
Distributed and Parallel Databases 2 (1994), 101-126
© 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Schema Evolution and Integration

STEWART M. CLAMEN
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

clamen@cs.cmu.edu

Abstract. Providing support for schema evolution allows existing databases to be adjusted for varying
roles over time. This paper reflects on existing evolution support schemes and introduces a more
general and functional mechanism to support schema evolution and instance adaptation for centralized
and distributed object-oriented database systems. Our evolution support scheme is distinguished from
previous mechanisms in that it is primarily concerned with preserving existing database objects and
maintaining compatibility for old applications, while permitting a wider range of evolution operations.
It achieves this by supporting schema versioning, allowing multiple representations of instances to
persist simultaneously, and providing for programmer specification of how to adapt existing instances.
The mechanism is general enough to provide much of the support necessarily for heterogeneous
schema integration, as well as incorporating much of the features of object migration and replication.

Keywords: schema evolution, heterogeneous schema integration, object-oriented database systems,
instance adaptation

I. In troduct ion

Object-oriented database systems (OODBS) are considered distributed when they
are composed of multiple database servers at multiple sites, connected via a
network. Distribution is motivated by both economics and pragmatics. Econom-
ically, it allows for a sharing of resources: a collection of networked computers
sharing the work and the storage load of a large and active database. Prag-
matically, distribution can improve reliability and accessibility to the database by
providing continued access to much of the database in spite of isolated hard-
ware failures. Replication of the data can further improve database availability
by reducing the likelihood that a particular piece of data would only exist at
inaccessible sites.

Distributed object-oriented database systems (DOODBS) are (minimally) com-
posed of:

• A collection of network-accessible computing sites,
• A schema: a set of class definitions, including an inheritance hierarchy. A

class definition defines a set of typed attributes (the representation) and a set
of methods (the interface).

• A database: a set of persistent objects, residing on any of the distributed sites,
each an instance of a class defined in the schema, and each with a unique
identity [19].

102 CLAMEN

• A set of application programs, interacting with the objects in the database via
the interfaces defined in the schema.

DOODBS can be categorized by the degree of autonomy exhibited or permitted
each constituent database. They can also be classified with respect to the
heterogeneity of their data models and their choices with respect to a schema [27].

This paper distinguishes between DOODBS with a homogeneous schema and
those with heterogeneous schemas) Homogeneous DOODBS, although imple-
mented on multiple database servers, share a common data representation and
interface. Each database making up a heterogeneous system has its own schema.
For simplicity, we will assume that the only source of heterogeneity is schemat-
ic; we will not address the potential differences in data or query models that
multidatabase systems might possess.

The primary challenge in the design and implementation of a distributed
database system is in making its use (by the user or application program) as
transparent as possible. Ideally, a user should be able to interact with the
set of distributed databases as if they constituted a single, local one. For
heterogeneous DOODBS, this means that some mechanism must exist to relate
the various schemas and their instances. This process, called schema integration,
has been addressed in the context of distributed relational systems (RDBS). The
information that relates the heterogeneous schemas to each other can be termed
the integration schema. A sample set of heterogeneous schemas are presented
in Figure 1.

1.1. Schema evolution and distributed object-oriented databases

Database systems exist to support the long-term persistence of data. It is natural
to expect that, over time, needs will change and that those changes will necessitate
a modification to the interface for the persistent data. In an object-oriented
database system, such a situation would motivate an evolution of the database
schema. For this reason, support for schema evolution is a required facility in
any serious OODBS.

OODBS were motivated by research into the development of applications
centered around design tasks. The design applications, exemplified by CAD/CAM
systems, multimedia and office automation facilities, and software engineering
systems, are characterized by their combined need for database and programming
language functionality. But these design applications, which use the persistent
store as a medium for the sharing of complex information, are all the more
susceptible to schema changes, as the design process is an evolutionary one [16].

Many of the tasks in this domain can benefit from the distribution of the
persistent data repository. With the large quantities of complex information that
might be involved, distribution promotes the sharing of the expense of maintaining

S C H E M A E V O L U T I O N A N D I N T E G R A T I O N 103

i I
Title: str ing

Author (s) : s t r ing

Dewey No. : str ing

Publisher : s t r ing

Entry No. : integer

LoanedTo : CardHolder

T i t l e : s t r ing

Author(s) : s t r ing

LC No- : str ing

Publisher: str ing

LoanedTo : CardHolder

(a) (b)

Title: string

Author(s) : s t r ing

Lib. & Call No. : s t r ing list

Publisher: string

LoanedOut : boolean list

(c)

Figure I. Two schemas to integrate: Here are two (simplified) schemas representing the local card
catalogues of two distinct university libraries. Integrating the two base schemas results in a unified
card catalogue for the campus, for use by the students. The result would see one Library E n t r y

instance for each Science Library Entry or Humanities Libraxy Entry instance.

the hardware resources. While communication among users via the database
is a necessity, much of the work in design applications is localized, composed
of long-lived, personal (design) transactions. Reliability (in the presence of
potential communication failure) and efficiency could be gained by maintaining
a proximate relationship between the data and most likely user. Also, there are
management benefits to dividing the facility into smaller components.

Our evolution support scheme is distinguished from previous mechanisms in
that it is primarily concerned with preserving existing database objects and
maintaining compatibility for old applications, while permitting a wider range
of evolution operations; previous schemes tend to support a limited variety of
evolutions and rarely provide application compatibility support. Compatibility
is supported by versioning the schema and allowing multiple representations of
objects to persist simultaneously. The range of supported evolutions is increased
by allowing the programmer to specify the relationship between the old and new
object representations.

104 CLAMEN

1.2. Guide to the paper

This paper is structured as follows: Section 2 discusses the issues associated
with schema evolution and presents some previous approaches to the problem.
Section 3 presents our new, flexible evolution scheme and explains how it is
general enough to support much of what is required to support heterogeneous
schema integration as well. Section 4 relates the scheme to some other DOODBS
issues such as object migration and replication. Section 5 provides concluding
arguments and outstanding research issues.

2. Schema evolution in object-oriented databases

When the schema changes so does the application/database interface, possible
leaving incompatible elements on both sides of the abstraction barrier. We will
focus on the problem of managing those (pre-)existing database objects, what we
call the instance adaptation problem. In this section, we will examine the limita-
tions of existing (schema) evolution and (instance) adaptation schemes. Towards
the end of the section, we will illustrate how the schema evolution problem is
very similar to the problem of heterogeneous database schema integration.

2.1. Existing approaches

Two general instance adaptation strategies have been identified and implemented
by various OODB systems. The first strategy, conversion, restructures the affected
instances to conform to the representation of their modified classes. Conversion
is supported by the ORION [2, 20] and GemStone [8] systems.

The primary shortcoming of the conversion approach is its lack of support for
program compatibility. By discarding the former schema, application programs
that formerly interacted with the database through the changed parts of the
interface are now obsolete. This is an especially significant problem when
modification (or even recompilation) of the application program is impossible
(e.g., commercially distributed software).

Rather than redefining the schema and converting the instances, the second
strategy, emulation, is based on a class versioning scheme. Each class evolution
defines a new version of the class and old class definitions persist indefinitely.
Instances and applications are associated with a particular version of a class
and the runtime system is responsible for simulating the semantics of the new
interface on top of instances of the old, or vice versa. Since the former schema
is not discarded but retained as an alternate interface, the emulation scheme
provides program compatibility. Such a facility has been developed for the
Encore system [29].

Encore pays for this additional functionality with a loss in runtime efficiency.

SCHEMA EVOLUTION AND INTEGRATION 105

Under a conversion scheme, the cost of the evolution is a function of the
number of affected instances. Once converted, an old instance can be referenced
at the same cost as a newly created one. However, the cost of emulation
is paid whenever there is a version conflict between the application and a
referenced instance.

We feel however that program compatibility among schema versions is a
very desirable feature under certain circumstances. It can be of great utility
in situations where the database is shared by a variety of applications, as in
computer-aided design or office automation systems, when the database acts as
a common repository for information, accessed by a variety of applications. As
these types of applications are also those which benefit from distribution, we see
that compatibility support in DOODBS is all the more desirable.

Our scheme supports program compatibility by maintaining multiple versions of
the database scheme. Old programs can continue to interact with the database (on
both new instances and old) using the former interface. Rather than emulating
the evolved semantics all at runtime, efficiency is gained by representing each
object as an instance of each version of its class. In this manner, our system
effects a compromise between the functionality of emulation and the efficiency
of conversion.

Another failing common to the conversion-based evolution facilities is the
limitations placed on the variety of schema evolutions that can be performed.
Most existing systems restrict admissible evolutions to a predefined list of schema
change operations (e.g., adding/deleting an attribute or method from a class,
altering a class's inheritance list). The length of this list might vary from system
to system, but they are all similar in the way they support change: The set of
changes that can be performed are those which require either a fixed conversion
of existing instances or no instance conversion at all. Unfortunately, change is
inherently unpredictable. A desired evolution is sometimes revolutionary and
under such circumstances, these systems prevent the database programmer from
performing the desired changes.

We are interested in supporting evolution in a liberal rather than a conservative
fashion; rather than the system offering a list of possible evolutions to the
programmer, the programmer should be able to specify arbitrary evolutions and
rely on the system for assistance and verification. Change is a natural occurrence
in any engineering task, and engineering-support systems should help rather than
hinder when an evolution is required.

Although Encore's emulation facility restricts the breadth of class evolution
that can be installed, the restrictions are of a different form. Since instances,
once created, cannot change their class-version, evolutions that require additional
storage for each instance cannot be defined.

In the next section, we present a model for specifying schema evolutions
and instance adaptation strategies. Our system supports program compatibility,
accepts a larger variety of evolutions than existing systems, and supports a variety
of options to make it more efficient than the pure emulation facility of Encore.

106 CLAMEN

A number of evolution support systems have been incorporated into existing
systems or proposed in the literature. Notable representatives are described
below.

2.1.1. ORLON. The most ambitious and effective example of a schema evolution
support facility is that provided by the distributed (homogenous) OODB system
ORION [2, 20, 21]. ORION provides a taxonomy of schema evolution operations
(e.g., add a new class; add a new class attribute; rename a class attribute; change
the implementation of a class method.) It also defines a database model in the
form of invariants that must be preserved across any valid evolution operation
and a set of rules that instruct the system how best to maintain those invariants.
Under this model, a schema designer specifies an evolution in terms of the
taxonomy and the system verifies the evolution by determining if it is consistent
with the invariants and then adjusts the schema and database according to the
appropriate rules.

ORION can only perform those evolutions for which it has a rule defined.
The set of rules is fixed. For example, changes to the domain of an attribute
of a class are restricted to generalizations of that domain. This restriction
exists because there is no facility in ORION's evolution language for explaining
how to "truncate" attribute values that are now outside the attribute's domain.
(Generalizations of the attribute domain are allowed since this evolution does
not require existing instances to be modified.)

In ORION, evolutions are performed on a unique schema. Instances are
converted lazily. There is no compatibility support for old programs and,
depending on the evolution, information contained in the instances might be lost
at conversion time. (e.g., deletion of an attribute.)

The last implementation of ORION, ORION-2[22], supported personal data-
bases in association with a central public database. Personal subschema could
be devloped but could not be defined in opposition to the information contained
in the central (public) schema. When information is moved from a personal to
the central database, the personal subschema is merged into the central schema.

2.1.2. Encore. Encore implements emulation via user-defined exception handling
routines. Whenever there is a version conflict between the program and the
referenced instance, the routine associated with that method or instance (and
those pair of versions) is called. The routine is expected to make the method's
invocation conform to the expectations of the instance or make the return
value from the method invocation consistent with the expectations of the calling
program, whichever is appropriate. It is known, however, that certain evolutions
cannot be modeled adequately under this scheme. The problem stems from
the fact that each object can only instantiate a single version. If an evolution
includes the addition (subtraction) of information (e.g., the addition (deletion) of
an attribute), there is no place for older (newer) instances to store an associated
value. The best a programmer could do in such a system is associate a default

SCHEMA EVOLUTION AND INTEGRATION 107

attribute value for all instances of older (newer) type-versions by installing an
exception handling routine to return the value when an application attempts to
reference that attribute from an old (new) instance [29].

2.1.3. The common lisp object system. CLOS [17, 30], while not an OODB system,
provides extended support for class evolution nonetheless. As Common Lisp
system development is performed in an interactive context, class redefinition
is a frequent occurrence. Rather than discard all existing instances, CLOS
converts them according to a policy under the control of the user. The default
policy is to reinitialize attribute values that no longer correspond to the attribute
domain, and to delete attribute slots that are no longer represented in the class
definition. Users can override this policy by defining their own method that is
called automatically by the system. This method is passed as arguments the old
and new slot values, so relationships between deleted and added attributes can
be enforced [30, p.859].

2.I.4. Other approaches. Bertino [3] presents a schema evolution language
which is an OODB adaptation of the view mechanism found in many relational
database systems. Her primary innovations are the support of inheritance and
object IDs (OIDs) for view instances, two important characteristics of OODB
models that are not present in the relational model. View instances with OIDs
are physically realized in the database, enabling the view mechanism to support
evolutions that specify the addition of an attribute, as envisioned by Zdonik [34].
However, Bertino's scheme focuses on how evolutions affect the schema. It is
not concerned explicitly with the effects upon the instances nor with compatibility
issues.

Zicari proposed [35, 36] a sophisticated evolution facility, providing an advisory
program to determine at evolution time whether the evolution is consistent with
interclass and method dependencies. Evolution transactions are introduced to
allow for compound evolution operations. However, Zicari's lack of concern for
instance adaptation is evident; by defining the attribute-renaming evolution as
the atomic composition of the attribute-delete and attribute-add operations, his
scheme fails at the instance level.

Monk's CLOSQL [25] implements an class versioning scheme, but employs a
conversion adaptation strategy. Instances are converted when there is a version
conflict, but unlike ORION, CLOSQL can convert instances to older versions of
the class if necessary.

Lerner's OTGen design [23] addresses the problem of complex evolutions
requiring major structural conversions of the database (e.g., information moving
between classes, sharing of data using pointers) using a special-purpose language
to specify instance conversion procedures. As it was developed in an integrated
database context, where the entire application set is recompiled whenever the
schema changes, versioning and compatibility were not considered. However,
Lerner's language supports a variety of evolutions and associated adaptations

108 CLAMEN

that are not addressed in many other papers, most notably evolutions that alter
the structure of shared component objects.

Bratsberg [6, 7] has been developing a unified semantic model of evolution
for object-oriented systems. Similar to our work, compatibility for old clients is
described in the context of relations, maintaining consistency between views.

One significant difference between our respective threads of research is our
concentration on the variety of adaptation strategies and representations for the
(possibly) multifaceted instances. This is reflected in this paper's discussion of
the range of possible adaptation strategies, depending on the (expected) access
patterns of the affected instances.

2.2. Schema modification versus class versioning

The schema evolution support provided by such systems as ORION and GemStone
is restricted to what Kim calls schema modification, that is, the direct modification
of a single logical schema [21] When only one database schema exists, it is
appropriate for the system to convert all existing instances. From a database
consistency perspective, it must appear that all instances have been converted
when the evolution operation is applied. 2 In fact, we would claim that it is the
only sensible approach.

As has already been stated, however, conversion might render the instances
inaccessible to applications that had previously referenced them. The adaptation
strategy converts the instances but does not alter procedural references. Thus,
application programs written and compiled under the old schema may now be
obsolete, unable to access either the old, now converted, instances, or the ones
created under the new schema.

A reasonable direction of research here would be to provide some automated
mechanisms to assist with program conversion; it is an active line of research [1,
13]. In the OODB context, some work has been conducted at providing support
to alert the programmer about the procedural dependencies of their evolution
operation [10, 33]. But this is not the only possible solution. Rather than adjust
programs to conform to the data, it would seem easier to adjust the data to
conform to the existing programs. Also, it is not always possible to alter, or
even recompile, programs (e.g., commercially available software). This lack of
compatibility support is our primary motivation for adopting a class versioning
design for evolution management and support (Section 3).

Under a class versioning scheme, multiple interfaces to a class, one per version,
are defined. When compiled, application programs are associated with a single
version of each of the classes it refers to; a schema configuration, if you will.
With the database populated with instances of multiple versions of a class, the
runtime system must resolve discrepancies between the version expected by the
application and that of the referenced instance.

It is worth observing here that schema versioning introduces a notion of

SCHEMA EVOLUTION AND INTEGRATION 109

schema heterogeneity in the absense of distributed, autonomous databases. This
characteristic will be elaborated upon later (Section 2.4).

2.3. Schema evolution in distributed object-oriented databases

Distribution of a database creates new implementation issues with respect to
schema evolution support, and increases the importance of others.

Any OODBS requires the persistent management of the database schema(s).
In a distributed environment, the common schema (the only schema, in the case
of homogeneous systems, and the integration schema for heterogeneous systems)
must remain as available as possible, so maintaining a copy with each database
server is a reasonable decision. Changes to this schema would require updates to
be propagated to every server, although these changes could be installed lazily,
thereby obviating the need for all servers to be accessible at evolution time. a

The distribution and improved ease of remote access to the database strengthens
the motivation for backward compatibility support. The larger the community
sharing the system and schema, the more frequent and less integrated the
changes, the greater the need to keep evolution dependencies (both applications
and existing persistent objects) to a minimum.

2.3.1. Heterogeneous schema evolution. When the distributed collection of databas-
es represent different schemas, the means and affects of schema evolution are
altered. The primary difference is the existence of a schema hierarchy. Evolutions
to the integration schema are distinguished from evolutions to local schemas.

When a local schema is modified, a change to the integration schema might
become necessary. But since the role of the integration schema is to present a
common interface for distributed applications, only the implementation of the
integration schema, and not its exported interface, would need any modification.
As each database is considered autonomous, a local evolution should not affect
the objects in remote databases.

Evolution of the integration schema could be performed independently of the
various distributed schemas. However, such evolutions from above might require
coincident (or previous) evolutions on the associated databases. Such cross-
administrative evolutions require extensive coordination, much like evolutions in
the absence of an intrinsic evolution facility.

2.4. Heterogeneous schema integration

Let us review the purpose of schema integration in the context of heterogeneous
DOODBS. A system is composed of a number of distinct databases, each with
its own schema and its own objects. The integration schema presents a single
schema to applications for accessing these diverse databases. (Figure 2)

110 CLAMEN

("old"~hema~ (schemaA ~ I schemaB 1 I schemaC 1

~"new" schema~ ~ in::~reati:'m ~
(a) (b)

Figure 2. Evolution and integration: Both provide a mechanism for relating schemas: (a) evolution
involves a migration from one schema to a new, unpopulated one; (b) integration coalesces a set of
schemas into one, and is complicated by the fact that instances in the various source schemas may
need to be merged (virtually or actually) into a single one in the target schema.

Schema versioning technology could be beneficial in this context.
Consider the heterogeneous database problem in the absence of distribution:

imagine all the databases collected into a single database, with one large schema
that is the disjoint union of the distributed schemas (so naming conflicts are
avoided) and the integration schema. (Note that the classes that make up the
integration schema are virtual, and lack instances of their own.) If our OODBS
supported schema versioning, and supplied class emulation facilities similar to
that provided by Encore, we could implement integration (i.e., unified access
across the distributed schemas) by writing routines to emulate the integration
schema in terms of each of the formerly distributed schema! (See Table 1 for
example.)

Integration and evolution are actually two specializations of the same problem:
that of relating different schemas that model parts of the same domain. Their
basic distinguishing feature is the currency of the various schemas. Integration
is the "merging" (either via conversion or emulation) of a set of existing,
equally current schema and associated objects. Evolution is motivated by the
desire to move from one schema (and database) to a "new and improved" one.
Note, however, that evolution need not always be motivated by "progress." We
can easily contemplate the "devolutions" motivated by backward (application)
compatibility (e.g., CLOSQL, p.8), or "backing out" of an ambitious, yet ill-
conceived, upgrade.

It stands to reason then, that a general mechanism could be developed to
assist with both these tasks [7]. Such a scheme (first presented in the context of
evolution) appears in the following section.

3. Supporting conversion and compatibility

Section 2.2 described the advantages of a schema versioning approach to evolution.
Herein, we sketch an implementation for such a scheme.

SCHEMA EVOLUTION AND INTEGRATION 111

Table 1. Emulating Integration: a rough sketch of how to implement the integration schema from
Figure 1 using Encore-like emulation routine. The table illustrates how to emulate the attribute
read calls for the universal Library Entry in terms of the distributed Science Library ~.ntry and
Itumanities Library Entry schemas. (Collecting multiple book entries is omitted for simplicity.)

To emulate from Science from Humanities
Library Entry ... Library Entry Library Entry

Title Title Title

Author Author Author

Lib & Call No. "SCI" + Dewey No. "HUM" + LC No.

Publisher Publisher Publisher

LoanedDut LoanedTo ~ N I L LoanedTo ~ N I L

3.1. Database model

As a basis for our discussion, we will employ a simplified object-oriented database
model.

All objects found in the database are instances of classes. A class is record type
of attributes and methods. An attribute is a private, named, typed representation
of state, which can be accessed only by class methods. Methods are descriptions
of behaviour and can be public or private to the class. Under these restrictions,
the set of public methods describe the interface of the class, while the attributes
model its state.

Classes are arranged in a type hierarchy (actually a directed, acyclic graph):
a class's interface must be a generalization of the union of its superclasses
(supertypes); the specification of each inherited method must be at least as
general as those of its superclasses. (It should also be stated that methods must
have semantics consistent with those of their class's supertypes.) Instances of a
class that is a declared subtype of another class can be referenced as if they were
instances of the superclass. We do not consider class inheritance in our model.

Unlike the inheritance mechanisms provided by many object-oriented languages
and OODB systems, our model's subtyping mechanism does not compromise
modularity but continues to provide some of the advantages of type hierarchy
identified by Liskov [24]. The maintenance of class modularity in this regard
greatly simplifies the evolution and adaptation model described in this paper.

In addition to the classes, other supported types include primitive types (e.g.,
integer, floating point number, character) and arrays.

The set of defined classes for each member database comprise the local
database schema. Each class has an associated unique ID. All objects found in
the database are instances of classes. Each instance is identified by a unique
Object ID (OID), and is tagged with its Class ID (CID).

112 CLAMEN

new attributes original attributes

Figure 3. Zdonik's Wrapping Scheme: as in the Encore design, multiple interfaces to the class are
preserved. Here, extra space is allocated for the attributes added as a result of the evolution, and
applications can access the instance through either the old or new interfaces.

For integration purposes, we will assume that there exists a global, integration
schema, and a global method for identifying specific objects. These features will
be elaborated upon in the course of this paper.

3.2. Objects instantiating multiple class-versions

Under the original Encore schema evolution support design [29], instances never
change their type-version. Aware of the restrictions this causes (see previ-
ous section), Zdonik proposed a scheme whereby an existing instance can be
"wrapped" with extra storage and a new interface, enabling it to be a full-fledged
instance of a new type-version [34]. While still accessible through its original
interface/version, the wrapped object can also be manipulated through the new
interface. Thus, if the class evolution specifies the addition of an attribute, the
wrapping mechanism could allocate storage for the new slot in existing instances,
without denying backward compatibility (Figure 3).

Our scheme is a generalization of this approach, and resembles the view
abstraction mechanism proposed by JANUS [14], as well as the type conformance
principle introduced as part of the Emerald data model [4]. Instead of supporting
a single interface, we can provide multiple interfaces to instances. Much as
each class has multiple versions, each instance is composed of multiple facets.
Theoretically, each facet encapsulates the state of the instance for a different
interface (i.e., version). The representation of these instances is, abstractly, a
disjoint union of the representation of each of the versions, and it is useful to
consider the representation as exactly that. As will be explained later, however,
a wide variety of representations are possible.

As an example, consider a class U n d e r g r a d u a t e , originally including attributes
Name, P r o g r a m , and Class, and a new version of the class with the attributes Name,
Id Number , A d v i s o r , and Class Year. (Class is one of {Freshman, Sophomore,
Junior, Senior}, while Class Year is the year the student is expected to graduate.)
Degree Pgm is the degree program in which the student is enrolled, and Advisor
is his academic advisor. While instances of Undergraduate in the database
will contain all seven distinct attribute slots, any particular application will be

SCHEMA EVOLUTION AND INTEGRATION 113

Name ~ Name
• ld Number

Degree Pgm -
Advisor

Class
Class Year

>

shared attribute

derived attribute

dependent attribute

Figure 4. Disjoint union representation of the versioned class Undergraduate.

restricted to one version and thus only have explicit access to one facet.
In reasoning about the relationship between any two versions of a class, 4 it is

useful to divide the attributes into these four groups:

Shared: when an attribute is common to both versions, 5
Independent: when an attribute's value cannot be affected by any modifications
to the attribute values in the other facet.
Derived: when an attribute's value can be derived directly from the values of
the attributes in the other facet,
Dependent: when an attribute's value is affected by changes in the values of
attributes in the other facet, but cannot be computed solely from those values.

In our example (Figure 4), the Name attribute is shared by the versions, while fd
Number is independent. Class and Class Year are both derived attributes since,
given the current date, it is possible to derive one from the other. Advisor is
a dependent attribute, since a change in Degree Pg-m might necessitate a change
in advisor. Likewise, Degree pg-m is a dependent attribute, since a change in
advisor might imply that the student has switched degree programs.

Zdonik et al. [29, 34] almost always cite evolutions involving independent or
derived attributes in their examples. The original Encore emulation scheme is
adequate for supporting evolutions that introduce shared and derived attributes.
Zdonik's wrapping proposal addresses the problems associated with independent
attributes. Our scheme, however, will provide a mechanism for managing class
evolutions that include the former three categories plus dependent attributes.

3.3. Specifying an adaptation strategy (with example)

Given two versions of a schema (simplified here to a versioned class), we
are required to categorize the attributes (of each class-version) accordingly,
and associate adaptation information with each of them: for shared attributes,
identifying its "synonym" in the other version; for derived attributes, a function

114 CLAMEN

for determining the attribute value in terms of attribute values in the other facet;
for dependent attributes, a function in terms of the attributes of both facets.
Independent attributes require no additional information.

A relation for a version in terms of the other version can be generated given the
supplied attribute-wise information. For backward compatibility to be supported,
dependency relationships must exist in both directions between the two class-
versions. In such cases, a correctness constraint exists, i.e., the version-wise
relation from version A to version B must be the inverse of the relation from
B to A. (Note that determining if the two relations are inverse of each other is
analoguous to the halting problem in general.)

Representing the class instances as a disjoint union of the version facets, as
described earlier, consistency between the facets can be maintained according to
the following procedure:

Whenever an attribute value of a facet is modified, those attributes in the
other facet that depend on it must be updated. For shared attributes, the
new value is copied; for dependent and derived attributes, the dependency
functions are applied and the result written into the (attribute) slot in the
other facet.

The remainder of this subsection consists of an example:

Consider the Undergraduate class versions introduced earlier. The
derivation function for Class Year is

Class Year=

c y + 3

c y + 2

c y + l

cy

if Class = Freshman

if Class = Sophomore

if Class = Junior

Class = Senior

Where cy is the current year.
Likewise, the derivation for Class is

Class =

Freshman

Sophomore

Junior

Senior

if Class Year = cy + 3

if Class Year = cy + 2

if Class Year = cy + i

if Class Year = cy

The Advisor attribute is dependent upon the value of the Degree
Pgm attribute, but not completely derivable. A reasonable dependency
function is"

SCHEMA EVOLUTION AND INTEGRATION 115

Advisor =
Advisor

nil

if Advisor E Program faculty

otherwise

Similarly:

Degree Pgm = {
Program of Advisor's field

Existing value of Degree Pgm

nil

if singular

if Advisor

Program faculty

otherwise

The dependency functions for each adaptation "direction" satisfy the
inverse-relation constraint introduced earlier.

Consider a multifaceted instance of Undergraduate, represented graphically as
follows:

John Smith I

Comp Sci & Eng

Sophomore

John Smith

123-45-678

Dr. Mary Jones

1994

Imagine that John Smith returns to university after his first summer vacation and
wishes to change to the undergraduate math program. Also, he had taken some
summer classes that have given him enough credits to graduate a year early.
The change to his data record are recorded through an application program
employing the first version of the Undergraduate class. The system must now
propagate those modifications to the second facet, using the dependency functions
from above.

Since there is not enough information to derive it, the student's advisor will
have to be filled in later.

Applying these functions in concert with the desired changes to John Smith's
record, the multifaceted instance becomes

John Smith

Mathematics

Junior

John Smith

123~15-678

NIL

1993

116 CLAMEN

3.4. Representing multifaceted instances

In the previous section we described the semantics of our schema versioning
scheme. In this section we address some of the representation issues.

We begin with the simple and direct implementation: class evolutions are
defined by creating a new version of the class; a new facet (corresponding to the
new version) is associated with each instance of the class and initialized according
to the programmer-defined adaptation specification. 6 Each application program
interacts with the instances through a single version (interface) and modifications
to attribute slots on the primary facet are immediately propagated to the other
facets, using a mechanism similar to the trigger facility found in many relational
and AI database systems [12, 31].

This simple implementation can be made more efficient. The most obvious
target for improvement is how new facets are added. The allocation and
initialization of new facets for existing instances at evolution time can be deferred
until such time as the facets are actually needed (i.e., by an application). In this
way, some of the runtime and most of the space costs of supporting multiple
versions are only spent when absolutely necessary.

The strategy of deferring the actual maintenance of a dependency constraint
until its effect is actually required can be applied as well to the propagation of
information among the facets of an instance. Rather than update the attribute
values of the other facet(s) each time a facet attribute is modified, one need only
bring a facet up-to-date when there is an attempt to access it. This scheme can
be supported by associating a flag with each facet indicating whether the facet is
up-to-date with respect to the most recently modified facet. The application of
read methods on facets with an unset flag are preceded by a resynchronization
operation, which performs any necessary updates and sets the flag.

This scheme reduces overall runtime expense, since the resynchronization step
is not performed in concert with every update operation, as was previously the
case. However, it does increase the potential cost of previously inexpensive read
operations.

To this point, we have been very liberal with our allocation of space for instance
representation. Although the lazy allocation of facets conserves some space in
the short run, the disjoint union representation model implies that every instance
of a versioned class will have a complete collection of facets. There are a few
optimizations that could be performed to reduce space requirements.

The first space-saving improvement entails having each set of shared attributes
occupy a single slot in the multifaceted representation. A performance improve-
ment might also be realized here, since slot sharing reduces the expense and/or
frequency of update propagations (Figure 5).

Under certain circumstances, the slot associated with a derived attribute can be
recovered as well. If an inverse procedure to the derivation function is known to
the system, then the attribute can be simulated by appropriate reader and writer

SCHEMA EVOLUTION AND INTEGRATION 117

I John Smith]

C(mtp Sci & Eng 123-45-678

Sophomore Dr. Mar3" Jones

1994

Figure 5. Multifaceted instance representation using common slot for shared attributes.

John Smith]

Comp Sci & Eng 123-45-678

Soptu)more Dr. Mar?," Jones

John Smith]

Comp Sci & Eng 123-45-678

1994

(a) (b)

Figure 6. Multifaceted instance representation minimizing derived attribute allocation.
Undergraduate class, two minimizations exist.

For the

methods. For many evolutions, the inverse procedure appears as the derivation
function for the related attribute in the other facet. The Class and Class Year
attributes in our example are related in that way (Figure 6).

From a runtime performance perspective, this space optimization reduces the
expense of write methods while making read methods more costly. The slot
allocated for a derived attribute acts as a cache for its derivation function and,
depending on the frequency of modifications to its dependent attributes in the
other facet(s), its maintenance might be more time-efficient.

Note that the emulation scheme of the Encore system is an extreme case on
the space vs. time spectrum. In the Encore system, however, emulation was
the only option. In our scheme, the programmer could choose to completely
emulate a facet in situations where time is less of a concern than space, and
where all the attributes are derivable from other facets.

3.5. Subtyping

We have, to this point, failed to explain how our class evolution and instance
adaptation scheme copes with our model's subtyping mechanism. We first identify

118 CLAMEN

what characteristics of subtyping are problematic with respect to evolution and
adaptation and then motivate our solution.

One of the characteristics of a class in our data model is that a class can be
declared a subtype of one or more other classes. As a subtype, it is required to
minimally export the interface of each of its supertypes. One possible evolution
in such a model is a change to the supertype list. Such changes (i.e., addition
or deletion of a supertype) involve only the addition and/or (optional) deletion
of sets of methods in the new class version.

Unfortunately, problems supporting evolutions upon a superclass (i.e., a class
with other classes that have been declared as subtypes) cannot be dismissed so
easily. At issue is what to do with subclasses (declared subtypes) when a class
is altered.

A subclass (subtype) is distinguished from an application or a class that
depends on a particular class interface. For a subtype, backward compatibility is
not altogether useful, since, in order to maintain the subtype relationship, it is
obliged to evolve its type (interface and semantics) in concert with its supertypes.

If the new version resulting from an evolution is a superclass of the previous
class-version, then the set of subclasses remain subtypes. However, if the
evolution specializes or more drastically changes the class's interface or semantics,
the subclasses will not be subtypes of the revised class without evolving them
as well.

Note, however, that the subclasses remain as subtypes of the old version of
the class. If we were to not allow the versioning of the subtyping hierarchy, a
programmer would be obligated to evolve all the subclasses. Alas, it cannot be
assumed that the database programmer performing the class evolution has the
will or the means (due to the existence of multiple database programmers) to
evolve an entire subtree "below" the evolved class. Therefore, allowing versioning
of the type hierarchy (i.e., allowing classes to be subtypes of class-versions and
not classes), appears to be the correct approach.

3.5.1. Distribution. When the database is distributed, one significant represen-
tation advantage might be the distribution of facets. Facets could be created
and located at the sites where they were needed, as opposed to where their
co-facets reside. Whether this could prove beneficial depends upon the relative
frequency of write over read operations, and the degree of dependency among
facets. When facet distribution is advantageous, one would want to optimize
time over space, and directly represent shared and derived attributes. Such an
approach would also improve fault-tolerance.

3.6. Customizing an adaptation strategy

Just as the actual specification of the dependency relationship between facets
is specified by the programmer, certain other aspects of the adaptation should

SCHEMA EVOLUTION AND INTEGRATION 119

be accessible to programmer control as well, including: whether compatibility is
required, whether or not to maintain old facets, and the possibility of multiple
active instance representations.

While important in general, program compatibility is not always required (e.g.,
a database with a single application program and a single user). In such situations
one should be able to employ the minimally expensive strategy and instruct the
system to convert existing instances fully and discard (or perhaps archive) the
old information. Furthermore, conversion and compatibility are not mutually
exclusive. As long as an inverse conversion procedure is known, one could
convert and emulate the older interface. This might be useful when you want to
preserve compatibility, but expect that it will be needed infrequently enough that
you are willing to pay the cost of emulation in those instances. If an application
tends to reference a distinct subset of the instance collection, one could employ
a strategy that converts (on access) instances to the version of the application. 7
The important characteristic of this evolution architecture is that the database
programmer has access to the control knobs and can tune the evolution strategy
to improve performance.

Sometimes, modification of the database or its schema is impossible. Databases
might be read-only for permission (e.g., remote database exported as a public
service) or licensing reasons (e.g., reference materials on CD-ROM). In such
situations, something resembling Zdonik's wrapping scheme must be used, with
the wrapper actually residing in a separate database. The programmer must
have a way to specify this situation to the system.

Often the access patterns are not particular to an entire class, but only to a
subset of the instances. In such cases, additional efficiency could be achieved
by employing different representations for differently accessed instances. Such
functionality would obviously require extensive programmer influence, notably
the inclusion of a procedure to determine which representation to employ. This
procedure might be functional (e.g., depending on the state of the object) or
require the maintenance of its own state (e.g., accounting information). Such
advanced adaptation schemes will be the subject of a future paper.

3.7. Multifaceting and heterogeneity

While we have made no explicit mention of it, our figures have depicted our
multifaceted persistent instances as contiguously stored objects. Locality among
facets is advantageous when the propagation of values is. frequent. However,
deferring the update propagation until the facet is actually referenced can reduce
the benefits of facet colocality.

Instead of grouping facets by object, we could instead group them by class-
version. Partitioning the database in this manner is reminiscent of the heteroge-
neous database systems introduced at the outset of this paper (Figure 7).

To support backward application compatibility across schema evolutions, we

120 CLAMEN

A

D

(a)

A

D
D

C

(b)

Figure 7. Distribution of facets: Facets of the same objects could be distributed across schemas,
resembling a heterogeneous distributed database.

have introduced schema heterogeneity. This reemphasizes the similarities be-
tween the schema evolution problem and the schema integration problem. Toward
the end of the previous section, we stated that a general mechanism could be used
to support both the evolution and heterogeneous schema integration processes.
We intend to show that our "multifaceted" scheme is such a mechanism, but first
we must discuss an important distinction between evolution and integration.

3.8. Schema integration revisited: the instance integration problem

Because evolution implies a migration from one schema to a new one, it can
assume that the latter has no existing instances. However, the schemas that are
part of integration procedure typically do have existing instances.

Why is this a problem?
Thomas et al. [32], identify four ways in which the objects in the two databases

being integrated can relate to each other: s

Replication: when the objects in one database are copies of objects found in
the other database

SCHEMA EVOLUTION AND INTEGRATION 121

Vertical Fragmentation: when the objects are instances of a type found in the
other database
Horizontal Fragmentation: when they are extensions of objects found in the
other database
Data Mapping: when they are functional translations of objects found in the
other database

Although developed for distributed RDBS, the four roles hold in the DOODBS
context, with one caveat: as objects in the object-oriented data model possess an
identity, objects linked via integration (i.e., objects fulfilling replication, horizontal
fragmentation, or data mapping roles) much share an identity. The instance
integration problem (sometimes called object integration or identity integration [5,
7, 18]) is concerned with collecting and linking together these related objects.
We will address this issue presently.

3.9. Supporting schema integration

We have motivated schema versioning and application compatibility by observing
that upgrading applications or databases is not always practical or possible.
The member databases of a heterogeneous DOODBS exemplify our claim;
different histories, requirements, or administrations have kept these schemas
(and associated databases) separate in the past. Integration is a cooperative
venture meant to simplify the development of applications requiring information
from more than one of these databases. Integration need not mean assimilation;
the members need not (and often cannot) surrender their autonomy/identity in
the process. 9

We can thus view integration (partly) as the simultaneous evolution of multiple
schemas to a common interface, subject to the constraint that the individual
components (i.e., schemas and representative instances) remain intact. Such
a requirement is not an obstacle, since our evolution scheme supports the
simultaneous existence of multiple schemas, and the simultaneous existence of
multiple representations, in the form of multifaceted instances. 1°

At the conclusion of the integration process, our integration schema will
be populated with such multifaceted instances, the facets remaining in their
original databases (as illustrated in Figure 7). Only the instance integration
problem remains.

For the (parts of the) schemas that are fragmented vertically, like the Library
Entry class in our library integration example (Figure 1), no grouping is necessary,
and we can assign unique (universal) identifiers to each object. However, if any
other form of integration is present, we must assign the corresponding facets a
common id.

As we are not able to rely on object identity, we require another way of
identifying corresponding objects. This task is an active research problem, and

122 CLAMEN

we will not present a definitive solution here. One basic approach is to identify
corresponding objects by some common feature (e.g., ISSN or ISBN identification
for books, personal name, etc.) [18]. Such common features would typically
be the shared or derived attributes that exist between the class we are trying
to integrate.

However, in any specific database, these common features may not sufficiently
unique to adequately identify correspondences. Bratsberg [7] considers providing
for user intervention in such situations.

4. Multifaceting and other advanced database features

In the course of our presentation, we have assumed the existence of a number
of advanced OODBS features, and serendipitously implemented others.

4.1. Remote object references

The observation that the facets comprising a multifaceted object could be dis-
tributed assumes that the DOODBS supports nonlocal references to objects. As
these potentially distributed facets share an identity and thus a universal identi-
fier, the intraobject linkage could be implemented using the local database ID
and the universal ID. However, some sort of facet-level, remote ID mechanism
would facilitate the maintenance of interfacet constraints.

The heterogeneous schema integration mechanism described above relied on
the existence of remote identifiers, so as to unify the distributed instances into
an integrated object.

4.2. Object migration

By object migration, we mean the ability of objects to be moved from one
database to another [16]. An object is migrated (either automatically or explicitly)
to improve locality between itself and the objects it is related to (typically
via reference pointers). Similarly, we might imagine facet migration, whereby
facets might relocate to sites whence they are referenced. Note, however,
that if interfacet dependencies require frequent maintenance, the distributed
fragmentation of an object might not be beneficial.

The multifaceted approach to heterogeneity provides a mechanism for object
migration for heterogeneous DOODBS. Moving an object across a schema barrier
necessitates converting it. With multifaceting, the original structure can be
retained and updated, as necessary. Thus, when an object migrates, it leaves a
piece of its "soul" behind.

SCHEMA EVOLUTION AND INTEGRATION 123

4.3. Replication

To improve performance and reliability, multiple copies of database stores are
often maintained. At the simplest level, these replication sites provide benefits
for read operations only (the write operations requiring updating to the all
replication sites).

Although replication is often considered at the granularity of the database-file,
replication at the object level could, to a large degree, be considered a special
case of our multifaceted (and fragmented) instance scheme, n The shared slots
of the instances of two (or more) class-versions are, effectively, replicated among
the various distributed databases on which they (i.e., the instances) are active.
Just as replicated databases must propagate side effects to their copies, the effects
of a side effect to one facet of an object much be propagated (eventually) to its
"co-facets." Full object replication could be implemented by duplicating schemas
on other sites, and maintaining duplicate facets there.

The similarlity to replication extends to lock management as well. Locking an
object requires locking all of its facets, whereever they may be located, just as
all the replicated sites of an object must be locked for write operations [16].

5. Conclus ions and future research

This paper describes a new, highly flexible approach to supporting schema evo-
lution in object-oriented database systems. While not dependent on distribution,
its support of arbitrary evolutions and application compatibility makes it attrac-
tive for use in the same type of application contexts that are appropriate for
distributed OODBS. Schema versioning and instance multifaceting are the mech-
anisms by which compatibility are supported. By allowing the schema designer
the ability to specify the precise relationship between class versions, a wider
variety of evolutions than previous schemes can be supported.

The paper also highlighted the similarities between schema evolution and
heterogeneous schema integration, and described how the aforementioned schema
evolution support mechanism can also assist with the schema integration task.

Some minor contributions include the relationship between multifaceting and
object replication, and the potential for facet migration.

We have left unresolved a number of issues. Some are addressed in [9], but
most are topics for additional research. These issues include:

• Precisely how the programmer specifies the schema evolution and the adaptation
strategy details: including dependency functions and representation decisions.
Work has begun on a special-purpose language. One significant benefit of
having a language is that common adaptations could be maintained in a
library. The basic evolutions as specified in [2] could thus be provided in the
form of library routines.

124 CLAMEN

• How to support evolutions that involve more changes to more than one class.
(The simplest of such evolutions is called telescoping [3, 9, 26].)

• How best to be able to match up integrating instances among heterogeneous
schemas.

Notes

1. Although "schema" is already a plural noun, we will use the relatively popular
"schemas" to refer to multiple, distinct schema.

2. Whether the instances are converted eagerly or lazily becomes an implemen-
tation issue.

3. A case could be made that since schema evolution is not a frequent occur-
rence, it would not be unreasonable to require that all constituent database
servers be functioning at evolution time. However, as we see no major
increase in implementation complexity associated with the introduction of
fault-tolerant, distributed schema evolution, we address the issue at this time.

4. For explanatory purposes, imagine that we are describing a class consisting
of only two versions, and where the database is populated by instances of
both.

5. Common in the semantic sense, i.e., having the same type and meaning.
6. Independent attributes can be initialized using the default values from the

regular class definition.
7. This is the approach taken by Monk's CLOSQL system [4]. See Section 2

for details.
8. The reduction from n to two databases is for illustrative purposes only, and

does not affect our argument.
9. Similar to the member countries of the European Community.

10. We observe that four categories introduced by Thomas et al. [32] have
analogues in our classification of the attributes between facets: replication
is analogous to shared attributes, data-mapping to derived attributes, and
horizontal fragmentation to independent attributes. Vertical fragmentation is
implied by our schema versioning scheme, due to the fact that all instances
of one class-version are also instances of all other class-versions. Dependent
attributes, combining characteristics of independent and derived attributes,
were not identified by the authors, probably because of the simplicity of the
relational data model.

11. The size and complexity of some objects in an OODB could make replication
at object granularity practical.

References

1. R.S. Arnold (ed.), Tutorial on Software Restructuring, Washington, DC: Institute of Electrical and
Electronic Engineers, IEEE Society Press, 1986.

SCHEMA EVOLUTION AND INTEGRATION 125

2. J. Banerjee, W. Kim, H-J. Kim, and H.E Korth, "Semantics and implementation of schema
evolution in object-oriented databases," in U. Dayal and I. Traiger (eds.), Proc. of SIGMOD Int.
Conf. Management of Data, San Francisco, CA, May 1987.

3. E. Bertino, "A view mechanism for object-oriented databases," inAdvances in Database Technology-
EDBT '92 Int. Conf. Extending Database Technology, Vienna, Austria, February 1992, pp. 136-151.

4. A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object structure in emerald system," in OOPSLA86
[28], pp. 78-86.

5. S.E. Bratsberg, "Integrating independently developed classes," in Proc. Int. Workshop on Distributed
Object Management, Edmonton, Canada, August 1992.

6. S.E. Bratsberg, "Unified class evolution by object-oriented views," in Proc. 11th Int. Conf. Entity-
Relationship Approach, October 1992.

7. S.E. Bratsberg, "Evolution and Integration of Classes in Object-Oriented Databases," PhD thesis,
The Norwegian Institute of Technology, University of Trondheim, June 1993.

8. R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H. Williams, and M. Williams,
"The GemStone data management system," in Won. Kim and Frederick H. Lochovsky (ed-
s.), Object-Oriented Concepts, Databases and Applications, Reading, MA; Addison-Wesley, 1989,
chapt. 12.

9. S.M. Clamen, "Class evolution and instance adaptation," Technical Report CMU-CS-92-133,
Carnegie Mellon University School of Computer Science, Pittsburgh, PA, June 1992.

10. C. Delcourt and R. Zicari, "The design of an integrity consistency checker (ICC) for an object
oriented database system," in Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP), Lecture Notes in Computer Science, vol. 512, Geneva, Switzerland, Springer-Verlag,
July 1991. A more detailed version is available as [11].

11. C. Delcourt and R. Zicari, "The design of an integrity consistency checker (ICC) for an object
oriented database system," Dipartimento di Elettronica Technical Report 91.021, Politecnico di
Milano, Milan, Italy, 1991. A short version of this paper appears in the 1991 ECOOP proceedings.

12. D. Giuse, "Kr: Constraint-based knowledge representation," Technical Report CMU-CS-89-142,
Carnegie Mellon University School of Computer Science, Pittsburgh, PA, April 1989.

13. W.G. Griswold and D. Notkin, "Program restructuring to aid software maintenance," Technical
Report 90-08-05, Dept. of Computer Science and Engineering, University of Washington, Seattle,
WA, September 1990.

14. A. Nico Habermann et al., "Programming with views," Technical Report CMU-CS-TR-177,
Carnegie Mellon University School of Computer Science, Pittsburgh, PA, 1988.

15. S. Heiler, U. Dayal, J. Orenstein, and S. Radke-Sproull, '~am object-oriented approach to data
management: Why design databases need it," in Proc. 14th ACM/IEEE Design Automation Conf.,
pp. 335-340, January 1987.

16. E. Jul, H. Levy, N. Hutchinson, and A. Black, "Fine-grained mobility in the Emerald system,"
ACM Transactions on Computer Systems, vol. 6, no. 1, pp. 109-133, February 1988.

17. S.E. Keene, Object-Oriented Programming in Common Lisp: A Programmer's Guide to CLOS,
Addison-Wesley, Reading, MA, 1989.

18. W. Kent, "The breakdown of the information model in multi-database systems," SIGMOD Record,
vol. 20, no. 4, pp. 10-15, Deeember 1991.

19. S.N. Khoshafian and G.P. Copeland, "Object identity," in OOPSLA86 [28], pp. 406--416.
20. W. Kim, J.E Garza, N. Ballou, and D. Woelk, '~rchitecture of the orion next-generation

database system," IEEE Transactions on Knowledge and Data Engineering, vol. 2, no. 1, pp. 109-
24, March 1990.

21. W. Kim, Introduction to Object-Oriented Databases, Computer Systems, Cambridge, MA, MIT
Press, 1990.

22. W. Kim, N. Ballou, J.E Garza, and D. Woelk, '~ distributed object-oriented database system
supporting shared and private databases," ACM Transactions on Information Systems, vol. 9, no. 1,
pp. 31-51, January 1991.

126 CLAMEN

23. B.S. Lerner and A.N. Habermann, "Beyond schema evolution to database reorganization," in
Proc. ACM Conf. Objected-Oriented Programming: Systems, Languages and Applications (OOPSLA)
and Proc. European Conf. Object-Oriented Programming (ECOOP), Ottawa, Canada, October 1990,
pp. 67-76. Published as ACM SIGPLAN Notices 25(10).

24. B. Liskov, "Data abstraction and hierarchy," in Proc. ACM Conf. Objected-Oriented Program-
ming: Systems, Languages and Applications (OOPSLA), pages 17-34 (addendum), Orlando, FL,
September 1987.

25. S. Monk and I. Sommerville, '9, model for versioning classes in object-oriented databases," in
EM.D. Gray and R.J. Lucas (eds.), Proc. Tenth British National Conf. Databases (BNCODIO), Lec-
ture Notes in Computer Science, vol. 618, pp. 42-58, Aberdeen, Scotland, July 1992. Springer-Verlag.

26. A. Motro, "Superviews: Virtual integration of multiple databases," IEEE Transactions on Software
Engineering, vol. 13, no. 7, pp. 785-98, July 1987.

27. M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, Prentice-Hall, 1991.
28. Proc. of the ACM Conf. on Objected-Oriented Programming: Systems, Languages and Applications

(OOPSLA), Portland, OR, September 1986.
29. A.H. Skarra and S.B. Zdonik, "Type evolution in an object-oriented database," in Research

Directions in Object-Oriented Programming, MIT Press Series in Computer Systems, MIT Press,
Cambridge, MA, 1987, pp. 393--415. An early version of this paper appears in the OOPSLA '86
proceedings.

30. G.L. Steele, Jr., Common Lisp: The Language, 2nd ed., Digital Press, 1990.
31. M. Stonebraker, "Implementation of integrity constraints and views by query modification," in

Proc. SIGMOD Int. Conf. Management of Data, San Jose, CA, 1975.
32. G. Thomas, G.R. Thompson, C.W. Chung, E. Barkmeyer, E Carter, M. Templeton, S. Fox, and

B. Hartman, "Heterogeneous distributed database systems for production use," ACM Computing
Surveys, vol. 22, no. 3, pp. 237-266, September 1990.

33. E. Waller, "Schema updates and consistency," in Proc. Second Int. Conf. Deductive and Object-
Oriented Databases, 1991, pp. 167-188.

34. S. Zdonik, "Object-oriented type evolution," in Advances in Database Programming Languages,
Francgis Bancilhon and Peter Buneman (eds.), ACM Press, New York, NY, 1990, pp. 277-288.

35. R. Zicari, '~, framework for schema updates in an object-oriented database system," in Building
an Object-Oriented Database System: The Story of 02, Morgan Kaufmann, 1992. Also available as
Politecnico di Milano, Research Report no. 90-025.

36. Roberto Zicari, "A framework for 02 schema updates," Rapport Technique 38-89, GIP Altair,
Rocquencourt, France, 1989.

