and meta schema contents for our run-
ning example. We repeat the ME/R model for our vehicle repair analysis.

ve h ic leve h ic le
m o d e l

g a ra ge

typ e  o f 
g a ra ge  

ye a r

ve h ic le
re p a ir

co u ntryg e o g r. reg io n

co s ts  (p a rt)

co s ts  (w a g e s )

co s ts  ( to ta l)

#  o f p e rso n s

d u ra tio n d a y

m o n th

b ra n d

cu s to m e r

a g e

in c om e

figure 4-8: vehicle repair example

The MD schema _ex=<Fex, Lex, Aex, granex, classex, attrex> has the following components:
Fex = {vehicle repair}
Lex = {customer, vehicle, vehicle model, brand, day, month, year, garage, type of garage,
geogr. region, country }
Aex = {costs (part), costs (wages), costs (total), # of persons, duration, age, income}
granex(vehicle repair) = {customer, vehicle, day, garage}
classex = {(day, month), (month, year), (garage, type of garage), (garage, geogr. region),
(geogr. region, country), (customer, geogr. region), (vehicle, vehicle model),
(vehicle model, brand)}
attrex(“costs (parts)” ) = vehicle repair,  attrex(“costs (wages)”)= vehicle repair,
attrex(“costs (total)”)= vehicle repair,  attrex (“# of persons”)= vehicle repair,
attrex (duration)= vehicle repair, attrex (age) = customer, attrex (income) = customer

As an anticipation to chapter 4.3, where we use this mapping to define consistency between the
conceptual and logical layer and introduce certain naming conventions for the star schema ta-
bles, we assume the following dimension tables and fact table:
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Ft_vehicle repair

Dt_time

Dt_garage

Dt_customer

custom er
veh ic le
day
garage

costs (pa rts)
costs (wages)
costs (tota l)
#  of persons
dura tion

day
m onth
year

garage
type  of ga rage
geogr. reg ion
country

custom er
age
incom e
geogr. reg ion
country

veh ic le
veh ic le m ode l
b rand

Dt_vehic le

figure 4-9: vehicle repair star schema

We remark that there are some names in the conceptual schema that contain illegal characters
(limitations of the relational DBMS) when mapping them to names of relations or attributes.
Thus, for a real implementation, we would have to replace those illegal characters (in the ex-
ample, this means replacing the illegal characters “ “ (blank) and “.” (dot) by underscores and
the character “#” by “no_ ”). Since this is an implementation concept and not necessary for
explaining the idea, we used the names of the conceptual schema also for the relational table
and column names.

Further, there is no domain or type information for the attributes in the ME/R model so far.
We assume that this information is stored together with the MD schema in the repository. The
information may be entered as part of the MD schema design.

In order to complete our example, we present the contents of the meta schema for the vehicle
repair example. We start with the relations Tables and Columns, because the rest of the meta
schema is easier to read when already knowing the Column IDs:

Table Name Instances
Tables (Dt_customer), (Dt_vehicle), (Dt_time), (Dt_garage),

(Ft_vehicle repair)
Columns (1, customer, Dt_customer), (2, age, Dt_customer),

(3, income, Dt_customer), (4, geogr. region, Dt_customer),
(5, country, Dt_customer),
(6, vehicle, Dt_vehicle), (7, vehicle model, Dt_vehicle),
(8, brand, Dt_vehicle),
(9, day, Dt_time), (10, month, Dt_time), (11, year, Dt_time),
(12, garage, Dt_garage), (13, type of garage, Dt_garage),
(14, geogr. region, Dt_garage), (15, country, Dt_garage),
(16, customer, Ft_vehicle repair), (17, vehicle, Ft_vehicle repair),
(18, day, Ft_vehicle repair), (19, garage, Ft_vehicle repair),
(20, “costs (parts)”, Ft_vehicle repair),
(21, “costs (wages)”, Ft_vehicle repair),
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(22, “costs (total)”, Ft_vehicle repair),
(23, “# of persons”, Ft_vehicle repair),
(24, duration, Ft_vehicle repair)

Facts (vehicle repair, Ft_vehicle repair)
Measures (“costs (parts)”, vehicle repair, float, 20),

(“costs (wages)”, vehicle repair, float, 21),
(“costs (total)”, vehicle repair, float, 22),
(“# of persons”, vehicle repair, float, 23),
(duration, vehicle repair, float, 24)

Dimension
Levels

(customer, TRUE, Dt_customer, string),
(age, FALSE, NULL, integer),
(income, FALSE, NULL, float),
(geogr. region, FALSE, NULL, string),
(country, FALSE, NULL, string),
(vehicle, TRUE, Dt_vehicle, string),
(vehicle model, FALSE, NULL, string),
(brand, FALSE, NULL, string),
(day, TRUE, Dt_time, date),
(month, FALSE, NULL, string),
(year, FALSE, NULL, string),
(garage, TRUE, Dt_garage, string),
(type of garage, FALSE, NULL, string)

FacthasDim (vehicle repair, customer), (vehicle repair, vehicle),
(vehicle repair, day), (vehicle repair, garage),

Classifications (day, month), (month, year),
(garage, geogr. region), (garage, type of garage),
(geogr. region, country),
(customer, geogr. region),
(vehicle, vehicle model), (vehicle model, brand)

Attributes (age, customer, integer),
(income, customer, float)

FactDimsMapping (customer, 16), (vehicle, 17),
(day, 18), (garage, 19)

DimHierarchy
Mapping

(customer, 1), (geogr. region, 4), (country, 5),
(vehicle, 6), (vehicle model, 7), (brand, 8),
(day, 9), (month, 10), (year, 11),
(garage, 12), (type of garage, 13), (geogr. region, 14), (country, 15)

AttributeMapping (age,2), (income, 3)

figure 4-10: vehicle repair metadata
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4.3. Consistency between the conceptual and logical layer

This chapter formalizes the mapping between an MD schema and a star schema with according
contents of the meta schema. The formalization provides a means to check consistency be-
tween an MD schema and its relational counterpart, a star schema and corresponding meta
schema contents. We need this formal consistency definition later (chapter 4.4) when we show
how conceptual schema evolution operations are processed in a relational database.

One might think that this mapping already enables a complete description how to propagate
changes in the multidimensional schema to the relational star schema and the contents of the
meta schema. However, this is not the case. The mapping defined above works only for the
schema transformation (and metadata update). Since a typical OLAP system contains data (in-
stances) when a schema change arises, we also need a means to adapt existing data. This is
called instance adaptation. The mapping would only enable to create a new and empty rela-
tional schema from a given MD schema. Consequently, we could use this mapping to generate
relational star schemas (together with corresponding instances of  the meta schema) from a
given MD schema.

When reflecting again the FIESTA schema evolution scenario (figure 3-5), we see that the
starting point is a consistent OLAP system, i.e. a conceptual schema and a corresponding star
schema storing the OLAP data, together with according contents of the meta schema. Then the
OLAP designer performs changes of the multidimensional schema using his graphical modeling
tool. The changes are described by a sequence of schema evolution operations. The question is
now how to transform this sequence to SQL DML/DDL commands that adapt the star schema,
its instances (which represent the OLAP data) and update the contents of the meta schema. To
ensure the correctness of this transformation, we must show that the resulting conceptual
schema corresponds to the resulting logical schema and updated contents of the meta schema.
Therefore, we need a formal description of this mapping between the conceptual schema and
the logical schema together with the contents of the meta schema. This formal description de-
livers exactly a definition of consistency between the conceptual and logical layer.

We start with some notations and then present the consistency definition.

Definition 4-1: Notations for the consistency between the conceptual and logical layer

We assume an MD schema _ <F, L, A,  gran, class, attr>.

The dimension tables of a star schema are composed of the set of all levels and corresponding
attributes. A dimension corresponds to the set of all dimension levels that are reachable via
classification relationships from a given base level of a fact. Thus, we define:

For every l � L with �  f � F and l � gran(f) (i.e. for every base level of a fact):

(1) We denote the set of all levels belonging to a dimension with Dl:

Dl := { m � L | (l,m) � class* }. The domain of Dl is defined as the cross-product of all
domains of levels in Dl.

(2) Similarly, we denote all (describing) attributes of Dl as Attributes (Dl). Formally:

Attributes (Dl) := { a � A |  � n � Dl with attr(a) = n }.

The domain of Attributes (Dl) is defined as the cross-product of all attribute domains.
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The fact tables of a star schema are composed of a foreign key to each dimension (i.e. base
level) together with the set of the fact’s measure attributes. Thus:

For every fact f � F:

(3) We denote the set of all base dimension levels as FKf. Formally,

FKf := { l � L | l � gran(f) }. The domain of FKf  is dom(f) (see Definition 3-13)

(4) We denote the set of all measure attributes Measuref as

Measuref := { m � A | attr(m) = f }. The domain of Measuref is codom(f).

¡

After having provided the necessary notations, we introduce the consistency between the con-
ceptual and logical layer which extends on the logical layer to both the star schema and the
contents of the meta schema.

Definition 4-2: Consistency between MD schema and relational schema with metadata

We assume an MD schema _ <F, L, A,  gran, class, attr> and a set of relational tables to-
gether with a meta schema as defined in chapter 4.1.

The following correspondences between the MD schema and the relational tables together with
the metadata must hold in order to ensure consistency:

(1) dimension tables: every dimension level which is directly connected to a fact (we then call
the dimension level base level) spans a dimension by the classification hierarchy. For every
such dimension there must be a separate table. A dimension table has as attributes every
dimension level along the classification hierarchy together with all describing attributes of
the levels. The dimension table must be registered in the relation Tables and all its attrib-
utes must be contained in the relation Columns. Formally:

for every l � L with �  f � F and l � gran(f):

there is a relation Diml with table name “Dt_<l>” and the following attribute set ADiml :

ADiml := Dl � Attributes (Dl)

with Dl being the set of levels for this dimension and Attributes (Dl) being the attributes
of the levels10.

The relation Diml is defined as

Diml � dom(Dl) u dom(Attributes(Dl))

There exists a tuple (“Dt_<l>”) in relation Tables, for every a � ADiml there exists a tu-
ple (ID, a, “Dt_<l>”) in relation Columns with ID being a unique identifier, and for
every m � Dl there exists a tuple (m, cID) in relation DimHierarchyMapping with cID
referencing the tuple (cID, m, “Dt_<l>”) in relation Columns. Analogously, for every a
� Attributes(Dl), there exists a tuple (a, colID) in relation AttributeMapping with colID
referencing the tuple (colID, a, “Dt_<l>”) in relation Columns.

                                               
10 We remark that in a real implementation of the relational tables, surrogate keys are used instead of the base level ele-

ments for the foreign key relationships.
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We remark that all other dimension levels that are not base levels of a fact are contained in
Dl due to the consistency of the MD schema (see chapter 3.5.4) and the definition of Dl.
Similarly, all describing attributes of these levels are contained in Attributes(Dl).

(2) fact tables: a fact table contains as attributes foreign keys of every dimension (defined by its
base level) and the measure attributes. The fact table must be contained in relation Tables
and all its columns in relation Columns. Formally:

for every f � F:

there is a relation Factf with table name “Ft_<f>” and the following attribute set AFtf :

AFtf := FKf  � Measuref

with FKf being the set of base levels from all dimensions and Measuref being the set of
measure attributes of f.

The relation Factf is defined as:  Factf � dom(f) u codom(f).

There exists a tuple (“Ft_<f>”) in relation Tables, for every a � AFtf there exists a tuple
(ID, a, “Ft_<f>”) in relation Columns with ID being a unique identifier, and for every
l � FKf there exists a tuple (l, cID) in relation FactDimsMapping with cID referencing
the tuple (cID, l, “Ft_<f>”) in relation Columns.

(3) for every f � F: there exists a tuple (f, “Ft_<f>”) in relation Facts with “Ft_<f>” being a
foreign key in relation Tables.

(4) for every a � A with attr(a) = f for an f � F:
there exists a tuple (a, f, dom(a), cID) in relation Measures with f being a foreign key in
relation Facts and cID being a foreign key in relation Columns.

(5) for every l � L and every f � F with l � gran(f):
there exists a tuple (l, TRUE, “Dt_<l>”, dom(l) ) in relation DimensionLevels and
a tuple (f, l) in relation FacthasDim with f being a foreign key in relation Facts and l being
a foreign key in relation DimensionLevels.

(6) for every l � L with ��  f � F such that l � gran(f):
there exists a tuple (l, FALSE, NULL, dom(l) ) in relation DimensionLevels.

(7) for every l1, l2 � L with (l1, l2) � class:
there exists a tuple (l1, l2) in relation Classifications with l1, l2  being foreign keys in relation
DimensionLevels.

(8) for every a � A with attr(a) = l for an l � L:
there exists a tuple (a, l, dom(a)) in relation Attributes with l  being a foreign key in relation
DimensionLevels. There exists a tuple (a, cID) in relation AttributeMapping with cID be-
ing a foreign key in relation Columns.

¡

We remark that for a real implementation, certain naming limitations of the DBMS would have
to be reflected (see also remark for the example in chapter 4.2). A simple extension of the defi-
nition above by a renaming function that replaces illegal characters would solve this issue com-
pletely. Since this implementation concept is not necessary for explaining the idea and only
increases the complexity of the expressions, we omitted this renaming function here and as-
sumed the same names for both the elements of the conceptual schema, the relational tables
and columns, and the contents of the meta schema.
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4.4. Transforming Conceptual Schema Evolution Operations to
Logical Evolution Operations

In the previous chapters we have introduced the necessary prerequisites for this chapter: the
formal mapping between conceptual multidimensional schemas and corresponding relational
database schemas on the logical layer. Now, we are able to describe how a sequence of con-
ceptual schema evolution operations can be transformed to corresponding logical evolution
operations. As we will see, these logical schema evolution operations adapt the database
schema together with the instances and update the contents of the meta schema accordingly.

4.4.1. Overview of Logical Evolution Operations
For processing a given schema evolution job – the semantics of which is specified in terms of
the multidimensional data model – on the logical layer, the question arises how do the trans-
formed commands on the logical layer look like? Basically, they are composed of SQL DML
and DDL commands. Since we additionally need control structures (loop and branch) that
reach beyond the expressiveness of SQL, we describe the logical evolution operations using a
description which corresponds to SQL commands embedded into a procedural host language.
As already said, their task is to transform the database schema, to adapt the existing instances
and to update the meta schema contents. As a consequence, a typical logical evolution opera-
tion always consists of three parts:

(1) the transformation of the logical database schema: here, we will introduce abstract rela-
tional schema evolution operations that resemble schema evolution (DDL) operations of
commercial RDBMS (e.g. ALTER TABLE ADD COLUMN ... ). Where necessary, the
SQL commands will be embedded into a procedural host language (which leads to embed-
ded SQL).

(2) the adaptation of existing instances: this task will be described by SQL DML commands
like UPDATE TABLE Dt_customer SET AGE = ... . Again, the description will
be embedded into a procedural programming language, where necessary.

(3) the update of the meta schema contents: since the structure of the meta schema is fixed,
only the contents are updated during a schema evolution. For performing this task, embed-
ded SQL DML commands describe the detailed update semantics (e.g., INSERT INTO
CLASSIFICATIONS ...)  ensuring consistency between schema and contents of the
meta schema.

We remark that the logical evolution operations do not necessarily correspond one-to-one to
their counterparts on the conceptual layer. Some conceptual schema evolution operations can
be directly transformed to a corresponding logical evolution operation whereas in other cases
certain sequences of conceptual schema evolution operations are grouped to a complex opera-
tion which is then transformed to a logical evolution operation. The reason for this grouping is
basically the different expressiveness of star schemas and ME/R models which makes it (in
some cases) necessary to collect more information (which is then provided by a group of con-
ceptual schema evolution operations) for the transformation to a corresponding logical evolu-
tion operation.

Further, the logical evolution operations are specific for the target system on the logical layer.
This means especially they are specific for the logical database schema that is used. The logical
evolution operations introduced here are designed for relational star schemas. Corresponding
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operations that work with a snowflake schema on the logical layer would look different (i.e.
basically, the grouping of the operations and the generated commands on the logical layer).

Before we introduce a set of 14 logical evolution operations11, we will collect requirements for
the transformation algorithm which maps a sequence J of conceptual schema evolution opera-
tions to a sequence O of logical evolution operations. This sequence O transforms a consistent
logical schema LS to a consistent logical schema LS’ (see figure 3-5 in chapter 3.4). In gen-
eral, the complexity of the transformation arises from the quite different expressiveness of the
ME/R model and the star schema. Since the ME/R model is not very restrictive to reflect the
modeling requirements of the warehouse designer, a direct mapping of modeling constructs to
a star schema is difficult (see also chapters 4.1 and 4.3). The reason for this is the fact that the
multidimensional semantics is often hidden or lost in the structure of a star schema. In the fol-
lowing, we will present some cases where the expressiveness strongly differs. Based on these
considerations, we will then design an algorithm for the transformation.

4.4.2. Motivating Examples
In order to show some peculiarities of the transformation from which we derive design deci-
sions for the transformation algorithm, we will present some example evolution jobs and dis-
cuss their transformation. We assume our standard vehicle repair example with slight varia-
tions, i.e. we present partial models that are extended to the complete example or deletions
processed on the complete example. We also insert an additional fact vehicle sales which al-
lows us the examination of additional interesting cases.

For each motivating example, a figure describes the conceptual evolution job J and the corre-
sponding logical evolution job O resulting from the transformation. Another figure shows the
modifications of the ME/R model and the resulting modifications of the star schema. We will
then discuss the resulting semantics of the operation that adapts the star schema, update the
instances and update the meta schema contents (the latter two parts of the operation’s seman-
tics are not directly visualized, but contained in the figure which describes the logical evolution
job).

Merging Dimensions:

The first example deals with a peculiarity of the ME/R notation that already has been intro-
duced in chapter 4.1.5:  a merging dimension.

Since in typical real-world scenarios very often the same classification is used for different di-
mensions (e.g. customers are classified according to their geographic regions as well as ga-
rages, shops, suppliers etc.), the requirement arises to reflect this shared classification in an
ME/R model. In figure 4-6, we have seen that garages and customers share the classifications
according to geographic region and country. Taking the base levels of the two dimensions
(customer and garage) as viewpoint, we could say that the corresponding dimension graphs
(represented by the classification hierarchies) are merging. Thus, in such a case, we speak of
merging dimensions in the ME/R model.

In order to show the processing of new classification edges leading to a merging dimension, we
assume that the evolution job consists of an insert classification operation between the
dimension levels customer and geogr. region. The conceptual and logical evolution jobs for
this case are depicted in figure 4-11. The modifications of the ME/R model and the resulting
modifications of the star schema are shown in figure 4-12.

                                               
11 It is a mere coincidence that there are both 14 conceptual schema evolution operations and 14 logical evolution opera-

tions. There is no underlying mathematical reason for the number of evolution operations on the two layers.
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MODIFY TABLE Dt_customer
ADD COLUMNS geogr_region,
    country;

UPDATE Dt_customer
SET geogr_region= 
   (SELECT DISTINCT ....
    FROM Dt_garage
    WHERE ....);

INSERT INTO COLUMNS 
((

UPDATE Dt_customer
SET country= 
   (SELECT DISTINCT ....
    FROM Dt_garage
    WHERE ....);

INSERT INTO CLASSIFICATIONS
(customer, geogr_region);
INSERT INTO DIMHIERARCHYMAPPING
(geogr_region, cid );
INSERT INTO DIMHIERARCHYMAPPING
(country, cid );

geogr_region

country

cid geogr_region, Dt_customer),
(cid country, Dt_customer));

geogr_region, 

country, 

O

J

Conceptual Layer

Logical Layer

insert classification (customer, geogr. region)

figure 4-11: evolution jobs for a new classification leading to a merging dimension
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figure 4-12: new classification leading to a merging dimension
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How is a merging dimension reflected in a star schema? Since the elements of the correspond-
ing database schema (i.e. tables with columns) cannot share components (which would mean
that tables share columns), the corresponding columns have to be duplicated. In the example,
the dimension table Dt_customer is extended by the columns geogr. region and country (see
figure 4-12 for the resulting database schema, the grey shaded parts mark the modifications).

In general, this means that when a classification edge to an already existing dimension level is
defined (in the example from customer to geogr. region), the transformation algorithm has to
check if this dimension level is part of another (already existing) dimension. If so, the corre-
sponding level together with all higher classification levels and describing attributes have to be
duplicated in the dimension table to which the source level of the classification edge belongs
to.

Analogously to insertions, i.e. duplications of columns, deletions of such merging classification
edges lead to removing all duplicated columns in all relevant dimension tables. For example, if
we assume that the dimension level country would be deleted together with the classification
edge from geogr. region to country, both columns named country in the dimension tables
Dt_customer and Dt_garage would have to be deleted.

The possibly multiple mappings of a dimension level to corresponding columns in different
dimension tables are reflected in the meta schema relation DimHierarchyMapping.

Conclusion:

A given schema evolution operation may have effects that reach beyond the local elements
(i.e., not only the classification edge, but also the dimension levels above this edge in the ex-
ample) in the ME/R graph. Additionally, there is some kind of redundancy because dimension
levels (and also their describing levels) may be mapped to multiple columns in dimension tables

Shared Dimensions:

The next example deals with shared dimensions, another peculiarity of ME/R models. Shared
dimensions arise when facts share dimensions, possibly at different base levels. We refer to
figure 4-14 which shows two alternatives for shared dimensions: either facts share a dimension
at the same base level (figure 4-14 a, left side) or at different dimension levels of a classifica-
tion hierarchy (figure 4-14 b, right side).

In order to present an evolution example, we assume an evolution job which defines a new fact
using a shared dimension, more precisely: the evolution job consists of inserting a new fact
vehicle sales with a new is_dimension_for edge between the new fact and an existing level.
Let us assume the two different cases of figure 4-14 and let the two facts share the time dimen-
sion either at the level day (figure 4-14 a) or at the level month (figure 4-14 b).  The evolution
jobs for both cases are depicted in figure 4-13.

In the case of the shared base level day, the existing dimension table (Dt_time) can be refer-
enced by both fact tables. Concerning schema transformation, this means that a new fact table
Ft_vehicle_sales is created with a foreign key column referencing day in Dt_time (left side of
figure 4-13).
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CREATE TABLE Ft_vehicle sales
(day: date));

UPDATE Ft_vehicle sales
SET day= 
(SELECT day FROM Dt_time ....);

INSERT INTO TABLES
(Ft_vehicle sales);
INSERT INTO COLUMNS
(cid1, day, Ft_vehicle sales);
INSERT INTO FACTS
(vehicle sales);
INSERT INTO FACTHASDIM
(vehicle sales, day);
INSERT INTO FACTDIMSMAPPING
(day, cid1);

O

J

C oncep tua l Layer

Logica l Layer

insert fact (vehicle sales)
insert dimension level into fact
  (day, vehicle sales)

J insert fact (vehicle sales)
insert dimension level into fact
  (month, vehicle sales)

a) shared dimensions 
at the same leve l

CREATE TABLE Dt_month
(month: string, year: int);
CREATE TABLE Ft_vehicle sales
(month: string);

INSERT INTO Dt_month (month, year)
(SELECT DISTINCT month, DISTINCT year
FROM Dt_time);
INSERT INTO Ft_vehicle sales
(SELECT month FROM Dt_month);

INSERT INTO TABLES
(Dt_month, Ft_vehicle sales);
INSERT INTO COLUMNS
(

(cid3, month, Ft_vehicle sales));
INSERT INTO FACTS
(vehicle sales);
INSERT INTO FACTHASDIM
(vehicle sales, month);
UPDATE DIMENSIONLEVELS
WHERE name=month
SET is_base = TRUE
SET table_name= Dt_month;
INSERT INTO FACTDIMSMAPPING
(month, cid3);
INSERT INTO DIMHIERARCHYMAPPING
((month, cid1), (year, cid2));

(cid1, month, Dt_month),
(cid2, year, Dt_month),

O

b) shared dimensions 
at different leve ls

figure 4-13: evolution jobs for a new classification leading to a merging dimension

a) shared dimensions 
at the sam e leve l

b) shared dimensions 
at differen t leve ls
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figure 4-14: new fact with shared dimension
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In the other case, where vehicle sales shares the time dimension at the level month, a com-
pletely new dimension table for the time dimension has to be defined. This new dimension table
contains as columns all shared dimension levels above month together with all describing at-
tributes (which does not apply here). Finally, the fact table Ft_vehicle_sales references this
new dimension table (right side of figure 4-13).

Conclusion:

Although the semantics on the conceptual layer is the same, the resulting semantics of the
transformed conceptual operations may be quite different.

Insertions in a classification hierarchy:

As the next example, let us assume the situation that we need to extend an existing dimension
hierarchy. To that end, we present a modified version of the vehicle dimension that does not
contain the intermediate level vehicle model. We assume an evolution job that inserts this level
and thus extends the existing hierarchy by a level. The conceptual and logical evolution job are
depicted in figure figure 4-15, the modifications of the ME/R model and the star schema are
shown in figure 4-16:

MODIFY TABLE Dt_vehicle
ADD COLUMN vehicle_model;

UPDATE Dt_vehicle
SET vehicle_model= ....;

DELETE FROM CLASSIFICATIONS 
WHERE level1=vehicle and 
level2=brand;

INSERT INTO CLASSIFICATIONS
((vehicle, vehicle_model),
(vehicle_model, brand));

INSERT INTO DIMENSIONLEVELS
(vehicle_model);
INSERT INTO DIMHIERARCHYMAPPING
(vehicle_model, cid );vehicle model

O

delete classification (vehicle, brand)
insert level (vehicle model)
insert 

classification (vehicle model, brand)
classification (vehicle, vehicle model)

insert 

J

Conceptual Layer

Logical Layer

figure 4-15: evolution jobs for insertion in a classification hierarchy
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Conceptua l Layer
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figure 4-16: ME/R model and star schema for insertion in a classification hierarchy

After a delete classification  operation (the first operation in the example evolution job),
it is not yet determined what happens to the left part (i.e. the dimension levels above the sec-
ond level brand in figure 4-16) of the dimension hierarchy. Especially, this partial classification
hierarchy may be connected to another dimension or to another fact. The generality of the
ME/R approach explicitly allows for such graph transformations which poses complex re-
quirements to the design of the transformation algorithm.

However, as we can see in this example (figure 4-15), it may also happen that the level brand is
inserted again later in the same dimension table by the operation insert classification

(vehicle model, brand) .

In the first case (i.e. the partial classification hierarchy would be connected elsewhere), the
transformation algorithm would have to copy the corresponding columns of the dimension
table to another table. We have already discussed the copy issue in the example dealing with
merging dimensions. In contrast to the situation there (where the specification of the copy is-
sue is hidden in the definition of the r-up function), special care has to be taken while copying
existing instances due to functional dependencies (and thus redundancies) of the columns (re-
sulting from the unnormalized dimension tables) representing the dimension level hierarchy.

When processing the delete classification  operation, the transformation algorithm can-
not check whether the partial classification hierarchy may be left in the current dimension table
or if it is moved to another dimension table. However, in order to perform the instance adapta-
tion, existing instances have to be saved.

As a consequence, we mark the dimension levels above l2 for deletion when processing a de-

lete classification (l 1,l 2) operation. We delete levels physically from a dimension ta-
ble either when the matching delete level operation is processed or at the end of the proc-
essing phase. The resulting problem that columns remain in the dimension tables although the
corresponding dimension levels may have been moved elsewhere leads to a final garbage col-
lection phase in the transformation algorithm when it is sure that the instances of a level are no
longer needed for instance adaptations.
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We further remark that the level brand may be contained in more than one dimension (as part
of a shared or merging dimension hierarchy). Thus, the algorithm has to check all dimension
tables in which the level is contained. This motivates the existence of the table DimHierarchy-
Mapping of the meta schema which represents the information which level is mapped to which
column of a dimension table.

Conclusion:

Deletions in a dimension hierarchy may lead to corresponding deletions in the dimension tables.
Instances are kept as long as possible in order to avoid loss of information. Since indirectly
compensating insertions (re-inserting the same dimension level at another position in the same
dimension hierarchy) may be processed later, only a final garbage collection phase (i.e. a tra-
versal for each dimension hierarchy) at the end of the transformation can detect columns to be
deleted in the dimension tables.

Alternative Paths in a dimension hierarchy:

As last example, we present a related case (also dealing with classifications) that looks quite
easy in the ME/R model, but poses difficult requirements to the transformation algorithm12, and
especially to the garbage collection phase: alternative paths in a dimension hierarchy.

We show the case how to deal with the deletion of a single classification edge in such an alter-
native path. In figure 4-18, we see the typical alternative path for weeks in the time dimension:
days can be classified according to months and weeks, but weeks cannot be classified accord-
ing to months. Nevertheless, both (calendar) weeks and months can be classified according to
years. As evolution job we assume a delete classification operation that removes the
classification edge between the dimension levels week and year (figure 4-17). As said before,
when processing such an operation (without  the corresponding delete level year opera-
tion), all levels above and including year are marked for deletion in dimension table Dt_time13.
Here, we see an exception to this rule: if the level year can be reached by another classification
path starting at the base level of the dimension, the level year must not be deleted from the
dimension table. This exception is not easy to handle because the condition cannot be checked
locally when processing the delete classification operation (neither the base level nor
the alternative path are contained in the operation’s parameters list).

This interesting exception (which is difficult to detect) refines the specification of the garbage
collection phase of the transformation algorithm.

DELETE FROM CLASSIFICATIONS
WHERE dim_level1=week and
dim_level2=year;

O

Conceptua l Layer

Logical Layer

J delete classification (week, year)

figure 4-17: evolution jobs for deletion of an alternative path

                                               
12 In fact, it even leads to a refinement of the garbage collection specification. See details at the discussion of the trans-

formation algorithm.
13 In general: year is marked for deletion in all dimension tables, where week belongs to.
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figure 4-18: deleting an alternative path

Conclusion:

The garbage collection has to traverse the full dimension hierarchy graph in order to determine
if alternative paths exist.

We will present further examples when explaining the detailed design of the transformation
algorithm. As a conclusion, we summarize the lessons learned from these examples: although
most schema evolution cases look quite simple in the graphical ME/R model or expressed as
evolution job, the processing of such jobs for a star schema is rather complicated. Modifica-
tions may have non-local effects that reach beyond a single operation (or its parameters) taking
into account additional parts of the ME/R model. Operations with the same semantics on the
conceptual layer may be transformed to rather different operations on the logical layer. In or-
der to keep instances for later instance adaptation phases, dimension levels are only marked for
deletions. A cleansing step at the end of a processing phase will physically delete marked levels
and, as we will see, unreferenced tables.

The next section presents the transformation algorithm. It transforms certain sequences of
schema evolution operations to corresponding logical operations. As we will see, sometimes
single operations can be transformed directly to a logical evolution operation whereas in other
cases more operations (i.e. a part of the sequence) are combined to a complex operation which
is then transformed to a corresponding logical evolution operation.
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4.4.3. Design of the Transformation Algorithm
 The previous chapter collected several requirements for the transformation algorithm. The
main issues and identified problem areas arose from the different expressiveness of the ME/R
model (or the MD schema, resp.) opposed to the relational star schema. Specifically, the cases
of merging dimensions, shared dimensions and alternative hierarchies drove design decisions
for the transformation algorithm.

As input for the transformation algorithm, we assume a sequence of conceptual schema evolu-
tion operations J. Formally (see also our formal approach in chapter 3.4), J = (co1,co2, ... ,con).
As discussed in chapter 3.8, we assume a sequence J which is minimal in length, transforms a
consistent MD schema into another consistent MD schema and is ordered in a way that the
pre- and postconditions of the single schema evolution operations hold. Especially, this means
concerning deletions that edges are always deleted before the corresponding nodes and con-
cerning insertions that nodes are always inserted before edges connect these nodes.

The output of the transformation algorithm is a sequence of logical evolution operations, de-
noted as O = (lo1,lo2, ... ,lom). This sequence transforms the logical schema, adapts the existing
instances and updates the contents of the meta schema accordingly. The basis structure of the
transformation algorithm is independent of the target system on the logical layer. The specific
parts are the “transformation rules” (which will be explained in the subsequent chapters 4.4.4
and 4.4.5: the single logical evolution operations, their assigned processing priority, their
grouping of component conceptual operations, and the generated (SQL) commands).

The base for the design and understanding of the transformation algorithm is the following
idea: the algorithm tries to identify applicable sequences of conceptual schema evolution op-
erations which can then be transformed (i.e., re-written) to a corresponding logical evolution
operation. Such a sequence consists of one or more conceptual schema evolution operations
which we call component operations. A sequence is applicable when its preconditions hold, i.e.
more precisely, when certain parameters of the sequence’s operations already belong to the
MD schema or not (see example below). After transformation, the matching conceptual
schema evolution operations are removed from J. We remark that the component conceptual
schema evolution operations of a logical evolution operation need not to be subsequent opera-
tions in the sequence J.

In order to enrich this idea, we present an example for the basic processing model of the
transformation algorithm. As starting point, we assume the well-known vehicle repairs example
(slightly varied) in figure 4-42 and the evolution job in figure 4-43.

vehicle garage

year

vehicle
repair

countrygeogr. reg ion

costs (part)

costs (wages)

costs (tota l)

# o f persons

day

month

brand

customer

age

income

figure 4-19: example schema
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J insert classification (customer,geogr. region);
insert fact (vehicle sales);
insert dimension level into fact
  (day, vehicle sales);
insert attribute (count);
connect attribute to fact (count, vehicle sales);

figure 4-20: example evolution job

As said before, the transformation algorithm tries to find applicable operation sequences and
transforms these sequences to corresponding logical evolution operations. Refining the obser-
vations in chapter 4.4.2, which exemplarily showed the drawbacks of the different expressive-
ness of the ME/R model and the star schema for the transformation algorithm, we remark that
often a single conceptual schema evolution operation does not provide enough information for
a transformation to a logical evolution operation. For example, if an attribute is inserted in the
ME/R model, but not connected to a fact or a dimension level yet, we do neither know
whether to add a column representing the new attribute to a dimension table or a fact table nor
to which table the column has to be added (see also our mapping between MD schemas and
star schemas in chapter 4.1). As a consequence, we need to transform certain sequences of
conceptual schema evolution operations.

In the example evolution job shown in figure 4-20, the sequence insert fact (vehicle

sales); insert dimension level (day, vehicle sales)  provides enough information
to be transformed. The corresponding logical evolution command will then basically create a
new fact table referring to this dimension table (we refer to chapter 4.4.5 where we refine this
example including the logical evolution operations for a star schema). The sequence is also
applicable because the existence of the dimension level day guarantees that a dimension table
containing a column labeled day already exists. We observe that some parameters of the com-
ponent operations must be matching (i.e., referring to the same fact vehicle sales)  and others
refer to certain elements of the schema (i.e. dimension level day). If the dimension level day
would not be contained in the MD schema yet, the operation sequence would not be applicable
because the corresponding dimension table would not exist. As a consequence, we note that
the matching parameters allow to detect the correct and matching occurrences of the compo-
nent operations, whereas the free (i.e., not matching) parameters provide information about the
applicability of the operation sequence. In the example above, we see that the operation se-
quence insert attribute (count); connect attribute to fact (count, vehicle

sales) is not applicable in the first step because the fact vehicle sales is not contained in the
MD schema yet (although the parameter count matches in both component operations).

As first step, the transformation algorithm processes the sequence insert fact (vehicle

sales); insert dimension level (day, vehicle sales) , i.e. it transforms these two
conceptual schema evolution operations to a logical evolution operation that transforms the
star schema, adapts the instances and updates the meta schema contents (see chapters 4.4.4
and 4.4.5 for details about the generated logical evolution commands). Finally, the two opera-
tions are deleted from J. This processing step is visualized in figure 4-21.
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J

O

insert classification (customer,geogr. region);
insert fact (vehicle sales);
insert dimension level into fact
  (day, vehicle sales);
insert attribute (count);
connect attribute to fact (count, vehicle sales);

J’ insert classification (customer,geogr. region);
insert attribute (count);
connect attribute to fact (count, vehicle sales);

CREATE FACT TABLE Ft_vehicle_sales
(day: DATE);

INSERT INTO Facts 
(vehicle sales, Ft_ );
INSERT INTO FactHasDim
(vehicle sales, day);
INSERT INTO FactDimsMapping
(day, cID);

vehicle_sales

Transform  to logical evolution operation 

Remove com ponent operations from 

O

J

1

Transfo rm ation A lg orithm
(first loop)

}

figure 4-21: first transformation loop of the transformation algorithm

Now, as second step, both the sequences insert classification (customer, geogr.

region)  and insert attribute (count); connect attribute to fact (count, ve-

hicle sales)  are applicable. We will see later that a priority scheme decides about their exe-
cution order. After processing the complete evolution job J, the transformation algorithm holds
because J is empty. The transformation algorithm guarantees a complete and unique parsing of
every possible sequence J. We refer to chapter 4.4.5 where we refine the transformation algo-
rithm (including this example) and discuss these issues in greater detail.

We will now introduce the logical evolution operations. The basic idea is to comprehend as
many conceptual schema evolution operations as necessary (i.e. a sequence that provides
enough semantics and context for a transformation) and to consider them as a complex opera-
tion which then can be transformed to a logical evolution operation. Chapter 4.4.5 will then
present the overall transformation algorithm together with the different priority classes of the
sequences and their corresponding logical evolution operations. We will also provide more
details about the garbage collection step there.

4.4.4. Logical Evolution Operations

As introduced in chapter 3.8, we assume that during a schema maintenance session in the
graphical schema design tool [SBH00] a sequence of conceptual schema evolution operations
is applied to a given MD schema which is visualized by its ME/R graph (see chapter 3.6). After
having given the base idea of the transformation algorithm, we now introduce the correspond-
ing logical evolution operations to which a sequence of conceptual schema evolution opera-
tions is transformed.

We remark that the logical evolution operations are designed for star schemas on the logical
layer. When using a different schema template on the logical layer (e.g. snowflake schema), the
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logical evolution operations would be different. See chapter 5 for an extended discussion of
this issue.

First, an overview of the fourteen logical evolution operations is given (figure 4-22). For each
logical evolution operation, the corresponding composition of conceptual schema evolution
operations is shown as ME/R diagram. In order to distinguish logical from conceptual opera-
tions, logical operations always have an ‘L’ as subscript (e.g.insert measure columnL) The
modified parts are depicted in grey.

The first question that arises when regarding figure 4-22 is: why exactly these operations? The
general answer is that we have selected these operations because they adequately reflect the
different expressiveness of an MD schema and its corresponding relational star schema. More
precisely, the combinations of conceptual schema evolution operations are chosen in a way that
they can be transformed to a corresponding, semantically meaningful, modification of the star
schema. We explain this in more detail by giving the argumentation that led to each operation.
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insert a ttribute co lum n L

insert fact tab le  
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figure 4-22: overview of the logical evolution operations

First, the design of the four operations dealing with attributes is rather straightforward. An
isolated attribute does not provide enough semantics, it can merely mapped to a column in a
relational table. Since it is still unspecified whether it is mapped to a column of a dimension
table or a fact table, it must be stated (which is then done in terms of another operation) where
it belongs to, or graphically, where it is connected to. This information allows the precise map-
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ping to either a dimension table or a fact table14. Since attributes can only be connected to facts
as measure attributes (and then become columns of fact tables) or to dimension levels as de-
scribing attributes (and then become columns of the corresponding dimension tables), we need
this additional connect attribute to operation that binds the attribute to either a fact or a dimen-
sion level. This explains the ideas that led to the design of the four operations insert meas-
ure column L, delete measure column L, insert attribute column L, delete at-

tribute column L.

The next operation that contains enough semantics to be adequately mapped to a star schema
is the operation insert fact table with dimension table L. On the conceptual layer, it
consists of the insertion of a fact, a dimension level, and a corresponding is_dimension_of edge
between the fact and the dimension level. When considering the star schema, it is clear that
only the composition of these three operations provides enough semantics and context to build
a corresponding star schema consisting of a new dimension table and a corresponding new fact
table.

The case is different if

� either the dimension level already exists (which corresponds to the existence of the dimen-
sion table) and the fact together with the is_dimension_of edge is inserted

� or the fact already exists (which corresponds to the existence of the fact table) and the di-
mension level together with the is_dimension_of edge is inserted.

The first case leads to the operation insert fact table L, the second to the operation in-

sert dimension table L. In both cases, there is already one part reflected in a relational table
(either a dimension table or a fact table) and the other part is newly inserted which then leads
to the creation of the counterpart table in the star schema. We remark that albeit in the specifi-
cation of the operation insert fact table L there are two quite different cases to be consid-
ered, we decided to provide only a single operation because both cases have the same compo-
sition of conceptual schema evolution operations.

Concerning deletions, the operations for these cases discussed above look rather different.
There is no counterpart to the operation insert fact table with dimension table L be-
cause deletions can be performed with a smaller granularity. The reason is that when deleting
elements, the necessary semantics is provided by a shorter context (under context we under-
stand a combination of conceptual schema evolution operations with their parameters) which is
reflected in shorter combinations of conceptual schema evolution operations. Therefore, we
only have an operation delete fact table L that removes the smallest possible fact table (fact
table with a single foreign key attribute referencing the dimension table) corresponding to the
deletion of a fact together with the corresponding is_dimension_of edge. Similarly, we only
need an operation  delete dimension level column L that deletes the column representing a
dimension level in all matching dimension tables which corresponds to the deletion of an iso-
lated (i.e., not connected via any edges) dimension level. The corresponding operations re-
moving edges to and from dimension levels will be explained below.

Since a dimension level may be connected to many different facts and dimension levels by cor-
responding edges (see for example the level geogr. region in figure 4-23), these fine-grained
operations offer the additional advantage that the number of logical evolution operations can
be reduced: an operation that deletes an isolated dimension level together with operations de-
leting all edges that may be connected to an dimension level is enough. Otherwise, we would
                                               
14 We remark that the general problem arises from the fact that columns are second class citizens of the relational model

(i.e., they cannot exist alone, but must always be defined as part of tables), whereas attributes are first-class citizens of
the ME/R model.
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additionally have to provide all possible groupings as operations (deletions of dimension level
together with all possible edge types) which would increase the number of operations.
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figure 4-23: the advantage of fine-grained deletion operations

Concerning insertions of classification edges, there are two possible cases and therefore we
also offer two corresponding operations. The first is the insertion of a classification edge to-
gether with the target level (insert dimension level column L) which corresponds to the
definition of a new highest level in a classification hierarchy, a case which often arises in practi-
cal schema maintenance. The second case leads us to an interesting observation:

So far, the names of the logical evolution operations have been closely related to the corre-
sponding modification of the star schema. This was due to the fact that the combination of
conceptual schema evolution operations provided enough information (expressed by the op-
erations with their parameters) to transform this sequence to a corresponding consistent star
schema modification. The operation could then be named according to this modification.

The last four logical evolution operations that we introduce consist only of a single conceptual
schema evolution operation. We need them to express our special cases of merging and shared
dimensions. Here, the operation alone does not deliver the necessary context for a direct
transformation into a star schema modification (plus instance adaptation and meta schema
contents update). Therefore, for the description of the semantics, different cases have to be
reflected which then lead to different star schema modifications. Consequently, we could not
choose names for these operations that remind of the semantics of the star schema transforma-
tion (because there were rather different types of modifications). Therefore, we selected names
that resemble the names of the conceptual schema evolution operation, as we will see now.

The second case for classification edges is the insertion of only the classification edge alone
(insert classification L). This operation is needed when both dimension levels already
exist. This may be the case when either merging dimensions are defined, or in case a dimension
level is disconnected (either from a fact or from a classification hierarchy) during an evolution
job and then connected to another dimension level leading to a new hierarchy.  Regarding de-
letions of classification edges, we again only need the case that a dimension level is deleted (as
already explained above) and the case that a classification edge alone is deleted (delete clas-

sification L).

Finally, two operations that insert or delete, resp., an is_dimension_of edge (when both the
fact and the dimension level already exist or still exist, resp.) are needed (insert dimension L,
delete dimension L). The reasons for these two operations are shared dimensions of a fact or
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again the situation that a dimension level has been disconnected during an evolution job and is
then connected to a fact.

After having motivated the single logical evolution operations, we now describe their seman-
tics.

For each logical evolution operation, the following information is provided:

� the name of the operation

� its composition of component conceptual schema evolution operations (with references to
the corresponding operations in chapter 3.7). This corresponds to the sequence of opera-
tions which is searched in J for identifying applicable operations.

� its parameters (see also chapter 3.7 for corresponding parameters of the conceptual schema
evolution operations)

� preconditions for the execution of the operation. These preconditions are specified in terms
of the logical (database) layer, thus we call them logical preconditions. The logical precon-
ditions must be fulfilled in order to ensure correct execution of the logical evolution opera-
tions. Due to the design of our mapping between the conceptual and logical layer (see
chapters 4.1 and 4.3), the logical preconditions can be checked using the preconditions of
the component conceptual schema evolution operations. The validity of the conceptual
preconditions is ensured by the graphical modeling environment and, consequently, the
preconditions for the logical operations are fulfilled by the correct ordering of the concep-
tual operation sequence. We remark that the preconditions depend on the target system on
the logical layer.

� an informal description of the operation’s semantics including schema transformation, in-
stance adaptation, and update of meta schema contents (listed under three dots).

For a complete formal specification of the semantics of each operation, we refer the reader to
Appendix B. In order to distinguish the logical evolution operations from the conceptual
schema evolution operations, we denote logical evolution operations with an “L” (for “logi-
cal”) as subscript, e.g. insert measure columnL.

1. insert measure columnL: this operation extends an existing fact table by a new measure
column.

insert measure columnL

Composition:

(see figure 3-12;figure 3-16)

insert attribute (m);

connect attribute to fact (m,f, g)

Parameters: measure m, fact f, instance adaptation function g

Preconditions: The fact table Ft_<f> exists and does not contain a column
labeled m (assured by the conceptual preconditions: f � F, m
� A)

Semantics:
� The fact table Ft_<f> is extended by the new column m.

� The values of measure m are updated using the instance
adaptation function g.
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� A new tuple representing m is inserted in the meta
schema relation Measures and a new tuple representing
the new column m in the fact table is inserted in relation
Columns15.

figure 4-24: operation insert measure columnL

2. delete measure columnL: this operation deletes a measure column from a fact table.

delete measure columnL

Composition:

(see figure 3-17;figure 3-13)

disconnect attribute from fact (m,f);

delete attribute (m)

Parameters: attribute m, fact f

Preconditions: The fact table Ft_<f> exists and contains a column labeled m
(assured by the conceptual preconditions: f � F,
m � A, attr(m) = f)

Semantics:
� The column m is removed from the fact table Ft_<f>.

� Instance adaptation is done implicitly by schema trans-
formation (deletion of the instances)

� The tuple representing m is deleted from relation Meas-
ures and the tuple representing the deleted column m in
the fact table is deleted from relation Columns.

figure 4-25: operation delete measure columnL

3. insert attribute columnL: this operation extends an existing dimension table by a new
describing attribute column of a dimension level.

insert attribute columnL

Composition:

(see figure 3-12;figure 3-14)

insert attribute (a);

connect attribute to dim_level (a,l,g)

Parameters: attribute a, dimension level l, instance adaptation function g

                                               
15 We remark that updates to the system catalogue relations Columns and Tables are done by the DBMS when processing

the corresponding DDL command to transform the logical database schema.
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Preconditions: At least one dimension table Dt_<bl> exists which contains a
column for dimension level l. Each Dt_<bl> does not contain
yet a column labeled a (assured by  the conceptual precondi-
tions: l � L, a � A)

Semantics:
� Since the dimension level l may be a shared level of more

dimensions and thus contained in more then one dimen-
sion table: add a new column a to all dimension tables
Dt_<bl> to which l belongs (this step includes finding the
relevant base level bl for dimension level l).

� for all dimension tables to which l belongs: update the
values for the new column a using the instance adaptation
function g.

� for all dimension tables to which l belongs: insert a new
tuple representing the new column in the dimension table
in relation Columns. Insert a new tuple representing a in
relation Attributes. Insert new tuples representing the
mapping of attribute a to the corresponding columns in all
matching Dt_<bl> in the relation Attributemapping.

figure 4-26: operation insert attribute columnL

4. delete attribute columnL: deletes a describing attribute column from a dimension table.

delete attribute columnL

Composition:

(see figure 3-13;figure 3-15)

disconnect attribute from dim_level (a,l);

delete attribute (a)

Parameters: attribute a, dimension level l

Preconditions: At least one dimension table Dt_<bl> exists which contains a
column for dimension level l and a column for attribute a
(assured by  the conceptual preconditions: l � L, a � A,
attr(a) = l)

Semantics:
� delete column a from all dimension tables (denoted by

Dt_<bl>) to which l belongs.

� instance adaptation is done implicitly by schema trans-
formation (deletion of the instances).

� delete all tuples referencing column a in meta schema
relation Columns. Delete all tuples referencing attribute a
in relation Attributes. Delete all tuples representing the
mapping from attribute a to its corresponding column in a
dimension table in relation AttributeMapping.

figure 4-27: operation delete attribute columnL
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5. insert fact table with dimension tableL: this operation inserts a new fact table together
with a new dimension table which is referenced by the fact table (i.e. the dimension level is
base level of the fact).

insert fact table with dimension tableL

Composition:

(see figure 3-10;

figure 3-20; figure 3-23)

insert fact (f);

insert level (l);

insert dimension into fact (f, l)

Parameters: fact f, dimension level l

Preconditions: Neither a dimension table named Dt_<l>  nor a fact table
named Ft_<f> exist (assured by  the conceptual precondi-
tions: l � L, f � F)

Semantics:
� create a new dimension table Dt_<l> with column l and a

new fact table Ft_<f> with column l referencing Dt_<l>.

� Since both the dimension level and the fact are new, there
are no existing instances to be adapted. We assume that
new instances are inserted outside the scope of our
schema design task.

� Insert two tuples for the the two new tables in meta
schema relation Tables. Insert two tuples for the new
columns of these new tables in relation Columns. Insert a
tuple for the new dimension level in relation Dimension-
Levels and a tuple for the new fact in relation Facts. In-
sert a tuple in relation FactHasDim indicating that l forms
the base level for a new dimension of fact f. Insert a new
tuple in relation FactDimsMapping indicating that level l
is mapped to the corresponding column in the fact table
Ft_<f>. Insert a new tuple in relation DimHierarchy-
Mapping indicating that level l is mapped to the corre-
sponding column in Dt_<l>

figure 4-28: operation insert fact table with dimension tableL

6. insert fact tableL: this operation inserts a new fact table and relates it to an existing dimen-
sion table.

insert fact tableL

Composition:

(see figure 3-20;figure 3-23)

insert fact (f);

insert dimension into fact (f, l, nv)

Parameters: fact f, dimension level l, instance adaptation function nv
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Preconditions: A dimension table exists that contains a column representing
dimension level l. l may be the base level (i.e., the dimension
table is labeled Dt_<l>) or not (i.e., the dimension table is
labeled Dt_<bl>). No fact table labeled Ft_<f> exists. This is
assured by the conceptual preconditions l � L, f � F.

Semantics:
� Case 1: l is (or has been) base level of another fact: create

a new fact table Dt_<f > with column l referencing the
appropriate dimension table.

Case 2: l is not base level of any fact: first, create a new
dimension table Dt_<l> with all levels and their describing
attributes above (and including) l in the classification hier-
archy (i.e. copy all levels and their attributes to this new
dimension table). Second, create a new fact table Dt_<f >
with column l referencing the new dimension table
Dt_<l>.

� Case 1: l is (or has been) base level of another fact: Since
the fact table is new, there are no existing instances to be
adapted.

Case 2: a new dimension table Dt_<l> has been created:
copy all distinct values for l into column l of Dt_<l>.
Copy the values for all higher levels including the values
for all describing attributes of these levels (incl. l) in the
corresponding columns of Dt_<l>.

� Case 1: l is (or has been) base level of another fact: insert
a new tuple into relation Tables for the new fact table and
a new tuple for the new column of this fact table in rela-
tion Columns. Insert a new tuple for the new fact in rela-
tion Facts and a corresponding new tuple in relation
FactHasDim describing that l is a base level spanning a
dimension for fact f. Insert a new tuple in relation
FactDimsMapping indicating that level l is mapped to the
corresponding column in the fact table Ft_<f>. Insert a
new tuple in relation DimHierarchyMapping indicating
that level l is mapped to the corresponding column in
Dt_<l>

Case 2: l is not base level of any fact: additionally to
case 1, perform the following steps: insert a new tuple
into relation Tables for the newly created dimension table
Dt_<l>. Insert new tuples in relation Columns for all di-
mension levels and their attributes which have been in-
serted as columns in this new dimension table. Update
relation DimensionLevels: set the is_base flag for level l
to TRUE and set Dt_<l> as table_name.

figure 4-29: operation insert fact tableL
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7. delete fact tableL: this operation deletes an existing fact table. The dimension table to
which the fact table was related still exists after execution of this operation.

delete fact tableL

Composition:

(see figure 3-24;figure 3-21)

delete dimension (l,f,agg);

delete fact (f)

Parameters: fact f, dimension level l.

The aggregation function agg is not used because the fact is
deleted, too.

Preconditions: A fact table labeled Ft_<f> with a single column l referencing
the corresponding dimension table Dt_<l> exists (assured by
the conceptual preconditions l � L, f � F, l � gran (f)).

The fact must not be connected to any other elements than
the dimension level l. This precondition is guaranteed because
a delete fact operation may only occur after the last edge is
deleted from this fact (see remark concerning the ordering of
schema evolution operations)

Semantics:
� Drop the fact table Ft_<f>.

� Instance adaptation (i.e. deletion) is done implicitly by the
schema transformation.

� Delete all tuples referencing Ft_<f> from relations Tables
and Columns. Delete the tuple referencing fact f in rela-
tion Facts. Delete the tuple referencing fact f and dimen-
sion level l from relation FactHasDim. Delete the appro-
priate tuple from relation FactDimsMapping indicating
that dimension level l was mapped to the corresponding
column in fact table Ft_<f>.

figure 4-30: operation delete fact tableL

8. insert dimension tableL: this operation inserts a new dimension table and relates it with an
existing fact table.

insert dimension tableL

Composition:

(see figure 3-10;figure 3-23)

insert level (l);

insert dimension into fact (f, l)

Parameters: fact f, dimension level l

Preconditions: A fact table Ft_<f> exists and does not yet contain a column
named l (assured by  the conceptual preconditions:
l � L, f � F)

Semantics:
� Create a new dimension table Dt_<l> with column l. Add
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a column l (referencing Dt_<l>) to the fact table Ft_<f>.

� Since the dimension level is new, there are no existing
instances in the fact table or dimension table to be
adapted. We assume that new instances are inserted out-
side the scope of the schema design task.

� Insert a new tuple into relation Tables describing the new
dimension table. Insert two new tuples in relation Co-
lumnns describing both the new column in the new di-
mension table and the new column in the existing fact ta-
ble. Insert a new tuple in relation DimensionLevels for
the newly inserted dimension level. Insert a new tuple in
relation FactHasDim indicating that l is a base dimension
level for fact f. Insert a new tuple into relation
FactDimsMapping indicating that l is a foreign key at-
tribute in the fact table Ft_<f>. Insert a new tuple in rela-
tion DimHierarchyMapping indicating that l is mapped to
the corresponding column in Dt_<l> .

figure 4-31: operation insert dimension tableL

9. insert dimension level columnL: this operation inserts a new column representing a new
dimension level into an existing dimension table. As a consequence of this operation’s exe-
cution, the new level is (maybe temporarily) the highest level of the classification hierarchy
(i.e. after insertion of the level, there exists a path from the base level of the dimension to
the new level. The path ends at the new level).

insert dimension level columnL

Composition:

(see figure 3-10;figure 3-18)

insert level (l2);

insert classification (l1, l2, 
2
1
l
lupr � )

Parameters: dimension levels l1, l2, instance adaptation function 2
1
l
lupr � .

Level l1 is the level to which the new level l2 is being con-
nected.

Preconditions: At least one dimension table Dt_<bl> exists which contains a
column representing l1, but no column named l2 (assured by :
l1� L , l2 � L)

Semantics:
� Add a column l2 to all dimension tables (denoted by

Dt_<bl>) in which l1 is contained.

� For all dimension tables (denoted by Dt_<bl>) to which l1

belongs: update the new column l 2 using the roll-up
function 2

1
l
lupr � .

� Insert a new tuple in relation DimensionLevels repre-
senting the newly inserted dimension level l2. Insert a new
tuple (l1,l2) in relation Classifications representing the
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new classification relationship.

Additionally: for all dimension tables (denoted by
Dt_<bl>) to which l1 belongs: insert a new tuple in rela-
tion Columns which represents the new column l2 of
Dt_<bl>. Insert a new tuple into relation DimHierarchy-
Mapping which describes the mapping from l2 to each of
these columns in the dimension table(s) Dt_<bl>.

figure 4-32: operation insert dimension level columnL

10. insert classificationL: this operation inserts a new classification relationship between two
existing dimension levels.

insert classificationL

Composition:

(see figure 3-18)

insert classification (l1, l2)

Parameters: dimension levels l1, l2 to be connected.

The new classification relationship means that level l1 can be
classified according to level l2.

Preconditions: There exists at least one dimension table which contains a
column named l1 . There exists also at least one dimension
table (possibly the same) which contains a column named l2 .
This is assured by the conceptual preconditions: l1 � L , l2 �
L.

Semantics:
� for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

Case 1: l2 exists already in Dt_<bl>:

if l 2 is marked for deletion: unset deletion flag

Case 2: l2 exists in another dimension table:

Add l2 and all dimension levels above l2 in the
classification hierarchy together with all describ-
ing attributes of these levels as new columns to
Dt_<bl>.

� for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

Case 1: l2 exists already in Dt_<bl>:

no instance adaptation necessary.

Case 2: l2 exists in another dimension table:

update all copied levels (i.e. l2 and all levels
above in the classification hierarchy) using the
corresponding r-up functions. Update all de-
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scribing attributes of these dimension levels using
the corresponding ava function.

� for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

insert the tuple (l1,l2) in relation Classifications.

Case 1: l2 exists already in Dt_<bl>:

done.

Case 2: l2 exists in another dimension table:

for each of the copied dimension levels: insert a
corresponding tuple in relation Columns and a
corresponding tuple in relation DimHierarchy-
Mapping.

for each of the copied attributes of these levels:
insert a corresponding tuple in relation Columns
and a corresponding tuple in relation Attribute-
Mapping.

figure 4-33: operation insert classificationL

11. delete classificationL: this operation removes an existing classification relationship be-
tween two dimension levels. Only the classification edge is deleted, the dimension levels
still exist after execution of this operation.

delete classificationL

Composition:

(see figure 3-19)

delete classification (l1, l2)

Parameters: dimension levels l1, l2 to be disconnected.

Preconditions: There exists at least one dimension table which contains a
column labeled l1 and at least one dimension table which
contains a column labeled l2 (assured by  the conceptual pre-
conditions l1 � L , l2 � L, (l1, l2) � class).

Semantics:
� for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

mark all dimension levels above and including l2 (i.e.
all levels � Dl2) and all attributes of these levels (i.e.
all attributes � Attributes(Dl2)) for deletion.

� No instance adaptation when processing this operation.
The instances of l2 are either needed again when this level
is connected elsewhere, deleted when l2 is deleted, or de-
leted from the dimension table(s) Dt_<bl> during the gar-
bage collection at the end of the processing phase in the
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transformation algorithm.

� Delete the tuple (l1,l2) in relation Classifications.

Additionally, for all dimension tables (denoted by
Dt_<bl>) to which l1 belongs:

mark all tuples representing dimension levels above
and including l2 and all attributes of these levels for
deletion in relation Columns. Mark all tuples repre-
senting dimension levels above and including l2 in re-
lation DimHierarchyMapping for deletion. Mark all
tuples representing attributes of these dimension lev-
els in relation AttributeMapping for deletion.

figure 4-34: operation delete classificationL

12. delete dimension level columnL: deletes a column representing a dimension level in an
existing dimension table.

delete dimension level columnL

Composition:

(see figure 3-11)

delete level (l)

Parameters: dimension level l

Preconditions: At least one dimension table exists which contains a column
labeled l. l may be the base level of this dimension table (i.e.
the dimension table is named Dt_<l>). This is assured by the
conceptual precondition l � L.

Semantics:
� for all dimension tables (denoted by Dt_<bl>) to which l

belongs:

If (l is the only level of this dimension table)

then delete the dimension table Dt_<bl>

else delete the column l in Dt_<bl>

� for all dimension tables (denoted by Dt_<bl>) to which l
belongs:

If (l is the base level of this dimension table) and

    (l is not the only level of Dt_<bl>)

then eliminate duplicates in the new base level

(All other cases are done implicitly by the schema trans-
formation).

� for all dimension tables (denoted by Dt_<bl>) to which l
belongs:

If (l is the only level of this dimension table)

then
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delete the tuple representing l in Dt_<l> in Col-
umns; delete the tuple representing Dt_<l> in Ta-
bles; delete the tuples representing l in FactDims-
Mapping

else if (l is base level, but not the only level of this di-
mension table)

then

delete the tuple representing l in Dt_<l> in Col-
umns; delete the tuples representing l in
FactDimsMapping;

else

delete the tuple representing l in Dt_<l> in Col-
umns;

Additionally in all cases: delete the tuples representing
l in DimHierarchyMapping; delete the tuple repre-
senting l in DimensionLevels;

figure 4-35: operation delete dimension level columnL

13. insert dimensionL: this operation inserts a new is_dimension_of edge between an existing
fact and an existing dimension level which is then base level of the fact.

insert dimensionL

Composition:

(see figure 3-23)

insert dimension into fact (f, l, nv)

Parameters: fact f, dimension level l, instance adaptation function nv

Preconditions: There exists at least one dimension table containing a column
labeled l. The dimension table may be labeled Dt_<l> (if l is
the base level) or Dt_<bl> (if l is not the base level). There
exists a fact table Ft_<f> which does not yet contain a col-
umn labeled l (assured by  the conceptual preconditions: l �

L, f � F)

Semantics:
� Case 1: l is (or has been) base level of another fact: add a

column l referencing the appropriate dimension table to
the fact table Ft_<f >.

Case 2: l is not base level of any fact: first, create a new
dimension table Dt_<l> with all levels and their describing
attributes above (and including) l in the classification hier-
archy (i.e. copy all levels and their attributes to this new
dimension table). Second, add a column l referencing the
new dimension table Dt_<l> to the fact table Ft_<f >.

� Start with case 2: if a new dimension table Dt_<l> has
been created: copy all distinct values of l into column l of
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Dt_<l>.  Copy the values for all higher levels including
the values for all describing attributes of these levels (incl.
l) in the corresponding columns of Dt_<l>.

In both cases: adapt the data in the fact table Ft_<f> ac-
cording to the increased dimensionality. To that end, de-
fine a temporary table with attributes FKf � l � Measuref.

Insert into the temporary table the cross-product of
Ft_<f> and the attribute l from Dt_<l>. Update all meas-
ure attributes using the instance adaptation function nv.
Replace data in the fact table Ft_<f> by all not-NULL
values from the temp table.

� Case 1: l is (or has been) base level of another fact: insert
a new tuple for the new column of the fact table in rela-
tion Columns. Insert a corresponding new tuple in rela-
tion FactHasDim describing that l is a base level spanning
a dimension for fact f. Insert a new tuple in relation
FactDimsMapping indicating that level l is mapped to the
corresponding column in the fact table Ft_<f>. Insert a
new tuple in relation DimHierarchyMapping indicating
that level l is mapped to the corresponding column in
Dt_<l>

Case 2: l is not base level of any fact: additionally to
case 1, perform the following steps: insert a new tuple
into relation Tables for the newly created dimension table
Dt_<l>. Insert new tuples in relation Columns for all di-
mension levels and their attributes which have been in-
serted as columns in this new dimension table. Update
relation DimensionLevels: set the is_base flag for level l
to TRUE and set Dt_<l> as table_name.

figure 4-36: operation insert dimensionL

14. delete dimensionL: this operation deletes an existing is_dimension_of edge between a fact
and a dimension level. Both the fact and the dimension level still exist after execution of the
operation.

delete dimensionL

Composition:

(see figure 3-24)

delete dimension level from fact (l, f, agg)

Parameters: fact f, dimension level l, instance adaptation function agg
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Preconditions: There exists a dimension table named Dt_<l> containing a
column named l. There exists a fact table Ft_<f> with a col-
umn l referencing Dt_<l>. This is assured by  the conceptual
preconditions: l � L, f  � F, l � gran(f).

Semantics:
� We remark that the instance adpatation must be executed

before the schema transformation takes place. Otherwise,
necessary instance information would be lost.

The column l is removed from the fact table Ft_<f>.

� The data in the fact table has to be adapted according to
the decreased dimensionality, i.e. the measure values have
to be aggregated using the instance adaptation function
agg. To that end, a copy of the fact table to a temporary
table is done. The dimension level to be deleted is ex-
cluded and the measure attributes are aggregated using
the instance adaptation function. After aggregation, the
data in the fact table is replaced by the contents of the
temporary table.

� The tuple representing the mapping of l to the corre-
sponding column in Ft_<f> must be deleted from the re-
lation FactDimsMapping. We remark that this must be
done before schema transformation takes place. The tuple
representing l as a dimension of fact f must be deleted in
relation FactHasDim. Finally, the tuple representing l in
Ft_<f> is deleted from relation Columns.

figure 4-37: operation delete dimensionL

4.4.5. Putting Things Together: the complete Transformation Algorithm

As refinement to chapter 4.4.3, we present the second basic idea for the transformation algo-
rithm: the definition of processing priorities for the logical evolution operations. More pre-
cisely, we define five groups of logical evolution operations. The transformation algorithm
always tries in the first step to find an applicable operation sequence of the highest priority. If
no such sequence is found (either because the preconditions do not hold (yet) or there is simply
no such sequence in the evolution job), the algorithm tries to find an operation sequence of the
next lower priority class and so on. If an applicable sequence has been found and processed,
i.e. the sequence of conceptual evolution operations has been transformed to a logical evolu-
tion operation and removed from J, the transformation algorithm tries to find again an applica-
ble sequence of the highest priority (which may then be applicable because of the execution of
the operation just processed).

There are five groups of logical evolution operations with different processing priorities. We
will now explain why we need these priorities at all and why certain operations belong to a
specific group. Furthermore, we will explain why we assigned a given priority to a group of
operations opposed to other groups.



Processing MD Schema Evolution Operations in a Relational DBS130

Basically, three ideas explain the priority schema in general. The first idea is that we always try
to process operations dealing with attributes first (see figure 4-38 for the groups ordered ac-
cording to their processing priorities). The reason for that is that an attribute operation always
bears the necessary context for processing the operation. It is immediately clear which effects
on which tables the attribute operation has because the attribute is always bound in its seman-
tics to the fact or dimension level it belongs to. We could also say that although there is no
clear difference on the ME/R graph layer, attributes are some kind of second-class citizens as
opposed to facts and dimension levels. This is mainly because an attribute alone is not a valid
part of an ME/R graph and also concerning an MD schema, an attribute alone is no meaningful
part of the schema. The idea to process attribute operations first also saves us from defining
additional logical evolution operations. For example, if we would not have the highest priority
for these operations, we would also have to consider complex operations that insert or delete a
fact together with a measure attribute or a dimension level together with an describing attrib-
ute.

The next idea of the priority scheme is to process applicable sequences of operations that are
as long as possible. This idea explains why the operation insert fact table with dimen-

sion table L which is composed of three conceptual schema evolution operations has been
assigned priority class 2. Similarly, the operations in priority class 3 are composed of two op-
erations, whereas the operations in priority class 4 and 5 only consist of a single conceptual
schema evolution operation.

insert fact table with dimension tableLgarageveh ic le
re pa ir

ve hic le
re p a ir

#  of pe rs on s

insert measure columnL

insert attribute columnL

in co m e

custom er

ve hic le
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#  of pe rs on s

delete measure column L

delete attr ibute columnL

in co m e

custom er

delete dimension level column L
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delete dimensionLgarageveh ic le
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delete classificationL
countrygeogr. reg ion

insert dimension tableLgarageveh ic le
re pa ir

insert fact tableLgarageveh ic le
re pa ir

insert dimension level columnLcountrygeogr. reg ion

delete fact tableLgarageveh ic le
re pa ir

insert dimensionLgarageveh ic le
re pa ir

insert classificationLcountrygeogr. reg ion
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3.
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5.

figure 4-38: processing priorities of logical evolution operations
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The last idea for the understanding of the priority scheme explains the difference between the
priority classes 4 and 5.  We assume again our standard vehicle repair scenario as shown in
figure 4-39 and assume an evolution job that breaks the classification hierarchy of the vehicle
dimension and additionally inserts a new fact vehicle sales, see figure 4-40.

veh ic leveh ic le
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type  o f 
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repa ir

coun trygeogr. reg ion

cos ts  (part)

cos ts  (wages)

cos ts  (to ta l)

#  o f persons

dura tion day

m onth

brand

cus tom er

age

incom e

figure 4-39: vehicle repair example

J delete classification (vehicle,  model);
insert fact (vehicle sales);
insert dimension level into fact
  ( model, vehicle sales);
insert classification (vehicle, brand);

vehicle

vehicle 

figure 4-40: example evolution job

If we regard the operations delete classification (vehicle, vehicle model) and
insert classification (vehicle, brand) , we see that they are both applicable. The rea-
son why we process the delete classification operation (priority 4) before the insert

classification operation is a drawback of the transformation algorithm design. As
sketched in chapters 4.4.3 and 4.4.4, we mark dimension levels for deletion when processing a
delete classification operation. Consequently, when we process an insert classification
operation that re-inserts part of the deleted classification hierarchy (dimension level brand in
the example) we may merely reset the deletion mark. If we would not solve this problem by
priorities, we would have to check for this case at the garbage collection which would make
the algorithm more complicated than an additional priority class. An anlogous argumentation
applies to the case of the insert dimension into fact operation.

The priority scheme together with the grouping of the operations assures the unique and com-
plete parsing of the sequence J.
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figure 4-41: transformation algorithm

/* input: sequence gamma of conceptual schema evolution operations

/* output: sequence lambda of logical evolution operations

transformation_algorithm (ordered sequence of operations gamma);

{

 /* search_priority: is increased (corresponds to lower priority) until

 /* operation sequence of the highest possible priority is found

 /* found: is set to TRUE if an applicable operation sequence has been found

 /* ops_positions: used to store the positions of matched component

 /* operations (maximum: 3 component operations) in gamma

 int search_priority := 1;

 bool found := FALSE;

 array ops_positions[MAXOPS];

 while not isempty (gamma) {  /* gamma is completely reduced

 /* search for an operation sequence of the highest possible priority

 /* for testing if sequence is applicable:

 /* always check the preconditions against the current state

 /* return the indices of the matching component operations

 search_in_ J_for_applicable_operation_sequence

(search_priority, found, ops_positions);

       if (found) /* if applicable sequence has been found

/* positions of matching component operations

/* have been stored in ops_positions

          then {/* transform to logical evolution operations

 transform_operations (ops_positions);

 /* remove matching component operations from gamma

        remove_operations_from_gamma (ops_positions);

   /* start new search with highest priority

 search_priority=1;

 break;

}

       else /* no operation sequence with current search_priority

/* found: select next search priority

{search_priority := search_priority + 1;

 /* if no applicable operation of the lowest priority

  /* has been found: sequence must be wrong

 if search_priority == MAXPRIO+1 then error_handling();

}

} /* while */

/* call garbage collection */

garbage_collection();

} /* transformation algorithm
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Next, we describe the complete transformation algorithm which is shown in figure 4-41. As
mentioned in chapter 4.4.3, its input is the sequence J of conceptual schema evolution opera-
tions. By parsing the algorithm transforms (i.e., rewrites) this sequence to a sequence of logical
evolution operations as output. In the main loop, it searches in J for applicable (w.r.t. to the
preconditions16) sequences of conceptual schema evolution operations. If such an applicable is
found, the subroutine search_in_J_for_applicable_operation_sequence returns the index po-
sitions of the component operations in J. These component operations are then transformed to
a corresponding logical evolution operation and removed from the sequence J. Then, the algo-
rithm starts again the search for applicable operations of the highest priority group (reset
search_priority to 1). Otherwise, if no applicable operation sequence of the current priority is
found, the algorithm searches for an applicable sequence of the next lower priority class.

The algorithm terminates if the sequence J is empty which corresponds to the complete deriv-
ability of each sequence J. The logical evolution operations are complete in the sense that
every such sequence of conceptual schema evolution operations can be parsed, i.e. transformed
to a corresponding sequence of logical evolution operations. The uniqueness of the derivation
is ensured by the design of the algorithm, more precisely: the priority scheme and the set of
logical evolution operations and their composition.

In order to explain the processing model of the transformation algorithm, we extend and refine
the example from chapter 4.4.3. We repeat the situation for the starting point: the vehicle re-
pairs example in figure 4-42 and the evolution job in figure 4-43. The following text basically
corresponds to the example in chapter 4.4.3, but has been extended by a detailed discussion
about the priority scheme and the introduced logical evolution operations. These extensions
correspond to the non-generic part of the transformation algorithm that have been designed for
star schemas as schema template on the logical layer.
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figure 4-42: example schema

                                               
16 We remark that for the evaluation of the preconditions always the current state is checked against the preconditions.
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J insert classification (customer,geogr. region);
insert fact (vehicle sales);
insert dimension level into fact
  (day, vehicle sales);
insert attribute (count);
connect attribute to fact (count, vehicle sales);

figure 4-43: example evolution job

As said before, the transformation algorithm tries to find an applicable operation sequence of
the highest priority. The first operation insert classification (customer, geogr. re-

gion)  is applicable (because both dimension levels are contained in the MD schema), but not
of the highest priority class. The operation sequence insert attribute (count); connect

attribute to fact (count, vehicle sales) belongs to the highest processing priority
class, but is not applicable yet because the fact vehicle sales is not contained in the MD
schema. Thus, the algorithm starts with a sequence of second priority class: insert fact

(vehicle sales); insert dimension level (day, vehicle sales) . This sequence is
applicable because the dimension level day already belongs to the MD schema.

The transformation algorithm processes this sequence, i.e. it transforms these two conceptual
schema evolution operations to a logical evolution operation that transforms the star schema,
adapts the instances and updates the meta schema contents. Finally, the two operations are
deleted from J.

Consequently, after this first step, we have the following intermediate situation: the resulting
MD schema is depicted in figure 4-44 and the remaining evolution job J is shown in figure
4-45:
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figure 4-44: example schema after the first transformation step
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J insert classification (customer,geogr. region);
insert attribute (count);
connect attribute to fact (count, vehicle sales);

figure 4-45: example evolution job after the first transformation step

Now, as second step, both the sequences insert classification (customer, geogr.

region)  and insert attribute (count); connect attribute to fact (count, ve-

hicle sales)  are applicable, but the second belongs to the highest priority class and there-
fore is processed next. Finally, the operation insert classification (customer, geogr.

region)  is processed at the end of the transformation phase. The transformation algorithm
holds because J is empty.

We conclude the algorithm’s description with a few words concerning the garbage collection.
As carried out before, columns representing dimension levels are only marked for deletion in
their corresponding dimension tables. Consequently, during the garbage collection phase, all
marked dimension levels are deleted from  their dimension tables with one exception. In order
to present the exception, we repeat figure 4-18 as figure 4-46: the evolution job deletes the
alternative path from the dimension levels week and year. This means that the column repre-
senting the dimension level year in the dimension table Dt_time would be marked for deletion.
But, as there still exists another path from the base level day to the level year, the column rep-
resenting year must not be deleted from Dt_time. The detection of this exception in the gar-
bage collection algorithm is rather complex.
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figure 4-46: deleting an alternative path
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The handling for this situation can only be done at the end of the processing phase of the
transformation algorithm and not during the processing of the delete classification op-
eration because a matching insert class operation (that re-connects the level year) may be
contained in another (distant) position in J.

4.5. Summary
This chapter presented the formal mapping (and, consequently, the conncetion in the overall
framework) between the conceptual layer (as described in chapter 3) and the database system
layer (the logical layer in our layer model). Specifically, the detailed mapping information of
our schema evolution algebra (MD schemas with schema evolution operations) serves as a
complete formal specification which has been used as base for an implementation of the FI-
ESTA framework.

Along with the detailed description of the mapping from a given MD schema to a relational
star schema, we developed a meta schema as extension of the standard DBS system catalogue.
This meta schema stores detailed information about the mapping. This information is necessary
because most of the multidimensional semantics is hidden or even lost in the structure of a re-
lational star schema due to the different expressiveness of an MD schema and a star schema.
Especially, we showed how the meta schema reflects some powerful modeling capabilities of
the ME/R approach, namely merging and shared dimensions. After an extended example, we
refined this mapping description to a formal consistency criterion between the conceptual and
logical layer.

Having introduced these prerequisites, we described how conceptual schema evolution opera-
tions are transformed to corrresponding logical evolution operations. Logical evolution opera-
tions transform the relational database schema, adapt the instances and update the contents of
the meta schema accordingly. From a detailed discussion, taking into account the peculiarities
of shared and merging dimensions, we derived several observations that led to requirements to
the transformation algorithm. We discovered that local modifications of the ME/R graph may
have effects on logical elements (i.e., tables and/or columns) representing other (i.e. graphically
distant) parts of the ME/R graph. Additionally, we found that operations with the same se-
mantics on the conceptual layer may lead to different semantics of operations on the logical
layer. The main requirement and design idea derived from these considerations was to keep
instance information as long as possible and therefore postpone the physical deletion of col-
umns in dimension tables to a final garbage collection at the end of the transformation algo-
rithm. Then, we described the generic part of the transformation algorithm wich is independent
of the database schema template (e.g., star schema or snowflake schema) on the logical layer.
Using an example, we sketched the processing phase of the algorithm. We explained how the
algorithm identifies certain sequences of conceptual schema evolution operations which are
then transformed to corresponding logical evolution operations.

Next, we presented the logical evolution operations for star schemas. We explained why we
chose exactly these operations and showed some advantages of our design decisions. A de-
tailed description of the semantics, parameters, and preconditions completed this chapter.

Finally, we put the pieces “algorithm” and “logical evolution operations” together and pre-
sented the refined complete transformation algorithm. We explained the priority scheme for
processing the operations that ensures (together with the definition of the logical evolution
operations) the complete and unique parsing of a given evolution job. We concluded with the
explanation of the refined example and some key considerations about the garbage collection
phase.



Discussion 137

5. Discussion

7horoughly, we have presented the FIESTA solution in detail in chapters 3 and 4. Now, we
will discuss our approach. The discussion presented here is divided in three rather heteroge-
nous parts:

As first step (chapter 5.1), we close the RDBS-generic part of the solution presented in chapter
4 and start with sketching the implementation of the overall BabelFish prototype. For this im-
plementation, we have used several commercial products. We will show where and how the
components of FIESTA have been embedded in the prototype.

Next, in chapter 5.2, we revisit the objectives for FIESTA (as introduced in chapter 3.3) and
show how and to what degree we fulfilled them technically. We also discuss the solution of
FIESTA in a wider context.

Finally, chapter 5.3 closes the last remaining open bracket and discusses related work (as pre-
sented in chapter 1.3). To that end, we evaluate where and how our approach differs from
other solutions.

5.1. The FIESTA Implementation

The implementation of FIESTA is embedded in the implementation of the overall BabelFish
prototype. Thus, we will introduce the components and interfaces of the BabelFish prototype
and explain in detail the components of FIESTA.

An overview of the software components of the BabelFish system is shown in figure 5-1.

Since the underlying vision of BabelFish is to develop a repository-driven system for ware-
house design and maintenance, the BabelFish repository constitutes the core of the prototype.
The repository has been implemented using Softlab Enabler 2.0 [Sof98], a commercial reposi-
tory product.

I would never die for my beliefs because I
might be wrong.

(Bertrand Russel)
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figure 5-1: Scope of the FIESTA implementation within the BabelFish prototype

As introduced in chapter 2.4.4, GraMMi ([Haa99], [SBH00]) is our graphical modeling tool
for schema design and maintenance. When we developed the ME/R notation in the beginning
of the BabelFish project, we expected to refine and maintain the notation during its evaluation
in several commercial projects. Thus, we planned to involve end users (i.e., warehouse model-
ers) in the design of the ME/R notatation. This process implies frequent changes to the syntax
and semantics of the modeling language. As a consequence, we required a flexible modeling
tool that allows for a quick adaptation of the underlying modeling notation, without program-
ming and recompilation. Therefore, we chose the meta-modeling approach that stores the
modeling language as metadata in a repository. When change requests of the modeling nota-
tions arise, only the (meta) data in the repository has to be changed, but not the tool itself. The
tool reads the modeling notation at startup from the repository. A sample screenshot of
GraMMi is contained in figure 2-13, chapter 2.4.4.

The implementation of FIESTA is contained in two software components. Due to the com-
plexity of the implementation and a wide range of requirements (as the examination of several
commercial products) we decided to develop two components:

� a generator component, called MERTGEN [Hah00]. Objective of this component, carried
out as a master thesis co-supervised by the author, was to use an ME/R graph in GraMMi
and to transform it to corresponding logical schemas suited for two commercial products:
Cognos PowerPlay and Informix MetaCube. Basically, MERTGEN reads an ME/R graph
from the repository, transforms this graph according to the peculiarities of the target sys-
tem and generates corresponding scripts that build a logical schema in the target system
and update the tool meta schema.
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� an evolution component, called EWOK [Vet99]. Objective of this component, carried out
as an internship co-supervised by the author, was to transform schema evolution jobs to
corresponding logical evolution jobs for Informix MetaCube. EWOK reads the evolution
jobs from the repository and creates scripts that adapt the relational star schema in the In-
formix database and update the contents of the MetaCube meta schema accordingly.

We will now describe both components and issues (e.g., the meta schema) that are relevant for
both components in detail.

The generator component MERTGEN uses a conceptual multidimensional schema, visualized
by its ME/R graph, as input and generates by the use of the graph grammar (see chapter 2.4.3
and [Hah00]) corresponding scripts to generate logical database schemas for two commercial
products: Cognos Powerplay  ([Cog98a],[Cog98b],[Cog98c]) and Informix Dynamic Server
(Version 7.30, [Inf98a], [Inf98b]) together with Informix MetaCube (Version 4.0.2, [Inf98c],
[Inf98d]). MERTGEN has been developed using Microsoft Visual C++ version 5.0 under
Windows NT.

The underlying research problem of MERTGEN, the transformation of a graphical model rep-
resentation to a script language for the target system, is a compiler construction problem.
When investigating the single phases of a typical compiler [ASU88], we note the following
similarities and differences from a “classical” compiler to the transformation algorithm pre-
sented in [Hah00]: Starting point is not a source program, represented by a string, but a con-
ceptual schema, represented by a ME/R graph. Thus, a scanner for the lexical analysis is re-
placed by reading the model representation (from a repository) and internally building the di-
rected, acyclic graph representation. The syntax analysis phase checks for the correctness of
the graph which represents the MD model using a graph grammar (see chapter 2.4.3). Details
of the algorithm that checks the correctness by using the graph grammar are given in [Hah00].
A semantical analysis could check additional integrity constraints of the graph that cannot be
represented by the graph grammar. Examples are cycles or multiple edges of the same type
between the same nodes. After the analysis phase, the graph is transformed according to the
possibilities and restrictions of the target system. The result of this phase is still a graph, but
the graph is already adapted to the peculiarities of the target system. Consequently, this phase
can be regarded as the phase generating intermediate code for a regular compiler.  Optimizing
the models for the target system requires information that cannot be contained in the ME/R
model.

The code generation delivers commands that build the logical schema using the notation of the
target system. The algorithm for generating these target system commands is strongly system-
specific and cannot be generic due to the highly different expressiveness of commercial data-
bases and tools. Not all features of the ME/R modeling notation can be directly expressed in all
commercial tools. The support for “difficult” features of the ME/R notation in the examined
products is shown in figure 5-2.

Cognos Powerplay Informix Metacube

describing attributes of dimension
levels

not supported supported

alternative paths not supported supported

merging dimensions not supported not supported

multiple facts not supported supported

figure 5-2: limitations of commercial OLAP products
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Since some features of the ME/R notation were not directly expressible in the target systems,
an information preserving solution had to be found. Basically, the ME/R graph is transformed
according to the limitations of the target system. We refer to [Hah00] for details on the trans-
formations.

Having transformed the ME/R graph accordingly, MERTGEN generates scripts that build the
logical schema and fill the contents of the tool’s meta schema. These scripts are SQL scripts in
the case of Informix MetaCube and a proprietary script language called MDL in the case of
PowerPlay.

The evolution component EWOK [Vet99] assumes an existing conceptual schema evolution
job and transforms it to corresponding SQL commands that transform the logical schema in the
relational database and update the contents of the MetaCube meta schema accordingly. Com-
mon result of MERTGEN and EWOK is a precise integration of the FIESTA meta schema
with the tool specific meta schema of Informix MetaCube. The different meta relations of
MetaCube and their counterparts of the ME/R notation are summarized in figure 5-3.

Meta Table Name

in MetaCube tool

Corresponding Ele-
ment in the ME/R
Notation

Description

Dss_system complete model a conceptual OLAP model

Fact_table fact node data about all facts of the model

Ui_fact_table - user interface configuration of the facts

Dim dimension data about all dimensions of the model

Ui_dim - user interface configuration of the dimen-
sions

Fact_dim_mapping connects edge be-
tween a fact and its
base levels

assigns dimensions to facts

Ui_fact_dim - according user interface configuration

Fact measure data about measures (attributes) of facts

Ui_fact - according user interface configuration

Dim_el dimension level node data about all dimension levels of the model

Att attribute of a dimen-
sion level

describing attributes of dimension levels

Ui_att - according user interface configuration

Rollup classification edge representation of the classification relation-
ship of two dimension levels

Dss_sequence - counter for system variables

Dss_string - string variables for internal maintenance
(e.g. SQL scripts for assigning a level value
to dimension levels)

figure 5-3: Informix MetaCube metadata tables
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We present this tool specific meta schema as an example for a meta schema. The scope of meta
data in this meta schema has influenced the design of the FIESTA meta schema (described in
chapter 4.1.5) which constitutes a generalization of tool-specific meta schemas.

EWOK is a tool component developed in Java with JDK version 1.2. It reads evolution jobs as
input from the repository (for details of the meta schema representing evolution jobs, see
[Vet99]) and transforms this sequence of conceptual schema evolution operations to SQL
scipts that transform the relational star schema and update the contents of the meta schema. To
that end, EWOK works with the following metadata contained in the BabelFish repository:

� the conceptual schema, represented as ME/R graph (see [Haa99] for details of the relevant
part of the meta schema)

� the logical database schema (i.e., the structure of the star schema) representing the con-
ceptual schema on the database layer,

� the evolution jobs as sequence of schema evolution operations (with pointers to the rele-
vant parts of the conceptual MD schema), and

� the relationships between the repository objects (e.g., from a node of the ME/R graph to
the corresponding element in the star schema)

During the parallel implementation of the three main components GraMMi [Haa99], MERT-
GEN [Hah00], and EWOK [Vet99] (see figure 5-1 for the components), the FIESTA reposi-
tory schema was continously extended and integrated to cover this range of metadata. Thus,
the resulting overall repository schema is a joint result of these works.

5.2. Conformity of the FIESTA solution with its objectives

As central part of the discussion of the solution developed in this thesis, we revisit the objec-
tives that we have introduced in chapter 3.3. For each objective, we evaluate to what degree
we have achieved it and sketch the main technical ideas having contributed to its fulfillment.

� support of the full design and maintenance cycle: FIESTA covers all design phases of the
design and maintenance cycle (figure 1-2) and supports the implementation phase. FIESTA
is usable both for initial schema design and the adaptation of a system populated with data.
This objective has been completely fulfilled on the conceptual and the logical layer. The de-
sign of the conceptual schema evolution operations guarantees both the creation of MD
schemas from scratch (in this case, the parts of the multidimensional data model represent-
ing instances are empty) and the modification of existing schemas during maintenance. As
an advantage of our design, the modified parts of a given multidimensional schema are
clearly identifiable. Additionally, the design of the logical evolution operations together
with the transformation algorithm guarantees this support on the database system layer.
This is particularily reflected in the design of some logical evolution operations that are ba-
sically used for either creating a new star schema (e.g., the operation insert fact
table with dimension table L , creating the minimal meaningful entity on the logi-
cal database layer) or assume an already existing star schema and modify it accordingly
(e.g., the operation insert measure column L, extending an already existing fact
table).

� formal definition of semantics of evolution operations: this objective has also been com-
pletely fulfilled on the conceptual and the logical layer. On the conceptual layer, the se-
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mantics of the schema evolution operations are precisely defined by the definition of the
schema transformation and the instance adaptation in terms of the multidimensional data
model. Operations offering alternatives concerning the semantics (e.g., cascading vs. non-
cascading deletes) are expressible by different compositions of fine-grained operations. On
the logical layer, the semantics of the logical evolution operations are specified in terms of
transformations of the database schema, adaptations of the relational instances, and updates
of the meta schema contents. Additionally, the transformation algorithm together with the
priority schema guarantees a clearly defined transformation between the layers and execu-
tion of the resulting logical evolution job. Existing instances are kept as long as necessary
in order to avoid loss of instance information and the final garbage collection phase cares
for the removal of superfluous data.

� definition of fine-grained schema evolution operations: this objective has not only been
completely fulfilled, but was also extremely helpful for the solution. The fine-grained defi-
nition on the conceptual layer allows for different variants of the graphical notation (e.g.,
assuming attributes as second-class entities and representing them graphically as parts of
the dimension level or fact icon) and guarantees precise and flexible semantics of the evo-
lution jobs. However, beyond these advantages, the fine-grained approach was also ex-
tremely beneficial for the transformation to logical evolution operations. Only the fine-
grained approach of the conceptual schema evolution operations allows for the correct
composition in the definition of the logical evolution operations. It further allows an easy
definition of logical evolution operations for different constructs on the logical layer (e.g., a
snowflake schema instead of the star schema).

� automatic adaptation of logical schema, instances and tool metadata: the precise and formal
mapping between the conceptual and logical layer constitutes the necessary prerequisite for
this objective. Again, FIESTA fulfills this objective completely by the mapping and the
transformation algorithm with the corresponding logical evolution operations. The logical
evolution operations transform the logical database schema, adapt existing instances and
update the contents of the tool metadata (represented by the FIESTA meta schema). The
alternatives of an immediate adaptation of the instances vs. filter for access to the instances
seemed not beneficial for OLAP systems. This approach yielded valuable results in the area
of object-oriented schema evolution, but not for OLAP systems. Thus, we omitted the is-
sue.

� formulation and check of integrity constraints: integrity constraints that ensure consistency
play a vital role in the FIESTA approach. Therefore, we formally defined all arising notions
of consistency: consistency of multidimensional schemas, correctness criteria for ME/R
graphs and evolution jobs, and the mapping between the conceptual and logical layer as a
consistency criterion between the two layers (see also the FIESTA schema evolution
problem shown in figure 3-5). Currently, we have no means to express further user-defined
constraints because we found no application beyond the defined notion of consistency.

� use of a repository system for all meta data: the meta schema plays a central role in the
design of FIESTA. It is generic for RDBS on the logical layer, but its design has been in-
fluenced by experiences with commercial tools. In the prototype implementation, we used
the commercial product Enabler [Sof98] by Softlab Corporation.

So far, we have discussed the degree to which FIESTA has fulfilled its objectives. We remark
that the developed solution is fully compliant with the main objectives.
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We conclude this chapter by a slightly philosophical discussion of FIESTA in a wider context.
As pointed out in chapter 3.1, the roadmap to schema evolution is generic, or precisely: data
model dependent. FIESTA has been specifically developed as framework for the design and
evolution of multidimensional OLAP systems that are implemented using a relational DBS.
However, since FIESTA is only a specific instantiation of the generic schema evolution road-
map, the “schema” of FIESTA could also be transferred to other similar scenarios dealing with
schema evolution as part of the schema design and maintenance cycle. Only specific parts of
the schema evolution roadmap would have to be exchanged.

If we exchange the ME/R notation with a different graphical notation for MD schemas, the
correspondance of the graphical notation with our MD data model would have to be adpated.
All other parts of our solution would still apply. Similarly, if we would choose to use snow-
flake schemas instead of star schemas on the logical layer, the logical evolution operations with
their priority schema and the design of the mapping information in the meta schema would
have to be adapted.

A transfer of FIESTA to the area of object-oriented schema evolution research is also possible.
To that end, all “instances” of FIESTA would have to be modified, but the general framework
would still hold: a formal object-oriented data model with schema evolution operations and a
graphical representation of object-oriented schemas would have to be chosen (or developed),
the mappings between schemas and their graphical representation together with the mapping to
the logical layer would have to be adapted. Similarly, corresponding logical evolution opera-
tions (including their processing priorites) would have to be adapted. We think that the logical
evolution operations for the case of object-oriented schema evolution are much simpler than
for the multidimensional case. The result of this transfer would be a tool-supported environ-
ment for object-oriented schema design and maintenance.

5.3. Related Work

This chapter compares the FIESTA solution with related work. We refer back to chapter 1.3.5
which compared the objective vision of FIESTA (chapter 1.2) with the current state of the art
(chapters 1.3.1 to 1.3.4). As already shown there, only evolution approaches that are both
purely conceptual and based on a multidimensional data model  can be directly compared with
FIESTA. Thus, the approaches of Bellahsene [Bel98], Mohania / Dong ([MD96], [Moh97]),
Rundensteiner et al. [RLN97], and Quix17 [Qui99] have rather different overall objectives
which make them incomparable to the FIESTA solution.

5.3.1. Multidimensional Data Models
The MD data models presented in the literature (chapter 1.3.4) provide no direct schema evo-
lution support. Nevertheless, they have influenced our work. Since the overall starting point of
this thesis was the evolution algebra, we began with a comparison of existing formalizations of
the MD data model ([BSHD98], [SBH99]) in order to develop an own formal model which
should be especially suited to express schema evolution operations (which were then published
in [BSH99]). The deep study of the single constructs formalizing the MD data model has
therefore influenced our MD data model as introduced in chapter 3.5. Basically, our model is
influenced by the formalizations of Cabbibo / Torlone [CT98] and Vassiliadis [Vas98] because

                                               
17 The solution of Quix is purely conceptual, but not fully based on a multidimensional data model. Although the ap-

proach introduces schema evolution operations, it only discusses their effects on quality factors and not on the data
model.



Discussion144

these approaches are completely conceptual and multidimensional due to their cube-oriented
view.

In contrast to all other formalizations of the MD data model, we do not focus on OLAP op-
erations, but on schema evolution operations. This may explain some differences in our for-
malization compared to others, especially our clear separation of schema and instances as sepa-
rate parts of the formal MD data model.

Since OLAP systems are commonly implemented on top of relational DBS, the mapping of
MD schemas to relational structures has to be formally defined. The approach of Gyssens and
Lakshmanan [GL97] for example defines a dualism between the tabular representation of mul-
tidimensional tables and their corresponding relations. We prefer having a purely cube-oriented
view on the multidimensional layer and thus provide a purely conceptual data model. We also
contribute a formal mapping of MD schemas to relational star schemas (chapter 4.1).

We remark that the use of relational database systems (RDBS) on the logical layer is not the
only possible architecture for OLAP systems. Some commercial systems (e.g. Oracle Express
[Ora97]) provide also a multidimensional model on the logical layer. For the use of such a
multidimensional database system (MDDBS), the mapping defined in chapter 4.1 would not
include the shift of the data model (from multidimensional to relational) and, as a consequence,
the mapping  would become less complex (but still, it would be far from being trivial). How-
ever, since the schema evolution capabilities of today’s MDDBS are poor and RDBS offer at
least basic constructs for schema evolution, we decided to use RDBS on the logical layer.

5.3.2. Graphical Modeling Notations for Warehouse Design
Another research area that is only partially relevant as state of the art for FIESTA are graphical
modeling notations for the design of warehouse schemas. Although being a neglected issue in
the beginning of data warehouse research, the issue has received growing attention lately (see
e.g. the newer approaches [LST99] and [MCA+00]).

FIESTA uses the ME/R notation ([SBHD98] and chapter 2.4) that has been developed as part
of the BabelFish project in which this thesis is embedded. Since ME/R models represent MD
schemas graphically, a formal dualism between both representations has been defined (see
chapter 3.6). The ME/R modeling notation has been designed in close cooperation with our
MD data model in order to provide a clear and intuitive dualism. However, some non-trivial
problems still remain (e.g., redundant edges in ME/R graphs) that had to be addressed. Due to
the generality and modularity of our framework, a different graphical modeling notation (e.g.
the DF notation, see below) could only be used. In this case, only the mapping between this
representation and the MD data model would have to be adapted.

Golfarelli et al. ([GMR98], [GR98]) proposed a methodological framework for data ware-
house design based on a conceptual model called dimensional fact (DF) scheme. They intro-
duce a graphical notation and a methodology to derive a DF model from E/R models of the
data sources. Having characterizing a workload in terms of data volumes and expected queries,
their methodology can be used for the logical and physical design of warehousing systems. As
it can be seen, this methodology complements our work. However, we argue that the proper
starting point for schema design should be a clearly conceptual model as the warehouse mod-
eler sees his universe of discourse. Thus, the information available at the sources can be com-
plementary information, but should not limit the scope of the conceptual schema. Although the
DF modeling technique supports semantically rich concepts, it is not based on a formal data
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model. Furthermore, the framework does not concentrate on evolution issues which we believe
is an important feature for the design and maintenance cycle.

The Multidimensional Modeling Language (MML), introduced in [Har99], is an object-
oriented and extendable conceptual multidimensional modeling language. Extendable refers to
the design principle that MML is based on meta models. As a consequence, MML provides no
own graphical modeling notation. In [Har99], two exemplary graphical notations are intro-
duced: MML* and mUML (multidimensional UML). mUML ([Har99], [HH99], [Her00]) is a
multidimensional extension of the Unified Modeling Language (UML, [Rati97]) for the design
of conceptual multidimensional schemas using the UML notation. Main reason for this design
decision is the modeling support offered by existing commercial CASE tools (e.g. Rational
Rose [Rati98]) and its inherent extensibility. mUML can be seen as the object-oriented coun-
terpart to our ME/R notation, extending the UML instead of the E/R notation for multidimen-
sional schema design. The overall approach for MML and mUML seems to have followed our
idea of conceptual warehouse design and our layer model, but our own approach provides no
formal meta model (the counterpart to MML would be the meta model of the ME/R notation
which has not been formally designed in the BabelFish project). Support for schema evolution
in MML is provided only by validity stamps of the elements of a schema. There are no schema
evolution operations provided. Although a formal mapping from MML to relational star sche-
mas is defined in [Har99], it is left open how the validity stamps can be exploited for trans-
forming existing relational schemas under evolution.

5.3.3. Approach of Chamoni and Stock
The approach of Chamoni and Stock has been introduced in chapter 1.3.3.4. When comparing
this approach to FIESTA, the following basic differences can be identified:

The approach of Chamoni and Stock concentrates on changes in the classification hierarchy of
dimensions (like the initial approach of Kimball [Kim96b]). Here, the evolution of classifica-
tions of single dimension elements (e.g., a product) according to the next hierarchy level (e.g.,
product group) is regarded. Thus, it is possible to reflect the evolution of classification hierar-
chies over time, but the approach does not consider modifications of the structure of the di-
mension hierarchy (e.g., inserting a new dimension level). As a consequence, the approach
does not provide schema evolution operations. A mapping to a possible database implementa-
tion is also missing. Summarizing, we may say that the two approaches are only loosely re-
lated, but may be complementary because FIESTA in its current state does not handle modifi-
cations of instances.

5.3.4. Approach of Hurtado et al.
The approach of Hurtado et al. ([HMV99a], [HMV99b]) is certainly the approach that comes
closest to the FIESTA solution. Thus, we will discuss what the approaches have in common
and where they differ.

Both FIESTA and the approach of Hurtado et al. introduce schema evolution operations. The
following schema modification operations are proposed in [HMV99a]:

(1) Generalize: this operator creates a new level, lnew, to which a pre-existent one, l, rolls up. A
function f must be defined from the set of instances of l to the domain of the new level.
This function contains the classification information for the two levels.

(2) Specialize: this operator adds a new level lnew to a dimension. Level lnew will roll up to the
lowest level of the dimension, becoming the new lowest level. Again, a function f must be
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defined for classifying the instances of lnew according to the instances of the next higher
level.

(3) Relate: the relate operator defines a roll up function between two independent (i.e. related
by direct or in-direct classifications yet) levels belonging to the same dimension. As a con-
dition, a function must exist between the instance sets of the two levels being related, such
that the dimension instance remains consistent. Especially, all redundant roll up functions
which may appear by applying the operation must be removed.

(4) Unrelate: the unrelate operator deletes an existing roll up relation between two levels. The
execution of the operator must guarantee that levels below and above the two levels still
are reachable. I.e., necessary roll up functions that extend over the two levels to be unre-
lated must be defined implicitly.

(5) DeleteLevel: this operator deletes a level and its roll up functions. The level to be deleted
cannot be the lowest in a dimension hierarchy (unless it rolls up only to one higher level).
Again, the roll ups between levels above and below the level to be deleted must be defined
implicitly to ensure consistency.

The first paper [HMV99a] defines two instance update operators which have been extended by
four complex instance update operators in the second paper [HMV99b] (but no more schema
modification operators). The complete set of instance update operations consists of the fol-
lowing operations:

(1) Add Instance: inserts a new element into a level. The operator must be provided with the
roll up classification for the new element, i.e. the set of elements of the next higher dimen-
sion level this new element rolls up to.

(2) Delete Instance: this operator deletes an element of a dimension level. It may only be ap-
plied if no other element of a lower level rolls up to this element.

(3) Reclassify: is a complex operation defined by a sequence of delete instance and add in-
stance operations. Certain conditions are named to ensure the consistency within the di-
mension.

(4) Split: splits a dimension element to a set of new dimension elements (i.e. including the roll
ups)

(5) Merge: the inverse operation to split, i.e. combines a set of dimension elements to a single
one.

(6) Update: this operator just changes the value of an element, keeping the structure and the
roll up functions unchanged.

When considering the applicability (defined by the pre-conditions) of the operations, we note
that there is a strong notion of consistency between the instances of a dimension, especially
w.r.t. the classification relationships among them.

The papers define two different mappings using a relational database: a star schema (de-
normalized) and a snowflake schema (normalized) approach. Both transformations are formally
defined. The complexity of the operations’ algorithms are discussed for both possible trans-
formations (without a detailed cost model).

In order to maintain the implemented data cube, specific algorithms are given. Main task of
these algorithms is to adapt the pre-calculated aggregations. Wherever this is not possible due
to structural changes of the data cube (operations DeleteLevel and Specialize), a new base fact
table is defined. The proposed algorithm for incremental maintenance is an extension of the
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summary delta method, proposed by Mumick et al. [MQM97]. Since the aggregations can be
computed by using other already computed aggregations, the view lattice approach of Hari-
narayan et al. [HRU96] for maintenance is adapted accordingly.

In contrast to FIESTA, the schema evolution operations in [HMV99a] focus only on changes
in the dimensions and their hierarchies. We provide a set of schema evolution operations that
comprise modifications on any part of the cube structure (including describing attributes of
dimension levels and measures) and do not restrict the operations only to modifications of the
dimensions. Thus, concerning schema evolution operations, the FIESTA framework provides a
superset of the operations given in [HMV99a] meaning that all operations defined there can be
expressed by FIESTA’s schema evolution operations (but not vice versa). Next, [HMV99a]
limits insertions of levels to certain positions (lowest and highest) in a dimension hierarchy.
Our framework allows random insertions of dimension levels at any place of a given dimension
hierarchy. A clear strength of the approach of Hurtado et al. are the operations dealing with
the evolution of instances, i.e., changes in the classification hierarchy of instances. Here, a
combination of this work with FIESTA seems promising. We plan to extend FIESTA by a
comprehensive set of instance operations (see also chapter 6) that refine our framework also to
e.g. the load phases of an OLAP database. As said before, the approach of Hurtado is weak
when it comes to modifications of the facts and especially the fact tables. These are only re-
garded as part of the instance adaptation (thus, facts are not regarded at all on a conceptual
layer). When modifications of the dimensions require an adaptation of the fact table, a new fact
table is created. No instance adaptation for existing instances is formally described.

The design of fine-grained evolution operations and the composition to complex operations is
common to both approaches.

A combination of the two complementary approaches seems promising. An issue where the
approach of Hurtado complements FIESTA are the instance operations. Currently, FIESTA
regards to insertions or deletions of instances and assumes this task is performed outside the
framework. [HMV99a] introduces dedicated instance operations and discusses their effects
(e.g., if a store is deleted, what are the resulting necessary modifications of the fact table in-
stances?).

5.3.5. Work in progress
A recent approach to data warehouse modeling is [MCA+00]. The paper introduces IDEA-
DWCASE, a client-server tool that supports a data warehouse construction methodology
(called EINSTEIN) and automates the process of generating multidimensional database sche-
mata. Unfortunately, the publication references only a software demonstration, no further lit-
erature is currently available. Especially, it is unclear whether schema evolution is supported by
the proposed framework.

Another recent approach is the TEMPS approach of Günzel [Gün00]. TEMPS (see also chap-
ter 1.3.3.5) aims at providing time information for schema versioning. The approach is based
on a multidimensional data model. The proposed set of schema evolution operations seems
being influenced by the FIESTA operations. The overall vision of TEMPS promises a very
powerful approach where not only certain versions of the schema, but also of the instances and
combinations thereof can be combined. Thus, the overall vision resembles a combination of the
approach of Chamoni and Stock with FIESTA. Since the work is still at an early state, an in-
depth comparison is not possible yet.
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6. Conclusions and Future Work

$pplication areas for databases like data warehousing and OLAP use the multidimensional
data model in order to describe the warehouse modeler’s universe of discourse. OLAP appli-
cations typically assume a conceptual multidimensional schema to adequately reflect the appli-
cation semantics.

In this thesis, we have introduced FIESTA, a methodology for the evolution of conceptual
multidimensional schemas. Since schema evolution is not a completely new research issue but
has been discussed for relational database systems and received considerable attention due to
the complexity of the problem in object-oriented database systems, we have defined a generic
roadmap to schema evolution. It consists of an evolution algebra (i.e., in general, a conceptual
data model together with schema evolution operations defined on it), an execution model (i.e.,
propagation rules and integrity constraints), and – as refinement of the execution model – a
software architecture. FIESTA is a specific instance of this roadmap, applied to the multidi-
mensional data model.

The main research contributions of FIESTA can be summarized as follows:

� A formalization of the multidimensional data model that is purely conceptual (i.e., not as-
suming any implementation details) and puts a strong notion at the differences between
multidimensional schemas and instances.

� A graphical representation of multidimensional schemas: the ME/R notation, an extension
of the well-known and well-researched Entity Relationship modeling technique, especially
designed for modeling multidimensional schemas.

� Since our vision is a graphical tool-supported environment for the design and maintenance
of multidimensional schemas, we contributed a formal dualism that allows to use both the
algebraic and graphical representation of a given multidimensional schema equivalently. To
that end, we introduced a normal form for ME/R graphs and presented formal mappings
between both representations.

� A set of fourteen conceptual schema evolution operations. These schema evolution opera-
tions together with the formal multidimensional data model constitute the core of our mul-
tidimensional schema evolution algebra. The proposed operations of FIESTA were the first

You see things and say 'Why?' but I dream
things that never were and say 'Why not?'

(George Bernard Shaw)
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schema evolution operations that have been specifically designed for use with a multidi-
mensional data model. Thus, our schema evolution operations constitute the starting point
for research on multidimensional schema evolution which becomes a lively research area.
Our proposal has also influenced and inspired new approaches like TEMPS [Gün00] and
ODAWA [HH99], [Her00].

� In order to process the evolution of a given multidimensional schema in an underlying rela-
tional database system, we have developed a complete execution model for our conceptual
schema evolution operations on the logical processing layer. To that end, we have defined
a formal mapping between multidimensional schemas and relational star schemas. A dedi-
cated meta schema stores the mapping information and keeps the multidimensional seman-
tics that would be lost otherwise during the transformation to the semantically poor star
schema. We refined this mapping to a consistency criterion between the conceptual multi-
dimensional and the logical layer. Next, we presented a transformation algorithm that
transforms a sequence of conceptual schema evolution operations to a sequence of corre-
sponding logical evolution operations. These logical evolution operations transform the
relational database schema, adapt existing instances, and update the contents of the meta
schema. Core of the transformation algorithm is the set of fourteen logical evolution op-
erations and a priority schema for their appliance.

We discussed our solution by presenting the implementation of FIESTA, which is embedded in
the prototype of the BabelFish project for data warehouse design and maintenance.

A thorough and in-depth presentation of the state of the art covering a wide range of related
research literature together with a broad and detailed discussion of the FIESTA solution with
related approaches evaluated our solution. FIESTA fills the gap that other approaches leave
open by the clear separation between the conceptual multidimensional and the logical relational
layers, the complete and closed schema evolution algebra and the automatic adaptation of
schema and instances.

When developing a framework like FIESTA, one always has to set a certain scope for the so-
lution of the underlying research problem. Having finished a thesis, one always aims at relaxing
this scope and transferring the developed solution to a broader focus. In the future, we would
like to extend our framework by the following issues:

� first of all, although the conceptual part of FIESTA is generic and not specific for any im-
plementation decisions, the processing of the evolution operations on the logical layer had
to assume certain templates for the logical schema. We chose the star schema because it is
the far most used schema template for implementing OLAP systems. As a drawback of this
implementation decision, both the set of logical evolution operations and their priority
schema is specific for star schemas. Since snowflake schemas are an alternative template
for OLAP schemas in a relational database system, we will extend FIESTA by the corre-
sponding logical evolution capabilities for snowflake schemas.

� due to the impedance mismatch between the ME/R notation and star schemas, some multi-
dimensional schema entities have to be duplicated in star schemas. For example, a shared
dimension level must be represented by two columns with the same name in different di-
mension tables. Although this problem is fully covered by the data in our meta schema, an
extension (or automation) of the maintenance of the duplicated elements would be helpful.
This could be done by triggers or integrity constraints that keep track of all instances in
these duplicated attributes in order to avoid inconsistencies.
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� our transformation algorithm always identifies applicable sequences of conceptual schema
evolution operations and transforms these operations to corresponding logical evolution
operations. Thus, it reduces the sequence of conceptual evolution operations step-by-step
and generated SQL scripts for processing the operations on the logical layer. Currently, we
have no formal framework for concurrency and transactions on this layer. In general, the
scope of transactions should be on the granularity of a schema evolution job and not on
applicable parts of jobs.

� currently, we assume that data is updated in the warehouse database using correct load
algorithms that reflect the current state of the multidimensional schema. When e.g. a new
dimension level is inserted, we assume that data insertion takes place outside the scope of
FIESTA. An extension of FIESTA with respect to the load process of a data warehouse
seems necessary for real world implementation.

� in order to increase performance, pre-aggregation is a common strategy for data ware-
houses. In this case, redundant aggregated data is stored in addition to the data warehouse
database. This data has to be maintained which leads commonly to a view maintenance
problem. But since not only the data may change but also the structure of the multidimen-
sional schema, an extension of FIESTA to additional pre-aggregation tables seems neces-
sary. This extension would complement the wide range of results available in the area of
view maintenance for data warehouses.

� the logical evolution operations transform the logical schema. The SQL DDL scripts that
are generated by the transformation algorithm may contain parts that refer to the same part
of the relational star schema. For example, it is possible that a new table is created as result
of the transformation of one conceptual schema evolution operation and then, as result of
another conceptual schema evolution operation, the same table is modified later in the
DDL script. Here, sophisticated optimizers that enhance the sequence of SQL DDL com-
mands would be helpful.

� finally, the combination of FIESTA and techniques dealing with the physical design and
optimization of star schemas seem a promising research area. So far, we have concentrated
on the conceptual and logical layers and skipped the impacts of schema evolution to physi-
cal design issues like clustering or indexing. A good starting point for merging the results
seems the Multidimensional Hierarchical Clustering (MHC) approach of  Markl et al.
([Mar99], [MRB99]). Here, an order preserving encoding of hierarchies by surrogates is
introduced which enables clustering of data with respect to multiple hierarchical dimen-
sions. MHC can be implemented with any multidimensional access method, e.g. the UB-
Tree ([Bay96], [Bay97]). An investigation of the impacts of schema evolution on clustering
strategies seems worth further attention.
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Appendix A: MD Schema Evolution
Operations

This appendix presents the conceptual multidimensional schema evolution operations (see also
chapter 3.7).
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1. insert level

Criterion Description

name of the op-
eration

insert_level

informal explana-
tion of semantics

inserts a new, isolated dimension level. The operation extends the set of
levels without changing the classification relationships, thus creating an
isolated element. Classifications relationships have to be defined sepa-
rately.

syntax with input
and output pa-
rameters

insert_level (_�>_, l )

input:  schema _� instances >_ � new level name l

output:  new schema _·, new instances >·_·

pre-condition(s) l�L

post-condition(s) l�L, >·_· >_

example insert_level (_�>_, “brand”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L’ := L � { l new }, A, gran’, class’, attr’>
gran’: F o 2L’ ; gran’(f) := gran(f)
class’ � L’ u L’; (l 1,l2) � class’ :� (l1,l2) � class � l1,l2 � L’
attr’:  A o F � L’ � {A}; attr’(a) := attr(a)

Instances:
No effects on instances because the operation inserts a new and
empty dimension level without instances.

>·_· = <R-UP, C, AV>

figure A-1: operation insert level
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2. delete level

Criterion Description

name of the op-
eration

delete_level

informal explana-
tion of semantics

deletes an isolated dimension level. The operation removes the level to
be deleted from the set of levels. The level may not be connected to any
other elements by classification or attribute relationships.

syntax with input
and output pa-
rameters

delete _level (_�>_, ldel )

input:  schema _� instances >_ � level name ldel of the level to be de-
leted

output:  new schema _·, new instances >·_·

pre-condition(s) ldel�L, ldel �gran(f) �f� F, ((ldel, l) �class �(l, ldel) �class �l�L’),
attr(a) z ldel �a� A

post-condition(s) ldel�L, >·_· >_

example delete_level (_�>_, “brand”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L’, A, gran’, class’, attr’>.
L’ := L \ { l del }

gran’:= gran
class’ := class
attr’ := attr

Instances:
no effect because dimension members are deleted automatically.

Thus:

>·_· = <R-UP, C, AV>

figure A-2: operation delete level
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3. insert attribute

Criterion Description

name of the op-
eration

insert_attribute

informal explana-
tion of semantics

creates a new attribute without attaching it to a dimension level or fact.
The operation inserts the new attribute in the set of attributes.

syntax with input
and output pa-
rameters

insert_attribute (_�>_, anew )

input:  schema _� instances >_ � attribute anew with dom(anew) to be
inserted

output:  new schema _·, new instances >·_·

pre-condition(s) anew�A

post-condition(s) anew�A, >·_· >_

example insert_attribute (_�>_, “age”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A’,  gran, class, attr’>

A’ := A � { anew }
attr’:  A’ o F � L � {A}; attr’(a) := attr(a) � a � A’\{ a new },
attr’(anew) := A

Instances:
no effect, thus:

>·_· = <R-UP, C, AV>

figure A-3: operation insert attribute
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4. delete attribute

Criterion Description

name of the op-
eration

delete_attribute

informal explana-
tion of semantics

deletes an existing isolated attribute. The attribute may not be con-
nected to a dimension level or a fact.

syntax with input
and output pa-
rameters

delete_attribute (_�>_, adel)

input:  schema _� instances >_ � attribute adel to be deleted

output:  new schema _·, new instances >·_·

pre-condition(s) adel�A, attr(adel) = A.

post-condition(s) adel�A, >·_· >_

example delete_attribute (_�>_, “age”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A’,  gran, class, attr’>
A’ = A - { adel }

attr’:  A’ o F � L � {A}; attr’(a) := attr(a) � a � A’

Instances:
no effect, thus:

>·_· = <R-UP, C, AV>

figure A-4: operation delete attribute
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5. connect attribute to dimension level

Criterion Description

name of the op-
eration

connect_attribute_to_dimension_level

informal explana-
tion of semantics

connects an existing attribute to an existing dimension level. A function
g assigns values for the new attribute to every member of the dimension
level.

syntax with input
and output pa-
rameters

connect_attribute_to_dimension_level (_�>_, anew, l,g)

input:  schema _� instances >_ � attribute anew to be connected, di-
mension level l to which anew is connected, function g for the computa-
tion of the anew values

output:  new schema _·, new instances >·_·

pre-condition(s) anew �A, l � L, attr(anew)=A, g must be well-defined for all dimension
members of the level: g(m)=v  with v� dom(anew) �m � dom(l).

post-condition(s) attr(anew)=l, av(anew) is well-defined �m � dom(l)

example connect_attribute_to_dimension_level (_�>_, “age”, “customer”,
“age(c)”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A ,  gran, class, attr’>

new
aa
new

aa

if

if

aattr

l
arattLFAratt

z

 

¯
®
­

 cA��oc
)(

:)(}{:

Instances:
>·_· = <R-UP, C, AV'>,

AV': AV' := AV � {avanew}, define avanew: dom (l) o dom(anew)
with )()(:)( ldommmgmav newa �� 

figure A-5: operation connect attribute to dimension level
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6. disconnect attribute from dimension level

Criterion Description

name of the op-
eration

disconnect_attribute_from_dimension_level

informal explana-
tion of semantics

disconnects an attribute from a dimension level. Only the connecting
edge is deleted, both the attribute and the dimension level still exist after
execution of the operation.

syntax with input
and output pa-
rameters

disconnect_attribute_from_dimension_level (_�>_, adel, l)

input:  schema _� instances >_ � attribute adel to be disconnected, di-
mension level l to which adel is yet connected

output:  new schema _·, new instances >·_·

pre-condition(s) adel �A, l � L, attr(adel)=l

post-condition(s) adel �A, l � L, attr(adel)=A

example disconnect_attribute_from_dimension_level (_�>_, “age”, “cus-
tomer”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A,  gran, class, attr’>

del

del

aa

aa

if

if

aattr
arattLFAratt

z

 

¯
®
­ A

 cA��oc
)(

:)(}{:

Instances:
>·_· = <R-UP, C, AV'>,

AV': AV' := AV - { av adel }with avadel being the corresponding at-
tribute value function for adel

figure A-6: operation disconnect attribute from dimension level
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7. connect attribute to fact

Criterion Description

name of the op-
eration

connect_attribute_to_fact

informal explana-
tion of semantics

connects an existing attribute to an existing fact. A function g assigns
values for the new attribute to every instance of the fact.

syntax with input
and output pa-
rameters

connect_attribute_to_fact (_�>_, anew,  f, g )

input:  schema _� instances >_ � attribute anew to be connected, fact f
to which anew is to be connected, function g for the computation of the
anew values

output:  new schema _·, new instances >·_·

pre-condition(s) anew �A, f � F, attr(anew)=A, g must be well-defined for all fact in-
stances

post-condition(s) anew �A, f � F, attr(anew)=f, cf is well-defined for all fact instances

example connect_attribute_to_fact (_�>_, “duration”, “vehicle repair”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A ,  gran, class, attr’>

new
aa
new

aa

if

if

aattr

f
arattLFAratt

z

 

¯
®
­

 cA��oc
)(

:)(}{:

Instances:
>·_· = <R-UP, C’, AV>,
C’ := C – {cf} � {cf'} with cf being the existing cube for f ;

define cf': dom(f) o codom(f) as

)()(),,(),,,(:)(' 1111 xgzandxczzwithzzzxc nfnnnf    
��

��

figure A-7: operation connect attribute to fact
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8. disconnect attribute from fact

Criterion Description

name of the op-
eration

disconnect_attribute_from_fact

informal explana-
tion of semantics

disconnects an attribute from a fact. Only the connecting edge is de-
leted, both the attribute and the fact still exist after execution of the
operation.

syntax with input
and output pa-
rameters

disconnect_attribute_from_fact (_�>_, adel, f )

input:  schema _� instances >_ � attribute adel to be disconnected, fact
f to which adel is yet connected

output:  new schema _·, new instances >·_·

pre-condition(s) adel �A, f � F, attr(adel)=f

post-condition(s) adel �A, f � F, attr(adel)=A

example disconnect_attribute_from_fact (_�>_, “duration”, “vehicle repair”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A,  gran, class, attr’>

del

del

aa

aa

if

if

aattr
arattLFAratt

z

 

¯
®
­ A

 cA��oc
)(

:)(}{:

Instances:
>·_· = <R-UP, C’, AV>,
C’ := C – {cf} � {cf'} with cf being the existing cube for f ;

define cf': dom(f) o codom(f) as

)(),,,(),,(:)(' 1111 xczzzwithzzxc fnnnf   
��

��

figure A-8: operation disconnect attribute from fact
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9. insert classification relationship

Criterion Description

name of the op-
eration

insert_classification

informal explana-
tion of semantics

connects two existing dimension levels by a classification relationship.
The dimension levels may both be isolated or already connected to
other elements of the MD schema. If at least one of the dimension levels
contains no instances yet, the corresponding classification relationship
for the instances has to be defined.

syntax with input
and output pa-
rameters

insert_classification (_�>_, l1, l2)

input:  schema _� instances >_ � two dimension level names l1, l2 to
be connected.

output:  new schema _·, new instances >·_·

pre-condition(s) l1� L, l2 � L, {(l 1,l2)}� class, {(l2,l1)}� class. The classification rela-
tionship class between the instances must be well-defined

post-condition(s) {(l 1,l2)} � class, class is well-defined

example insert_classification (_�>_, “month”, “year”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A,  gran, class’, attr>
class’ = class � {(l 1,l2)}

Instances:
>·_· = <R-UP', C, AV>,

R-UP' := R-UP � { 2
1
l
lupr �  },

� m � dom(l1): 2
1
l
lupr �  (m):= k with k� dom(l2).

Additionally, 2
1
l
lupr �  (dom(l1))� dom(l2),

i.e., 2
1
l
lupr �  is well-defined � m � dom(l1).

figure A-9: operation insert classification relationship
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10. delete classification relationship

Criterion Description

name of the op-
eration

delete_classification

informal explana-
tion of semantics

disconnects an existing classification relationship between two dimen-
sion levels. The dimension levels are not deleted.

syntax with input
and output pa-
rameters

delete_classification (_�>_, l1, l2)

input:  schema _� instances >_ � two dimension level names l1, l2 to
be disconnected.

output:  new schema _·, new instances >·_·

pre-condition(s) l1� L, l2 � L, {(l 1,l2)}� class

post-condition(s) {(l 1,l2)} � class

example delete_classification (_�>_, “month”, “year”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F, L, A,  gran, class’, attr>
class’ = class – {(l1,l2)}

Instances:
>·_· = <R-UP', C, AV>,

R-UP' := R-UP - { 2
1
l
lupr �  }

figure A-10: operation delete classification relationship
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11. insert fact

Criterion Description

name of the op-
eration

insert_fact

informal explana-
tion of semantics

inserts a new, isolated fact.

syntax with input
and output pa-
rameters

insert_fact (_�>_, f )

input:  schema _� instances >_ � new fact name f

output:  new schema _·, new instances >·_·

pre-condition(s) fnew � F

post-condition(s) fnew � F

example insert_fact (_�>_, “vehicle sales”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F’, L, A,  gran’, class, attr’>
F’ := F � {fnew},

new

newL

ffif

ffif

fgran
fngraFgran

z

 

¯
®
­ �

 co
)(

:)(,2':'

attr’ := attr
Instances:

>·_· = <R-UP, C', AV>,
C’:=  C �  {

newfc  },

define 
newfc : dom (fnew) o  codom(fnew) as

c(x):= A � x� dom(fnew)

figure A-11: operation insert fact
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12. delete fact

Criterion Description

name of the op-
eration

delete_fact

informal explana-
tion of semantics

removes an existing, but isolated fact. Instances are deleted automati-
cally.

syntax with input
and output pa-
rameters

delete_fact (_�>_, fdel )

input:  schema _� instances >_ � fact name fdel

output:  new schema _·, new instances >·_·

pre-condition(s) fdel � F, gran(fdel)=�, attr(a) z fdel � a�A

post-condition(s) fdel � F, cfdel � C’

example delete_fact (_�>_, “vehicle sales”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· <F’, L, A, 'F

gran , class, attr’ >

F’ := F - {f del},   
attr’ := attr

Instances:
>·_· = <R-UP, C', AV>,
C’:=  C -  {

delfc  }

figure A-12: operation delete fact
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13. insert dimension into fact

Criterion Description

name of the op-
eration

insert_dimension_into_fact

informal explana-
tion of semantics

inserts an existing dimension (specified by a dimension level) into an
existing fact, thus increasing the number of dimensions by one. A func-
tion nv has to be provided defining how the new values for the fact can
be computed based upon the now extended set of dimensions and the
old value of the fact. Each cell of the old cube now becomes a set of
cells, exactly reflecting the new dimension.

syntax with input
and output pa-
rameters

insert_dimension_into_fact (_�>_,l , fins, nv )

input:  schema _� instances >_ � level name l and fact name fins to be
connected. Function nv to compute the distribution of existing fact in-
stances over the new dimension.

output:  new schema _·, new instances >·_·

pre-condition(s) l � L, fins � F, {l} � gran(fins).  The function nv must be well-defined
for all existing fact instances

post-condition(s) l � gran (f). The existing fact instances have been adapted w.r.t the new
dimension according to function nv.

example insert_dimension_into_fact (_�>_, “customer”, “vehicle sales”,
“sales_for_customer(c)”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· < F, L, A,  gran’, class, attr>

ins

ins

L

ff

ff
for

lfgran

fgran
fngra

asFgrandefine

 

z

¯
®
­

�
 c

o

}{)(

)(
:)(

2:'

Instances:
>·_· = <R-UP, C', AV>
C’ := C – {cf} � {cf'} with cf denoting the existing cube for fins.

Although the fact fins itself does not change, its domain changes and
the values of  its co-domain have to be adapted. Consequently, we
define a new cube cf' and speak of f (or dom(f),
codom(f) ) if we refer to cf and speak of  f ’ (or dom(f ’), codom(f ‘)
) if we refer to cf'.
We assume a dimensionality of n for cf and a dimensionality of n+1
for cf'.

cf' is derived from cf as follows:

first, we compute the instances of dom(f ‘): for every combination
(x1,...,xn,xn+1) � dom(f) in cf, add | dom(l) | new cube cells
(x1,...,xn,xn+1, y) with y � dom(l) to cf'.
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Second, compute the instances of codom(f ‘), i.e. adapt the
measures:

)),,,((),,,( 1111
'

��
 nnfnnf xxxcnvxxxc ��

with )'()()(: fcodomldomxfcodomnv o being the function that
distributes the existing measures over the new dimension.

figure A-13: operation insert dimension into fact
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14. delete dimension from fact

Criterion Description

name of the op-
eration

delete_dimension

informal explana-
tion of semantics

deletes a dimension, specified by the dimension level, from a fact. The
operation disconnects the base level l for this dimension from the fact
fdel . Neither the fact nor the dimension level are deleted implicitly. Since
the dimensionality of the fact is reduced, an aggregation function agg
has to be provided which defines how the existing measures are aggre-
gated over the deleted dimension (e.g. by summation).

syntax with input
and output pa-
rameters

delete_dimension (_�>_,l , fdel, agg)

input:  schema _� instances >_ � level name l and fact name fdel to be
disconnected. Function agg to aggregate the existing fact instances over
the deleted dimension

output:  new schema _·, new instances >·_·

pre-condition(s) l � L, fdel � F, {l} � gran(fdel). The function agg must be well-defined
for all existing fact instances.

post-condition(s) l � L, fdel � F, {l} � gran(fdel)

example delete_dimension (_�>_, “customer”, “vehicle sales”)

semantics ex-
pressed by means
of the
MD data model

Schema:
_· < F, L, A,  gran’, class, attr>

del

del

L

ff

ff
for

lfgran

fgran
fngra

asFgrandefine

 

z

¯
®
­

�
 c

o

}{)(

)(
:)(

2:'

Instances:
>·_· = <R-UP, C', AV>
C’ := C – {cf} � {cf'} with cf denoting the existing cube for fdel.

Although the fact fdel itself does not change, its domain changes and
the values of  its co-domain have to be adapted. Consequently, we
again define a new cube cf' and speak of f (or dom(f),
codom(f) ) if we refer to cf and speak of  f ’ (or dom(f ’), codom(f ‘)
) if we refer to cf'.
We assume a dimensionality of n for cf and a dimensionality of
n-1 for cf'. We further assume that the dimension to be deleted cor-
responds to the n-th element in dom(f).

cf' is derived from cf as follows:
cf' : dom (f ‘) o codom (f ‘) with dom(f ‘) being the reduced do-
main and

)()),,((),,( 111
' ldomxwithxxcaggxxc nnfnxnf � 

�

��

figure A-14: operation delete dimension
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Appendix B: Logical Evolution
Operations

This appendix presents the logical evolution operations. As refinement to chapter 4.4.4, the
description given here is the precise formal specification of the semantics of the logical evolu-
tion operations.
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1. insert measure columnL

insert measure columnL

Parameters:

(see figure 3-12;figure 3-16)

measure m, fact f, instance adaptation function g

Composition: insert attribute (m);

connect attribute to fact (m,f,g)

Preconditions: The fact table Ft_<f> exists and does not contain yet a col-
umn labeled m (assured by  the conceptual preconditions: f �

F, m � A)

Schema transformation: ALTER TABLE Ft_<f> ADD COLUMN m

Instance adaptation: UPDATE Ft_<f> SET m:= g(d 1, ..., d n)

WHERE Ft_<f>.dl i=d i with dli�FKf �i=1,...,n18

Meta schema update: [INSERT INTO COLUMNS (cid, m, Ft_<f>)] 19

INSERT INTO MEASURES

    (m, f, dom(m), cid);

figure B-1: operation insert measure columnL

2. delete measure columnL

delete measure columnL

Parameters:

(see figure 3-17;figure 3-13)

attribute m, fact f

Composition: disconnect attribute from fact (m,f);

delete attribute (m)

Preconditions: The fact table Ft_<f> exists and contains a column labeled m
(assured by  the conceptual preconditions: f � F,
m � A, attr(m) = f)

Schema transformation: ALTER TABLE Ft_<f> DROP COLUMN m

Instance adaptation: - (implicitly done by schema transformation)

Meta schema update: [DELETE FROM COLUMNS (cid, m, Ft_<f>)]

DELETE FROM MEASURES

    (m, f, dom(m), cid);

figure B-2: operation delete measure columnL

                                               
18 This rather inefficient SQL code is better suited for defining the semantics of the instance adaptation. In a real imple-

mentation, we would suggest the use of temporary spool tables to generate more efficient SQL code.
19 We remark that this update of the system catalogue is done by the DBMS when it processes the ADD COLUMN com-

mand of the schema transformation. In a real implementation, we would search the cid value in the system catalogue.
Consequently, we set all these commands in brackets (“[ ]”)to show that they are executed implicitly by the DBMS.
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3. insert attribute columnL

insert attribute columnL

Parameters:

(see figure 3-12;figure 3-14)

attribute a, dimension level l, instance adaptation function g

Composition: insert attribute (a);

connect attribute to dim_level (a,l,g)

Preconditions: At least one dimension table Dt_<bl> exists which contains a
column for dimension level l. Each Dt_<bl> does not contain
yet a column labeled a (assured by  the conceptual precondi-
tions: l � L, a � A)

Schema transformation: extend all dimension tables (denoted by Dt_<bl>) to which l
belongs, as follows:

ALTER TABLE Dt_<bl> ADD COLUMN a

Instance adaptation: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

UPDATE Dt_<bl> SET a:=  g(l)

UPDATE Dt_<bl> SET a:=  g(l1,..., ln,a1,..,am)

WHERE Dt_<bl>.dl i=l i with dli�Dl �i=1,...,n

AND Dt_<bl>.a j=a j with aj�Attributes(Dl) �j=1,...,m

Meta schema update: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

 [INSERT INTO COLUMNS

(cid i, a, Dt_<bl>);]

INSERT INTO ATTRIBUTEMAPPING

    (a, cid i);

additionally:

INSERT INTO ATTRIBUTES

    (a, l, dom(a) );

figure B-3: operation insert attribute columnL
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4. delete attribute columnL

delete attribute columnL

Parameters:

(see figure 3-13;figure 3-15)

attribute a, dimension level l

Composition: disconnect attribute from dim_level (a,l);

delete attribute (a)

Preconditions: At least one dimension table Dt_<bl> exists which contains a
column for dimension level l and a column for attribute a
(assured by  the conceptual preconditions: l � L, a � A,
attr(a) = l)

Schema transformation: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

ALTER TABLE Dt_<bl> DROP COLUMN a

Instance adaptation: - (implicitly done by schema transformation)

Meta schema update: [DELETE FROM COLUMNS WHERE name = a;]

DELETE FROM ATTRIBUTEMAPPING

WHERE attribute = a;

DELETE FROM ATTRIBUTES WHERE name = a;

figure B-4: operation delete attribute columnL
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5. insert fact table with dimension tableL

insert fact table with dimension tableL

Parameters:

(see figure 3-10;

figure 3-20; figure 3-23)

fact f, dimension level l

Composition: insert fact (f);

insert level (l);

insert dimension into fact (f, l)

Preconditions: Neither a dimension table named Dt_<l>  nor a fact table
named Ft_<f> exist (assured by  the conceptual precondi-
tions: l � L, f � F)

Schema transformation: CREATE TABLE Dt_<l> (l:dom(l));

CREATE TABLE Ft_<f> (l:dom(l));

Instance adaptation: Since both the dimension level and the fact are new, there are
no existing instances to be adapted. We assume that new
instances are inserted outside the scope of our schema design
task.

Meta schema update: [INSERT INTO TABLES (Dt_<l>, Ft_<f>)]

[INSERT INTO COLUMNS (cid 1,l,Dt_<l>),

    (cid 2,l, Ft_<f>)]

INSERT INTO DIMENSION_LEVELS

    (l, TRUE, Dt_<l>, dom(l));

INSERT INTO FACTS (f, Ft_<f>);

INSERT INTO FACTHASDIM (f,l);

INSERT INTO FACTDIMSMAPPING (l, cid 2);

INSERT INTO DIMHIERARCHYMAPPING (l, cid 1)

figure B-5: operation insert fact table with dimension tableL
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6. insert fact tableL

insert fact tableL

Parameters:

(see figure 3-20;figure 3-23)

fact f, dimension level l, instance adaptation function nv

Composition: insert fact (f);

insert dimension into fact (f, l,nv)

Preconditions: A dimension table exists that contains a column representing
dimension level l. l may be the base level (i.e., the dimension
table is labeled Dt_<l>) or not (i.e., the dimension table is
labeled Dt_<bl>). No fact table labeled Ft_<f> exists. This is
assured by  the conceptual preconditions l � L, f � F.

Schema transformation:
� Case 1: l is (or has been) base level of another fact:

CREATE TABLE Ft_<f> (l:dom(l));

� Case 2: l is not base level of any fact:

CREATE TABLE Dt_<l>

with attributes Dl � Attributes(Dl), i.e. the attributes con-
sist of l and all dimension levels above l in the classifica-
tion hierarchy together with all describing attributes of
these levels.

CREATE TABLE Ft_<f> (l:dom(l));

Instance adaptation: � Case 1: l is (or has been) base level of another fact: no
adaptation of existing instances necessary.

� Case 2: a new dimension table Dt_<l> has been created:

Since l is not base level of any fact, l already belongs to
another dimension table. Let us denote this dimension ta-
ble as Dt_<x>. We further denote

Dl:={l 1, ..., ln }with l 1=l , n t 1 and

Attributes(Dl):= {al.1, .., al.k, .... , aln.1, ..., aln.m}.

First, we have to copy the distinct values for l:
INSERT INTO Dt_<l> (COLUMN l)

SELECT DISTINCT l FROM Dt_<x>;

Then, we update the other copied dimension levels (if any)
and all describing attributes:

for each li � Dl, i=2, ...,n (remember: l1=l):

UPDATE Dt_<l> SET li := i

i

l
lupr

1�
� (li-1)

and for each ali.j  � Attributes(Dl), i=1, ...,n:

UPDATE Dt_<l> SET ali.j  := 
jliaav

.
 (li)
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Meta schema update:
� Case 1: l is (or has been) base level of another fact:
 [INSERT INTO TABLES (Ft_<f>)]

 [INSERT INTO COLUMNS (cid 1,l, Ft_<f>)]

 INSERT INTO FACTS (f, Ft_<f>);

 INSERT INTO FACTHASDIM (f,l);

 INSERT INTO FACTDIMSMAPPING (l, cid 1);

 INSERT INTO DIMHIERARCHYMAPPING

   (l, cid 2)

  with cid 2 being the cid of l in Dt_<l>.

� Case 2: l is not base level of any fact:

   additionally to case 1:
 [INSERT INTO TABLES (Dt_<l>)]

 [INSERT INTO COLUMNS

   ((cid j ,m, Dt_<l>) � m � Dl � Attributes(Dl),

                       j = 2, ... , | Dl � Attributes(Dl)|-1]

 UPDATE DIMENSIONLEVELS SET is_base=TRUE

  WHERE name=l

 UPDATE DIMENSIONLEVELS

SET table_name=Dt_<l>

  WHERE name=l

figure B-6: operation insert fact tableL
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7. delete fact tableL

delete fact tableL

Parameters:

(see figure 3-24;figure 3-21)

fact f, dimension level l.

The aggregation function agg is not used because the fact is
deleted, too.

Composition: delete dimension (l,f,agg);

delete fact (f)

Preconditions: A fact table labeled Ft_<f> with a single column l referencing
the corresponding dimension table Dt_<l> exists (assured by
the conceptual preconditions l � L, f � F, l � gran (f)).

The fact must not be connected to any other elements than
the dimension level l. This precondition is guaranteed because
a delete fact operation may only occur after the last edge is
deleted from this fact (see remark concerning the ordering of
schema evolution operations)

Schema transformation: DROP TABLE Ft_<f>;

Instance adaptation: - (implicitly done by schema transformation)

Meta schema update: [DELETE FROM TABLES WHERE name=Ft_<f>]

[DELETE FROM COLUMNS WHERE

table_name = Ft_<f>;]

DELETE FROM FACTS WHERE name=f;

DELETE FROM FACTHASDIM

WHERE fact=f AND dim_level=l;

DELETE FROM FACTDIMSMAPPING

WHERE dim_Level=l and column_ID = cid;

with cid referencing the column in Ft_<f>

(we remark that this operation should be executed before the
schema transformation because otherwise cid would not be
available any more)

figure B-7: operation delete fact tableL
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8. insert dimension tableL

insert dimension tableL

Parameters:

(see figure 3-10;figure 3-23)

fact f, dimension level l

Composition: insert level (l);

insert dimension into fact (f, l)

Preconditions: A fact table Ft_<f> exists and does not yet contain a column
named l (assured by  the conceptual preconditions:
l � L, f � F)

Schema transformation: CREATE TABLE Dt_<l> (l:dom(l));

ALTER TABLE Ft_<f>

ADD COLUMMN (l:dom(l));

Instance adaptation: Since the dimension level is new, there are no existing in-
stances in the fact table or dimension table to be adapted.

We assume that new instances are inserted outside the scope
of our schema design task.

Meta schema update: [INSERT INTO TABLES (Dt_<l>;]

[INSERT INTO COLUMNS (cid 1,l,Dt_<l>),

    (cid 2,l, Ft_<f>)]

INSERT INTO DIMENSION_LEVELS

    (l, TRUE, Dt_<l>, dom(l));

INSERT INTO FACTHASDIM (f,l);

INSERT INTO FACTDIMSMAPPING (l, cid 2);

INSERT INTO DIMHIERARCHYMAPPING (l, cid 1)

figure B-8: operation insert dimension tableL
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9. insert dimension level columnL

insert dimension level columnL

Parameters:

(see figure 3-10;figure 3-18)

dimension levels l1, l2, instance adaptation function 2
1
l
lupr � .

Level l1 is the level to which the new level l2 is being con-
nected.

Composition: insert level (l2);

insert classification (l1, l2, 2
1
l
lupr � )

Preconditions: At least one dimension table Dt_<bl> exists which contains a
column representing l1, but no column named l2 (assured by :
l1� L , l2 � L)

Schema transformation: extend all dimension tables (denoted by Dt_<bl>) to which l1

belongs, as follows:

ALTER TABLE Dt_<bl>

ADD COLUMMN (l2:dom(l 2));

Instance adaptation: for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

UPDATE Dt_<bl> SET l2:= 2
1
l
lupr � (l1)

Meta schema update: for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

 [INSERT INTO COLUMNS (cid i ,l 2,Dt_<bl>);]

 INSERT INTO DIMHIERARCHYMAPPING

(l 2, cid i )

additionally:

INSERT INTO DIMENSION_LEVELS

    (l 2, FALSE, NULL, dom(l 2));

INSERT INTO CLASSIFICATIONS(l 1,l 2);

figure B-9: operation insert dimension level columnL
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10.  insert classificationL

insert classificationL

Parameters:

(see figure 3-18)

dimension levels l1, l2 to be connected.

The new classification relationship means that level l1 can be
classified according to level l2.

Composition: insert classification (l1, l2)

Preconditions: There exists at least one dimension table which contains a
column named l1 . There exists also at least one dimension
table (possibly the same) which contains a column named l2 .
This is assured by  the conceptual preconditions: l1 � L ,
l2 � L.

Schema transformation: extend all dimension tables (denoted by Dt_<bl>) to which l1

belongs, as follows:

� Case 1: l2 exists already in Dt_<bl>:

if l 2 is marked for deletion: unset deletion flag

� Case 2: l2 exists in another dimension table:
ALTER TABLE Dt_<bl>

ADD COLUMMN (cnew:dom(c new));

for all cnew � Dl2 � Attributes(Dl2), i.e. the new columns
consist of l2 and all dimension levels above l2 in the clas-
sification hierarchy together with all describing attributes
of these levels.

Instance adaptation: for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

� Case 1: l2 exists already in Dt_<bl>:

no instance adaptation necessary.

� Case 2: l2 exists in another dimension table:

Let us denote Dl2:={l 2, ..., ln }and

Attributes(Dl2):= {al2.1, .., al2.k, .... , aln.1, ..., aln.m}

for each li � Dl2, i=2, ...,n:

UPDATE Dt_<bl> SET li := i

i

l
lupr

1�
� (li-1)

and for each ali.j  � Attributes(Dl2), i=2, ...,n:

UPDATE Dt_<bl> SET ali.j  := 
jliaav

.
 (li)
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Meta schema update: for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

� Case 1: l2 exists already in Dt_<bl>:
INSERT INTO CLASSIFICATIONS(l 1,l 2);

� Case 2: l2 exists in another dimension table:

for each li � Dl2, i=2, ...,n:
[INSERT INTO COLUMNS

 (cid j ,l i ,Dt_<bl>);]

INSERT INTO DIMHIERARCHYMAPPING

(l i , cid j )

and for each ali.j  � Attributes(Dl2), i=2, ...,n:
[INSERT INTO COLUMNS

 (cid k,  ali.j ,Dt_<bl>);]

INSERT INTO ATTRIBUTEMAPPING

( ali.j , cid k)

INSERT INTO CLASSIFICATIONS(l 1,l 2);

figure B-10: operation insert classificationL
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11. delete classificationL

delete classificationL

Parameters:

(see figure 3-19)

dimension levels l1, l2 to be disconnected.

Composition: delete classification (l1, l2)

Preconditions: There exists at least one dimension table which contains a
column labeled l1 and at least one dimension table which
contains a column labeled l2 (assured by  the conceptual pre-
conditions l1 � L , l2 � L, (l1, l2) � class).

Schema transformation: for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

mark all dimension levels � Dl2 and all attributes � Attrib-
utes(Dl2) for deletion.

Instance adaptation: No instance adaptation when processing this operation. The
instances of l2 are either needed again when this level is con-
nected elsewhere, deleted when l2 is deleted, or deleted from
the dimension table(s) Dt_<bl> during the garbage collection
at the end of the processing phase in the transformation algo-
rithm.

Meta schema update: DELETE FROM CLASSIFICATIONS

WHERE dim_level1=l 1 AND dim_level2=l 2;

for all dimension tables (denoted by Dt_<bl>) to which l1

belongs:

for each li � Dl2, i=2, ...,n:

mark all tuples in COLUMNS WHERE name= li

for deletion

mark all tuples in DIMHIERARCHYMAPPING

WHERE dim_level  = l i  for deletion

for each ali.j  � Attributes(Dl2), i=2, ...,n:

mark all tuples in COLUMNS WHERE name=ali.j

for deletion

mark all tuples in ATTRIBUTEMAPPING

WHERE attribute = ali.j for deletion

figure B-11: operation delete classificationL
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12. delete dimension level columnL

delete dimension level columnL

Parameters:

(see figure 3-11)

dimension level l

Composition: delete level (l)

Preconditions: At least one dimension table exists which contains a column
labeled l. l may be the base level of this dimension table (i.e.
the dimension table is named Dt_<l>). This is assured by  the
conceptual precondition l � L.

Schema transformation: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

if (l is the only level of this dimen-
sion table)

   DROP TABLE Dt_<bl>

else

   ALTER TABLE Dt_<bl> DROP COLUMN l

Instance adaptation: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

If l = bl (i.e. l is the base level of this dimension table) and

  l is not the only level of Dt_<bl>:

  /* Duplicates in the new base level have to be eliminated:

  /* let Dt_<bl> � bl u l1  u ... u lk u a1u ... u am

INSERT INTO TEMP

SELECT DISTINCT l 1, ..., l k, a 1, ... , a m

FROM Dt_<bl>;

DELETE FROM Dt_<bl>;

INSERT INTO Dt_<bl> SELECT * FROM TEMP;

All other cases are done implicitly by the schema transforma-
tion.
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Meta schema update: for all dimension tables (denoted by Dt_<bl>) to which l be-
longs:

� Case 1: l is the only level of this dimension table:
[DELETE FROM COLUMNS WHERE name=l;]

[DELETE FROM TABLES

WHERE name= Dt_<bl>; ]

DELETE FROM FACTDIMSMAPPING

WHERE dim_level= l;

� Case 2: l is base level, but not the only level of this di-
mension table:
[DELETE FROM COLUMNS WHERE name=l;]

DELETE FROM FACTDIMSMAPPING

WHERE dim_level= l;

� Case 2: else:
[DELETE FROM COLUMNS WHERE name=l;]

Additionally in both cases:

DELETE FROM DIMHIERARCHYMAPPING

WHERE dim_level=l;

DELETE FROM DIMENSIONLEVELS

WHERE name=l;

figure B-12: operation delete dimension level columnL



Appendix B: Logical Evolution Operations184

13. insert dimensionL

insert dimensionL

Parameters:

(see figure 3-23)

fact f, dimension level l, instance adaptation function nv

Composition: insert dimension into fact (f, l, nv)

Preconditions: There exists at least one dimension table containing a column
labeled l. The dimension table may be labeled Dt_<l> (if l is
the base level) or Dt_<bl> (if l is not the base level). There
exists a fact table Ft_<f> which does not yet contain a col-
umn labeled l (assured by  the conceptual preconditions: l �

L, f � F)

Schema transformation:
� Case 1: l is (or has been) base level of another fact:

MODIFY TABLE Ft_<f>

ADD COLUMN (l:dom(l));

� Case 2: l is not base level of any fact:

CREATE TABLE Dt_<l>

with attributes Dl � Attributes(Dl), i.e. the attributes con-
sist of l and all dimension levels above l in the classifica-
tion hierarchy together with all describing attributes of
these levels.

MODIFY TABLE Ft_<f>

ADD COLUMN (l:dom(l));

Instance adaptation:
� only in case 2: a new dimension table Dt_<l> has been

created:

Since l is not base level of any fact, l already belongs to
another dimension table. Let us denote this dimension ta-
ble as Dt_<x>. We further denote

Dl:={l 1, ..., ln }with l 1=l , n t 1 and

Attributes(Dl):= {al.1, .., al.k, .... , aln.1, ..., aln.m}.

First, we have to copy the distinct values for l:
INSERT INTO Dt_<l> (COLUMN l)

SELECT DISTINCT l FROM Dt_<x>;

Then, we update the other copied dimension levels (if any)
and all describing attributes:

for each li � Dl, i=2, ...,n (remember: l1=l):

UPDATE Dt_<l> SET li := i

i

l
lupr

1�
� (li-1)

and for each ali.j  � Attributes(Dl), i=1, ...,n:
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UPDATE Dt_<l> SET ali.j  := 
jliaav

.
 (li)

� in both cases, adapt the data in the fact table according to
the increased dimensionality:

Let us assume FKf := {dl1, ..., dln} and

Measuref := {m1, ..., mk}.

CREATE TABLE TEMP (dl 1, ..., dl n, l,

m1, ..., m k);

INSERT INTO TEMP

(SELECT F.dl 1, ..., F.dl n, D.l,

F.m1, ... , F.m k

FROM Ft_<f> AS F, Dt_<l> AS D);

UPDATE TEMP

SET (m 1, ... , m k):= nv(m 1, ... , m k,l);

DELETE FROM Ft_<f>;

INSERT INTO Ft_<f>

(SELECT * FROM TEMP WHERE (m 1, ... ,
mk) NOT NULL);

Meta schema update:
� Case 1: l is (or has been) base level of another fact:
 [INSERT INTO COLUMNS (cid 1,l, Ft_<f>)]

 INSERT INTO FACTHASDIM (f,l);

 INSERT INTO FACTDIMSMAPPING (l, cid 1);

 INSERT INTO DIMHIERARCHYMAPPING

   (l, cid 2)

  with cid 2 being the cid of l in Dt_<l>.

� Case 2: l is not base level of any fact:

   additionally to case 1:
 [INSERT INTO TABLES (Dt_<l>)]

 [INSERT INTO COLUMNS

   ((cid j ,m, Dt_<l>) � m � Dl � Attributes(Dl),

                       j = 2, ... , | Dl � Attributes(Dl)|-1]

 UPDATE DIMENSIONLEVELS SET is_base=TRUE

  WHERE name=l

 UPDATE DIMENSIONLEVELS

SET table_name=Dt_<l>

  WHERE name=l

figure B-13: operation insert dimensionL
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14. delete dimensionL

delete dimensionL

Parameters:

(see figure 3-24)

fact f, dimension level l, instance adaptation function agg

Composition: delete dimension level from fact (l, f,agg)

Preconditions: There exists a dimension table named Dt_<l> containing a
column named l. There exists a fact table Ft_<f> with a col-
umn l referencing Dt_<l>. This is assured by  the conceptual
preconditions: l � L, f  � F, l � gran(f).

Schema transformation: We remark that the instance adpatation must be executed
before the schema transformation takes place. Otherwise,
necessary instance information would be lost.

MODIFY TABLE Ft_<f> DROP COLUMN l;

Instance adaptation: The data in the fact table has to be adapted according to the
decreased dimensionality, i.e. the measure values have to be
aggregated using the instance adaptation function agg:

Let us assume FKf := {dl1, ..., dln} and – without loss of gen-
erality l = dln. Further, we assume

Measuref := {m1, ..., mk}.

We aggregate the data using a temporary table:

INSERT INTO TEMP

(SELECT F.dl 1, ..., F.dl n-1 ,

agg (F.m 1, ... , F.m k)

FROM Ft_<f> AS F

GROUP BY F.dl 1, ..., F.dl n-1 );

DELETE FROM Ft_<f>;

INSERT INTO Ft_<f> (SELECT * FROM TEMP);

Meta schema update: [DELETE FROM COLUMNS WHERE name=l AND
table_name=Ft_<f>)]

DELETE FROM FACTHASDIM WHERE fact=f AND
dim_level=l;

DELETE FROM FACTDIMSMAPPING WHERE
dim_level=l AND column_ID=cid;

with cid being the identifier of column l in Ft_<f>. We re-
mark that this operation must be executed before the schema
transformation takes place in order to avoid loss of necessary
information.

figure B-14: operation delete dimensionL
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