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A b s t r a c t  

Dynamic change is a large and pervasive unsolved prob- 
lem which surfaces within office systems as well as 
within software engineering, manufacturing, and numer- 
ous other domains. Procedural  changes, performed in 
an ad hoc manner, can cause inefficiencies, inconsisten- 
cies, and catastrophic breakdowns within offices. This 
paper is concerned with dynamic change to procedures 
in the context of workfiow systems. How can we make 
workflow systems more flexible and open? We believe 
that  part  of the answer lies in the study and solution of 
the dynamic change problem. In this paper, we use a 
Petri net formalism to analyze structural change within 
office procedures. As an example, we define~a class of 
change called "synthetic cut-over change", and apply 
our formalism to prove that  this class maintains cor- 
rectness when downsizing occurs. 
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1 I n t r o d u c t i o n  

Contemporary organizations employ a vast array of 
computing technology to support  their information pro- 
cessing needs. There are many successful computing 
tools designed as personal information aids (word pro- 
cessors, spreadsheets, etc.) but  fewer tools designed 
for collaborating groups of people (groupware). Many 
groupware products have recently been introduced to 
the market [1]. A few of these products capture knowl- 
edge of the organizational activity that  they are assist- 
ing, but the vast majori ty do not. 
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For example, a group document editor knows noth- 
ing about the organizational purpose of the document 
being edited. Organizationally aware groupware can po- 
tentially lead to significantly more powerful and useful 
systems. One class of organizationally aware groupware 
is workflow. 

Workflow systems are designed to assist groups of 
people in carrying out work procedures, and contain 
organizational knowledge of where work flows in the de- 
fault case. Workflow is defined as "systems that  help 
organizations to specify, execute, monitor, and coor- 
dinate the flow of work items within a distributed of- 
rice environment" [5]. The system contains two basic 
components: the first component is the workflow model 
(or "specification module"),  which enables administra- 
tors and analysts to define procedure and activities, 
analyze and simulate them, and assign them to peo- 
ple. This component can model goals, control struc- 
tures, data  structures, organizational structures, con- 
versation structures, etc. Most workflow models cap- 
ture (at least) procedures and the steps which make 
up the procedures and the precedence ordering between 
steps. In this document, we model procedures with 
a sprecial kind of Petri  nets, called in the sequel flow 
nets, we model the steps within the procedure (called 
activities) as transitions, and precedence (i.e. the "pre- 
ceeds" ordering relation between activities) as arcs in 
the flow net. We assume that  the reader has basic 
knowledge of Petri nets (see Figure [1] for an exam- 
ple.) We ignore other important  workflow components 
such as roles, agents, repositories, resources, etc. It 
turns out that  our dynamic change analysis is appli- 
cable to other components, and that  dynamic changes 
to other components are frequently less complex than 
activity/precedence changes. 

The second component is the workflow execution 
module (the workflow enactment system) consisting of 
the execution interface seen by end users and the ex- 
ecution environment which assists in coordinating and 



performing the procedures and activities. It enables the 
units of work to flow from one user's workstation to 
another as the steps of a procedure are completed. 

How do the first and second components relate? We 
believe that the specification and execution modules 
need to be tightly interwoven. For example, it should be 
possible to change the workflow model of a procedure, 
and thereby dynamically change how the steps of the 
procedure are being executed. Our belief is based upon 
the observation that change is a way of life in most or- 
ganizational and personal settings. Those organizations 
in the modern business world which refuse to change are 
headed toward rapid obsolescence because they cannot 
compete. Organizations must frequently make struc- 
tural changes such as: 
• adding a new employee, 
• adjusting for a new tax law, 
• filling in for a manager on vacation. 

Changes often dictate other concomitant changes, so 
it is often necessary to do a set of changes as a unit. 
Dynamic change problems have been documented in the 
workflow litterature [9]. This can get very complex and 
error prone. In practice many organizations find it nec- 
essary to suspend or abort the work in progress in or- 
der to avoid undesirable side effects of complex changes. 
This is an inefficient, and ineffective change process be- 
cause many organizations find it very unproductive, and 
sometimes impossible to shut down all activities in or- 
der to make changes. From pharmaceutical factories to 
software engineering houses, this is a nagging problem- 
the bigger the organization, the more complex are the 
procedures, and the more painful the change processes. 
Today, organizations usually do not solve this problem, 
they cope, evade, or "muddle through." This paper ad- 
dresses this dynamic change problem, and verifies the 
correctness of one class of dynamic change. 

We are concerned with dynamic structural change. 
Structural means that we are concerned with changes 
to the structure of procedures; we are not concerned 
here with changes to the value of an application data 
variable. Dynamic means that we are required to make 
the change "on the fly" in the midst of continuous exe- 
cution of the changing procedure. We restrict our con- 
sideration to structural changes concerning the steps of 
a procedure (called activities) and their precedence. Ex- 
amples include changes such as deletion of an activity, 
addition of a precedence relation between two activities, 
and parallelization of two activities that previously were 
constrained to execute serially. A very simple exam- 
ple of dynamic structural change within an office proce- 
dure is the following. An organization which tradition- 
ally does order processing performs the shipping step 
and the.billing steps at the same time, makes a dy- 
namic change to its procedure by performing the ship- 
ping step after the billing step Although the procedure 

"looks safe" before the change, and "looks safe" to all or- 
ders processed after the change, there are problems that 
could potentially surface during the change. For exam- 
ple, since orders that are in progress during the change 
are not flushed, some of these orders which went through 
the shipping step but not through the billing set, will 
never perform the billing step at all, so some customers 
will not be billed. This example, used throughout this 
paper, is explained in more detail later. 

2 Re la ted  Work and C S C W  
Context  

There has been considerable work and publication re- 
lated to workflow systems, models, and studies. Histor- 
ically, these systems grew out of the office information 
systems of the 1970s; Workflow systems have been cat- 
egorized in the literature based upon the models from 
which they are derived - see, for example, the article by 
Bair in the 1993 Groupware Conference Proceedings [3]. 
Although studies and models of work practices and work 
procedures have spanned the gamut from very informal 
to very formal, the vast majority of workflow products 
are based upon relatively rigid and formal procedural 
models. Notable exceptions include the ActionWorkflow 
product [9] based upon a speech act conversation model 
and the Polymer research prototype [7] based upon a 
goal based planning. 

Informal modeling and ethnographic studies have 
been reported by Suchman, Wynn, and other cul- 
tural anthropologists. Considerable effort has been put 
into workflow studies within the Information Systems 
field and the Organizational Design field within busi- 
ness schools[10]. Several procedural office models have 
emerged from concepts of discrete mathematics, and the 
software engineering community including graph based 
models such as Petri Nets and matrix algebra models. 
Articles on a variety of workflow systems and mod- 
els can be found in various proceedings of past ACM 
SIGOIS conferences, and the annual groupware confer- 
ences. Office models are reviewed and contrasted in 
several articles[4]. None of these models address the 
problem of dynamic structural change. 

The problem of dynamic structural change has sur- 
faced in numerous domains including CIM (Com- 
puter Integrated Manufacturing)J16] and Software 
Engineering[12]. Mathematical models that have arisen 
from these domains include extended flowchart 
state machine notations, project management models, 
and process programming models. S.K. Chang notes 
the utility of transformation and verification of office 
procedures, but does not address the dynamic change 
problem [6]. One problem with many of these math- 
ematical models is that they are basically designed to 
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analyze static structures. Thus, although a finite au- 
tomaton or Petri net can analyze change from state to 
state, reachability, and deadlock, it has no mechanism to 
analyze the addition of new states nor the alteration of 
state structure. This is especially true if these changes 
are not a priori known. 

Although there have been workflow success stories, it 
is generally acknowledged that workflow has not lived 
up to its expectation [2]. Workflow seems to fail more 
often than succeed. Traditional workflow systems (and 
office information systems before them) have been crit- 
icized in the literature as "automating a fiction" in the 
office because of their tendency to inflexibly prescribe 
temporal activity sequencing, and to narrowly dictate 
and restrict, rather than to broadly assist in the roles 
people play. People in offices typically engage in lots of 
problem solving, informal communication, and excep- 
tion handling. In order to "get the work done" it may 
be necessary to creatively augment or circumvent stan- 
dard office procedures. The mechanisms to help people 
do their necessary problem solving and exception han- 
dling are typically lacking in today's workflow systems. 
Omce work has been better characterized as "situated 
action" and "articulation work" [15], than its older de- 
scription, derived from scientific management literature, 
as detailed procedure execution. 

One response to this criticism has been the rejec- 
tion of workflow and formal models, and the empha- 
sis on "groupware tools" which have no knowledge of 
the organizational context, e.g. group editors. We be- 
lieve that there is great potential for groupware which 
is goal cognizant, and organizationally aware, but we 
agree that significant research is needed to realize this 
potential. We also feel that progress in the cscw arena 
requires multiple disciplines, tools, and approaches. In 
this spirit, careful, cognizant formal modeling of human 
endeavors can potentially provide valuable insight. An- 
other response has arisen from the business community, 
saying that there are significant examples of success- 
ful workflow, so we must continue to sell workflow and 
to incrementally improve it. We believe there can be 
significant learning by doing this. We hope that it is 
coupled with a paradigm shift away from the emphasis 
on prescriptive procedure enforcement. 

The authors are associated with an ongoing research 
group, the Collaboration Technology Research Group 
(CTRG), at the University of Colorado and at South- 
ern University, which is actively addressing these is- 
sues within our "Next Generation Workflow" research 
project. Within CTRG, our response has been research 
work to redirect the emphasis of work flow to dynamic 
goal based systems [17]. Members of CTRG have con- 
ducted numerous office studies, and built workflow sys- 
tems. A frequent reaction to the description and model 
produced by the study is "This is an interesting view of 

our office, but we don' t  do our work like this anymore - 
we've changed. " A frequent reaction to the installation 
of workflow systems is "Nice technology, but it doesn' t  
allow us the flexibility to handle the many exceptions, 
and to really get our work done expeditiously." Dy- 
namic change can help to address these statements. We 
have found that  in many environments, workflow can be 
very helpful if it is dynamic, flexible, changeable, knowl- 
edgable, and open. Our ongoing CTRG work strives to 
avoid the pitfalls articulated by Robinson and Bannon 
[14] by: 
* not imposing an order on events or people, but  op- 
tionally displaying what has been done (and by whom) 
in the past, 
* not precluding people from, at any time, reworking 
the model, but  encouraging and assisting in evolution- 
ary change and exception handling, 
• not insisting that  the model be determinant and con- 
sistent, but  allowing multiple interpretations of multiple 
realities. 

We argue that  workflow systems do not need to be 
dictators; they can be friendly assistants that  help you 
reason about your work. They are available when and 
if you want them. This paper describes one impor- 
tant component of our CTRG research effort. One 
type of reasoning help is to reason about procedural 
change (both temporary and permanent) within struc- 
tured work. To perform this type of reasoning, it is 
useful to have formal definitions and apply mathemati- 
cal analyses. 

Models of workflow can be quite useful and informa- 
tive planning tools without being used as an execution 
component Presentation of multiple views of how an 
organization is perceived to work (or how it has done 
procedures in the past,) as well as other information 
presented by the model, can be very useful to workers 
without any automation. Different degrees of procedu- 
ralization, and different types of computer augmenta- 
tion are appropriate for different types of organizations. 
Thus, the work in this paper is independent of any ex- 
ecution component of any particular workflow system; 
this is particularly appropriate if the organization per- 
forms primarily unstructured activity. 

The rest of the paper is organized as follows: In sec- 
tion 3 we introduce the running example which will be 
used throughout the paper. In section 4 we establish our 
mathematical notations. In section 5, the notion of flow 
net is introduced as a model of workflow procedures, 
we also recall some well-known notions from the Petri 
net theory. Next, the dynamic change within workflow 
procedures as well as the synthetic cut-over change are 
modeled in section 6 in terms of net replacemment. Fol- 
lowed, in section 7, by the introduction of the notion of 
correctness of dynamic change. Finally, our main results 
are stated in section 8. 
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3 A Dynamic Change Example 
This paper presents a formal definition of dynamic 
change, and a mathematical  approach to its analysis. 
We stress that  this analysis is to be used interactively 
and synergistically, with end users mediating the social 
and organizational aspects of the changes [10]. Some 
changes are easy, some are difficult. It is typically easy 
to make an isolated change to the value of a variable 
in a database - this is considered "normal". Likewise, 
change of policy in many organizations is considered 
"normal," e.g. 'Our future policy will reimburse our 
employees 30c per mile, rather than the previous 20c 
per mile.' These types of changes tend to be easier to 
implement than structural change. If we consider a pro- 
cedure as one type of structure within an organization, 
then change to that  procedure is structural change. One 
company, when audited, found that  they did not have 
sufficient separation of functional control within their 
procedures, and was required to make severe structural 
change that  transcended the boundaries of many pro- 
cedures. This is the type of complex change that  our 
analysis can greatly assist. 

This type of dynamic change can at times encounter 
"dynamic bugs" which would not appear within more 
static change. As an example of the type of "dynamic 
bug" problem that  we are addressing, 

E x a m p l e  3.1 consider an office procedure for order 
processing within a typical electronics company. When 
a customer requests by mail, or in person, an electronic 
part, this is the beginning of a job (also called a work 
case.) A form is filled out by the order administrator; 
the job is sent to credit check, and then to inventory 
check. After the evaluation, either a rejection letter is 
sent to the customer, or the order is approved and then 
sent to shipping and billing. The shipping department 
will actually cause the part to be sent to the customer; 
the billing department will see that the customer is sent 
a bill, and that it is paid. This procedure is shown in 
Figure [1]. 

Suppose that  the organization decides to initiate the 
credit checking and the inventory checking steps at the 
same time for speedier processing (see Figure[3]). This 
is an example of structural change because the struc- 
ture of the procedure is changing. An even simpler 
structural change that  we will analyze is to move the 
billing step to take place before the shipping step (see 
Figure[6])- there could be many reasons for wanting to 
do this. One way to do this change could be to delay and 
not process any new customer requests until after the 
change, and simultaneously, wait until all ongoing jobs 
are completed before making the change. This means 
that  no jobs are in progress when the change is made. 
This strategy, called flushing the system, is safe, but 
quite costly - it might take years for the current jobs 

(perhaps thousands) to all reach completion, and this 
may delay thousands of new customers for an unaccept- 
ably long time. Another unpleasant strategy is to abort  
all jobs in progress. Another is to have the old version 
and the new version of the procedure simultaneously 
available. There are variations of these strategies tha t  
are used, which have more or less safety. In this pa- 
per, we are concerned with making structural changes 
safely without flushing the system. This is the defini- 
tion of dynamic change. In many situations, much can 
be gained if we can understand, and safely perform dy- 
namic structural change. Typically, the more quickly 
we can convert all jobs to this change, the better.  

A dynamic change problem occurs in our example if 
a job has been processed by shipping at the time of 
the change but  not by the billing. This job is then 
sent to archive according to the instructions of the new 
procedure Thus a customer will not be billed for the part  
that  he receives. This situation is depicted graphically 
in Figure [6]. If there are a large number of jobs being 
in the same situation at the time of change, then a large 
number of customers will not be billed. This is a very 
simple example of a "dynamic bug;" many of these bugs 
are much more difficult to detect and can have strange 
and insidious effects. 

Our approach to analyzing change is mathematically 
detailed in later sections of this document, and can be 
informally summarized as follows. Given a specific pro- 
cedural change, we define its change region as the part  
of the net containing all the activities directly affected 
by the change. The old region is the change region prior 
to the change, and the new region is the change region 
after the change. These notions of change regions will 
be discussed later. We think of the change as replacing 
the old region by the new region within the specification 
of the procedure (see Figures [1,2,3]). The jobs evolving 
outside the change region are not affected by the change. 
The jobs inside the old region are "transferred" to the 
new region. This transfert can result in the creation of 
new jobs or the destruction of old jobs. 

After a change takes place, the work resumes its pro- 
gression in a new environement as described by the new 
procedure. The change is said to be correct if the re- 
sumption is intended to finish the in-progress work ac- 
cording to either the old or the new procedure. Clearly, 
this correctness criterion allows us to capture the dy- 
namic bugs described earlier. In some cases, the new 
change region is such that  it contains both the old 
and the new region (see Figures [7,8,9]). This class of 
changes, referred to as synthetic cut-over change, is in 
some cases safer than the immediate change. For in- 
stance when downsizing occurs (i.e. the new region can 
do less than the old region), we can prove that  the syn- 
thetic cut-over change is correct. 
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4 Pre l iminar i e s  

In this section we recall some basic mathemat ica l  no- 
tions and we establish our notat ion and terminology. 
The set of integers is denoted N and N + denotes the set 
of positive integers. For a finite a lphabet  ~, ~* denotes 
the set of all finite words over ~ and )~ denotes the 
empty  word. The concatenation of two words w and w ~ 
is denoted ww ~. For wl,  w2 E ~*, the shuffle of Wl and 
w2, denoted wtiiw2 is defined inductively as follows: 

alia = AIla = a & axlllbx2 = a(xlllbx2) U b(axlllx2) 

for a,b E ~ and Xl,X 2 E E*. As usual 
this operator  is extended to languages; LI[[L2 = 
{w llw2 I LI ,w~ E L2} .  

5 Workf l ow  P r o c e d u r e  M o d e l i n g  

The Petri  Net model [13] is a simple, yet rigorous math-  
ematical formalism, which has been used to model sys- 
tems which exhibit concurrency, communication and 
choice between different courses of actions. They have 
a nice graphical representat ion which offers a very clear 
impression of the concurrent and nondeterministic as- 
pects of the systems they model. A workfiow procedure 
is modeled by a flow net. I t  is a Petri  Net with two 
distinguished places; namely the input place and the 
output  place. The  activities of the procedure are mod- 
eled by transitions, each of which has a name, at  least 
one input place and at least one output  place. Formally, 

D e f i n i t i o n  5.1 Let ~ be a finite alphabet of activity 
names. A f low n e t  over ~ (net for short) is a system 
M = (S, T, F, Lab; sin, sour) which consists of: 
• disjoint, finite and non empty sets S of p l a c e s  and T 
of t r a n s i t i o n s .  
• F C_ (S × T)  U (T × S) the f low r e l a t i o n  which sat- 
isfies the following properties: 

vx S, "xUx" # 0. 

Vt E T , ' t  ~ Oandt" ~ 0. 

• Lab : T > Z the t r a n s i t i o n  l a b e l i n g  function. 
• sin E S the i n p u t  p l a c e  of M ,  and sou~ E S the 
o u t p u t  place of M which are such that: "sin = 0 and 
s:u t = 0. Moreover, the set {sin, Sour) is called the 
i n t e r f a c e  of M.  

The notion of marking and marked nets are defined as 
usual. A function m : S > N is called a marking. In 
particular,  0 denotes the empty  marking, and if i E N,  
then ~ (resp. ~) is the unique in i t i a l  (resp. t e r m i n a l )  
marking which consists of i tokens in the input (resp. 
output)  place and zero tokens elsewhere. M a r k ( M )  de- 
notes the class of all markings of M.  A marked net 

.h4 = (M; m) consists of a net M and a marking m of 
M. 
The dynamic component  of a net evolves around the 
well-known notion of transit ion firing, and firing se- 
quences. Formally, 
• Let M be a net, and m be a marking of M.  A 
transit ion t of M is enabled under m,  writ ten m [t) iff 
Vs E " t ,m(s )  ~ O. In this case the firing of t, denoted 
m It) m t, is said to lead to the marking m t where: 

m'(s)  = m(s)  - 1 if s E ".t - t ' ,  
m ' ( s ) = m ( s ) + l i f s E t  - t, 

m"(s) = re(s) otherwise. 

e Let M be a net, let m and m '  be markings of M,  and 
let w E T*. Then w is an m-firing sequence leading to 
m l i f f e i t h e r w = A  a n d m = m ' o r w = w ' t w i t h t E T ,  
m [w') m "  and m "  [t) m '  for some marking m "  of M and 
some w' E T*. In this case m '  is said to be r e a c h a b l e  
from m. F i r e ( M ,  m, m')  denotes the language of all 
m-firing sequences leading to m '  and Reach(M,  m) de- 
notes the class of all markings which are reachable from 
m. This notion is lifted to the level of activity names by 
considering the sequence of names tha t  compose a fir- 
ing sequence. Thus,  if w is an m-firing sequence leading 
to m ' ,  then u = Lab*(w) is a labeled m-firing sequence 
leading to m' .  The language of all labeled m-firing se- 
quences leading to m '  is denoted Lang(M,  m, m').  

E x a m p l e  5.1 In the graphical representation of a 
marked ne t ,  a transition t labeled u is drawn as a thick 
line segment with the label u next to it, a place is drawn 
as a circle , the flow relation as a set of edges and a 
token is drawn as a black dot next to the place where 
it resides. The input and output places will be drawn 
as grey-colored circles, their distinction should be clear 
from the picture. Figure[If depicts the office procedure 
for order processing which is in progress. At  this stage 
the credit check has been completed and the inventory- 
check is to be initiated next. The activity names are 
(hopefully) clear from the context. 

An execution of a net modeling a workfiow procedure 
starts  in an initial marking,  say z' where i E N +, and 
ends when one of the terminal  markings,  say ~ where 
j E N +, is reached. Note here tha t  an execution may 
take a "bad path"  (e.g. deadlocks or diverges), meaning 
tha t  it can reach a marking m from which it cannot  
reach a terminal  marking. Formally, 

D e f i n i t i o n  5.2 Let M be a net, let m , m  ~ E M a r k ( M )  
and let w E F i r e ( M , m , m ' ) .  if m = t for some i E 
N + and m' = ~ for some j E N +, then u is called an 
e x e c u t i o n  s e q u e n c e  which c o n s u m e s  i tokens and 
p r o d u c e s  j tokens. 

The next definition introduces a special kind of nets 
called in the sequel transactions.  These are nets which 
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from the token input-output stand point behave like a 
transition which has a single input place and a single 
output  place. In other words, each time a transaction 
consumes i tokens, it will produce i tokens. Further- 
more, reaching a terminal marking is always guaranteed. 
Formally, 

D e f i n i t i o n  5.3 A net M is a t r a n s a c t i o n  iff for every 
i • N + the following conditions are satisfied: 
• ~ G Reach(M,1). 
• Vm • Reaeh(M,z'),~ • Reach(M, m). 

In the case of a transaction, an e l e m e n t a r y  execution 
is a firing sequence which consumes i token (and hence 
produces 1 token). In some cases, many executions may 
be initiated at the same time. The resulting sequence 
is referred to as c o m p o u n d  execution. Note here, that  
combining elementary executions results in a compound 
execution, but  the converse does not in general hold. 
For instance some special measures (i.e. execution se- 
quences) may be triggered if the load of the system 
reaches a certain level, and which would not be oth- 
erwise. The property of d e c o m p o s i t i o n ,  introduced 
next, deals with this issue. Formally, 

D e f i n i t i o n  5.4 A transaction M is d e c o m p o s a b l e  iff 
for every i • N + 

Fire(N,  i, i) = F i re (N ,  1, 1)1]... HFire( N, 1, 1)/ 

Finally, we define a particular operation on marked nets 
which will be used later. Let .A4 and .h4 ~ be marked nets 
with identical interface-markings. The fus ion  of .h4 and 
.A4 ~, is the marked net denoted fuse(.h4, .A4~), which is 
obtained by: 
• removing all but  the interface tokens from .A4 ~, 
• removing the tokens from the interface of .A4, and 
• merging the output  places of both nets. 
The interface of the resulting net is the interface of .A4'. 

E x a m p l e  5.2 The net called the new region depicted in 
Figure[8] is the fusion of the nets depicted in Figure[5]. 

6 Dynamic Change Modeling 
The change that  a workfiow procedure M undergoes is 
said to be d y n a m i c .  Dynamic entails that  the change is 
made in the midst of execution (i.e. while some tokens 
are in progress). In terms of our net-based model, the 
change is viewed as the replacement of a marked subnet 
All = (N1;ml)  by a marked subnet Af2 = (N2;m2) in a 
marked net .M = (M; rn) which results in a marked net 
.A4' = (M';rn ' ) .  Here, N2 is the new version of N1, ml  
is the token distribution in N1 prior to the change, m2 
is the token distribution in N2. All is referred to as the 

old c h a n g e  r eg ion ,  .hf2 as the new change region, 
.h4 as the old ne t ,  and .A4 ~ as the n e w  ne t .  Another 
entity which, from a modeling stand point will be part  of 
the change, is the (labelled) sequence w of all activities 
which took place prior the change. This sequence will 
be referred to as the p r e - c h a n g e  sequence. Its role is 
crucial for the correctness criterion (to be introduced in 
the next section). 

The question as to how the change regions are selected, 
remains unsettled. Typically the old change region con- 
tains all the activities tha t  are affected by the change 
(e.g. deleted, reorganized etc...), and is defined as be- 
ing the smallest net containing these activities. This 
means that  when selecting the old change region, places 
(with their tokens) connected to the affected activities 
as well as the connecting edges are part  of the old change 
region. The next important  issue relevant to the selec- 
tion process is how the old change region is connected 
to the its context (i.e. the portion not affected by the 
change). More formally, this can be rephrased as what 
type of commnunication or interaction exists between 
the old change region and its context. In our case, the 
old change region is connected to the context through 
its interface. Thus the communication is restricted to 
token exchange through the interface. Note here that  it 
is always possible to select appropriatly the old change 
region. For, in the worst case the old change region can 
be the whole net. The new change region embodies the 
changes made to the procedure and is also a marked net. 
Here the marking is viewed as a t o k e n  t r a n s f e r t  from 
the old change region. As we shall see, this transfert can 
result in the creation of new tokens or the destruction 
of tokens. However, the interface-marking is preserved. 

When all these conditions are satisfied, the replace- 
ment may take place, resulting in a new marked net 
.MI=  (M';rnl) .  Intuitively, .h4 ~ is obtained from .h4 
by removing All from .M and "plugging" Af2 in the re- 
maining net by using the interface as sockets.  The pair 
5 = (Afl,Af2) is called a r e p l a c e m e n t  pa i r  appl ica-  
ble to .h4, and the marked net .A4' = (M';  m'), denoted 
.M fall ~ Af2], is referred to as the r e p l a c e m e n t  o f  
All by  Af2 in .h4. Formally, 

D e f i n i t i o n  6.1 A d y n a m i c  c h a n g e  is a system C = 
(w, .A4,5, .A4') where: 
• .h4 = (M; rn) and .A4' = (M'; m t) are flow nets. 
• 5 = (Afl,Af2) is a replacement pair applicable to .A4 
such that .M' = .M fall ~ Af2]. 
• w E Lang(M,~,m) ,  for some i E N +. 

E x a m p l e  6.1 Returning to our example of the office 
procedure for order processing, the first change reflects 
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a new organizational policy under which it has been de- 
cided to initiate the Credit-Check and the Inventory- 
Check at the same time. The old version, referred 
to as Order1 is depicted in Figure]If, the new ver- 
sion, referred as Order2, is depicted in Figure]3], the 
change regions are depicted in Figure]3], and the pre- 
change sequence Wl = Order-Entry.Inventory-Check. 
This change will be referred to as Change1. 

The execution resumes in Order2 and sometime later 
another change is carried out. Here, the organization 
decides to initiate the shipping activity after the billing 
activity. 

E x a m p l e  6.2 The old net for this change, referred to 
as Order3 is depicted in Figure]if, the new net, re- 
ferred to as Order4, is depicted in Figure]6], the change 
regions are depicted in Figure]5] and the pre-change 
sequence is w2 = Order-Entry.Credit-Check.Inventory- 
Ckeck.Evaluation.Approval.Shipping. This change will 
be referred to as Change2. 

The dynamic change we have described earlier can 
be termed as i m m e d i a t e .  In other words, whatever 
change an organization decides to do takes effect imme- 
diatly. As opposed to d e l a y e d  change which we propose 
to describe next. The delayed change is called synthetic 
cut-over change. Here, both the old and the new change 
regions are maintained in the new procedure. This en- 
sures that  tokens already in the old change region will 
continue their progression as if the change did not take 
place immediatly (which justifies the at tr ibute delayed). 
However tokens evolving in the context of the old change 
region will never enter the old change region (but pos- 
sibly new change region); that  is to say that  in view of 
these tokens the change is immediate. 
The motivation behind this class of changes will become 
clear later. We will show that  in some cases, delayed 
change is much more safer that  immediate change. In 
other words, it is possible to guarantee correctness for 
delayed change whereas this is not the case for the im- 
mediate change. Formally, 

D e f i n i t i o n  6.2 Let C = (w,.h4,5,.A4 ~) be a change 
over E where ~ = (A/1,H2). The s y n t h e t i c  c u t - o v e r  
c h a n g e  (SCOC for short) associated with C is the 
change C = (w, f14, ~, ~4'), denoted scoc(C), such that 

= ( N 1 , / u s e ( H 1 , 2 ¢ 2 ) ) .  

E x a m p l e  6.3 Figures]7-9] depict the components of 
the SCOC associated with Change2. Note here that any 
new job which enters the new net (depicted in Figure]9]) 
if it is not rejected, will go through billing and shipping. 
Whereas the change did not really take place for the to- 
ken inside the change region. 

7 Dynamic Change Correctness 

In dealing with the problem of correctness of the change 
in workflow systems, we learned above all that  there is 
no single good notion of correctness and more impor- 
tantly, different organizations are likely to be concerned 
with different notions of correctness. Three  key issues 
have been crucial in defining our notion of correctness. 
They are: 

• f au l t  p r e v e n t i o n :  Changing a non-faulty system into 
a faulty one should be considered as incorrect. A sys- 
tem is faulty if it cannot reach a terminal marking. In 
general, managers are reluctant  to replace productive 
systems by non-productive ones. 
• c ance l  all: Any change in which both  the old net and 
the new net are in an initial marking should always be 
correct provided that  the fault prevention property is 
satisfied. This type of change is referred to as s y s t e m  
r e p l a c e m e n t .  The rationale behind this argument is 
that  system replacement corresponds to the case where 
an organization decides to void whatever is in progress 
prior the change, make the change and restart  the sys- 
tem. 
• c o n s i s t e n c y .  This issue is related to the meaning 
of the change itself. Here, we are in situation where 
some in-progress work (modeled by the pre-change se- 
quence w) is resumed in a new environement (modeled 
by the new net). At this point we are faced with two 
possible situations. First, w ~ is intended to effectively 
continue the work initiated through w. Second, the in- 
progress work is effectively switched to a new environ- 
ment, namely the new net, which means that ,  according 
to our model, the h y b r i d  sequence ww I is a labelled ex- 
ecution sequence of the new net. Formally, 

D e f i n i t i o n  7.1 Let C = (w,.h4,5,.h4 I) be a change 
where f14 = (M; m), .h4' = (M';  m') and let w be an el- 
ement of Lang(M,  i, m) for some i E N +. C is said to 
be c o r r e c t  iff for every j E N +, the following properties 
hold: 
• Lang(M,  m, 3) ~ O ~ Lang(M' ,  m',  3) ~ ~. 

• Vw' e L a n g ( M ' , m ' , ~ ) ,  e i t h e r  

w' e nang(M,  m, 3) or  ww' E Lang(M' ,  i, 3). 

E x a m p l e  7.1 Concerning the change Change1 of Ex- 
ample 5.1, all hybrid sequences are execution sequences 
of the new net (Order2), which means that it is correct. 

E x a m p l e  7.2 The change Change2 of Example 6.2 
is not correct. Note that the only continuation 
of Order4 is w' = Archiving. I t  is clear that 
neither w ~ is a continuation of Order3 nor the 
sequence ww ~ = Order-Entry.Credit-Check.Inventory- 
Check.Evaluation.Approval.Shipping.Archiving is an ex- 
ecution of Order4 (a good has been shipped to a cus- 
tomer, yet the eustomet has not been billed for it). But, 
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scoc(Change2) is correct. This is because all hybrid se- 
quences are execution sequences of the old net Order2. 
This example shows that in some cases delayed change 
is safer than immediate change. 

8 U p  a n d  D o w n  S i z i n g  

In this section we deal with two particular types of 
changes which involve decomposable transactions. The 
downsizing is a property of the change regions (assumed 
to be here decomposable transactions). It stipulates 
that  every elementary execution of the new change re- 
gion is also an elementary execution sequence of the old 
change region; in other words the new change region can 
"do less" than the old region. The upsizing property is 
the dual counterpart of the downsizing property: here, 
every elementary execution sequence of the old change 
region is also an elementary execution of the new change 
region, or equivalently the new region can "do more" 
than the old region. 
In order to formalize these notions, we will make use 
of the formentioned terminology. A replacement pair 
involving decomposable transactions is referred to a 
D T - r e p l a c e m e n t  pa i r  and a change involving a DT- 
replacement pair is referred to as DT-change .  

Def in i t ion  8.1 Let ~ = (Afl,.hf2) be a DT-replacement 
pair where .h/1 = (N1;rnl) and Af2 =(N2;m2) .  Then 5 
has 
• the downs iz ing  property iff 

Lang(N2,!,  T) C Lang(N1,_i,1). 
• the ups iz ing  property iff 

Lang(N1, !, 1) C Lang(N2, 1_, 1). 

E x a m p l e  8.1 Note here that Change1 has the upsizing 
property and that Change2 has the downsizing property. 

Our main results, the proof of which can be found in 
[8], state that  a dynamic change C with the upsizing 
property can always be carried out correctly, wheareas if 
C has the downsizing property, then its delayed version 
scoc(C) is always corret. Formally, 

T h e o r e m  8.1 Let C = (w,.h4,5,.A4 I) be a DT-change 
such that ~ has the downsizing property. Then scoc(C) 
is correct. 

T h e o r e m  8.2 Let C = (w,.h4,5,.h4 I) be a DT-change 
where 5 = ( . ~ f l , A f 2 ) ,  J i l l  ~- (N1;ml) and.hf2 = (N2;m2). 
If ~ has the up sizing property then there exists a mark- 
ing m2 of N2 such that the change C = (w,.A4,~,./~4') 
with 5 = (.hfl, (N2, m2)), is correct. 

The application of these results has already been 
demonstrated in the previous examples: we saw 

that Change2 had the downsizing property and that  
scoc(Change2) was correct. 

9 C o n c l u s i o n  

In this paper we have introduced a mathematical for- 
malism to model and analyze dynamic structural change 
within workflow procedures. As an example, we have 
defined a class of change called synthetic-cut-over which 
maintains correctness when downsizing occurs. This 
work is far from being complete, and many questions re- 
main unanswered. Examples of such questions include 
(and are not limited to) the investigation of different no- 
tions of correctness, and the existence of a complete set 
of elementary changes that  can, under some conditions, 
guarantee correctness and that  are powerful enough to 
model complex changes. 
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