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Abstract. Mapping between heterogeneous 
data is a central problem in many data-
intensive applications. In particular, using 
one mapping language causes serious 
limitations and makes mapping management 
difficult. In this paper, we propose a solution 
that can better control the trade-off between 
genericity, expressiveness and efficiency of 
mappings. Our solution considers mappings 
as models and exploits specific mapping 
engines. We define model weaving as a 
generic way to establish element 
correspondences. Weaving models may then 
be used by a model transformation language 
to translate source model(s) into target 
model(s). To validate our solution, we 
implemented a mapping prototype, called 
AMW, and used it for experimenting with 
significant application scenarios. 
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1. Introduction 
Mapping heterogeneous data from one 
representation to another is a central problem 
in many data-intensive applications. Examples 
can be found in different contexts such as 
schema integration in distributed databases 
[Özsu 1999], data transformation for data 
warehousing [Cui 2003], data integration in 
mediator systems [Lenzerini 2002], data 
migration from legacy systems [Bisbal 1999], 
ontology merging [Ehrig 2004], etc.  

 

 A typical data mapping specifies how data 
from one source representation (e.g. a 
relational schema) can be translated to a target 
representation (e.g. an XML schema). 
Although data mappings have been studied 
independently in different contexts, there are 
two main issues involved. The first one is to 
discover the correspondences between data 
elements that are semantically related in the 
source and target representations. This is 
called schema matching in schema integration 
[Batini 1986]; many techniques have been 
proposed to (partially) automate this task, e.g. 
using neural networks [Li 2000]. After the 
correspondences have been established, the 
second issue is to produce operational 
mappings that can be executed to perform the 
translation. Operational mappings are 
typically declarative, e.g. view definitions or 
SQL-like queries. Creating and managing data 
mappings can be very complex and time-
consuming if done manually. Recent work in 
schema integration has concentrated on the 
efficient management of data mappings. For 
instance, Clio [Miller 2001] provides 
techniques for the automatic generation of 
operational mappings from value 
correspondences obtained from the user or a 
machine learning technique. ToMAS 
[Velegrakis 2003] also provides techniques 
for consistency management while schemas 
evolve.  

 However, there is a trade-off between 
genericity and efficiency of mapping 
management. By supporting one 
representation language, e.g. relational or 
XML, mapping management can deal 
efficiently with correspondences using a fixed 
mapping language, e.g. SQL or XQuery. This 
approach can be extended to deal with 
multiple representation languages using 
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wrappers or extractors [Garcia-Molina 1995]. 
The development of such wrappers or 
extractors that also involve data mappings can 
be difficult and time-consuming.  

 To support arbitrary mappings in different 
languages with different semantics, generic 
model management has recently gained much 
interest [Bernstein 2003]. A model is a formal 
description of a design artifact such as a 
relational schema, an XML schema, a UML 
model or an ontology. By considering 
mappings between models also as models, 
much expressiveness, flexibility and 
genericity can be gained. Rondo [Melnik 
2003] is the first complete prototype of a 
generic model management tool. It uses a 
high-level algebraic language to manipulate 
models and mappings between models. As a 
result, Rondo can define data mappings 
between heterogeneous representations, and 
use the operators for complex model 
manipulation, including merging of models 
[Melnik 2003]. It uses its own mapping 
language called morphisms. However, there 
are many cases where a specific mapping 
language and associated engine has better 
expressiveness and can be more efficient, e.g. 
XSLT for mapping XML schemas.  

 In this paper, we propose a solution that 
can better control the trade-off between 
genericity, expressiveness and efficiency of 
mapping representation. In other words, our 
objective is to support generic data mapping 
(as in Rondo but with a different approach) 
while exploiting specific mapping languages 
and engines, such as Clio, ToMAS or an 
XSLT engine. We thus consider data mapping 
languages as extensible Domain Specific 
Languages (DSL) [GreenField 2004]. 

 To be able to achieve this trade-off, we use 
model weaving, which consists of establishing 
correspondences with semantic meaning 
between model elements. A weaving model is 
a special kind of model used to save these 
correspondences. Since a weaving is 
considered to be a model, it conforms to a 
definition language that specifies the possible 
formal structures. This language is expressed 
in terms of models as well. The created 
weaving model may be later used by a model 

transformation language to translate source 
model(s) into target model(s).  

 Capitalizing on previous work on schema 
integration and model management, the main 
requirements for generic data mapping 
management can be summarized as follows: 

1. be able to perform mappings between 
complex models, which implies to reason 
about correspondences between these 
complex models; 

2. be able to produce new mappings from 
existing ones, e.g. to adapt mappings after 
models change or to allow incremental 
specification of mappings; 

3. be able to generate operational mappings 
in different languages with their own 
mapping engine. 

 Thus, we can state the problem as follows: 
given two models, produce a weaving model 
that represents all relevant mapping 
correspondences. New weaving elements may 
be modified, added or removed. The weaving 
model is used to translate source model(s) into 
target model(s) or to generate a different 
mapping representation. The specification of 
weaving models must be extensible to be used 
in different mapping scenarios. 

 In developing our solution, we define a 
weaving model specification representing the 
basic concepts in a mapping system, e.g., the 
links between elements and a way to represent 
these links from different models. Considering 
weaving specifications also as models enables 
to add extensions capable of expressing 
complex semantics, such as foreign keys 
constraints or ontology mappings. We define 
a generic operation to create weaving models. 
A weaving model can also be modified to 
follow evolution of woven models. It can be 
transformed in two different ways: first, using 
a declarative model transformation language 
such as ATL [ATL 2005] to transform source 
models into target models and second, by 
translating into a different mapping 
representation (such as morphims or XSLT) to 
be executed in the corresponding 
transformation engine. Thus, we have one 
weaving model, and several weaving 
executions.                                                                                       



  

 To summarize, the paper has several 
contributions. First, we define a generic model 
management operation, called model weaving, 
to represent mappings between complex 
models (requirement 1). Second, we propose 
the supporting technology that enables the 
reuse and evolution of mapping definitions 
(requirement 2) and the generation of 
operational mappings in different languages 
(requirement 3). Third, we validate our 
approach using the ATLAS Model Weaver 
(AMW) prototype on application scenarios. 

All the results presented in this paper are 
supported by open source prototypes currently 
running under the Eclipse Modeling 
Framework (EMF) [DelFabro 2005].  

 This paper is organized as follows. Section 
2 presents an example that motivates the need 
for an adaptive mapping platform. Section 3 
describes formally model weaving and related 
concepts. Section 4 shows how data mapping 
is represented as a weaving. In Section 5 we 
present a validation example. Section 6 
discusses related work. Section 7 concludes. 

2. Motivating Examples 
We illustrate the general data mapping 
problem we address with two related data 
exchange scenarios. We also discuss the 
difficulty to create at the same time a generic 
solution capable to handle dedicated 
mappings and to integrate existing specialized 
solutions.  

Scenario 1: Libraries usually exchange data 
to have a standard catalogue format, both for 
standardization and interoperability purposes. 
Let us consider two data sources as show in 
Figure 1. One library has its own relational 
schema as defined by Relational schema R1. 
But it also agrees to use an XML format as 
defined by XML schema X1. Schema R1 has 
two tables: Books (ISBN [International 
Standard Book Number], Title, Author, SID) 
and Subjects (SID, Description), with the 
foreign key SID on Books referencing the 
subjects of a book. Schema X1 has the same 
basic structure except for the foreign key in 
books since this correspondence is 
represented by the nested structure between 
Books and Subjects.  

 
Figure 1. Relational to XML 

mapping 

 The translation from R1 into X1 is 
represented by the mapping R1_X1.  It has 
three mapping structures: Equals that is an 
inter-schema correspondence that indicates 
equalities such as R1.Books.ISBN = 
X1.Books.ISBN, R1.Books.Title = 
X1.Books.Title, and so on; FK is an intra-
schema correspondence indicating the foreign 
key constraint between R1.Books.SID and 
R1.Subjects.SID; Nested is another intra-
schema correspondence representing the 
nesting relationship between X1.Books and 
X1.Books.Subjects. These intra-schema 
correspondences guarantee the generation of a 
valid output model. 

Scenario 2: Continuing the library exchange 
problem, let us consider a second library that 
will use the XML schema X1 to integrate with 
its own data as indicated in Figure 2 by the 
Ontology O1. The ontology represents 
periodic data, e.g., newspapers and 
magazines. It has the attributes ISSN 
[International Standard Serial Number], Title 
(Subtitle), Publisher, Subjects (ID, 
Description) and Author.  

 
Figure 2. XML to ontology 

mapping 

 The mapping structures are represented by 
Mapping X1_O1. It has Equals and Nested 



  

with the same semantics as in Scenario 1, and 
adds two new mappings: Equivalent and 
Ordered. Equivalent shows that ISBN is 
equivalent but not equal to ISSN, because they 
both indicate the object identification, though 
with different meaning. The same is valid for 
Author because the book author represents a 
person while a magazine’s author is an entity. 
Ordered indicates that the periodics’ subjects 
must be ordered by Description. 

 Analyzing these two scenarios, we observe 
that all inter- and intra- model relationships 
need a structure to represent correspondences 
between elements, independently of mapping 
semantics. This motivates the creation of a 
common mapping core. In both scenarios, 
new additional structures are specified 
following different requirements, such as FK 
and Nested in Scenario 1, Equivalent, Nested 
and Ordered on Scenario 2. This shows the 
necessity to allow incremental specification of 
mappings, having an extensible core with 
dedicated subsets. This also shows the 
importance to have an expressive 
representation allowing to reason about 
correspondences between complex models 
like the Ordered relationship in Scenario 2. 
The mappings are represented in the same 
language. However, in both cases one may 
generate operational mappings in a different 
language with a more dedicated 
transformation engine (relational to XML and 
XML to ontology).  

3. Model Weaving 
In this section, we define model weaving, 
which is a generic operation that establishes 
correspondences with semantic meaning 
between complex model elements.  

 There is no accepted formal definition of 
the main elements behind model weaving, 
such as model, metamodel, model 
transformation, etc. The MOF specification 
[OMG 2002] describes a model-based four-
layer architecture, but with no formal 
definitions. In [Melnik 2004], there is a formal 
definition of models but not adapted to model 
weaving. In [Popa 2002] and in many other 
model platforms over relational databases, 
terms such as (relational) data model, 
relational schemas, nested schemas, database 

states, model instances are defined, but there 
is no standard taxonomy. In [Bernstein 2003], 
there is an informal starting point. Thus, we 
develop our own definitions.  

3.1. Models 

A system may be computationally represented 
by a model. A system is a group of 
interacting, interrelated, or interdependent 
elements that form a complex whole, for 
example a library system, an internet bid 
system, a car rental system, or a university 
application system.   

Definition 3.1 (Model).  A model is a directed 
graph G = (V, A). The set of vertices V 
denotes model elements. A model element 
from V has an identifier and a value. The 
identifiers may be implemented as URIs and 
the element value may be of any data type, 
such as integer, strings, classes. The set of 
labeled edges A denotes associations between 
model elements. 

 Let us illustrate Definition 3.1 with a 
model representing a book, with a single 
property title. We have a model M1 = (V, A); 
V = {r1 (“”), h1 (“has”), t1 (“Data 
mapping”)}; A = {(r1, h1), (h1, t1)}. The 
element identifiers are illustrated by r1, h1, t1. 
The element values are inside parenthesis, 
which in this case are character literals. The 
model element r1 represents the book record, 
t1 the title and h1 a containment. We have two 
associations between them. However the 
possible structures of the model are not 
explicitly defined. They are defined in a 
metamodel.  

Definition 3.2  (Metamodel). A metamodel is 
a special kind of model that specifies the 
structure of a model.  A model conforms to a 
metamodel. Given a model M = (V, A) and a 
metamodel MM = (V’, A’), for every model 
element e ∈ V, there is an outgoing edge to an 
element me ∈ V’, labeled as a Meta edge. We 
denote it by Meta (e, me).  

 Consider the model M1 presented above. It 
conforms to metamodel MM1 = (V’, A’); V’ = 
{record (“record”), title (“title”), hasA 
(“hasA”)}; A’= {(record, hasA), (hasA, 
title)}. MM1 defines the concepts of record, 
title and containment. The associations 



  

indicate source and target elements.  We have 
the following Meta edges from M1 to MM1: 
Meta (r1, record), Meta (t1, title), Meta (h1, 
hasA).  MM1 acts like a typing system. A 
metamodel conforms to a metametamodel.  

Definition 3.3 (Metametamodel). A 
metametamodel is a metamodel defining the 
base structure for all metamodels and models 
within a specific context. A metametamodel 
conforms to itself.  

 Consider the metamodel MMM1 = (V’’, 
A’’). V’’= {entity (“entity”), link (“link”)}. 
A’’= {(entity, link), (link, entity)}. V’’ has two 
elements, indicating an entity and a link. It has 
two associations, one going from an element 
to a link and another from a link to an 
element. MM1 conforms to MMM1, which 
means we have the meta edges: Meta (title, 
entity), Meta (record, entity) and Meta (hasA, 
link). All the other metamodels and models 
from this context are constructed in terms of 
links and entities. 

 We may have the same system, for 
instance a library system, represented by 
models in different implementation contexts, 
such as XML documents (XML trees); 
relational databases (relational model); or 
MDATM (a special kind of graph). Thus each 
context has a unique metametamodel.  

3.2. Model Transformations 

Model transformation is an operation that 
takes as input a set of models and produces 
another set of models as output. 

Definition 3.4 (Model transformation). A 
model transformation T is an operation that 
given a set of input models (M1,…, Mn), 
evaluates them and returns a set of output 
models (OM1,…, OMn). A transformation 
may be denoted by a model Mt, called a 
transformation model. A transformation 
model has the following properties: 

1. it conforms to a transformation 
metamodel; 

2.  the transformation body is created taking 
as values the input or output metamodels 

3.  source and target models are distinct; 

4. in the transformation execution, the input 
elements are matched based on the input 
metamodels; 

5. the output elements are created from the 
evaluation of the matched elements. 

 Let us illustrate model transformation on 
Scenario 1 in Section 2 where we need to 
translate relational database records into XML 
documents. The transformation takes as 
parameters the relational records, conforming 
to the library relational schema. In its body it 
is specified how the table Subject and its 
columns are translated into the corresponding 
nested node and its attributes. It produces as 
output an XML document. In the second 
scenario we have a transformation that 
specifies how XML nodes and attributes are 
translated into the ontologies and its 
attributes. The translation between these data 
sources is specified in a transformation 
language, such as an ATL or XSLT.  

3.3. Model Weaving 

Model weaving is a generic operation that 
establishes fine-grained correspondences 
between model elements. It receives as 
parameter a set of models and produces a 
weaving model.  

 A correspondence defines associations 
between elements from different models. 
Given two models M1 = (V, A) and M2= (V’, 
A’) and model elements e1 ∈ V’ and e2 ∈ V’’; 
the edge (e1, e2) (which is not a Meta edge) is 
said to be a correspondence.  

 However its syntactic nature does not 
allow defining complex structures to relate 
two or more models. We use a weaving model 
to capture more complex models 
relationships. 

Definition 3.5 (Weaving model). A weaving 
model represents correspondences in terms of 
its model elements. Let M1 = (V, A) and M2 = 
(V’, A’) be distinct models. Given elements e1 
∈ V and e2 ∈ V’, the correspondence (e1, e2) 
is denoted by the triple (e1, Mw, e2), where 
Mw = (Vw, Aw) is a weaving model. The 
structure of a weaving model is defined in a 
weaving metamodel. 



  

Definition 3.6 (Model weaving). Model 
weaving is a generic operation that takes as 
input a set of models (M1, …, Mn), a weaving 
metamodel MMw and returns a weaving 
model Mw.  

  A weaving operation has the following 
properties: 

1. it may define hooks to enable gradual 
refinement of  a weaving model; 

2. it may be defined in terms of model 
transformations. 

  After the operation execution, the models 
(M1, …, Mn) are woven models.    Note that 
metamodels and metametamodels may also be 
woven. 

 The model weaving operation is 
implemented by the operator Weave (see 
Figure 3). We describe it for the case of 
weaving two complex models, M1 and M2, 
but it can be extended to weave several 
models. The Weave algorithm first creates a 
weaving model conforming to MMw. Then for 
every element ei from M1, and every mej from 
MMw, it searches for matching elements in 
M1 or M2. It returns the correspondences 
found. The search is executed in the 
SearchCorresp function. This function is not 
generic, it must be modified to handle any 
different structure defined by each mej. The 
returned correspondences are used to create 
the element mnew, which associates them 
according to the structure of mej. We call it a 
weaving link element.  
 A variant of the algorithm has a weaving 
model Mw as an extra parameter. The 
signature is modified to Weave (M1, M2, 
MMw, Mw). This way, weaving elements may 
be incrementally added into an existing 
weaving model. In Figure 3, the code lines to 
be added to the basic algorithm are in bold 
font. 
   In Scenario 1, the mapping R1_X1 has two 
sets of correspondences, one set with the 
relational schema elements from R1 and 

another with the XML schema elements from 
X1, illustrated by the dashed lines. To be able 
to create links between these two models, we 
must create a weaving link element. This is 
illustrated by Equals, FK and Nested. The 
same is valid for the second scenario, where 
mapping X1_O1 defines correspondences with 
an XML schema and with an ontology. It has 
equality, equivalence, nested and ordered 
semantics. The mapping is represented by a 
weaving model created by a weaving 
operation.  

Weave (M1, M2, MMw, Mw) 
If Mw is null
    Mw = createWeavingModel(MMw);

for all ei in M1 do
  begin

for all mej in MMw do
begin

 corresp = SearchCorresp (mej, ei, M1, M2); 
    for all ek in Mw 

           if not exists ek with corresp
begin

mnew = Create(mej, corresp);
Mw = add ( mnew ); 

end 
end

  end
return Mw;

 
Figure 3. Algorithm to weave 2 models 

 The weaving metamodel is not a fixed 
metamodel. It might be extended to form 
dedicated weaving metamodels. This is done 
using the composition operation. 

Definition 3.7 (Composition operation). The 
composition operation takes as input a 
weaving metamodel MMw, a metamodel MMe 
and a weaving model Mwc. It returns a new 
weaving metamodel MMwn, which is the 
composition of MMw and MMe.  
The operation is defined as MMwn = 
ComposeMM (MMw, MMe, Mwc). The 
composition semantics between MMw and 
MMe are specified in the weaving model 
Mwc.



  

abstract class WElement{
    attribute name : String;
    attribute description : String;
    reference model : WModel; }
abstract class WModel extends WElement{
    reference ownedEl[*] container: WElement;
    reference wModel[1-*] container: WModelRef; }
abstract class WRef extends WElement{
    attribute ref : String; }

abstract class WModelRef extends WRef{
    reference ownedElementRef[0-*] 
                      container : WElementRef;}
abstract class WElementRef extends WRef{
    reference modelRef : WModelRef; }
abstract class WLink extends WElement{
    reference end[1-*] container : WLinkEnd; }
abstract class WLinkEnd extends WElement{
    reference link : WLink oppositeOf end;
    reference element : WElementRef; }  

Figure 4. Abstract weaving metamodel

 The operation reads Mwc and executes the 
specified semantics. It has as principal 
requirement the creation of at least one new 
element new_e in the resulting weaving 
metamodel. This element put into relation one 
element mme ∈ MMe and one element mmw 
∈ MMw, for instance by the means of 
references, containments or inheritance. It 
prevents from creating a mal-formed weaving 
metamodel with two sets of elements without 
any association between them. It is a 
metametamodel-specific operation. 

4. Data Mapping 
We propose to use model weaving as the base 
for a solution to various data mapping 
problems. The first step to achieve this is to 
define weavings capable of reasoning about 
complex mappings. Then the weavings 
metamodels should be adapted as application 
requirements evolve. We call this 
correspondence discovery. Weaving models 
are further used as a guidance to generate 
operational mappings in different 
transformation languages. This is called 
operational mapping production. 

4.1. Correspondence Discovery 

We specify a minimal weaving metamodel 
used as a basis for a mapping platform. It may 
be further composed with another metamodels 
to create dedicated weaving metamodels. The 
metamodel represents the concepts of weaving 
links. We use as metametamodel Ecore [EMF 
2005]. The weaving metamodel is thus 
specified in a textual language to represent 
metamodels in Ecore called KM3 [Bézivin 
2004]. We provide an excerpt of our weaving 
metamodel in Figure 4.  

 WElement is the base element from which 
all other elements inherit. WModel represents 

the root element that contains every model 
element. We have the notion of link extremity 
(WLinkEnd). It makes reference to a 
WElementRef. This element captures the 
necessary information to make reference to 
the elements of the woven model, providing a 
flexible identification mechanism. The 
element WLink references multiple 
extremities, representing a weaving link. 
WModel’s contains also WModelRef’s, which 
is equivalent with the reference of WLinkEnd 
and WElementRef, but for models as a whole. 

 The weaving metamodels must adapt to 
follow evolution in the woven models and in 
the mapping requirements. New data mapping 
specifications, e.g. weaving metamodels, are 
incrementally composed with existing ones, 
being able to express other complex 
relationships. Each extension may be 
separately saved and further reused (by 
composition) with other weaving metamodels, 
according to different mapping requirements. 

 Consider we have a weaving metamodel 
MMw. It contains the elements representing 
the abstract metamodel described in Figure 4. 
We have another metamodel MMdb with 
elements representing foreign keys (fk_e) and 
generation of automatic values (av_e). We 
compose MMw with MMdb, adding an 
inheritance association between fk_e and 
WLinkEnd, and between av_e and WLinkEnd. 
The elements fk_e and av_e become capable 
of representing element correspondences, and 
add semantic meaning to them. The new 
weaving metamodel may be composed in turn 
with a new extension that contains one 
element defining ordering of elements.  

 However the existing metamodel must not 
change in a way it interferes with existing 
weaving models. For example we may have 
an element e1 that is woven with an element 



  

e2 by the means of an equality element e (its 
structured is defined in a mequal element in 
the metamodel). The mequal element should 
not be excluded or modified from the 
metamodel; otherwise the current weaving 
model becomes invalid. In this case it is 
necessary to recreate the model. 

4.2. Operational Mapping Production 

A weaving model is not an executable entity: 
the translation between data sources are 
executed by model transformations that use 
the weaving as specification. However 
weaving models should not be dedicated to 
one transformation engine. There are many 
performing engines and languages that could 
be used in specific cases. A weaving model 
may also be translated into another mapping 
language that will be used in its own mapping 
platform.  

 It is not desirable to directly create a 
transformation from source model(s) into 
target model(s); otherwise one should write by 
hand a new transformation for every weaving 
model. We define algorithms based on the 
weaving metamodel and model elements. 
They automatically produce different 
transformation models, which body takes as 
values the woven metamodel elements. We 
may produce transformations in different 
transformation languages or mappings, such 
as ATL, SQL queries, XSLT or morphisms. 
They are further serialized into the 
appropriated representation. The serialized 
form takes as input the woven models, to 
actually perform the data translation between 
the data sources in the dedicated 
transformation engine. 

 Thus, we may obtain different 
transformations as output based on the same 
weaving. This is possible because despite 
having different syntax, expressive power and 
capacity of calculation, the structure of 
existing transformation languages follows 
similar standards. This enables the creation of 
weavings targeted for transformations in 
general. We describe such standards below: 

- input and output models and their 
metamodels: are the source and target 
models, e.g. an XML document, an 

ontology, a relational table. The 
metamodels may be explicitly specified or 
implicitly implemented in one ad-hoc 
engine; 

- rules: are self contained commands 
containing all the necessary constructs to 
translate source elements into target 
elements , e.g. an SQL view, an XSLT 
stylesheet or an ATL rule; 

- input elements: define which elements 
from the input model are transformed. 
Input patterns usually relate elements 
formed by sub-elements or attributes, e.g. 
ATL input patterns, XSLT matched 
templates or SQL select from clauses;  

- output elements: define the target 
elements, strictly related with the input 
elements, e.g. ATL out patterns, XSLT 
elements or SQL create view clauses;  

- selection expressions: define filters in the 
input patterns to recuperate only a set of 
elements, e.g. ATL filters, XPath 
expressions or SQL where clause;  

- equivalence expressions: define the 
correspondences between the attributes of 
a given input element and the attributes of 
the output elements, e.g.  ATL bindings, 
XSLT value-of or SQL relation from the 
select to the view clause. The weaving 
elements indicating correspondences and 
their semantics should be translated as 
equivalence expressions;   

- calculation expressions: return a new 
value after executing calculations over 
input element to be used in an equivalence 
expression, e.g. OCL expressions [UML 
2004], XPath or SQL functions. 

5. Validation 
In this section, we present a validation based 
on our ATLAS Model Weaver (AMW) 
prototype which we use to experiment with 
the scenarios defined in Section 2. The 
prototype is available in the Eclipse GMT 
project [GMT 2005]. 



  

5.1 Model Weaver Prototype 

AMW is a component-based platform with 
separated components to handle each weaving 
requirement. The platform is based on the 
Eclipse [Eclipse 2005] contribution 
mechanism: components are defined in 
separated plugins. The plugins are further 
interconnected to create the model weaver 
workbench. Components for user interface, 
matching algorithms and serialization of 
models may be plugged as necessary. We 
extend an existing architecture for model 
manipulation (Eclipse EMF [EMF 2005]). 
This extended component coordinates the 
weaving actions. We use the EMF dynamic 
API to obtain a standard weaving editor. The 
editor adapts its interface according to the 
weaving metamodel. Metamodel extensions 
are plugged as KM3 files. Each KM3 file may 
have an associated user interface to help in the 
matching task. As representation 
metametamodel we use Ecore, which is the 
Eclipse EMF metametamodel similar to the 
OMG Meta Object Facility [OMG 2002]. The 
ATL transformation engine is plugged as the 
standard transformation platform. 

5.2 Experiments 

To demonstrate support for data mapping 
requirements, we start from the minimal 
weaving metamodel as a basis. We 
incrementally refine it with extensions 
adapted for the application scenarios in 
Section 2. The created weaving should be 
used as a specification to automatically 
generate transformations for different engines. 

 We first defined a concrete version of the 
abstract weaving metamodel, and created a 
weaving model to represent mappings R1_X1 
and X1_O1, first without specific semantics. 
We were able to define similar structures as 
morphisms and value correspondences. They 
could be used in their respective mapping 
environments, thus showing the feasibility of 
integrating different mapping solutions in a 
common core. 

 We incrementally adapted the existing 
weaving metamodel (represented by MMw), 
e.g., mapping specification, composing it with 
the new extensions until having a weaving 

metamodel with all necessary semantics. We 
have thus dedicated mapping specifications 
with variable expressive power: we 
represented from simple element links such as 
Equals; then Nested and FK constraints; 
Equivalent; until complex ones as Ordered, as 
shown in Figure 5. This brings an advantage 
over all purpose and complex mapping 
languages because they are usually designed 
focusing a specific environment and do not 
adapt well.  

FK

OrderedEquivalent

Metamodel 1

Metamodel 2

Metamodel 3 (Scenario 1)

Metamodel 4 (Scenario 2) 

NestedEqualsMMw

NestedEqualsMMw

NestedEqualsMMw

EqualsMMw

 
Figure 5. Composed weaving 

metamodels 

 The weaving model was created and 
modified in parallel with each new metamodel 
composition, e.g., as soon as we created a new 
metamodel, we changed the associated model, 
which did not invalidate the existing elements. 
 To be able to weave models created in 
different contexts, the relational schema was 
imported into our tool. The same applies to 
the XML schema and to the ontologies. We 
used simplified versions of the models and 
metamodels, capable of representing only the 
desired structures.  

 The weaving model is used as specification 
for producing operational mappings in two 
different languages, ATL and XSLT. We also 
generated morphisms, obtaining a different 
mapping representation.  

 We choose ATL because it enabled us to 
apply sound model management concepts; 
XSLT with XPath because it is the standard 
transformation language for XML documents, 
with several engines available; and morphisms 
to obtain a different mapping representation, 



  

even if it is not capable of expressing all the 
desired semantics.  

 We produced an ATL model, a XSLT 
model and a model representation of 
morphisms. They were serialized in their text 
format. The generated ATL and XSLT were 
actually used to transform the source models 
into the target models. We show in Figure 6 
an excerpt of the generated operational 
mappings from Scenario 1 with the rules to 
handle nested and foreign key semantics. 

XSLT rule
<xsl:tem plate m atch="bookR cds">
     <xsl:e lem ent nam e="books">
          < xsl:a ttribute nam e="ISBN">
               < xsl:va lue-of se lect="@ ISBN "/>
          < /xsl:a ttribute>
          < xsl:variab le nam e="sid" se lect="@ SID"/>
          < xsl:apply-tem plates se lect="/descendant-or-
               se lf ::subjectRcd[@ SID =$sid]">
          < /xsl:apply-tem plates> 
     < /xsl:e lem ent>

</xsl:tem plate>
<xsl:tem plate m atch="subjectR cd">
     <xsl:e lem ent nam e="subjects">
          < xsl:a ttribute nam e="SubjectID ">
               < xsl:va lue-of se lect="@ SID"/>
          < /xsl:a ttribute>
     < /xsl:e lem ent>
</xsl:tem plate>

A TL rule
ru le  Books {
     from  
          db : R DBM S!BookR cd
     to
          xm l : XM L!Book (
               ISBN  <- db.ISBN,
               subjects <- R DBM S!SubjectR cd->
               a llInstances ()->select (e  | e.S ID  =  db.S ID )
          )
}
ru le  Subjects {
     from
          db : R DBM S!SubjectR cd (R DBM S!BookR C D->
               a llInstances ()->exists(e | e.S ID  = db.S ID ))
     to
          xm l : XM L!Subject(
               SubjectID  <- db.S ID ,
          )
}

 
Figure 6. Generated XSLT and ATL 

 In Figure 7 we see the AMW user interface 
for Scenario 1. In the left we have the source 
relational database schema, in the right the 
target XML schema, and in the middle the 
weaving model created conforming to the 
Metamodel 3. 

6. Related Work 
Data mapping has been extensively studied in 
the literature. There are several solutions 

focusing on specific application domains, or 
on specific mapping problems. Clio [Miller 
2001 and Popa 2002] concentrates on 
mapping schema-based structures such as 
XML and relational databases, generating 
SQL queries or XSLT transformations based 
on value correspondences. Our model 
representation of mappings enables mapping 
models with different kinds of structure, and 
we may generate transformations for a variety 
of execution engines.  

 In [Omelayenko 2002] a rich mapping 
meta-ontology is defined to map between 
XML DTDs and RDF schemas concentrating 
on business integration. We have rich 
mapping representations as well, however our 
extensible weaving metamodel may be 
applied to a wider family of problems. 
MAFRA [Maedche 2002] is a framework for 
aligning ontologies. It introduces the notion of 
semantic bridges for mapping between 
ontologies and it creates one “semantic bridge 
ontology” with these mapping constructs. It 
has a similar approach as the mapping 
ontology for business integration, focusing on 
ontologies in general, not fitting for specific 
mappings requirements for other contexts, 
such databases and XML documents.  

 Rondo [Melnik 2003] is the most general 
solution. It implements generic model 
management operators such as Match¸ Merge, 
Extract, as well as the necessary semantics to 
generate well-formed models. It solves many 
mappings problems; however the syntactic 
representation is not capable of expressing 
complex model constructs. These operators 
produce mappings based on fixed semantics. 
In our solution we have variation on mapping 
structure, which allows obtaining domain 
specific mapping languages. This variable 
specification makes difficult the 
implementation of the proposed operators in a 
generic way, since the semantic is not known 
in advance. Model management operations 
over reified mappings are proposed in 
[Bernstein 2003]. Our approach is similar in 
the utilization of mappings however we 
propose the execution of mappings in terms of 
model transformations, and we provide 
extensible mapping definitions.  



  

 
Figure 7. Weaving in the AMW prototype 

7. Conclusion 
In this paper, we proposed a solution that 
applies generic model management to data 
mapping in order to better control the trade-
off between genericity, expressiveness and 
efficiency of mappings. Our solution is based 
on model weaving, a new way of establishing 
fine-grained correspondences between model 
elements. Since a weaving is considered to be 
a model, it conforms to a metamodel that 
specifies the possible formal structures. The 
created weaving model may be later used by a 
model transformation language to translate 
source model(s) into target model(s).  

 The main contributions of this paper may 
be summarized as follows.  First, we defined 
model weaving, a generic model management 
operation to create mappings between 
complex models. The model weaving operator 
weaves several correspondences into a 
weaving element, which may represent 
complex semantics. We defined a minimal 
weaving metamodel to obtain a generic 
representation.  

 Second, we proposed the supporting 
technology that enables the evolution and 
reuse of mapping definitions and the 

generation of operational mappings in 
different languages. The composition of 
weaving metamodels enables to add 
constructs with greater expressiveness, having 
dedicated mapping languages. This enables to 
handle fine-grained problems that are not 
addressed by overall mapping architectures. 
The compositions may be done incrementally 
to follow the evolution of mapping 
requirements. We may reuse each metamodel 
extension composing it with different weaving 
metamodels. We separated mapping 
specification and definition from operational 
mapping production. We summarized the 
common features of existing transformation 
languages to be used as a guidance to define 
weaving metamodels. It allowed us to 
generate different mappings representations. 

 Third, we validated our approach using the 
ATLAS Model Weaver (AMW) prototype on 
application scenarios. The weaving 
metamodel was incrementally composed with 
other metamodels. We reused two metamodels 
extensions, having as result metamodels with 
specialized semantics for each scenario. We 
produced operational mappings in ATL and 
XSLT, and morphisms. Experimentation with 
this model weaving in the AMMA platform 
has shown that many different proposals may 



  

be unified by our model-based approach. 
Coupling a weaving facility (like AMW) with 
a transformation facility (such as ATL) gave 
us good efficiency and flexibility.  

 As future work we plan to use model 
weaving in application scenarios not yet 
explored, such as merging of models. We also 
plan to study semi-automatic matching of 
weavings to be used inside the model weaving 
operation. For the time being we envision 
using standard Eclipse plug-ins to solve this 
problem, by plugging different matching 
algorithms to help in the weaving model 
creation. 
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