Elementary translations: the seesaws for
achieving traceability between database
schemata *

Eladio Dominguez!, Jorge Lloret!, Angel L. Rubio?, and Marfa A. Zapata!

! Dpto. de Informética e Ingenierfa de Sistemas.
Facultad de Ciencias. Edificio de Matematicas.
Universidad de Zaragoza. 50009 Zaragoza. Spain.
ccia@posta.unizar.es
2 Dpto. de Mateméticas y Computacién. Edificio Vives.
Universidad de La Rioja. 26004 Logrono. Spain.
arubio@dmc.unirioja.es

Abstract. There exist several recent approaches that leverages the use
of model transformations during software development. The existence
of different kinds of models, at different levels of abstraction, involves
the necessity of transferring knowledge from one model to another. This
framework can also be applied in the context of metadata management
for database evolution, in which transformations are needed both to
translate schemata from one level to another and to modify existing
schemata. In this paper we introduce the notions of translation rule and
elementary translation which are used within a forward database main-
tenance strategy.

1 Introduction

Several recent research efforts focus on automating the generation and man-
agement of transformations between models or schemata representing the same
system at different levels of abstraction [3,6,13,16,22]. For example, the im-
portance of transformation management has been recently acknowledged by the
UML community with the advent of the Model Driven Architecture (MDA) [16]
in which transformations between platform independent models (PIM) and plat-
form specific models (PSM) must be managed. The transformation modeling
framework proposed in [3] within the ‘model management’ approach [2] is an-
other example. In general, the management of model transformations is recog-
nized as a necessary goal for achieving the ambitious goal of automating system
implementation. This issue is particularly difficult when models or schemata
evolve over time and consistency between them must be kept.

* This work has been partially supported by DGES, project TIC2002-01626, by
Ibercaja-University of Zaragoza, project IB 2002-TEC-03, by the Government of La
Rioja, project ACPI2002/06, by the Government of Aragon and by the European
Social Fund

In the database field, the evolution issue is related to the existence of changes
within the different phases of the life cycle, from early design stages to exploita-
tion and maintenance. In particular, a recent paper highlighted the existence of
“a lack of support (methods and tools) in the database maintenance and evo-
lution domain” [13]. Among the several problems related to evolution activities
(see [11]), one of the most important is the ‘forward database maintenance prob-
lem’ (or ‘redesign problem’, according to [20]). This problem is how to reflect in
the logical and extensional schemata the changes that have occurred in the con-
ceptual schema of a database. One way of tackling this problem is to ensure the
traceability of the translation process between levels. But there is no agreement
about which artifacts and mechanisms are needed for assuring traceability [19,
22].

As a contribution towards achieving a satisfactory solution to this problem,
in this paper we propose a metadata approach to ensure the traceability of the
translation between the conceptual and logical levels. Some ideas about our ap-
proach are presented in [7], and its relationship with a model-driven framework
is in [5]. The way in which we propose to achieve traceability is making use of a
specific translation component in which information related with the translation
process is stored by means of elementary translations. When an evolution pro-
cess is carried out in a conceptual model, it is propagated to the logical model
applying a propagation algorithm which makes use of the information stored in
the translation component.

The remainder of the paper is organized as follows. Section 2 is devoted to the
presentation of both an outline of our proposed architecture and an example that
we use throughout the paper. In Section 3 we present concepts we use for creating
the component which ensures traceability, whereas in Section 4 we detail how
the elementary translations of this component are used in the evolution process.
The paper is completed with some related work and conclusions.

2 Preliminaries

2.1 Evolution Architecture Overview

Many current research efforts aim at contributing to the solution of the several
problems related to database evolution activities [4,13,10,15]. As a contribu-
tion towards achieving a satisfactory solution to one of these problems (that of
‘forward database maintenance problem’), some of the authors of the present
paper have presented in [7] an architecture and a prototype tool for managing
database evolution whose graphical representation is shown in Figure 1. The way
of working of this architecture is as follows: the conceptual component reacts to
database evolution related external events and changes the conceptual database
schema according to the semantics of the received event. The information of the
fact that these changes have taken place is propagated through the rest of the
components and they are appropriately changed in order to reflect the changes
at the conceptual level.

It is worth noting the two main characteristics of this approach that make it
different from other database evolution proposals. On the one hand, it includes
an explicit translation component that stores information about the way in which
a concrete conceptual database schema is translated into a logical schema. This
component ensures the traceability of the translation process. On the other hand,
a metamodeling approach [8] has been followed for the definition of the architec-
ture. Within this architecture, three meta—models are considered which capture,
respectively, the conceptual, logical and translation modeling knowledge.

T T
conceptud I { trandation I logicd meéal
meta-schemal | \meta-schem: | \ meta-schemal model
| | layer
| | Logical
| | information system
| |
pmmm | - pm————m | y
conceptual /conceptua / trandation ’ o logicd
E;};?g—e informetion (<> database | | | informetion [< tra;gonll I | informetion "I‘Ode|
processor \, schema \ | processor |\ \ processor ayer
-------- T
| |
Extensional
Conceptual ! Trandation ! information system
information system ‘ information system ‘
| |
[[extensond | ¢+~ /7| user
| | informtion (<> JADAR 1| gar
| | processor . N layer

Fig. 1. Architecture for Database Evolution

2.2 Running example

The architecture described in [7] and outlined in the previous subsection has been
developed with the property of being independent of any particular modeling
technique, by means of the adoption of a metamodeling approach. However, in
order to clarify the way the architecture works we will be considering a particular
example, and for this reason some concrete techniques must be established. For
this example, we have chosen the most common techniques in the context of the
database field: the E/R technique as the conceptual modeling technique and the
relational model as the logical modeling technique.

The conceptual evolution example we are going to use during the paper is
the following. The initial conceptual schema consists of an isa hierachy H with
supertype E and subtype S. The entity type E has two attributes, el and e2,
and the primary key is el. We assume the existence, within our architecture,
of the external event type ‘change of primary key in the root of an ISA hierar-
chy’. This event is issued against the initial conceptual schema, resulting in a
modified conceptual schema where the attribute e2 is the new primary key of E.
A comprehensive, detailed study about this event and its processing within the
architecture is included in [6]. This archetypal example has been chosen with
the aim of covering two aspects that, to our knowledge, have not been fully
explored in the evolution context. These aspects (that are being incorporated
into our current implementation) are the evolution of ISA relationships and the
evolution of integrity constraints.

3 Creation of elementary translations

Traditional database engineering processes include, among others, the transfor-
mation of conceptual schemata into logical schemata. Usually this transforma-
tion process consists of applying a set of transformation rules to a conceptual
schema in order to obtain a logical one. In the literature, there is a multitude of
sources where sets of transformation rules are presented (see [9, 18]).

However, the way in which the transformation rules are described needs to
be enriched when we want to use them in a forward database evolution context.
In this context several problems arise. Some of these problems are technical
matters (related, for instance, to the decisions that must be taken when naming
conflicts occur); others involve the essence of evolution issues. As an example
of this last case, let us consider a relationship type A with cardinality 1-n that
has been translated using a particular rule. Suppose that as a consequence of a
change in the domain, the cardinality of A must be changed to n—n. This means
that now a new transformation rule must be applied. However, if there is no
metadata information about the transformation rule that was originally applied
to relationship type A, the new transformation can not benefit from the original
one and the complete translation process must be redone from scratch.

Within our architecture, we have enriched the notion of transformation rule
giving rise to a notion we call translation rule (see Section 3.1). These trans-
lations rules are used for building the translation algorithm (see Section 3.2).
When this algorithm is applied to a conceptual schema, it produces not only a
logical one (as in the traditional transformation process) but also a set of ele-
mentary translations stored in the translation base. An elementary translation
is the smallest piece of information reflecting the correspondence between the
conceptual elements and the logical ones.

3.1 Translation rules

As architect designers, we specify the set of translation rules which can be applied
to each kind of conceptual building block. Basically, a translation rule defines
how the conceptual elements of an instance of a conceptual building block (of
the conceptual schema) are translated into logical elements of instances of logical
building blocks (of the logical schema).

Table 1 shows a sketch of the syntax of a translation rule. A translation rule
determines the procedures that have to be applied to instances of the specified
conceptual building block B and each procedure calculates the value of the
different logical elements (table name, column name, column type, constraint...).
In order to determine the procedure to be applied, exactly one of the conditions
from 1 to m must be true. For instance, a particular translation rule applicable to
relationship types must establish the procedure for determining the name of the
table into which the relationship type is buried. The conditions serve to decide
which procedure is selected according to the cardinality of the relationship.

Table 1. Sketch of a translation rule

<rule_name> (b instance of conceptual building block)
when <condition 1> then
a1 < procedurei;
az < procedureis;

an — procedurein;
endwhen

when <condition m> then
a1 < proceduremi;
az «— procedurems;

Qn — proceduremn;
endwhen
endrule

3.2 Translation algorithm

This algorithm takes as input conceptual building block instances of the concep-
tual schema and creates 1) the elementary translations that relate the conceptual
elements and the logical ones and 2) the logical elements of the logical schema.
For the modeling techniques we have chosen, the conceptual building blocks are
entity type, relationship type and ISA hierarchy, and the only logical building
block is table.

In general, for each conceptual building block there are different translation
rules that can be applied. In our approach, the translation rule to be applied
is chosen by the user. This process can be modeled by the following algorithm
sketch:

For each set C of instances of building block B

For each instance b of C
(a) election=get_building block_translation_rule(B)
(b) apply_elementary_translation _creation_procedure(b, election)
(c) apply-logical_element_creation_procedure(b, election)

In the first iteration of the outer loop of this sketch, C represents the set
of entity types not involved in any ISA hierarchy. In the second iteration, C
represents the set of ISA hierarchies and, in the third, C represents the set of
relationship types. As a consequence, each building block instance is translated
by exactly one translation rule: the entity types that belong to an ISA hierarchy
are translated by the translation rule for the ISA hierarchy chosen by the DBA
and the rest of building blocks instances are translated by the corresponding
translation rules chosen by the DBA.

At the time of this writing, this algorithm is completely automated for the
chosen metamodels and we think it is easily extensible to other metamodels like
UML [17] and object-relational [21].

Let us describe the steps of the algorithm.

Step (a). The user selects the translation rule to be applied to the corre-
sponding building block instance of the initial conceptual schema. The metadata
stored in the conceptual information base of the architecture representing the
initial conceptual schema example are shown in Figure 2(a). Let us suppose that
the designer has chosen to apply a translation rule called isal_tr to the ISA hi-
erarchy number 7 in Figure 2(a). This rule is based on Elmasri’s rule on chapter
7 of [9] and transforms each entity type of the hierarchy into a table.

Step (b). Taking into account the translation rule selected in step (a), the
appropriate elementary translations which model the transformation process of
each building block instance are stored in the translation base. To achieve this,
each translation rule has an elementary translation creation procedure associ-
ated to it. For example, we have a translation rule for entity types (namely
entity_typel_tr rule) and a translation rule for ISA hierarchies (namely isal_tr
rule) whose elementary translation creation procedures are shown below. In these
procedures several auxiliary functions are used (shown in Table 2) and the cre-
ated elementary translations can be of different types (some of them are shown
in Table 3).

Creation procedure for the translation rule entity_typel_tr

1. For the entity type F add to the translation base
new_elementary_translation(‘ETT01’, get_id(E), new_id(E), get_id(E))

2. For each attribute a;,7 = 1..n, add to the translation base
new_elementary_translation(‘ETT20’, get_id(a;), new_id(a;), get_id(E))

3. For the primary key pkFE of E add to the translation base
new_elementary_translation(‘ETT60’, get id(pkE), new_id(pkE), get_id(E))

Creation procedure for the translation rule isal_tr

1. For the supertype E of the ISA hierarchy H, apply the creation procedure
for the translation rule entity_typel_tr, but get_id(H) is used as the final
parameter instead of get_id(E)

2. For each subtype S;,i = 1..m of the ISA hierarchy H, add to the translation
base
new_elementary_translation(‘ETTO0L1, get id(S;), new_id(S;), get id(H))

3. For each attribute by; of S;,k = 1..r;,i = 1..m, add to the translation base
new_elementary_translation(‘ETT20’, get _id(by;), new_id(by;), getid(H))

4. For each attribute a;,7 = 1..j, of the primary key of E and each subtype
S;,i = 1..m, add to the translation base
new_elementary_translation(‘ETT22’, get id(a;), new_id(a;), get_id(H))

5. For the primary key of the entity type E and for each subtype S;,i = 1..m,
add to the translation base
new_elementary_translation(‘ETT62’, get_id(pkE), new_id(pkE), get_id(H))

6. For each isa constraint with source S; and target E,i = 1..m, add to the
translation base
new_elementary_translation(‘ETT65’, get_id(isa;), new_id(isa;), get_id(H))

(a) Conceptual database schema

entity_type attribute
entity_type_id name attribute_id name datatype entity_type_id
1 E 3 el integer 1
2 s 4 e2 integer 1
isa_hierarchy conceptual_constraint
isa_hier_id supertype subtypes conc_constr_id type name source target
7 1 2 5 pk pki 1 3

6 isa isal 2 1

(b) Translation base
elementary_translation
elem_transl_id type conceptual_elementlogical_element belongs_to

16 ETT20 E.el E.el 7
17 ETT20 E.e2 E.e2 7
18 ETTO1 E E 7
19 ETT60 pki pki 7
20 ETT22 E.el S.el 7
21 ETT62 pkl pk2 7
22 ETTO1 S S 7
23 ETT6S isal fki 7
(c) Logical database schema
table column logical_constraint
table_id name column_id name datatype table_id logic_constr_idtype name source target
8 E 10 el integer 8 13 pk pki 8 10
9 S 11 e2 integer 8 14 pk pk2 9 12
12 el integer 9 15 fic fki 12 10

Fig. 2. Information bases

Table 2. Functions used in the translation algorithm

Function Meaning
new_elementary_ creates a new elementary translation in the translation base
translation
new_id provides a unique identifier for a table, column or
logical constraint
get_id queries the conceptual base in order to find the identifier of an

attribute, entity type, isa hierarchy or conceptual constraint

When we apply step (b) to the ISA hierarchy numbered 7 in Figure 2(a), the
elementary translation creation procedure generates the elementary translations
of Figure 2(b).

Step (c). The appropriate logical elements are stored in the logical database
schema. We omit for space reasons details about this step. The metadata rep-
resenting the logical elements that are obtained in step (c¢) for our example are
shown in Figure 2(c).

4 The elementary translations act as seesaws

In this section we explain how the traceability achieved by means of the transla-
tion component is used to propagate the changes between the conceptual and the
logical levels. The changes in the conceptual database schema are specified by
means of external events. We show the propagation subalgorithm for the transla-
tion information system and how the changes made in the conceptual database
schema are used by this subalgorithm in order to change the translation base
appropriately. Then we show how the changes in the translation base are used

Table 3. Types of elementary translations

Type Meaning
ETTO01 translation of an entity type into a table
ETT20 translation of an entity type attribute into a column of an entity type table
ETT22 translation of an entity type primary key attribute into a column of

a subtype table
ETT60 translation of a conceptual primary key into a logical primary key
ETT62 translation of a conceptual primary key into a primary key of

a subtype table
ETT65 translation of an isa constraint into a foreign key constraint

by the propagation subalgorithm for the logical information system, which makes
the appropriate changes to the logical database schema. Some functions used in
these subalgorithms are shown in Table 4.

External events. When the DBA wants to change the database, (s)he issues
an external event. An external event is composed of a set of conceptual modifica-
tion primitives. For example, according to our running example, we suppose that
the DBA wants to make the attribute E.e2 the new primary key of entity type
E. Then, (s)he issues the external event change_of_primary_key_in_ISA('E’,’e2").

We, as architect designers, have designed the external event type change_of_
primary_key_in_ISA so that it performs only one conceptual modification for evo-
lution that in our running example is:

change_conc_constr_target(‘pk’,‘E’,‘E.el’,‘E.e2’) (1)

where the target of the primary key of the entity type E is modified so that the
attribute E.e2 is the new target.

For this external event type, only one conceptual modification is performed,
but, in general, an external event type can perform more than one modifica-
tion. For example, we, as architect designers, could have designed the external
event type change_of_ primary_key_in_ISA so that it also retains an uniqueness con-
straint for the old attributes of the primary key. In this case, another conceptual
modification for evolution, apart from (1), must be performed. In our particular
example this modification is new_conceptual_constraint(‘uniq’,'E’,'E.el’), which
declares a new unique constraint on E.el.

Propagation subalgorithm for the translation information system.
This subalgorithm takes as input the conceptual changes produced by an ex-
ternal event and updates the translation base so as to reflect these changes. Its
input is the set of changes (specified as a set of conceptual modifications) which
has been made in the conceptual schema. The output is the added, deleted and
affected elementary translations. An affected elementary translation is an ele-
mentary translation that must be modified or an elementary translation that is
not modified but that involves a logical element which will have to undergo some
change. Here we sketch this subalgorithm:

For each change in the conceptual database schema
(a) Detect new elementary translations to be added to the
translation base and add them.

Table 4. Functions used in the propagation algorithm
Function Meaning
change_conc_constr_target changes the target of a conceptual constraint
change_logic_constr_source_and_target changes the source and the target of
a logical constraint
change_logic_constr_target changes the target of a logical constraint

(b) Detect those elementary translations that are affected by
the conceptual change and modify them when needed.

(c) Detect elementary translations to be deleted from the
translation base and delete them.

Let us show how this subalgorithm works for our external event example. The
subalgorithm is applied to the conceptual modification (1) mentioned above. In
step (a) for (1), since the new primary key attribute of the entity type E must be
translated into a column of the primary key of the subtype table S, the following
elementary translation is added to the translation base:

new_elementary_translation(‘ETT22, get_id(‘E.€2’), new_id(‘S.e2’),7) (2)

In step (b) the elementary translations involving the primary key of E and
the ISA between S and E (translations numbers 19, 21 and 23 in Figure 2(b))
are identified as affected. In our example, the elementary translations 19 and 21
are affected because their logical element (the primary key constraint of E) will
change their target. The elementary translation 23 is affected because its logical
element(the foreign key fk1) will change its source and its target.

In step (c), the elementary translation that informs the attribute el has been
added to the table of S (translation 20) is deleted because the conceptual element
E.el is no longer an attribute of the primary key of the entity type E.

Here we explain the seesaw metaphor. A seesaw is an artifact by means of
which the actions performed on the left side (for example, putting a weight
on it) provoke a reaction on the right side (the right side goes up). In our
framework, each elementary translation acts like a seesaw. The changes made
in the conceptual part (the left side of the seesaw) provoke modifications in
the logical part (the right side). This reaction is captured by the propagation
subalgorithm for the logical information system, explained in next subsection,
which updates the logical database schema.

Propagation subalgorithm for the logical information system. The
information about the added, deleted and/or affected elementary translations is
sent to the logical information system, which applies the propagation subalgo-
rithm to the logical information system. We do not include this subalgorithm
here and only show how it works in our example. Thus, for the new elemen-
tary translation added in (2), the subalgorithm adds to the logical information
schema the following logical element:

new_column(‘e2’, ‘integer’ ‘S”) (3)

For the affected elementary translations 19 and 21, their logical elements must
change their target. For this reason, the subalgorithm performs the following
changes in the logical database schema:

change_logic_constr_target(‘pk’,‘E’,‘E.el’,‘E.e2’) (4)

change_logic_constr target(‘pk’,‘S’,‘S.el’,‘S.e2’) (5)

where the parameters are the type of constraint, the table on which the constraint
is specified and the old and new targets.

For the affected elementary translation 23, its logical element must change its
source and its target. For this reason, the subalgorithm performs the following
change in the logical database schema:

change_logic_constr _source_and_target(‘fk’,'S’,‘S.el’,‘S.e2’ ‘E.el’,‘E.e2’)
(6)
where the parameters are the type of constraint, the table on which the constraint
is specified, the old and new sources and the old and new targets.
Finally, the deletion of the elementary translation 20 produces the following
deletion in the logical information system:

delete_column(‘S.el’) (7)

By means of the two algorithms explained above, the translation base now
reflects the correspondence between the new conceptual and logical schemas.

5 Related work

The necessity of capturing information about translations performed between
models has been recognized in the literature and very varied approaches have
been proposed. In the MDA approach [16], mapping techniques between PIM’s
or between PSM’s are considered as association classes so that a mapping will
be represented as an object (relating models) and not only as a link. With
respect to PIM to PSM mappings, the MDA approach proposes the ‘incremental
consistency’ as a desirable feature [14]. Within our architecture this property is
achieved by means of the translation component.

The consideration of our architecture has lead us to propose in [5] several
modifications in the MDA architecture. For example, it seems surprising to us
that in the original MDA Metamodel Description there are explicit association
classes to represent ‘PSM Mapping Techniques’ (from PSM to PSM) and ‘PIM
Mapping Techniques’ (from PIM to PIM), but there are no analogous associa-
tion classes to represent ‘PIM to PSM Mapping Techniques’ or ‘PSM to PIM
Refactoring Techniques’. According to the proposal we present in this paper, the
class ‘PIM to PSM Mapping Techniques’ would also be included in the MDA
architecture. In our opinion, the addition of this association class is suitable for
ensuring the traceability needed for propagating the changes in a PIM model to
its corresponding PSM model.

The innovative trend of model management [2,3] also advocates the repre-
sentation of mappings by means of objects. It is argued that this reification is
often needed for satisfactory expressiveness [2]. This proposal aims to be generic
in the sense that it can be applied to different kinds of models while our work is
specific to database evolution issues.

Within the specific database evolution field, several papers deal with the evo-
lution of object-oriented databases and relational databases [1] but, in general,
they lack the consideration of a conceptual level which allows the designer to
work at a higher level of abstraction [15]. A proposal that also considers the con-
ceptual level is presented in [13]. In this case, the traceability is achieved storing
all the sequence of operations (called history) performed during the translation
of the conceptual schema into a logical one. In order to use this history for
propagating the conceptual schema modifications, a process of history cleaning
(eliminating redundant operations) must be performed [12]. The main difference
between this approach and ours is the type of information stored for assuring
traceability. Whereas in [13] the idea is to store the history of the process per-
formed (probably with redundancies), in our case the goal of the elementary
translations is to reflect the correspondence between the conceptual elements
and the logical ones (in this case, there is no room for redundancies). Another
difference is that we follow a meta—modelling approach. An in depth explanation
of the use of meta—models within our proposed architecture appears in [7].

6 Conclusions and future work

The main contribution of this work is the presentation of a method for ensur-
ing traceability in the context of database evolution. We explain how to use
this traceability for propagating changes between database design levels. More
specifically, we have explained how to create a component that reflects the corre-
spondence between conceptual and logical database schemas. For this purpose,
we have used elementary translations that reflect the relations between the con-
ceptual elements and the logical ones and that facilitate evolution tasks.

There are several possible directions for future work. One is how to apply our
ideas to other metadata management problems, in particular to the problems
of schema integration or round-trip engineering [2]. Another direction is how
to apply the architecture when more modeling constructs are defined in the
conceptual and logical meta—schemata. For example, we could consider models
with richer constructs, such as UML [17] and object-relational models [21].

References

1. L. Al-Jadir, M. Léonard, Multiobjects to Ease Schema Evolution in an OODBMS,
in T. W. Ling, S. Ram, M. L. Lee (eds.), Conceptual modeling, ER-98, LNCS 1507,
Springer, 1998, 316-333.

2. P. A. Bernstein, Applying Model Management to Classical Meta Data Problems,
First Biennial Conference on Innovative Data Systems Research- CIDR 2003, On-
line Proceedings, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

K. T. Claypool, E. A. Rundensteiner, Gangam: A Transformation Modeling Frame-
work. International Conference on Database Systems for Advanced Applications-
DASFAA 2003, IEEE Computer Society, 2003, 47-54.

K. T. Claypool, E. A. Rundensteiner, G. T. Heineman, ROVER: flexible yet con-
sistent evolution of relationships, Data Knowl. Eng. 39(1), 2001, 27-50.

E. Dominguez, J. Lloret, A. L. Rubio, M. A. Zapata, An MDA-Based Approach to
Managing Database Evolution (position paper), in A. Rensink, (Editor), Proceed-
ings of MDAFA 2003. Model-Driven Architecture: Foundations and Aplications,
CTIT Technical Report Series, No. 03-27, 2003, 97-102.

E. Dominguez, J. Lloret, A. L. Rubio, M. A. Zapata, Evolving the implementation
of ISA Relationships, submitted for publication.

E. Dominguez, J. Lloret, M. A. Zapata, An architecture for Managing Database
Evolution, in A. Olivé et al. (eds) Advanced conceptual modeling techniques- ER
2002 Workshops, LNCS 2784 ;| 2002, 63—74.

E. Dominguez, M. A. Zapata, J. J. Rubio, A Conceptual Approach to Meta—
Modelling, in A. Olivé, J. A. Pastor (Eds.), Advanced Information Systems Eng.-
CAiSE’97, LNCS 1250, 1997, 319-332.

R. A. Elmasri, S. B. Navathe, Fundamentals of Database Systems (4th ed.),
Addison-Wesley, 2003.

F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J. Madec, Schema and Database
Evolution in the O2 Object Database System, Very Large Data Bases- VLDB’95,
1995, 170-181.

J. L. Hainaut, V. Englebert, J. Henrard, J. M. Hick, D. Roland, Database Evo-
lution: the DB-MAIN approach, in P. Loucopoulos (ed.), Entity-Relationship
approach- ER’94, LNCS 881, 1994, 112-131.

J.M. Hick, Evolution of relational database applications: Methods and tools, PhD
Thesis, University of Namur, 2001 [in French].

J.M. Hick, J.L. Hainaut, Strategy for Database Application Evolution: The DB-
MAIN Approach, in I.-Y. Song et al. (eds.) Conceptual Modeling- ER 2003, LNCS
2813, 2003, 291-306.

Anneke Kleppe, Jos Warmer, Wim Bast, MDA explained. The Model Driven Ar-
chitecture: Practice and Promise, Addison—Wesley, 2003.

J. R. Lépez, A. Olivé, A Framework for the Evolution of Temporal Conceptual
Schemas of Information Systems, in B. Wangler, L. Bergman (eds.), Advanced
Information Systems Eng.- CAiSE 2000, LNCS 1789, 2000, 369—-386.

J. Miller, J. Mukerji (eds.), MDA Guide Version 1.0, Object Management Group,
Document number omg/2003-05-01, May 1, 2003.

OMG, UML Specification wversion 1.5 formal/2003-03-01, available at
http://www.omg.org, March, 2003.

H. A. Proper, Data Schema Design as a Schema Evolution Process. Data Knowl.
Eng 22(2), 1997, 159-189

B. Ramesh, Factors influencing requirements traceability practice, Communica-
tions of the ACM, 41 (12), December 1998, 37-44.

A. S. da Silva, A. H. F. Laender, M. A. Casanova, An Approach to Maintain-
ing Optimized Relational Representations of Entity-Relationship Schemas, in B.
Thalheim (ed.), Conceptual Modeling- ER’96, LNCS 1157, 1996, 292-308.

M. Stonebraker, D. Moore, P. Brown, Object Relational DBMSs: Tracking the next
great wave (2nd ed.), Morgan Kaufmann Publishers, 1999.

W. M. N. Wan-Kadir, P. Loucopoulos, Relating evolving business rules to software
design, Journal of Systems Architecture, article in press, 2003.

