
Dynamic Change Within Workflow Systems

Clarence E ,
Kar im Keddara

D e p t . C o m p u t e r Sc ience ,

U n i v e r s i t y o f C o l o r a d o ,

B o u l d e r , Co. 80309-0430 ,

USA.

Grzegorz Rozenberg
Dept. Computer Science,

University of Leiden,
Niels Bohrweg 1,
2300 RA Leiden,
The Netherlands.

A b s t r a c t

Dynamic change is a large and pervasive unsolved prob-
lem which surfaces within office systems as well as
within software engineering, manufacturing, and numer-
ous other domains. Procedural changes, performed in
an ad hoc manner, can cause inefficiencies, inconsisten-
cies, and catastrophic breakdowns within offices. This
paper is concerned with dynamic change to procedures
in the context of workfiow systems. How can we make
workflow systems more flexible and open? We believe
that part of the answer lies in the study and solution of
the dynamic change problem. In this paper, we use a
Petri net formalism to analyze structural change within
office procedures. As an example, we define~a class of
change called "synthetic cut-over change", and apply
our formalism to prove that this class maintains cor-
rectness when downsizing occurs.

Keywords: Dynamic Change, Office Procedures,
Workflow Systems, Petri Nets, Organizational Evolu-
tion

1 I n t r o d u c t i o n

Contemporary organizations employ a vast array of
computing technology to support their information pro-
cessing needs. There are many successful computing
tools designed as personal information aids (word pro-
cessors, spreadsheets, etc.) but fewer tools designed
for collaborating groups of people (groupware). Many
groupware products have recently been introduced to
the market [1]. A few of these products capture knowl-
edge of the organizational activity that they are assist-
ing, but the vast majori ty do not.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
COOCS 95 Milpitas CA USA ¢ 1995 ACM 0-89791-706-5/95/08..$3.50

10

For example, a group document editor knows noth-
ing about the organizational purpose of the document
being edited. Organizationally aware groupware can po-
tentially lead to significantly more powerful and useful
systems. One class of organizationally aware groupware
is workflow.

Workflow systems are designed to assist groups of
people in carrying out work procedures, and contain
organizational knowledge of where work flows in the de-
fault case. Workflow is defined as "systems that help
organizations to specify, execute, monitor, and coor-
dinate the flow of work items within a distributed of-
rice environment" [5]. The system contains two basic
components: the first component is the workflow model
(or "specification module"), which enables administra-
tors and analysts to define procedure and activities,
analyze and simulate them, and assign them to peo-
ple. This component can model goals, control struc-
tures, data structures, organizational structures, con-
versation structures, etc. Most workflow models cap-
ture (at least) procedures and the steps which make
up the procedures and the precedence ordering between
steps. In this document, we model procedures with
a sprecial kind of Petri nets, called in the sequel flow
nets, we model the steps within the procedure (called
activities) as transitions, and precedence (i.e. the "pre-
ceeds" ordering relation between activities) as arcs in
the flow net. We assume that the reader has basic
knowledge of Petri nets (see Figure [1] for an exam-
ple.) We ignore other important workflow components
such as roles, agents, repositories, resources, etc. It
turns out that our dynamic change analysis is appli-
cable to other components, and that dynamic changes
to other components are frequently less complex than
activity/precedence changes.

The second component is the workflow execution
module (the workflow enactment system) consisting of
the execution interface seen by end users and the ex-
ecution environment which assists in coordinating and

performing the procedures and activities. It enables the
units of work to flow from one user's workstation to
another as the steps of a procedure are completed.

How do the first and second components relate? We
believe that the specification and execution modules
need to be tightly interwoven. For example, it should be
possible to change the workflow model of a procedure,
and thereby dynamically change how the steps of the
procedure are being executed. Our belief is based upon
the observation that change is a way of life in most or-
ganizational and personal settings. Those organizations
in the modern business world which refuse to change are
headed toward rapid obsolescence because they cannot
compete. Organizations must frequently make struc-
tural changes such as:
• adding a new employee,
• adjusting for a new tax law,
• filling in for a manager on vacation.

Changes often dictate other concomitant changes, so
it is often necessary to do a set of changes as a unit.
Dynamic change problems have been documented in the
workflow litterature [9]. This can get very complex and
error prone. In practice many organizations find it nec-
essary to suspend or abort the work in progress in or-
der to avoid undesirable side effects of complex changes.
This is an inefficient, and ineffective change process be-
cause many organizations find it very unproductive, and
sometimes impossible to shut down all activities in or-
der to make changes. From pharmaceutical factories to
software engineering houses, this is a nagging problem-
the bigger the organization, the more complex are the
procedures, and the more painful the change processes.
Today, organizations usually do not solve this problem,
they cope, evade, or "muddle through." This paper ad-
dresses this dynamic change problem, and verifies the
correctness of one class of dynamic change.

We are concerned with dynamic structural change.
Structural means that we are concerned with changes
to the structure of procedures; we are not concerned
here with changes to the value of an application data
variable. Dynamic means that we are required to make
the change "on the fly" in the midst of continuous exe-
cution of the changing procedure. We restrict our con-
sideration to structural changes concerning the steps of
a procedure (called activities) and their precedence. Ex-
amples include changes such as deletion of an activity,
addition of a precedence relation between two activities,
and parallelization of two activities that previously were
constrained to execute serially. A very simple exam-
ple of dynamic structural change within an office proce-
dure is the following. An organization which tradition-
ally does order processing performs the shipping step
and the.billing steps at the same time, makes a dy-
namic change to its procedure by performing the ship-
ping step after the billing step Although the procedure

"looks safe" before the change, and "looks safe" to all or-
ders processed after the change, there are problems that
could potentially surface during the change. For exam-
ple, since orders that are in progress during the change
are not flushed, some of these orders which went through
the shipping step but not through the billing set, will
never perform the billing step at all, so some customers
will not be billed. This example, used throughout this
paper, is explained in more detail later.

2 Re la ted Work and C S C W
Context

There has been considerable work and publication re-
lated to workflow systems, models, and studies. Histor-
ically, these systems grew out of the office information
systems of the 1970s; Workflow systems have been cat-
egorized in the literature based upon the models from
which they are derived - see, for example, the article by
Bair in the 1993 Groupware Conference Proceedings [3].
Although studies and models of work practices and work
procedures have spanned the gamut from very informal
to very formal, the vast majority of workflow products
are based upon relatively rigid and formal procedural
models. Notable exceptions include the ActionWorkflow
product [9] based upon a speech act conversation model
and the Polymer research prototype [7] based upon a
goal based planning.

Informal modeling and ethnographic studies have
been reported by Suchman, Wynn, and other cul-
tural anthropologists. Considerable effort has been put
into workflow studies within the Information Systems
field and the Organizational Design field within busi-
ness schools[10]. Several procedural office models have
emerged from concepts of discrete mathematics, and the
software engineering community including graph based
models such as Petri Nets and matrix algebra models.
Articles on a variety of workflow systems and mod-
els can be found in various proceedings of past ACM
SIGOIS conferences, and the annual groupware confer-
ences. Office models are reviewed and contrasted in
several articles[4]. None of these models address the
problem of dynamic structural change.

The problem of dynamic structural change has sur-
faced in numerous domains including CIM (Com-
puter Integrated Manufacturing)J16] and Software
Engineering[12]. Mathematical models that have arisen
from these domains include extended flowchart
state machine notations, project management models,
and process programming models. S.K. Chang notes
the utility of transformation and verification of office
procedures, but does not address the dynamic change
problem [6]. One problem with many of these math-
ematical models is that they are basically designed to

11

analyze static structures. Thus, although a finite au-
tomaton or Petri net can analyze change from state to
state, reachability, and deadlock, it has no mechanism to
analyze the addition of new states nor the alteration of
state structure. This is especially true if these changes
are not a priori known.

Although there have been workflow success stories, it
is generally acknowledged that workflow has not lived
up to its expectation [2]. Workflow seems to fail more
often than succeed. Traditional workflow systems (and
office information systems before them) have been crit-
icized in the literature as "automating a fiction" in the
office because of their tendency to inflexibly prescribe
temporal activity sequencing, and to narrowly dictate
and restrict, rather than to broadly assist in the roles
people play. People in offices typically engage in lots of
problem solving, informal communication, and excep-
tion handling. In order to "get the work done" it may
be necessary to creatively augment or circumvent stan-
dard office procedures. The mechanisms to help people
do their necessary problem solving and exception han-
dling are typically lacking in today's workflow systems.
Omce work has been better characterized as "situated
action" and "articulation work" [15], than its older de-
scription, derived from scientific management literature,
as detailed procedure execution.

One response to this criticism has been the rejec-
tion of workflow and formal models, and the empha-
sis on "groupware tools" which have no knowledge of
the organizational context, e.g. group editors. We be-
lieve that there is great potential for groupware which
is goal cognizant, and organizationally aware, but we
agree that significant research is needed to realize this
potential. We also feel that progress in the cscw arena
requires multiple disciplines, tools, and approaches. In
this spirit, careful, cognizant formal modeling of human
endeavors can potentially provide valuable insight. An-
other response has arisen from the business community,
saying that there are significant examples of success-
ful workflow, so we must continue to sell workflow and
to incrementally improve it. We believe there can be
significant learning by doing this. We hope that it is
coupled with a paradigm shift away from the emphasis
on prescriptive procedure enforcement.

The authors are associated with an ongoing research
group, the Collaboration Technology Research Group
(CTRG), at the University of Colorado and at South-
ern University, which is actively addressing these is-
sues within our "Next Generation Workflow" research
project. Within CTRG, our response has been research
work to redirect the emphasis of work flow to dynamic
goal based systems [17]. Members of CTRG have con-
ducted numerous office studies, and built workflow sys-
tems. A frequent reaction to the description and model
produced by the study is "This is an interesting view of

our office, but we don' t do our work like this anymore -
we've changed. " A frequent reaction to the installation
of workflow systems is "Nice technology, but it doesn' t
allow us the flexibility to handle the many exceptions,
and to really get our work done expeditiously." Dy-
namic change can help to address these statements. We
have found that in many environments, workflow can be
very helpful if it is dynamic, flexible, changeable, knowl-
edgable, and open. Our ongoing CTRG work strives to
avoid the pitfalls articulated by Robinson and Bannon
[14] by:
* not imposing an order on events or people, but op-
tionally displaying what has been done (and by whom)
in the past,
* not precluding people from, at any time, reworking
the model, but encouraging and assisting in evolution-
ary change and exception handling,
• not insisting that the model be determinant and con-
sistent, but allowing multiple interpretations of multiple
realities.

We argue that workflow systems do not need to be
dictators; they can be friendly assistants that help you
reason about your work. They are available when and
if you want them. This paper describes one impor-
tant component of our CTRG research effort. One
type of reasoning help is to reason about procedural
change (both temporary and permanent) within struc-
tured work. To perform this type of reasoning, it is
useful to have formal definitions and apply mathemati-
cal analyses.

Models of workflow can be quite useful and informa-
tive planning tools without being used as an execution
component Presentation of multiple views of how an
organization is perceived to work (or how it has done
procedures in the past,) as well as other information
presented by the model, can be very useful to workers
without any automation. Different degrees of procedu-
ralization, and different types of computer augmenta-
tion are appropriate for different types of organizations.
Thus, the work in this paper is independent of any ex-
ecution component of any particular workflow system;
this is particularly appropriate if the organization per-
forms primarily unstructured activity.

The rest of the paper is organized as follows: In sec-
tion 3 we introduce the running example which will be
used throughout the paper. In section 4 we establish our
mathematical notations. In section 5, the notion of flow
net is introduced as a model of workflow procedures,
we also recall some well-known notions from the Petri
net theory. Next, the dynamic change within workflow
procedures as well as the synthetic cut-over change are
modeled in section 6 in terms of net replacemment. Fol-
lowed, in section 7, by the introduction of the notion of
correctness of dynamic change. Finally, our main results
are stated in section 8.

12

3 A Dynamic Change Example
This paper presents a formal definition of dynamic
change, and a mathematical approach to its analysis.
We stress that this analysis is to be used interactively
and synergistically, with end users mediating the social
and organizational aspects of the changes [10]. Some
changes are easy, some are difficult. It is typically easy
to make an isolated change to the value of a variable
in a database - this is considered "normal". Likewise,
change of policy in many organizations is considered
"normal," e.g. 'Our future policy will reimburse our
employees 30c per mile, rather than the previous 20c
per mile.' These types of changes tend to be easier to
implement than structural change. If we consider a pro-
cedure as one type of structure within an organization,
then change to that procedure is structural change. One
company, when audited, found that they did not have
sufficient separation of functional control within their
procedures, and was required to make severe structural
change that transcended the boundaries of many pro-
cedures. This is the type of complex change that our
analysis can greatly assist.

This type of dynamic change can at times encounter
"dynamic bugs" which would not appear within more
static change. As an example of the type of "dynamic
bug" problem that we are addressing,

E x a m p l e 3.1 consider an office procedure for order
processing within a typical electronics company. When
a customer requests by mail, or in person, an electronic
part, this is the beginning of a job (also called a work
case.) A form is filled out by the order administrator;
the job is sent to credit check, and then to inventory
check. After the evaluation, either a rejection letter is
sent to the customer, or the order is approved and then
sent to shipping and billing. The shipping department
will actually cause the part to be sent to the customer;
the billing department will see that the customer is sent
a bill, and that it is paid. This procedure is shown in
Figure [1].

Suppose that the organization decides to initiate the
credit checking and the inventory checking steps at the
same time for speedier processing (see Figure[3]). This
is an example of structural change because the struc-
ture of the procedure is changing. An even simpler
structural change that we will analyze is to move the
billing step to take place before the shipping step (see
Figure[6])- there could be many reasons for wanting to
do this. One way to do this change could be to delay and
not process any new customer requests until after the
change, and simultaneously, wait until all ongoing jobs
are completed before making the change. This means
that no jobs are in progress when the change is made.
This strategy, called flushing the system, is safe, but
quite costly - it might take years for the current jobs

(perhaps thousands) to all reach completion, and this
may delay thousands of new customers for an unaccept-
ably long time. Another unpleasant strategy is to abort
all jobs in progress. Another is to have the old version
and the new version of the procedure simultaneously
available. There are variations of these strategies tha t
are used, which have more or less safety. In this pa-
per, we are concerned with making structural changes
safely without flushing the system. This is the defini-
tion of dynamic change. In many situations, much can
be gained if we can understand, and safely perform dy-
namic structural change. Typically, the more quickly
we can convert all jobs to this change, the better.

A dynamic change problem occurs in our example if
a job has been processed by shipping at the time of
the change but not by the billing. This job is then
sent to archive according to the instructions of the new
procedure Thus a customer will not be billed for the part
that he receives. This situation is depicted graphically
in Figure [6]. If there are a large number of jobs being
in the same situation at the time of change, then a large
number of customers will not be billed. This is a very
simple example of a "dynamic bug;" many of these bugs
are much more difficult to detect and can have strange
and insidious effects.

Our approach to analyzing change is mathematically
detailed in later sections of this document, and can be
informally summarized as follows. Given a specific pro-
cedural change, we define its change region as the part
of the net containing all the activities directly affected
by the change. The old region is the change region prior
to the change, and the new region is the change region
after the change. These notions of change regions will
be discussed later. We think of the change as replacing
the old region by the new region within the specification
of the procedure (see Figures [1,2,3]). The jobs evolving
outside the change region are not affected by the change.
The jobs inside the old region are "transferred" to the
new region. This transfert can result in the creation of
new jobs or the destruction of old jobs.

After a change takes place, the work resumes its pro-
gression in a new environement as described by the new
procedure. The change is said to be correct if the re-
sumption is intended to finish the in-progress work ac-
cording to either the old or the new procedure. Clearly,
this correctness criterion allows us to capture the dy-
namic bugs described earlier. In some cases, the new
change region is such that it contains both the old
and the new region (see Figures [7,8,9]). This class of
changes, referred to as synthetic cut-over change, is in
some cases safer than the immediate change. For in-
stance when downsizing occurs (i.e. the new region can
do less than the old region), we can prove that the syn-
thetic cut-over change is correct.

13

4 Pre l iminar i e s

In this section we recall some basic mathemat ica l no-
tions and we establish our notat ion and terminology.
The set of integers is denoted N and N + denotes the set
of positive integers. For a finite a lphabet ~, ~* denotes
the set of all finite words over ~ and)~ denotes the
empty word. The concatenation of two words w and w ~
is denoted ww ~. For wl, w2 E ~*, the shuffle of Wl and
w2, denoted wtiiw2 is defined inductively as follows:

alia = AIla = a & axlllbx2 = a(xlllbx2) U b(axlllx2)

for a,b E ~ and Xl,X 2 E E*. As usual
this operator is extended to languages; LI[[L2 =
{w llw2 I LI ,w~ E L2} .

5 Workf l ow P r o c e d u r e M o d e l i n g

The Petri Net model [13] is a simple, yet rigorous math-
ematical formalism, which has been used to model sys-
tems which exhibit concurrency, communication and
choice between different courses of actions. They have
a nice graphical representat ion which offers a very clear
impression of the concurrent and nondeterministic as-
pects of the systems they model. A workfiow procedure
is modeled by a flow net. I t is a Petri Net with two
distinguished places; namely the input place and the
output place. The activities of the procedure are mod-
eled by transitions, each of which has a name, at least
one input place and at least one output place. Formally,

D e f i n i t i o n 5.1 Let ~ be a finite alphabet of activity
names. A f low n e t over ~ (net for short) is a system
M = (S, T, F, Lab; sin, sour) which consists of:
• disjoint, finite and non empty sets S of p l a c e s and T
of t r a n s i t i o n s .
• F C_ (S × T) U (T × S) the f low r e l a t i o n which sat-
isfies the following properties:

vx S, "xUx" # 0.

Vt E T , ' t ~ Oandt" ~ 0.

• Lab : T > Z the t r a n s i t i o n l a b e l i n g function.
• sin E S the i n p u t p l a c e of M , and sou~ E S the
o u t p u t place of M which are such that: "sin = 0 and
s:u t = 0. Moreover, the set {sin, Sour) is called the
i n t e r f a c e of M.

The notion of marking and marked nets are defined as
usual. A function m : S > N is called a marking. In
particular, 0 denotes the empty marking, and if i E N,
then ~ (resp. ~) is the unique in i t i a l (resp. t e r m i n a l)
marking which consists of i tokens in the input (resp.
output) place and zero tokens elsewhere. M a r k (M) de-
notes the class of all markings of M. A marked net

.h4 = (M; m) consists of a net M and a marking m of
M.
The dynamic component of a net evolves around the
well-known notion of transit ion firing, and firing se-
quences. Formally,
• Let M be a net, and m be a marking of M. A
transit ion t of M is enabled under m, writ ten m [t) iff
Vs E " t ,m(s) ~ O. In this case the firing of t, denoted
m It) m t, is said to lead to the marking m t where:

m'(s) = m(s) - 1 if s E ".t - t ' ,
m ' (s) = m (s) + l i f s E t - t,

m"(s) = re(s) otherwise.

e Let M be a net, let m and m ' be markings of M, and
let w E T*. Then w is an m-firing sequence leading to
m l i f f e i t h e r w = A a n d m = m ' o r w = w ' t w i t h t E T ,
m [w') m " and m " [t) m ' for some marking m " of M and
some w' E T*. In this case m ' is said to be r e a c h a b l e
from m. F i r e (M , m, m') denotes the language of all
m-firing sequences leading to m ' and Reach(M, m) de-
notes the class of all markings which are reachable from
m. This notion is lifted to the level of activity names by
considering the sequence of names tha t compose a fir-
ing sequence. Thus, if w is an m-firing sequence leading
to m ' , then u = Lab*(w) is a labeled m-firing sequence
leading to m' . The language of all labeled m-firing se-
quences leading to m ' is denoted Lang(M, m, m').

E x a m p l e 5.1 In the graphical representation of a
marked ne t , a transition t labeled u is drawn as a thick
line segment with the label u next to it, a place is drawn
as a circle , the flow relation as a set of edges and a
token is drawn as a black dot next to the place where
it resides. The input and output places will be drawn
as grey-colored circles, their distinction should be clear
from the picture. Figure[If depicts the office procedure
for order processing which is in progress. At this stage
the credit check has been completed and the inventory-
check is to be initiated next. The activity names are
(hopefully) clear from the context.

An execution of a net modeling a workfiow procedure
starts in an initial marking, say z' where i E N +, and
ends when one of the terminal markings, say ~ where
j E N +, is reached. Note here tha t an execution may
take a "bad path" (e.g. deadlocks or diverges), meaning
tha t it can reach a marking m from which it cannot
reach a terminal marking. Formally,

D e f i n i t i o n 5.2 Let M be a net, let m , m ~ E M a r k (M)
and let w E F i r e (M , m , m ') . if m = t for some i E
N + and m' = ~ for some j E N +, then u is called an
e x e c u t i o n s e q u e n c e which c o n s u m e s i tokens and
p r o d u c e s j tokens.

The next definition introduces a special kind of nets
called in the sequel transactions. These are nets which

14

from the token input-output stand point behave like a
transition which has a single input place and a single
output place. In other words, each time a transaction
consumes i tokens, it will produce i tokens. Further-
more, reaching a terminal marking is always guaranteed.
Formally,

D e f i n i t i o n 5.3 A net M is a t r a n s a c t i o n iff for every
i • N + the following conditions are satisfied:
• ~ G Reach(M,1).
• Vm • Reaeh(M,z'),~ • Reach(M, m).

In the case of a transaction, an e l e m e n t a r y execution
is a firing sequence which consumes i token (and hence
produces 1 token). In some cases, many executions may
be initiated at the same time. The resulting sequence
is referred to as c o m p o u n d execution. Note here, that
combining elementary executions results in a compound
execution, but the converse does not in general hold.
For instance some special measures (i.e. execution se-
quences) may be triggered if the load of the system
reaches a certain level, and which would not be oth-
erwise. The property of d e c o m p o s i t i o n , introduced
next, deals with this issue. Formally,

D e f i n i t i o n 5.4 A transaction M is d e c o m p o s a b l e iff
for every i • N +

Fire(N, i, i) = F i re (N , 1, 1)1]... HFire(N, 1, 1)/

Finally, we define a particular operation on marked nets
which will be used later. Let .A4 and .h4 ~ be marked nets
with identical interface-markings. The fus ion of .h4 and
.A4 ~, is the marked net denoted fuse(.h4, .A4~), which is
obtained by:
• removing all but the interface tokens from .A4 ~,
• removing the tokens from the interface of .A4, and
• merging the output places of both nets.
The interface of the resulting net is the interface of .A4'.

E x a m p l e 5.2 The net called the new region depicted in
Figure[8] is the fusion of the nets depicted in Figure[5].

6 Dynamic Change Modeling
The change that a workfiow procedure M undergoes is
said to be d y n a m i c . Dynamic entails that the change is
made in the midst of execution (i.e. while some tokens
are in progress). In terms of our net-based model, the
change is viewed as the replacement of a marked subnet
All = (N1;ml) by a marked subnet Af2 = (N2;m2) in a
marked net .M = (M; rn) which results in a marked net
.A4' = (M';rn ') . Here, N2 is the new version of N1, ml
is the token distribution in N1 prior to the change, m2
is the token distribution in N2. All is referred to as the

old c h a n g e r eg ion , .hf2 as the new change region,
.h4 as the old ne t , and .A4 ~ as the n e w ne t . Another
entity which, from a modeling stand point will be part of
the change, is the (labelled) sequence w of all activities
which took place prior the change. This sequence will
be referred to as the p r e - c h a n g e sequence. Its role is
crucial for the correctness criterion (to be introduced in
the next section).

The question as to how the change regions are selected,
remains unsettled. Typically the old change region con-
tains all the activities tha t are affected by the change
(e.g. deleted, reorganized etc...), and is defined as be-
ing the smallest net containing these activities. This
means that when selecting the old change region, places
(with their tokens) connected to the affected activities
as well as the connecting edges are part of the old change
region. The next important issue relevant to the selec-
tion process is how the old change region is connected
to the its context (i.e. the portion not affected by the
change). More formally, this can be rephrased as what
type of commnunication or interaction exists between
the old change region and its context. In our case, the
old change region is connected to the context through
its interface. Thus the communication is restricted to
token exchange through the interface. Note here that it
is always possible to select appropriatly the old change
region. For, in the worst case the old change region can
be the whole net. The new change region embodies the
changes made to the procedure and is also a marked net.
Here the marking is viewed as a t o k e n t r a n s f e r t from
the old change region. As we shall see, this transfert can
result in the creation of new tokens or the destruction
of tokens. However, the interface-marking is preserved.

When all these conditions are satisfied, the replace-
ment may take place, resulting in a new marked net
.MI= (M';rnl) . Intuitively, .h4 ~ is obtained from .h4
by removing All from .M and "plugging" Af2 in the re-
maining net by using the interface as sockets. The pair
5 = (Afl,Af2) is called a r e p l a c e m e n t pa i r appl ica-
ble to .h4, and the marked net .A4' = (M'; m'), denoted
.M fall ~ Af2], is referred to as the r e p l a c e m e n t o f
All by Af2 in .h4. Formally,

D e f i n i t i o n 6.1 A d y n a m i c c h a n g e is a system C =
(w, .A4,5, .A4') where:
• .h4 = (M; rn) and .A4' = (M'; m t) are flow nets.
• 5 = (Afl,Af2) is a replacement pair applicable to .A4
such that .M' = .M fall ~ Af2].
• w E Lang(M,~,m) , for some i E N +.

E x a m p l e 6.1 Returning to our example of the office
procedure for order processing, the first change reflects

15

a new organizational policy under which it has been de-
cided to initiate the Credit-Check and the Inventory-
Check at the same time. The old version, referred
to as Order1 is depicted in Figure]If, the new ver-
sion, referred as Order2, is depicted in Figure]3], the
change regions are depicted in Figure]3], and the pre-
change sequence Wl = Order-Entry.Inventory-Check.
This change will be referred to as Change1.

The execution resumes in Order2 and sometime later
another change is carried out. Here, the organization
decides to initiate the shipping activity after the billing
activity.

E x a m p l e 6.2 The old net for this change, referred to
as Order3 is depicted in Figure]if, the new net, re-
ferred to as Order4, is depicted in Figure]6], the change
regions are depicted in Figure]5] and the pre-change
sequence is w2 = Order-Entry.Credit-Check.Inventory-
Ckeck.Evaluation.Approval.Shipping. This change will
be referred to as Change2.

The dynamic change we have described earlier can
be termed as i m m e d i a t e . In other words, whatever
change an organization decides to do takes effect imme-
diatly. As opposed to d e l a y e d change which we propose
to describe next. The delayed change is called synthetic
cut-over change. Here, both the old and the new change
regions are maintained in the new procedure. This en-
sures that tokens already in the old change region will
continue their progression as if the change did not take
place immediatly (which justifies the at tr ibute delayed).
However tokens evolving in the context of the old change
region will never enter the old change region (but pos-
sibly new change region); that is to say that in view of
these tokens the change is immediate.
The motivation behind this class of changes will become
clear later. We will show that in some cases, delayed
change is much more safer that immediate change. In
other words, it is possible to guarantee correctness for
delayed change whereas this is not the case for the im-
mediate change. Formally,

D e f i n i t i o n 6.2 Let C = (w,.h4,5,.A4 ~) be a change
over E where ~ = (A/1,H2). The s y n t h e t i c c u t - o v e r
c h a n g e (SCOC for short) associated with C is the
change C = (w, f14, ~, ~4'), denoted scoc(C), such that

= (N 1 , / u s e (H 1 , 2 ¢ 2)) .

E x a m p l e 6.3 Figures]7-9] depict the components of
the SCOC associated with Change2. Note here that any
new job which enters the new net (depicted in Figure]9])
if it is not rejected, will go through billing and shipping.
Whereas the change did not really take place for the to-
ken inside the change region.

7 Dynamic Change Correctness

In dealing with the problem of correctness of the change
in workflow systems, we learned above all that there is
no single good notion of correctness and more impor-
tantly, different organizations are likely to be concerned
with different notions of correctness. Three key issues
have been crucial in defining our notion of correctness.
They are:

• f au l t p r e v e n t i o n : Changing a non-faulty system into
a faulty one should be considered as incorrect. A sys-
tem is faulty if it cannot reach a terminal marking. In
general, managers are reluctant to replace productive
systems by non-productive ones.
• c ance l all: Any change in which both the old net and
the new net are in an initial marking should always be
correct provided that the fault prevention property is
satisfied. This type of change is referred to as s y s t e m
r e p l a c e m e n t . The rationale behind this argument is
that system replacement corresponds to the case where
an organization decides to void whatever is in progress
prior the change, make the change and restart the sys-
tem.
• c o n s i s t e n c y . This issue is related to the meaning
of the change itself. Here, we are in situation where
some in-progress work (modeled by the pre-change se-
quence w) is resumed in a new environement (modeled
by the new net). At this point we are faced with two
possible situations. First, w ~ is intended to effectively
continue the work initiated through w. Second, the in-
progress work is effectively switched to a new environ-
ment, namely the new net, which means that , according
to our model, the h y b r i d sequence ww I is a labelled ex-
ecution sequence of the new net. Formally,

D e f i n i t i o n 7.1 Let C = (w,.h4,5,.h4 I) be a change
where f14 = (M; m), .h4' = (M'; m') and let w be an el-
ement of Lang(M, i, m) for some i E N +. C is said to
be c o r r e c t iff for every j E N +, the following properties
hold:
• Lang(M, m, 3) ~ O ~ Lang(M' , m', 3) ~ ~.

• Vw' e L a n g (M ' , m ' , ~) , e i t h e r

w' e nang(M, m, 3) or ww' E Lang(M' , i, 3).

E x a m p l e 7.1 Concerning the change Change1 of Ex-
ample 5.1, all hybrid sequences are execution sequences
of the new net (Order2), which means that it is correct.

E x a m p l e 7.2 The change Change2 of Example 6.2
is not correct. Note that the only continuation
of Order4 is w' = Archiving. I t is clear that
neither w ~ is a continuation of Order3 nor the
sequence ww ~ = Order-Entry.Credit-Check.Inventory-
Check.Evaluation.Approval.Shipping.Archiving is an ex-
ecution of Order4 (a good has been shipped to a cus-
tomer, yet the eustomet has not been billed for it). But,

16

scoc(Change2) is correct. This is because all hybrid se-
quences are execution sequences of the old net Order2.
This example shows that in some cases delayed change
is safer than immediate change.

8 U p a n d D o w n S i z i n g

In this section we deal with two particular types of
changes which involve decomposable transactions. The
downsizing is a property of the change regions (assumed
to be here decomposable transactions). It stipulates
that every elementary execution of the new change re-
gion is also an elementary execution sequence of the old
change region; in other words the new change region can
"do less" than the old region. The upsizing property is
the dual counterpart of the downsizing property: here,
every elementary execution sequence of the old change
region is also an elementary execution of the new change
region, or equivalently the new region can "do more"
than the old region.
In order to formalize these notions, we will make use
of the formentioned terminology. A replacement pair
involving decomposable transactions is referred to a
D T - r e p l a c e m e n t pa i r and a change involving a DT-
replacement pair is referred to as DT-change .

Def in i t ion 8.1 Let ~ = (Afl,.hf2) be a DT-replacement
pair where .h/1 = (N1;rnl) and Af2 =(N2;m2) . Then 5
has
• the downs iz ing property iff

Lang(N2,!, T) C Lang(N1,_i,1).
• the ups iz ing property iff

Lang(N1, !, 1) C Lang(N2, 1_, 1).

E x a m p l e 8.1 Note here that Change1 has the upsizing
property and that Change2 has the downsizing property.

Our main results, the proof of which can be found in
[8], state that a dynamic change C with the upsizing
property can always be carried out correctly, wheareas if
C has the downsizing property, then its delayed version
scoc(C) is always corret. Formally,

T h e o r e m 8.1 Let C = (w,.h4,5,.A4 I) be a DT-change
such that ~ has the downsizing property. Then scoc(C)
is correct.

T h e o r e m 8.2 Let C = (w,.h4,5,.h4 I) be a DT-change
where 5 = (. ~ f l , A f 2) , J i l l ~- (N1;ml) and.hf2 = (N2;m2).
If ~ has the up sizing property then there exists a mark-
ing m2 of N2 such that the change C = (w,.A4,~,./~4')
with 5 = (.hfl, (N2, m2)), is correct.

The application of these results has already been
demonstrated in the previous examples: we saw

that Change2 had the downsizing property and that
scoc(Change2) was correct.

9 C o n c l u s i o n

In this paper we have introduced a mathematical for-
malism to model and analyze dynamic structural change
within workflow procedures. As an example, we have
defined a class of change called synthetic-cut-over which
maintains correctness when downsizing occurs. This
work is far from being complete, and many questions re-
main unanswered. Examples of such questions include
(and are not limited to) the investigation of different no-
tions of correctness, and the existence of a complete set
of elementary changes that can, under some conditions,
guarantee correctness and that are powerful enough to
model complex changes.

A k n o w l e d g e m e n t s We wish to thank the anonymous
referees for their helpful comments

R e f e r e n c e s

[1] Bender, E. Workgroup Computing, PC World Mag-
azine, January 1995 issue, pp.225-244.

[2] Bair, J. (Co-editor), Office Automation Systems:
Why Some Work and Others Fail, Stanford Univer-
sity Conference Proceedings, Stanford University,
Center for Information Technology, 1981.

[3] Bair, J. Contrasting Workflow Models, Proceedings
of GroupWare'93, pp. 229-237.

[4] Bracchi, G. and Pernici, B. The Design Require-
ments of Office Systems, ACM Transactions on Of-
rice Information Systems, 2, 2, April, 1984, pp. 151-
170.

[5] Bull Corporation, FlowPath Functional Specifica-
tion, Bull S. A., Paris, France, September, 1992.

[6] Chang, S.K. and Chan W.L. Transformation and
Verification of Office Procedures, IEEE Transac-
tions on ONce Information Systems, Vol. 6, No 2,
1988.

[7] Croft, W. B. and Lefkowitz, L. S. Task Support in
an Office System, ACM Trans. ONce Information
Sys 2, 3, July, 1984, pp. 197-212.

[8] Ellis, C., Keddara, K., Rozenberg, G., The Model-
ing of Dynamic Change Within Workflow Systems,
to apper as a technical report.

17

[9] Fischer, L. and White, T. (eds) New Tools for New
Times: The Workflow Paradigm by Fischer, L. and
White, T. (eds) Future Strategies Inc, Alameda,
CA. 1994.

[10] Hirschheim, R. A. Office Automation: A Social and
Organizational Perspective, John Wiley and Sons,
1985.

[11] Keddara, K., Ellis, C., Rozenberg, G., The Model-
ing of Dynamic Change Within Workflow Systems,
to apper as a technical report.

[12] Osterweil, L., Automated Support for the Enact-
ment of Rigorously Described Software Processes,
Proceeding of the Third International Process
Programming Workshop, 1988, pp.122-125. IEEE
Computer Society Press.

[13] Reisig W., Petri Nets: An Introduction. EATCS
Monographs on Theoretical Computer Science,
Springer Verlag, Heidelberg (1985).

[14] Robinson, M. Design for Unanticipated Use ...,
Proceedings of the Third European Conference on
CSCW-ECSCW'93, edited by Simone, C. et al.,
Kluwer Academic Publisher, Sept. 1993.

[15] Suchman, L. A. Office Procedure as Practical Ac-
tion: Models of Work and System Design, ACM
Transactions on Office Information Systems, 1, 4,
October, 1983, pp. 320-328.

[16] Vernadat,F., Leva, A.D., Giolito, P. Organization
and Information System Design of Manufacturing
Environments: the new M ~ Approach, Computer-
Integrated Manufacturing Systems, Vol. 1, No 2,
May 1988.

[17] Wainer, J. and Ellis, C. A. Goal Based Models o/
Collaboration, Collaborative Computing Journal,
Vol. 1, No. 1, June 1994.

18

Order-Entry

d, Credit-Check Q)

\

Figure 1

Shipping
-I

J ! I

Billing
-I

~~chiving

Rejection-Letter

Order-Entry

Credit-Check

()*
Inventory Check

Evaluation

The old region

@

Figure 2
Inventory-Check

-I • u a t i o n

_1
-I •

Credit-Check

~ @

The new region

der-Entry

Inventor~.) (~Cr~d~ot. Appr/~'~'@

/
Evaluation ~ \

Figure 3

Shipping

~~rchiving

Billing_[(~

Rejection-Letter

/
1 9

Figure 4
Order-Entry

f ~ Shipping
~ ~1 ~ •

- - '~ ~Credit Appr°val~ 0 -I - q . . Archiving
m~tc~r~ ¢ __~_ Check ~

] ffxx, rx,,,. Billing . ~ ~

Eval Rej~Jion_~tt~ ~ /

Shipping •

0 . ~ 0 -[~%chiving

Appr°val ~ O > >0 ~ ~0

Billing

The old region

Approval

Billing

Shipping

Arc iving

Figure 5

The new region

Figure 6
/ 7 ~ rder-Entry Billing Shipping

Inventol y /C~ lit - \ , | I Check' + tnecK ~ Approval / _ >
~, -~- / ~ " Archiving "~

\ /
Evaluation~ / ~ .n

Rejection-Letter

20

rder try
Shipping

-I

Bi~ing

_1 -I

> %Archiving

Rejection Letter

Figure 7

proval T___he old region t / /~

Approval
(

Shipping iiilg Billing-

• Shipping ..2

Archiving ~ -
The new region &

~ p Figure 8
proval

?illing ~Shipping

- ving

Approval ~ -[-"%.
0Ednetrry/7Q 0 >~//k,,. Shipping ~ Archiving

/ ~ \ o ~IB'"'.~S -/"
Invento?v ~Credit • Ch~_._ __~ Check ~ >-i "0 "i ~9

)~ JL ,..., ~ Billing Shipping[.~ ,

. . x ~ / X "- Archiving /
Evaluati°n X / X /

Figure 9

21

