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Abstract. Semantic standards and technologies can facilitate the man-
agement of the dependency relationships between related components.
Applications at different layers must map shared information both struc-
turally (e.g., identifying which fields map to each other in different data
schemas) as well as semantically (e.g., specifying the derivation rela-
tionship between a field in one schema and one or more fields from a
potentially different schema). Believing that the efficient maintenance
and evolution of such mappings is as important as creating the initial
mappings in the first place, we present here methodologies for main-
taining both simple and semantically complex mappings that exploit the
rich constructs that Semantic Web technologies offer for modelling rela-
tionships. We include a description of a reference implementation that
focuses on the domain of resource managing and provisioning.

1 Introduction

The Semantic Grid brings to mind the visions for dynamically composed Web
services that emerged, then faded, a few years ago. Just as Web standards and
protocols such as HTML and HTTP create a single image from information re-
sources that span the world, Grid technology, standards and protocols strive to
make a disparate variety of distributed computing and data resources accessible
through a unified virtual interface. Many researchers are currently exploring the
combination of grid computing and Web services into a service-oriented architec-
ture. Insofar as grid middleware strives to support the dynamic combination of
distributed resources, this aspect of the grid vision recalls the inter-enterprise dy-
namic service composition that were prevalent in the early days of Web services,
when UDDI was being touted as a means for services fronted by autonomous
companies to discover and interact with each other.

The Web service vision eventually subsided to address the immediately prac-
tical problem of intra-enterprise application integration. On the one hand, this
might seem a dilution of the Web service vision. However, another perspective
is that this focus reflects the fact that as companies have grown in the size and

* This technical report is an extended version of [7].



complexity, enterprise systems became more loosely-coupled and integration thus
became less simple. Web service standards and technologies simplify the design
and use of integration middleware, and thus gained acceptance.

We think this practical need for integration presents a key opening for Se-
mantic Grid. The Semantic Grid vision applies Semantic Web technologies to
all aspects of grid computing, from the infrastructure fabric to applications [5].
As noted in [11], large scale resource integration is the essence of the grid. The
Global Grid Forum (GGF)’s Open Grid Services Infrastructure (OGSI) [10] de-
fines mechanisms for creating, managing, and exchanging information among
grid services. Integrating and correlating relevant information thus presents a
significant challenge. Resources from disparate systems must be allocated, as-
signed, composed and managed uniformly. Constraints, policies and SLAs must
be interpreted in the context of data, messages, and events that originate from
diverse information domains. In order for a management system to locate, iso-
late, and diagnose problems in a distributed environment, business virtualization
software must correlate performance details from the service layer with fault and
bottleneck data collected at the application layer as well as with configuration
information and CPU, memory, and I/O metrics from the resource management
layer [23]. The various systems must support lifecycle changes as applications
and services evolve and are decommissioned.

Ontology languages (e.g., OWL) offer standard mechanisms for structuring
knowledge about entities in different domains in terms of classes, relationships,
and inference rules that operate upon those classes and relationships. A number
of researchers have proposed mechanisms for discovering and expressing map-
pings between individual terms in different ontologies [8, 13]. However, they do
not capture algebraic relationships or dependencies between the properties ex-
pressed by the ontologies, nor do they (in general) address efficient mechanisms
for maintaining such mappings over the lifetime of a system.

In this paper, we address how to manage the evolution of both simple and
complex mappings between ontologies representing loosely-coupled domains. We
exploit unique features of OWL in order to make three main contributions.
First, we extend OWL with constructs to create and maintain virtual properties—
properties whose values are derived functionally instead of stored. These virtual
properties can be used to express complex mappings between ontology terms.
Second, we provide a methodology for evolving ontologies so as to maintain
existing mappings. Third, we combine our evolution methodology and constructs
for managing virtual properties, and show how to identify virtual properties that
are affected by a change to an ontology.

2 Semantic Web Technologies

The Semantic Web initiative provides standards for associating machine acces-
sible semantics with metadata [16,6,26]. The Resource Description Framework
(RDF) defines a model for describing relationships among resources in terms of



uniquely identified properties (attributes) and values. The fundamental elements
of RDF are:

— Resource: A resource is anything identified by a URI (plus optional anchor
ids).

— Literal: A literal is an atomic value (e.g., integer or string).

— Property: A property is a resource that represents a specific aspect, charac-
teristic, attribute, or relation used to describe resources. The set of properties
is a subset of the set of resources.

— Statement: A statement is an ordered triple that associates a specific resource
with a named property and a value of that property for that resource. The
components of the statement are called, respectively, the subject, the predi-
cate, and the object. The object of a statement can be either a resource or a
literal. RDF has a mechanism, reification, for transforming a statement into
a resource with a URL

In object-oriented terms, we might consider RDF resources to be analogous to
objects, RDF properties to represent attributes, and RDF Statements to express
the attribute values of objects. A key difference between the two communities
is that unlike OO systems, which use the concept of a type hierarchy to con-
strain the properties that an object may possess, RDF permits resources to be
associated with arbitrary properties; statements associating a resource with new
properties and values may be added to an RDF fact base at any time. For a
brief discussion further comparing the RDF type system to an object-oriented
model, the reader is referred to Appendix B.

RDF is designed for the representation and processing of metadata about
information (resources) that are accessible through the Web, and is thus char-
acterized by a property-centric, flexible and dynamic data model. In the RDF
model, resources can gain and acquire new properties without any constraints
(at any time, regardless of the type of the resource/property). This flexibility
makes RDF an attractive technology for the specification and exchange of ar-
bitrary metadata, because resource descriptions are “grounded” without being
bound by fixed schemas.

Standards such as RDF Schema and OWL extend the fundamental RDF con-
cepts of resource, literal, property, and statement with properties that specify
formal, logic-based semantics, supporting the deduction of implicit knowledge
(statements) from explicitly represented knowledge [1]. RDFS introduces prop-
erties that represent the relationships between RDFS classes and properties.

Such constructs enable extremely complex relationships to be specified using
a comparably small number of “rules.” Properties express relationships between
resources, and, especially when combined with the constraints and rules defined
by RDF Schema and OWL, provide a flexible and powerful model for repre-
senting resource composition. Furthermore, because properties are themselves
resources, we can also use RDF-based technologies to formally express the re-
lationships between properties—even from different domains/namespaces. RDF
and related standards thus offer flexible and dynamically extensible support for
complex, evolving, mappings between domains.



Virtual property. OWL does not provide native support for property chain-
ing, arithmetic, view definitions, or procedural attachments [26]. However, these
features are required in order to represent complex relationships between entities
in the enterprise. OWL itself is neither a constraint nor a policy language, nor
does it support explicit aggregation relationships.

In a loosely-coupled system, such as utility data center[22], the instance data
schemas may be different from the abstract resource schemas, as illustrated in
Figure 1. We believe that a virtual property construct —a property whose value is
functionally derived-is required in order to represent the semantically complex
mappings between resources spanning different schemas, and thus introduce this
concept here. The top half of Figure 1 shows a resource schema (RS) in a utility
grid while the bottom half shows a instance schema (IS) that RS maps to.

BaseCost
hardwarecost
Class

capacity

xsd:Integer

Abstract Resource Schema

€25 Crvemuniber
DBTierClass hardwarecost
serve
ORACLEServer
Class

capacity

Instance Data Schema

psversion
xsd:String

Fig. 1. A schema mapping example in a utility grid

Suppose we have the term-to-term mapping as follows: TierClass (RS) «
DBTierClass (IS), ServerClass (RS) < ORACLEServerClass (IS), BaseCost-
Class (RS) < BaseCostClass (IS), OSClass (RS) «» OSClass (IS), diskcapacity
(RS) < servercapacity (IS). Besides, we assume that each property in RS maps
to the property with the same name in IS respectively, e.g., the cost property
in RS maps to the cost property in IS. In Figure 1, TierClass has properties as
follows:

cost: Float;
servernumber: Integer;
server: Server(Class;
capacity: Integer;



The cost and capacity properties of TierClass can be classified as virtual
properties. The value of the cost property is computed as servernumber *
(server.basecost.so ftwarecost+server.basecost.hardwarecost) (TierClass is omit-
ted from the start of each parameter), where basecost is a property of Server-
Class, softwarecost and hardwarecost are properties of BaseCostClass. The
value of the capacity property is computed as servernumbersserver.diskcapacity
(TierClass is omitted from the start of each parameter), where diskcapacity is
a property of ServerClass. We would like to capture the fact that the value of
a virtual property depends on the values of the properties in its computational
expression (function), e.g., the cost property of a TierClass resource depends
upon the value of its servernumber property, the value S of its server property,
the value B of the basecost property of S, as well as upon the values of the
softwarecost property and hardwarecost property of B.

To compute the values of virtual properties, we must acquire the values from
instance data for each parameter in the function. We notice that instance data
schemas may be different from abstract resource schemas, as shown in Figure 1.
The functions used to compute such values may take different parameters in in-
stance data schemas. For example, the capacity property of DBTierClass should
be computed as servernumber x server.servercapacity, where servercapacity
is a property of ORACLEServerClass instead of ServerClass. To automate the
acquisition of the values for the parameters, term-to-term mappings are not
enough. We facilitate the complex mappings for complete parameters in the func-
tions of virtual properties, e.g., (TierClass.)server.(ServerClass.)diskcapacity in
RS maps to (DBTierClass.)server.(ORACLEServerClass.)servercapacity in IS.
In later sections, we describe our approach for supporting such semantics as
complex mappings, algebraic relationships and dependency relationships span-
ning multiple data models by using semantic web technologies.

3 Representing Virtual Properties

We define a virtual property as a property that associates a resource with a
value (a resource or a literal) that is calculated using some function, along with
one or more parameter paths based upon the other properties of the source re-
source as well as the properties of the other resources in the paths. A property
chain p is defined as a sequence of one or more properties separated by dots
P1-P2 .. .DPn, Where Vpg, 1 < k < n,pi is a property of a class to which prop-
erty px—1’s range is constrained. For example, server.diskcapacity is a property
chain, where diskcapacity is a property of the class ServerClass, which is the
range of server. We define a parameter path P as C.p such that a set of values
can be obtained by following chain p from a resource of class C. For exam-
ple, given a resource R in class DBTierClass, the capacity property of R can
be computed by invoking its function with parameter paths R.servernumber
and R.server.servercapacity. Figure 2 illustrates an example parameter path
TierClass.server.basecost.so ftwarecost in RS where C' is the class TierClass
and p is server.basecost.so ftwarecost.



Virtual properties are powerful, especially as they span data models, and
enable semantic mappings between schemas, as well as between managed and
management applications in grid. However, for practical use in a real-life sys-
tem, they must be managed and updated as the underlying data model evolves.
Below, we propose some constructs that could be used to specify and manage
the associations between virtual properties and specific functions as well as the
associations between functions and parameters.

@ BaseCostClass O Class

- Literal
rdfs:domain rdfs:range dfs:domain L] Litera
Property
[ server ] [basecost] [soﬁwa.recost]
rdfs:mngk‘ ‘rdfs:domain rdfs:range

Fig. 2. Example of a Parameter Path

In order to allow multiple virtual properties to share a single function, we
define a calculated node (Figure 3) to represent a class of resource that ag-
gregates the parameters and other related resources associated with a functional
expression. The property hasCalculatedValue is defined to represent the re-
lationship between a virtual property and a calculated node. We further desig-
nate the property hasFunction to represent the relationship between a given
calculated node and a function, and the property hasParam to represent the
relationship between a given calculated node and an aggregation node that spec-
ifies a parameter to that node’s function. The set of statements {(RC,,, V Py, Vy),
(V Py, hasCalculatedValue, CN,), (CN,, hasParam, PP,), (CN,, hasFunction, Fy)}
indicates that V R; € RC,, (class), VP, € VP (virtual properties), CN, € CN
(calculated nodes), PP, € PP (parameters), and Fj, € F (functions), resource
R;’s value V;, for property V P, can be calculated using function Fj with PP,
as one of its parameters.

Optionally, the value of a virtual property may be cached. Virtual properties
may be associated with a variety of cache policies. Figure 3 predefined property
“hasCachePolicy,” which attaches a specific cache policy to a virtual property.

4 Managing the Evolution of Mappings

We have developed algorithms and techniques that allow us to support schema
evolution operations upon classes and properties while managing the depen-
dency relationships between resources, classes, and properties (including virtual
properties). Our goal is to support both structural and semantic changes to
data models while maintaining both simple (e.g., term-to-term) and complex
(e.g., virtual properties) mappings between models. An example of a structural
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Fig. 3. Example of a Calculated Node

change would be the deletion of a property, while an example of a semantic
change would be an update to a calculated node’s function definition.

In this section, we define: (1) a technique for creating a special dependency
chain construct to represent the dependency relationships of the parameters for
each specific calculated node. (2) algorithms that use the dependency chains to
create mappings for virtual properties across models, using term-to-term map-
pings. (3) algorithms that use the dependency chains to identify efficiently ex-
actly the set of calculated nodes/virtual properties that are potentially affected
by an update to a resource, property, or class, regardless of whether two param-
eters share a partial subpath.

4.1 Parameter Dependency Chains

In the context of maintaining complex mapping relationships, we capture the re-
lationship between the function associated with a given calculated node and the
resources upon which it depends (e.g., that are used in parameters to the func-
tion). Since it is not our intention to limit our methodology to a specific query
or constraint language at this time, we treat the specification of the aggregation
function as an opaque string.

Figure 3 sketches each parameter as composed of three parts, name, type and
path, that are aggregated via a blank node — Parameter. (Normally, the type
of a parameter is a data type in XML schema or a resource type defined in a
domain.) By a predefined property “paramName,” the local name of a parameter
is attached to the corresponding Parameter node. In this way, Calculated Nodes
cannot share parameters. We present an alternative design in Figure 4 that
enables parameter reuse.

Figure 4 sketches how parameter nodes could be implemented as RDF re-
sources instead of blank nodes. Explicit mappings between the parameter re-
source identifiers (URIs) and the parameter local names are provided and con-
nected to the calculated node by a predefined property “paramMapping.” For
instance, in the example of Figure 6, we may map the local name “param1” to the
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Fig. 4. Design for associating parameters with calculated nodes

parameter node of “P_servernumber” and “param?2” to the node of “P_diskcapacity” .

This design helps calculated nodes share parameter resources.

We use the parameter paths associated with the function to construct de-
pendency chains, which capture the dependency relationships between the cal-
culated node and related properties in the paths. We leverage OWL’s ability
to specialize properties to define a special type of transitive property, Func-
tionalDependency, to model the dependency chain relationship (sketched in
Figure 5). We then create a new subproperty? of FunctionalDependency for each
dependency chain of a new calculated node.

OWL:TransitiveProperty

rdf:type

Functional Dependency

rdfs:subPropertyOf

CapacityFunctionDependsOn,

Fig. 5. CapacityFunctionDependsOn specializes the FunctionalDependency property.

> Resource

associatedCalculatedNode

The set of statements {(C'N,, hasParam, PF,), (PP,, paramPath, p;), (p;, s, D),
(ps, rdf s : subPropertyO f, Functional Dependency)} indicates that Vp;, p;, px €
P (properties), PP, € PP (parameters), and CN, € CN (calculated nodes),
C N depends upon properties p; and pg, and property p; depends upon prop-
erty px. For example, in Figure 6, the calculated node CapacityFunction depends
upon the property server and diskcapacity, and the property server depends
upon the property diskcapacity. Notice that paramPath is a predefined property
to connect a Parameter resource node (represented as an aggregation parameter
path conceptually) to a dependency chain. Because we use OWL’s subproperty

I The property “paramMapping” is omitted from Figure 6.
2 We assume that we can employ some existing techniques to name a new subproperty
without collisions with used names.



capabilities to perform this modelling, we can thus distinguish between different
dependency chains, even when multiple Calculated Nodes share a given param-
eter path.

Example 1. Figure 6 shows the design of dependency chain for the example of TierClass.capacity =
TierClass.servernumber x TierClass.server.diskcapacity. A calculated node “Capac-
ityFunction” is created for the virtual property TierClass.capacity. Two parameter

paths “servernumber” and “server.diskcapacity” are involved in this calculated node.

For the complex parameter path, we need to express the dependency relationship

between property “server” and “diskcapacity”. A subproperty “CapacityFunctionDe-

pendsOn” of FunctionalDependency is created for the calculated node “CapacityFunc-

tion” to express dependency relationship.

This design is convenient to track the affected properties upon any changes in
the data models. Furthermore, the subproperties are hooked back to the calcu-
lated nodes via the predefined property “associatedCalculatedNode.” This makes
it easy to find all of the virtual properties that would be affected by any given
class or property. Notice that this design is applicable for a calculated node with
multiple dependency chains, where each dependency chain has a unique sub-
property of FunctionalDependency and all the subproperties are hooked back to
the same calculated node.

> Resource
[ Literal

CapacityFunctionDependsOn,

diskcapacity

Fig. 6. Example of a dependency chain

4.2 Mapping virtual properties

Suppose that given a model of a resource type system with a virtual property
and a simple term-to-term mapping from that model (e.g., RS) to a second
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model (e.g., IS), we wish to calculate the value of that virtual property in terms
of data belonging to the second model. For this, we need to (1) retrieve the
function definition associated with the virtual property (stored in the calculated
node), and (2) map the parameter paths from the first model to the second.

For simple parameters, we can directly use the term-to-term mapping to map
the parameters. For complex parameters, however, we must validate each param-
eter path, for which we do use the dependency chain. We provide here only a
general explanation of this algorithm. We first find mappings for each element
of the parameter path in the term-to-term mapping. We then validate mappings
for complete parameter paths to verify that we can map all parameters of the
virtual property’s function (see the algorithm details in appendix). If a map-
ping for a parameter path is not complete, we provide heuristics for discovering
appropriate alternative mappings. Note that there may be multiple mappings
for a parameter (simple or complex); the user selects the most appropriate one.
Please refer to Section 5 for implementation details.

Validating Virtual Property Mappings Once we have built a dependency
chain, we can validate whether it can be mapped to another chain. Given a
dependency chain p1.ps. .. .. Py in a model M, the mapped dependency chain
pLph.. ... pl, in another model M’ is valid if (1) given a class D; in the domain
of p1, one of its mapped classes, D} in M’ is in the domain of p}, the mapped
property of p1; (2) ph, ph, ..., pl, are mapped properties of pa, ps, ..., pn respec-
tively; (3) for p}, where i = 1,2,...,n — 1, its range can be matched with the
domain of p;,,, i.e., a class in the range of p; is in the domain of pj, ;.

Example 2. Figure 7 shows a complex mapping with a validated dependency chain.
Suppose the dependency chain server.basecost.so ftwarecost in RS is mapped to
server.basecost.so ftwarecost in IS. As shown, server, basecost and softwarecost in
RS are mapped to server, basecost and softwarecost in IS respectively. DBTierClass
is a class in the domain of server in IS that is mapped by the class TierClass which is
in the domain of server in RS. In addition, within IS, the range of server is ORACLE-
ServerClass, which is the domain of basecost, and the range of basecost is BaseCost-
Class, which is the domain of softwarecost. Therefore, server.basecost.softwarecost
in IS is a validated dependency chain of server.basecost.so ftwarecost in RS.

Heuristics for alternative mappings If there are not enough mappings be-
tween two models, we may not be able to find a validated dependency chain in
a target model. The specific reasons for such failure are as follows: (1) a prop-
erty has no mapped properties in the target model; (2) the domains of the first
properties in two chains cannot be matched; (3) the range of a property cannot
be matched with the domain of the next property in the mapped chain. In this
situation, we have some heuristics to suggest new mappings between two models
so that a validated dependency chain can be possibly retrieved. These heuristics
can be used, for example, to suggest consistent mappings to users interactively.
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Fig. 7. Example of a validated dependency chain

Figure 8 shows three heuristics. In the second failure case where the domains
of the first properties in two chains cannot be matched, e.g., as shown in the
upper left of the figure, the class D} in the domain of p} (the mapped property of
p1) is not mapped by the class D; in the domain of p;. However, an equivalent
class C of D} is mapped by D;. Therefore we may suggest a new mapping
D1 = D] to the user such that the domains of p; and p) can be matched.

On the other hand, as shown in the lower left part of Figure 8 D; has a
mapped class D}, but D} is not in the domain of the property p}, the mapped
property of p;. If D} has a property p};, whose range can be matched with the
domain of pj, the next property in the dependency chain, then we may suggest
a new mapping p1 = pl;.

In the third failure case where the range of a property cannot be matched
with the domain of the next property in the target chain, for example, as shown
in the right part of the figure, pj and pf, are two neighbor properties in the
dependency chain, while the range of p] cannot be matched with the domain
of ph. If a class R} in the range of p} has a property p5;, whose range can be
matched with the domain of p§, the next property of p4 in the chain, we may
suggest a new mapping p2 2 ph; such that the mapped chain becomes p}.p5; .p%.
In the first failure case where a property has no mapped properties in the target
model, the problem may be solved by the new suggested mappings of the above
heuristics.

Methodology for Maintaining Mappings We propose a methodology for
maintaining both simple and complex mappings, especially the dependency rela-
tionships. This methodology covers several aspects listed as follows. First, when
a calculated node is created, the path expression of each parameter is parsed
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Fig. 8. Heuristics for suggesting mappings

and built as a dependency chain connected with a specific sub-property of Func-
tionalDependency for that chain with that calculated node. Second, if a path
expression is redefined, the corresponding calculated node is going to be rebuilt.
Then the virtual properties sharing that calculated node are to be reported to
user. It is up to the user for checking whether a virtual property can be associ-
ated with an updated calculated node. Third, if a property in a class is deleted
or redefined such that a dependency chain including that property is not valid
according to the semantic constraint, all the calculated nodes having the invalid
dependency chains are to be retrieved and based on this information, all the
virtual properties related to the nodes are to be reported to the user. It is still
up to the user deciding how to adapt those virtual properties.

For instance, in the example of TierClass.capacity (which is computed using
the function TierClass.servernumber x TierClass.server.diskcapacity), if the
property diskcapatiy is deleted or redefined, the dependency chain server.diskcapacity
may not be valid any more. The virtual property TierClass.capacity is affected by
these changes. Once notified, the user can quickly identify the affected elements
in the system and decide how to adapt.

Basic Operations for Maintaining Mappings Given a change, three classes
of affected objects are to be identified: dependency chains, calculated nodes (that
depend upon the affected path expressions or else directly upon the affected
property) and virtual properties (that use the affected calculated nodes). Gener-
ally, four basic structural change operations are to be considered: (1) a property
has a new domain or range class added; (2) a property has a domain or range
class deleted; (3) a property is deleted; (4) a new property is added. All other
changes (class gains property, property changes domain, etc.) can be expressed
using these operations. If a new property is added, then existing path expres-
sions are not affected (because RDF does not allow properties to be overridden).
If a property has gained a new domain or range class, C, or loses its domain
or range relationship with C, we need to check whether some existing path ex-
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pressions (property chains) become invalid due to this change. If a property is
deleted, then the related path expressions are definitely to be affected and we
must identify the affected virtual properties.

For the case (3) where a property is deleted, we can identify affected virtual
properties in two ways. If the updated property p happens to be the first property
in a dependency chain, we can retrieve the affected virtual properties with a
query (written in RDQL [21]) as follows:

SELECT 7vp
WHERE (?vp, <nsl:hasCalculatedValue>, ?cn),
(?cn, <nsl:hasParam>, 7pm),
(?pm, <nsl:paramPath>, <nsl:p>)
USING nsl FOR <http://www.hpl.hp.com/Demo#>

This query is from our prototype implementation (See Section 5). Notice
that the properties hasCalculatedValue, hasParam and paramPath are pre-
defined constructs introduced in Section 3 and Section 4.1. If p is not the first
property, we use dependency chains. The first step is to find all the properties
7z that depend on p. Since properties in dependency chains are connected with
sub-properties of Functional Dependency, we can then find those sub-properties
7subProp which connect 7z to p. These two steps can be done with a query as
follows:

SELECT ?7subProp
WHERE (?x, ?subProp, <nsl:p>),

(?subProp, <rdfs:subProperty0f>, <nsl:FunctionalDependency>)
USING nsl FOR <http://www.hpl.hp.com/Demo#>,

rdfs FOR <http://www.w3.org/2000/01/rdf-schema#>

If such 7subProp exists, we can find the unique calculated node associated
with 7subProp via the predefined property associatedCalculatedN ode. Finally,
the related virtual properties can be retrieved.

For the case (1) where a property p has a new domain or range class added,
the domain or range of p may become empty due to the conjunctive semantics
for domains or ranges in RDF[16]. If that happens to p, all the paths related to
p will be invalid and we must identify them.

In case (2), if a property p has a range class C deleted, we need to check, for
a specific property chain p, whether any other class C’ in the range of p is in
the domain of the next property in p. If that happens, p is still valid, otherwise
we should report p as an affected path. The check can be done in two steps.
First, we need to find all the property chains in which p depends on some other
property as follows:

SELECT ?7subProp
WHERE (<nsi1:p>, 7subProp, ?x),

(?subProp, <rdfs:subProperty0f>, <nsl:FunctionalDependency>)
USING nsl FOR <http://www.hpl.hp.com/Demo#>,

rdfs FOR <http://www.w3.org/2000/01/rdf-schema#>

If the query result is not empty, for each sub-property subP of Functional Dependency,
we check whether the chain based on subP is valid as follows:
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SELECT 7c
WHERE (<nsl1:p>, <rdfs:range>, ?c),
(<nsi:p>, <nsl:subP>, 7nextP),
(?7nextP, <rdfs:domain>, 7?c)
USING nsl FOR <http://www.hpl.hp.com/Demo#>,
rdfs FOR <http://www.w3.org/2000/01/rdf-schema#>

If such 7c exists, the chain based on that specific subP is still valid. The same
idea is applicable to the situation when p has a domain class deleted. Differently,
we need to check the domain of p with the range of the previous property instead
of the domain of the next property in a given chain p.

Example 8. Figure 9 shows a new instance data schema to be added into the utility
grid in Figure 1 to replace the old instance schema. The class ORACLEServerClass is
replaced by SQLServerClass, which has the property servercost instead of basecost and
the property dbcapacity instead of servercapacity. These changes will affect the virtual
properties cost and capacity. In addition, the mappings between RS and IS are also
to be affected. One of the dependency chains in RS, server.basecost.softwarecost,
is not mapped to server.basecost.softwarecost in IS any more since the property
basecost in 1S is deleted. Suppose we know that SQLServerClass in new IS is mapped
by ServerClass in RS, but we have no idea about the relationship between servercost in
IS and basecost in RS. According to the third heuristics in Section 4.2, we may suggest a
new mapping basecost =2 servercost such that the chain server.basecost.softwarecost
in RS can be mapped to server.servercost.softwarecost in new IS.

softwarecost

DBTierClass servercost hardwarecost
SQLServer
: Class

Fig. 9. A new instance data schema in the utility grid

5 Reference Implementation

Increasingly there is a need to provide resources on demand. HP’s Utility Data
Center, IBM’s on-demand initiative, much of the work that is being done in
the Grid community are utility computing initiatives. Our initial application
scenario was to provide data integration capabilities for a resource provisioning
system in the context of a utility data center. The resource provisioning system
is responsible for the provisioning, allocation, and assignment of resources in
the GRID [22]. The resource provisioning system accepts GRID requests for



15

resources, which represent resource types, composition specifications, policies,
and time constraints. The reservation system validates each request in terms of
its type and instance inventory, verifying that the request is for a valid system
and that resources are available. It then reserves the appropriate resources for
the specified time. Later, when the reservation matures, the assighment system
re-validates that the appropriate resource instances are available, translates the
request into concrete system descriptions, and passes these to the operational
system for deployment. The operational system may also notify the provisioning
system when the assigned resources need adjusting.

Figure 1 shows how the resource provisioning system may translate client
requests for resources into specific configuration of grounded resources, adding
new types of resources and evolving existing resource types. In the context of
this application scenario, we performed four steps:

1. Created an OWL ontology to represent each model to be integrated.

2. Created initial mappings between the models (expressed using OWL).

3. Modelled the composite dependencies between properties and integrate them
into the mappings.

4. Provided a reference implementation of a set of operations for evolving the
ontologies while maintaining the mappings, using the techniques described
in this paper.

Our prototype provides a tool that facilitates the management of simple and
complex mappings that may span ontologies. This reference implementation was
built using Jena, a Java-based open source semantic web toolkit from HP [12].
The latest version of Jena (Jena2) includes a reasoner subsystem that implements
a generic rule based inference engine, as well as configured rule sets for RDFS
and OWL-Lite. Our implementation extends the Jena2 Java classes that support
ontology-aware models with methods that facilitate the creation of mappings and
that enable the evolution of classes, models, and properties.

Figure 10 shows the architecture of our prototype, which contains two tools,
an Ontology Evolution Manager and a Mapping Manager, which were imple-
mented using three modules—an Impact Computation Engine, a Virtual Prop-
erty Handler, and a Mapping Heuristics Engine. The RDF/OWL Interpreter
layer provides fundamental functionalities for processing ontologies.

Both the Ontology Evolution Manager and the Mapping Manager take as
input a source ontology, a target ontology, and a mapping between them. The
Ontology Evolution Manager takes as additional input a specification of a pro-
posed change to the source ontology, and returns as output a set of elements
that are potentially impacted by the proposed change, a set of new dependency
chains (based on the proposed change), and a set of suggested changes to the
mapping. The Mapping Manager takes as additional input an identifier for a
virtual property in the source ontology, and returns a mapping to the target
ontology for the parameter paths of the virtual property.

The Impact Computation Engine parses change specification and identifies
the impacted elements from the source ontology. It interacts with the Virtual
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Fig. 10. Prototype Architecture

Property Handler, which identifies the impacted virtual properties (virtual prop-
erties whose parameters involve impacted elements). In addition, the Virtual
Property Handler helps to construct the mappings to the target ontology for
parameter paths. The third module, Mapping Heuristics Engine, is responsible
for applying heuristics to suggest changes to the mappings (simple or complex).

Figures 11 and 12 are screen shots from our prototype upon the scenario in
Figure 1. Figure 11 illustrates RS (on the left), IS (on the right) and the term-
to-term mappings between them (in the middle). Figure 12(a) illustrates two
mapped dependency chains (parameter paths), where the left one is from RS
and the right one is from IS. Figure 12(b) shows the impacted virtual properties
(in bold face) upon the deletion of the properties basecost and servercapacity
when the old IS in Figure 1 is replaced by the new IS in Figure 9.

6 Related Work

Automatic mapping discovery. Doan et al [8] build a generic ontology match-
ing solution using machine learning techniques as well as commonsense knowl-
edge and domain constraints. They focus on improving matching accuracy be-
tween ontologies instead of maintaining mappings upon the changes of ontologies.
Their work has not involved attributes or properties. Lopez et al [13] provide a
tool that partially automates the creation of a mapping between two ontologies
expressed in OWL, using string matching of labels and subclass relationships.
They do not leverage more sophisticated OWL constructs, such as sub-property
relationships, they do not support complex mappings such as the virtual prop-
erties we describe here, nor do they specifically address the incremental main-
tenance of a mapping over the evolution of the underlying ontologies. Readers
who are interested in automated matching are also referred to the survey of
approaches to automatic schema mapping by Rahm and Bernstein [20].



17

IERCLASS
Lo
™ HEDFLOAT
@ $ gervernumber
¥ HSDINTEGER
R serer
§ » SERVERCLASS
§ & hasecost
§ N BASECOSTCLASS
P 8 softwarecost
¥ ¥SDFLOAT
¥ § hardwarecost
& #SDFLOAT
diskcapacity
N ®SDINTEGER
ostype
& (08CLASS
T & oswersion
& HED:ETRIN

- @
%

@ i

@ W capacity
¥ HBDINTEGER

ETIERCLASS
P & cost
& HEDFLOAT
§ & serernumber
¥ HSDINTEGER
& R serer
§ & ORACLESERYERCLASS
& N hasecost
§ » BASECOSTCLASS
G N softwarecost
& HSDFLOAT
§ & hardwarecost
¥ HSDFLOAT
S servercapaciy
& HSDINTEGER
ostype
& OSCLASS
§ & osversion
N HSDETRING

= -3
%

§ S capacity
& HSDINTEGER

Fig.11

P 8 serer
9 & SERVERCLASS
§ & basecost

§ & BASECOSTCLASS
S sofwarecost

(2)

i DBETIERCLASS
P8 serer
§ ™ ORACLESERVERCLASS
P % basecost
P ™ BASECOSTCLASS
® sofwarecost

. Screen shot of Impact Engine

¢ DETIERCLASS

§ ¥ cost
» HEDFLOAT
¥ semernumber
» HSD:INTEGER
& server
§ » ORACLESERVERCLASS
P % basecost
P » BASECOSTCLASS
P ® softwarecost
™ HEDFLOAT
P S hardwarecost
™ HEDFLOAT
§ & serercapacity
» ¥SDINTEGER
ostype
& 05CLASS
§ % osversion
& XSDETRING

-@
2 %

§ ® capacity

™ MED:INTEGER
‘The propetty cost will be affected by the deletion
of property basecost. The property capacity will be
affected by the deletion of property servercapacity

(b)

Fig.12. (a) Screen shot of mapped dependency chains, (b) Screen shot of impacted

elements

Noy et al [19] propose an algorithm Anchor-PROMPT to use a set of heuris-
tics to analyze non-local context and determine additional possible points of
similarity between ontologies. These points of similarity can be further used to
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suggest missing mappings between given ontologies. However, their work still
concentrates on mappings between classes, not properties.

Ontology-based data integration. Wiederhold et al [28, 18] at Stanford
University have proposed an ontology algebra for manipulating ontologies from
different domains. They represent ontologies with a graph-based model and pro-
vide a set of operators to articulate multiple ontologies into a unified ontology
using both logical rules and funtional rules. However, their goal is to answer user
queries reliably and their work does not involve maintaining mappings between
ontologies upon any changes. Bonatti et al [2] propose the notion of an ontology
extended relation and extend relational algebra to query ontology associated
relations. They provide formal definition and methodology for merging ontolo-
gies under interoperation constraints. However, this work also does not involve
mapping maintenance and does not recombine property values functionally.

Model management. Melnick et al [17] identify a generic platform for
model management and define an algebra to manipulate models and mappings.
They address the problems about matching models, merging models, selecting
and extracting a subset of a model. They also propose generic mechanisms to
maintain the mappings between models. But their work does not involve prop-
erties and composite relationships among properties as described here.

Stojanovic and Motik [24] discuss how ontology editors can support consis-
tent ontology evolution. They identify a set of requirements for ontology editors
to support the alteration of an ontology while maintaining its consistency, but
do not address the problem of complex mappings. Maedche et al [14] present
an infrastructure to support the discovery, re-use, and evolution of distributed
ontologies. Their infrastructure consists of an ontology registry, mechanisms en-
abling the re-use of distributed ontologies (including a mechanism for including
distributed ontologies by reference into ontology languages and tools), and meth-
ods supporting the evolution of distributed (replicated) ontologies. They require
the re-used ontology to be replicated in its entirety, and thus do not focus on
the direct or complex mappings that we address.

Service dependency and impact management. Ensel et al [9] use RDF
to create dependency graphs for tracking application service dependencies. How-
ever, they do not consider maintenance of the graph over time. Because they do
not use the sub-property relationship, they cannot distinguish between separate
paths through the graph.

Stuckenschmidt et al [25] address the problem of guaranteeing the integrity of
a modular ontology in the presence of local changes. They present their approach
to ontology modularization and propose a mechanism to detect changes and
analyze their impact of the concept hierarchy. However, their work focuses on
classes instead of complex mappings related to properties.

Virtual properties. Christophe Blanchi’s work with DOI allows code blocks
to be associated with properties, but the output of the code blocks are not inte-
grated into the metadata. As such, the calculated data is “second-class.” MIT’s
Haystack project has an inference engine (Adenine), which includes the ability
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to set metadata using a custom language. However, this system is restricted to
off-line use, which means that data may be in an inconsistent state.

A number of researchers have investigated the topic of views for the Seman-
tic Web [27,15]. Because Semantic Web technologies are still emerging, exist-
ing work on RDF/S views focuses on the view definition language. [27] extend
RQL [3] with view primitives, and implement a view mechanism that supports
view definitions that span ontologies. [15] have developed their own view def-
inition lanaguage for RDF/S, that supports both virtual resource descriptions
and virtual RDF/S schemas. Similarly, some work has addressed view creation
over semi-structured data. For example, [4] supports the definition of views over
XML documents using XQL queries and [29] considers the maintenance problem
of graph structured views.

Our simple mappings could be considered a kind of RDF/OWL view, and
our work on mapping evolution could be applied to the Semantic View systems
proposed by the other researchers. However, the complex mappings that we ad-
dress are fundamentally different from views, in that they are not specified using
a view definition language. The disadvantage of this is that our mappings thus
do not qualify as views in the traditional sense. The advantage is that separat-
ing between the parameters and the function definitions allows us to support
mapping between different ontologies in an extremely flexible manner. For ex-
ample, multiple virtual properties can be associated with a common calculated
node, and multiple calculated nodes can share parameter path definitions. This
minimizes the mappings that must be made when integrating models; instead
of having to recompute the mapping for each virtual property, we can reuse ex-
isting mappings. Similarly, should a calculated node’s function be updated to
take different parameters due to evolution or integration, we can update just the
affected parameter specifications. In addition, our work is unique for our focus
on evolution, which to the best of our knowledge nobody else considers in the
context of RDF views.

7 Conclusions / Future Work

Web services enable today’s enterprises to combine a plethora of loosely-coupled
distributed systems. One of the fundamental hard problems raised by this sce-
nario is how to enable semantic interoperability between related components-
especially when the relationships span layers of the enterprise. Our vision is
to leverage Semantic Web technologies to provide an extremely lightweight se-
mantic modeling layer that enhances existing methods for integrating data and
services. This additional semantic layer allows us to incorporate existing seman-
tic information into the integration process.

Because enterprises need to accommodate continually evolving infrastruc-
tures, technologies, and available services, we believe that support for the efficient
evolution of mappings is just as important as the initial creation of mappings.
We identify two kinds of mappings—simple term-to-term mappings and complex,
functionally-derived, mappings. We believe that Semantic Web technologies such
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as RDF/OWL are well-suited for maintaining such mappings because of the Se-
mantic Web’s emphasis on flexibility and extensibility, and because of its natural
support for inference.

We have presented here techniques and algorithms for representing and evolv-
ing simple and complex mappings between ontologies. We have introduced vir-
tual properties (properties whose values are functionally derived from the values
of other properties), and described how these can be maintained as the underly-
ing data models evolve. We can support both structural and semantic changes
to data models while maintaining both simple (e.g., term-to-term) and com-
plex (e.g., virtual properties) mappings between models. We have implemented
a prototype demonstrating our methodology in an application scenario from the
management domain.

We believe that virtual properties represent a promising technology for data
integration. We thus hope to extend our work in the application scenario by in-
tegrating with additional management systems, as well as by performing studies
to evaluate the effectiveness of our methods.

We also plan to focus next on the specification languages used to define the
function associated with a given virtual property, and to apply the principals of
this work to the integration of constraints and policies. Furthermore, we may
consider model validation for new composed resource types, which is to validate
newly specified resource types in terms of pre-existing constraints and policies.
For example, we could apply our techniques to the problems of root cause anal-
ysis or business impact analysis.
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Appendix A: Algorithms w.r.t. dependency chains

Figure 13 presents the CMA algorithm (short for Create Complex Mapping
Algorithm) to create mappings for virtual properties across schemas.

algorithm CMA(S,T, M, P,C)

/* Input: source schema S, target schema T', mapping ontology M, dependency chain P, class C */
/* Output: a set V of validated dependency chains in T for P */

1) D < the mapped classes for C in T via M

2 Xcurr<_®7L<_®,l<_®
3)  Ppeurr < the first property of P
4 X < the mapped properties for peyrr in T via M

)

)

)

)  for each property p € X

) for each class d € D

) if (d is a domain class of p) then [ — I U (d,p)
8) if (I == 0) then return null

) L« Lappended by l, [+ 0

0) b— TRUE

1) while (P has new properties)

2 Peurr < the next property of P

3 Xecurr < the mapped properties for peyrr in T via M

)
)
)
)
14) for each property p € X
15) D « the range classes of pin T
16) for each property p’ € Xeurr
17) for each class d € D
18) if (d is a domain class of p’) then I «— I U (p,p)
19)  if (1 == 0) then
20) b — FALSE
21) break
22) L «— L appended by I, I — 0, X «— Xcyrr
23) if (b == FALSE) then return null
24) V < ConstructChain(L)
25) return V

Fig. 13. Create Complex Mapping Algorithm CMA

In line 24, ConstructChain(L) is a subroutine to connect pairs from the layers
in L such that each chain contains n pairs, where each pair (z;,, z;,) is from
each layer [; respectively, i=1,2,...,n. In addition, for two neighbor pair (z;_1,,
Zi—1,) and (z;,, x4,) in a chain, x;_1, = x;,, where 1 < i < n. Notice that in
each chain, the first element z1, of the fist pair is a class (a domain class of z1,),
while other elements are properties.

Figure 14 presents the IPA algorithm (short for Identify Impacted Prop-
erties Algorithm) to identify the set of virtual properties that are potentially
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affected by an update to a property p with a specific domain class C in a schema
S.

algorithm IPA (S, p, C)

/* Input: schema S, property p, class C */

/* Output: a set V of virtual properties to be affected */
) V<0 F—0

2) N < the calculated nodes which have a parameter path where p is the first property
3) for each noden € N

4) V «— V U the virtual properties connected to n
5) X < the properties that depend on p

6) for each property z € X

7) if (C is a range class of z) then

8) F «— F U the properties that connect z to p
9)  for each property f € F

10) n < the calculated node associated with f

11) V «— V U the virtual properties connected to n
12) return V

Fig. 14. Identify Impacted Properties Algorithm IPA
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Appendix B: Some comments comparing RDF with the
Object-Oriented paradigm

The RDFS core properties related to type relationships are:

— rdfs:subClassOf - A transitive subset/superset relationship indicating ¢ lass
membership.

— rdfs:subPropertyOf - A transitive subset/superset relationship indicating
property specialization.

— rdf:itype - Indicates membership of a class.

For example, if an RDF data store contains statements:

1. parentOf rdfs:subProperty Of ancestorOf
2. PersonA parentOf PersonB

then an RDF/OWL/RDF Schema system would support the inference that:
“PersonA ancestorOf PersonB” and thus a query selecting resources in a ances-
torOf relationship with PersonA would include PersonB in its results.

Unlike the object-oriented model, where class membership dictates whether
objects can gain and or lose properties, in the property-centric RDF paradigm
resources gain and lose class memberships based on their properties. An object-
oriented system would associate properties with classes; instances would then
acquire properties by acquiring the type of the class. Similarly, the rdf:type
property can be used to give a resource class membership. RDFS, however, is
property-centric, and the classes to which a resource belongs also depend on
the properties for which the resource has values (via statements). RDFS defines
constraints that specify the domain and range properties with which resources
can be associated. The basic RDFS constraint properties are:

— rdfs:range - A range class for a property type. That is, resources assigned as
values for the property have the type of the given range class.

— rdfs:domain - A domain class for a property type. That is, resources that
have values for the property have the type of the given domain class.

If a constraint specifies that a class is in the domain of a given property, any
resource that is associated with that property is a member of the specified class.
Similarly, if a constraint specifies that a class is in the range of a given property,
then any resource that is assigned as a value for that property is a member of
the specified class. In addition, a new resource can obtain membership in a given
class via the rdf:type property even if it lacks any other property assignments.
That is to say, there are three ways that a resource can be associated with a
given class: implicitly, via a domain or a range constraint, or explicitly via a
rdf:type assignment. For example, Figure 15 shows some statements about the
types and constraints of classes ClassA, ClassB, and ClassC. ClassC is designated
a subclass of ClassB. PropA has ClassA in its domain, PropC has ClassC in its
domain, and PropA has ClassB in its range.
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Statements

Subject | Predicate Object \

ClassA rdf:type rdfs:Class

ClassB rdf:type rdfs:Class

ClassC rdf:type rdfs:Class - PropA @ " Prop®
ClassC | RdfsisubClassOf | Class® >

PropA | rdfs:domain ClassA @ - PropC
PropA rdfs:irange ClassB

PropB rdfs:domain Classe

PropC rdfs:domain ClassC )

Fig.15. RDFS extends RDF with a type hierarchy.

If we now extend the statements in Figure 15 with statements in Figure 16,
we see that Resourcel is the subject of a statement with PropA as a property,
and is thus implicitly a member of ClassA (because ClassA is in the domain of
PropA); Resource? is the object of a statement with PropA as a property, and is
thus implicitly a member of ClassB (because ClassB is in the range of PropA);
and Resource3 is the subject of a statement assigning it the type of ClassC and is
thus explicitly a member of ClassC and implicitly a member of ClassB (because
ClassC is a subclass of ClassB).

Statements
Subject Predicate | Object
Resourcel | PropA Resource2
Resourcel | PropB valueY
Resource2 |ProbC valueZ
Resourcel | PropC valueZ
Resource3 | rdfitype ClassC

Fig. 16. Associating resources with types in RDFS.

Fundamental differences between RDFS and an object-oriented model in-
clude:

— Because properties are unique objects, RDFS does not support the overriding
of properties.

— RDFS supports extremely dynamic reclassification in which resources gain
and drop membership in classes implicitly by changing their properties.
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RDFS does not require resources to have values defined for any particular
properties, regardless of their class membership. All a resource need in order
to belong to a given class is to be associated with one property that lists the
class or one of its subclasses in its domain constraint.

The RDF'S type hierarchy does not require a single point of inheritance. E.g.,
two classes that have the same property may not have inherited it from a
common source.

Because the rdfs:subPropertyOf property is independent from the rdfs:subClassOf
property, an RDFS type hierarchy can include a property that is a subProp-
erty of another property without requiring that that the subProperty be
associated with a class that is a subclass of a class associated with the su-
perProperty.

RDFS does not require properties to have either domain or range constraints.
RDFS thus allows resources to have values for properties not associated with
any class.



