

Applying Generic Model Management to Data Mapping1
Marcos Didonet Del Fabro, Jean Bézivin, Frédéric Jouault, Patrick Valduriez

ATLAS Group, INRIA and LINA University of Nantes - 2, rue de la Houssinière, BP 92208 -
44322 - Nantes cedex 3, France

{marcos.didonet-del-fabro, jean.bezivin, frederic.jouault}@univ-
nantes.fr, patrick.valduriez@inria.fr

Abstract. Mapping between heterogeneous
data is a central problem in many data-
intensive applications. In particular, using
one mapping language causes serious
limitations and makes mapping management
difficult. In this paper, we propose a solution
that can better control the trade-off between
genericity, expressiveness and efficiency of
mappings. Our solution considers mappings
as models and exploits specific mapping
engines. We define model weaving as a
generic way to establish element
correspondences. Weaving models may then
be used by a model transformation language
to translate source model(s) into target
model(s). To validate our solution, we
implemented a mapping prototype, called
AMW, and used it for experimenting with
significant application scenarios.

Key words: model weaving, metamodels,
data mapping, metamodel composition.

1. Introduction
Mapping heterogeneous data from one
representation to another is a central problem
in many data-intensive applications. Examples
can be found in different contexts such as
schema integration in distributed databases
[Özsu 1999], data transformation for data
warehousing [Cui 2003], data integration in
mediator systems [Lenzerini 2002], data
migration from legacy systems [Bisbal 1999],
ontology merging [Ehrig 2004], etc.

 A typical data mapping specifies how data
from one source representation (e.g. a
relational schema) can be translated to a target
representation (e.g. an XML schema).
Although data mappings have been studied
independently in different contexts, there are
two main issues involved. The first one is to
discover the correspondences between data
elements that are semantically related in the
source and target representations. This is
called schema matching in schema integration
[Batini 1986]; many techniques have been
proposed to (partially) automate this task, e.g.
using neural networks [Li 2000]. After the
correspondences have been established, the
second issue is to produce operational
mappings that can be executed to perform the
translation. Operational mappings are
typically declarative, e.g. view definitions or
SQL-like queries. Creating and managing data
mappings can be very complex and time-
consuming if done manually. Recent work in
schema integration has concentrated on the
efficient management of data mappings. For
instance, Clio [Miller 2001] provides
techniques for the automatic generation of
operational mappings from value
correspondences obtained from the user or a
machine learning technique. ToMAS
[Velegrakis 2003] also provides techniques
for consistency management while schemas
evolve.

 However, there is a trade-off between
genericity and efficiency of mapping
management. By supporting one
representation language, e.g. relational or
XML, mapping management can deal
efficiently with correspondences using a fixed
mapping language, e.g. SQL or XQuery. This
approach can be extended to deal with
multiple representation languages using

1 Work partially supported by a grant from
Microsoft Research, Cambridge, UK, and
ModelWare. IST European project 511731

wrappers or extractors [Garcia-Molina 1995].
The development of such wrappers or
extractors that also involve data mappings can
be difficult and time-consuming.

 To support arbitrary mappings in different
languages with different semantics, generic
model management has recently gained much
interest [Bernstein 2003]. A model is a formal
description of a design artifact such as a
relational schema, an XML schema, a UML
model or an ontology. By considering
mappings between models also as models,
much expressiveness, flexibility and
genericity can be gained. Rondo [Melnik
2003] is the first complete prototype of a
generic model management tool. It uses a
high-level algebraic language to manipulate
models and mappings between models. As a
result, Rondo can define data mappings
between heterogeneous representations, and
use the operators for complex model
manipulation, including merging of models
[Melnik 2003]. It uses its own mapping
language called morphisms. However, there
are many cases where a specific mapping
language and associated engine has better
expressiveness and can be more efficient, e.g.
XSLT for mapping XML schemas.

 In this paper, we propose a solution that
can better control the trade-off between
genericity, expressiveness and efficiency of
mapping representation. In other words, our
objective is to support generic data mapping
(as in Rondo but with a different approach)
while exploiting specific mapping languages
and engines, such as Clio, ToMAS or an
XSLT engine. We thus consider data mapping
languages as extensible Domain Specific
Languages (DSL) [GreenField 2004].

 To be able to achieve this trade-off, we use
model weaving, which consists of establishing
correspondences with semantic meaning
between model elements. A weaving model is
a special kind of model used to save these
correspondences. Since a weaving is
considered to be a model, it conforms to a
definition language that specifies the possible
formal structures. This language is expressed
in terms of models as well. The created
weaving model may be later used by a model

transformation language to translate source
model(s) into target model(s).

 Capitalizing on previous work on schema
integration and model management, the main
requirements for generic data mapping
management can be summarized as follows:

1. be able to perform mappings between
complex models, which implies to reason
about correspondences between these
complex models;

2. be able to produce new mappings from
existing ones, e.g. to adapt mappings after
models change or to allow incremental
specification of mappings;

3. be able to generate operational mappings
in different languages with their own
mapping engine.

 Thus, we can state the problem as follows:
given two models, produce a weaving model
that represents all relevant mapping
correspondences. New weaving elements may
be modified, added or removed. The weaving
model is used to translate source model(s) into
target model(s) or to generate a different
mapping representation. The specification of
weaving models must be extensible to be used
in different mapping scenarios.

 In developing our solution, we define a
weaving model specification representing the
basic concepts in a mapping system, e.g., the
links between elements and a way to represent
these links from different models. Considering
weaving specifications also as models enables
to add extensions capable of expressing
complex semantics, such as foreign keys
constraints or ontology mappings. We define
a generic operation to create weaving models.
A weaving model can also be modified to
follow evolution of woven models. It can be
transformed in two different ways: first, using
a declarative model transformation language
such as ATL [ATL 2005] to transform source
models into target models and second, by
translating into a different mapping
representation (such as morphims or XSLT) to
be executed in the corresponding
transformation engine. Thus, we have one
weaving model, and several weaving
executions.

 To summarize, the paper has several
contributions. First, we define a generic model
management operation, called model weaving,
to represent mappings between complex
models (requirement 1). Second, we propose
the supporting technology that enables the
reuse and evolution of mapping definitions
(requirement 2) and the generation of
operational mappings in different languages
(requirement 3). Third, we validate our
approach using the ATLAS Model Weaver
(AMW) prototype on application scenarios.

All the results presented in this paper are
supported by open source prototypes currently
running under the Eclipse Modeling
Framework (EMF) [DelFabro 2005].

 This paper is organized as follows. Section
2 presents an example that motivates the need
for an adaptive mapping platform. Section 3
describes formally model weaving and related
concepts. Section 4 shows how data mapping
is represented as a weaving. In Section 5 we
present a validation example. Section 6
discusses related work. Section 7 concludes.

2. Motivating Examples
We illustrate the general data mapping
problem we address with two related data
exchange scenarios. We also discuss the
difficulty to create at the same time a generic
solution capable to handle dedicated
mappings and to integrate existing specialized
solutions.

Scenario 1: Libraries usually exchange data
to have a standard catalogue format, both for
standardization and interoperability purposes.
Let us consider two data sources as show in
Figure 1. One library has its own relational
schema as defined by Relational schema R1.
But it also agrees to use an XML format as
defined by XML schema X1. Schema R1 has
two tables: Books (ISBN [International
Standard Book Number], Title, Author, SID)
and Subjects (SID, Description), with the
foreign key SID on Books referencing the
subjects of a book. Schema X1 has the same
basic structure except for the foreign key in
books since this correspondence is
represented by the nested structure between
Books and Subjects.

Figure 1. Relational to XML

mapping

 The translation from R1 into X1 is
represented by the mapping R1_X1. It has
three mapping structures: Equals that is an
inter-schema correspondence that indicates
equalities such as R1.Books.ISBN =
X1.Books.ISBN, R1.Books.Title =
X1.Books.Title, and so on; FK is an intra-
schema correspondence indicating the foreign
key constraint between R1.Books.SID and
R1.Subjects.SID; Nested is another intra-
schema correspondence representing the
nesting relationship between X1.Books and
X1.Books.Subjects. These intra-schema
correspondences guarantee the generation of a
valid output model.

Scenario 2: Continuing the library exchange
problem, let us consider a second library that
will use the XML schema X1 to integrate with
its own data as indicated in Figure 2 by the
Ontology O1. The ontology represents
periodic data, e.g., newspapers and
magazines. It has the attributes ISSN
[International Standard Serial Number], Title
(Subtitle), Publisher, Subjects (ID,
Description) and Author.

Figure 2. XML to ontology

mapping

 The mapping structures are represented by
Mapping X1_O1. It has Equals and Nested

with the same semantics as in Scenario 1, and
adds two new mappings: Equivalent and
Ordered. Equivalent shows that ISBN is
equivalent but not equal to ISSN, because they
both indicate the object identification, though
with different meaning. The same is valid for
Author because the book author represents a
person while a magazine’s author is an entity.
Ordered indicates that the periodics’ subjects
must be ordered by Description.

 Analyzing these two scenarios, we observe
that all inter- and intra- model relationships
need a structure to represent correspondences
between elements, independently of mapping
semantics. This motivates the creation of a
common mapping core. In both scenarios,
new additional structures are specified
following different requirements, such as FK
and Nested in Scenario 1, Equivalent, Nested
and Ordered on Scenario 2. This shows the
necessity to allow incremental specification of
mappings, having an extensible core with
dedicated subsets. This also shows the
importance to have an expressive
representation allowing to reason about
correspondences between complex models
like the Ordered relationship in Scenario 2.
The mappings are represented in the same
language. However, in both cases one may
generate operational mappings in a different
language with a more dedicated
transformation engine (relational to XML and
XML to ontology).

3. Model Weaving
In this section, we define model weaving,
which is a generic operation that establishes
correspondences with semantic meaning
between complex model elements.

 There is no accepted formal definition of
the main elements behind model weaving,
such as model, metamodel, model
transformation, etc. The MOF specification
[OMG 2002] describes a model-based four-
layer architecture, but with no formal
definitions. In [Melnik 2004], there is a formal
definition of models but not adapted to model
weaving. In [Popa 2002] and in many other
model platforms over relational databases,
terms such as (relational) data model,
relational schemas, nested schemas, database

states, model instances are defined, but there
is no standard taxonomy. In [Bernstein 2003],
there is an informal starting point. Thus, we
develop our own definitions.

3.1. Models

A system may be computationally represented
by a model. A system is a group of
interacting, interrelated, or interdependent
elements that form a complex whole, for
example a library system, an internet bid
system, a car rental system, or a university
application system.

Definition 3.1 (Model). A model is a directed
graph G = (V, A). The set of vertices V
denotes model elements. A model element
from V has an identifier and a value. The
identifiers may be implemented as URIs and
the element value may be of any data type,
such as integer, strings, classes. The set of
labeled edges A denotes associations between
model elements.

 Let us illustrate Definition 3.1 with a
model representing a book, with a single
property title. We have a model M1 = (V, A);
V = {r1 (“”), h1 (“has”), t1 (“Data
mapping”)}; A = {(r1, h1), (h1, t1)}. The
element identifiers are illustrated by r1, h1, t1.
The element values are inside parenthesis,
which in this case are character literals. The
model element r1 represents the book record,
t1 the title and h1 a containment. We have two
associations between them. However the
possible structures of the model are not
explicitly defined. They are defined in a
metamodel.

Definition 3.2 (Metamodel). A metamodel is
a special kind of model that specifies the
structure of a model. A model conforms to a
metamodel. Given a model M = (V, A) and a
metamodel MM = (V’, A’), for every model
element e ∈ V, there is an outgoing edge to an
element me ∈ V’, labeled as a Meta edge. We
denote it by Meta (e, me).

 Consider the model M1 presented above. It
conforms to metamodel MM1 = (V’, A’); V’ =
{record (“record”), title (“title”), hasA
(“hasA”)}; A’= {(record, hasA), (hasA,
title)}. MM1 defines the concepts of record,
title and containment. The associations

indicate source and target elements. We have
the following Meta edges from M1 to MM1:
Meta (r1, record), Meta (t1, title), Meta (h1,
hasA). MM1 acts like a typing system. A
metamodel conforms to a metametamodel.

Definition 3.3 (Metametamodel). A
metametamodel is a metamodel defining the
base structure for all metamodels and models
within a specific context. A metametamodel
conforms to itself.

 Consider the metamodel MMM1 = (V’’,
A’’). V’’= {entity (“entity”), link (“link”)}.
A’’= {(entity, link), (link, entity)}. V’’ has two
elements, indicating an entity and a link. It has
two associations, one going from an element
to a link and another from a link to an
element. MM1 conforms to MMM1, which
means we have the meta edges: Meta (title,
entity), Meta (record, entity) and Meta (hasA,
link). All the other metamodels and models
from this context are constructed in terms of
links and entities.

 We may have the same system, for
instance a library system, represented by
models in different implementation contexts,
such as XML documents (XML trees);
relational databases (relational model); or
MDATM (a special kind of graph). Thus each
context has a unique metametamodel.

3.2. Model Transformations

Model transformation is an operation that
takes as input a set of models and produces
another set of models as output.

Definition 3.4 (Model transformation). A
model transformation T is an operation that
given a set of input models (M1,…, Mn),
evaluates them and returns a set of output
models (OM1,…, OMn). A transformation
may be denoted by a model Mt, called a
transformation model. A transformation
model has the following properties:

1. it conforms to a transformation
metamodel;

2. the transformation body is created taking
as values the input or output metamodels

3. source and target models are distinct;

4. in the transformation execution, the input
elements are matched based on the input
metamodels;

5. the output elements are created from the
evaluation of the matched elements.

 Let us illustrate model transformation on
Scenario 1 in Section 2 where we need to
translate relational database records into XML
documents. The transformation takes as
parameters the relational records, conforming
to the library relational schema. In its body it
is specified how the table Subject and its
columns are translated into the corresponding
nested node and its attributes. It produces as
output an XML document. In the second
scenario we have a transformation that
specifies how XML nodes and attributes are
translated into the ontologies and its
attributes. The translation between these data
sources is specified in a transformation
language, such as an ATL or XSLT.

3.3. Model Weaving

Model weaving is a generic operation that
establishes fine-grained correspondences
between model elements. It receives as
parameter a set of models and produces a
weaving model.

 A correspondence defines associations
between elements from different models.
Given two models M1 = (V, A) and M2= (V’,
A’) and model elements e1 ∈ V’ and e2 ∈ V’’;
the edge (e1, e2) (which is not a Meta edge) is
said to be a correspondence.

 However its syntactic nature does not
allow defining complex structures to relate
two or more models. We use a weaving model
to capture more complex models
relationships.

Definition 3.5 (Weaving model). A weaving
model represents correspondences in terms of
its model elements. Let M1 = (V, A) and M2 =
(V’, A’) be distinct models. Given elements e1
∈ V and e2 ∈ V’, the correspondence (e1, e2)
is denoted by the triple (e1, Mw, e2), where
Mw = (Vw, Aw) is a weaving model. The
structure of a weaving model is defined in a
weaving metamodel.

Definition 3.6 (Model weaving). Model
weaving is a generic operation that takes as
input a set of models (M1, …, Mn), a weaving
metamodel MMw and returns a weaving
model Mw.

 A weaving operation has the following
properties:

1. it may define hooks to enable gradual
refinement of a weaving model;

2. it may be defined in terms of model
transformations.

 After the operation execution, the models
(M1, …, Mn) are woven models. Note that
metamodels and metametamodels may also be
woven.

 The model weaving operation is
implemented by the operator Weave (see
Figure 3). We describe it for the case of
weaving two complex models, M1 and M2,
but it can be extended to weave several
models. The Weave algorithm first creates a
weaving model conforming to MMw. Then for
every element ei from M1, and every mej from
MMw, it searches for matching elements in
M1 or M2. It returns the correspondences
found. The search is executed in the
SearchCorresp function. This function is not
generic, it must be modified to handle any
different structure defined by each mej. The
returned correspondences are used to create
the element mnew, which associates them
according to the structure of mej. We call it a
weaving link element.
 A variant of the algorithm has a weaving
model Mw as an extra parameter. The
signature is modified to Weave (M1, M2,
MMw, Mw). This way, weaving elements may
be incrementally added into an existing
weaving model. In Figure 3, the code lines to
be added to the basic algorithm are in bold
font.
 In Scenario 1, the mapping R1_X1 has two
sets of correspondences, one set with the
relational schema elements from R1 and

another with the XML schema elements from
X1, illustrated by the dashed lines. To be able
to create links between these two models, we
must create a weaving link element. This is
illustrated by Equals, FK and Nested. The
same is valid for the second scenario, where
mapping X1_O1 defines correspondences with
an XML schema and with an ontology. It has
equality, equivalence, nested and ordered
semantics. The mapping is represented by a
weaving model created by a weaving
operation.

Weave (M1, M2, MMw, Mw)
If Mw is null
 Mw = createWeavingModel(MMw);

for all ei in M1 do
 begin

for all mej in MMw do
begin

 corresp = SearchCorresp (mej, ei, M1, M2);
 for all ek in Mw

 if not exists ek with corresp
begin

mnew = Create(mej, corresp);
Mw = add (mnew);

end
end

 end
return Mw;

Figure 3. Algorithm to weave 2 models

 The weaving metamodel is not a fixed
metamodel. It might be extended to form
dedicated weaving metamodels. This is done
using the composition operation.

Definition 3.7 (Composition operation). The
composition operation takes as input a
weaving metamodel MMw, a metamodel MMe
and a weaving model Mwc. It returns a new
weaving metamodel MMwn, which is the
composition of MMw and MMe.
The operation is defined as MMwn =
ComposeMM (MMw, MMe, Mwc). The
composition semantics between MMw and
MMe are specified in the weaving model
Mwc.

abstract class WElement{
 attribute name : String;
 attribute description : String;
 reference model : WModel; }
abstract class WModel extends WElement{
 reference ownedEl[*] container: WElement;
 reference wModel[1-*] container: WModelRef; }
abstract class WRef extends WElement{
 attribute ref : String; }

abstract class WModelRef extends WRef{
 reference ownedElementRef[0-*]
 container : WElementRef;}
abstract class WElementRef extends WRef{
 reference modelRef : WModelRef; }
abstract class WLink extends WElement{
 reference end[1-*] container : WLinkEnd; }
abstract class WLinkEnd extends WElement{
 reference link : WLink oppositeOf end;
 reference element : WElementRef; }

Figure 4. Abstract weaving metamodel

 The operation reads Mwc and executes the
specified semantics. It has as principal
requirement the creation of at least one new
element new_e in the resulting weaving
metamodel. This element put into relation one
element mme ∈ MMe and one element mmw
∈ MMw, for instance by the means of
references, containments or inheritance. It
prevents from creating a mal-formed weaving
metamodel with two sets of elements without
any association between them. It is a
metametamodel-specific operation.

4. Data Mapping
We propose to use model weaving as the base
for a solution to various data mapping
problems. The first step to achieve this is to
define weavings capable of reasoning about
complex mappings. Then the weavings
metamodels should be adapted as application
requirements evolve. We call this
correspondence discovery. Weaving models
are further used as a guidance to generate
operational mappings in different
transformation languages. This is called
operational mapping production.

4.1. Correspondence Discovery

We specify a minimal weaving metamodel
used as a basis for a mapping platform. It may
be further composed with another metamodels
to create dedicated weaving metamodels. The
metamodel represents the concepts of weaving
links. We use as metametamodel Ecore [EMF
2005]. The weaving metamodel is thus
specified in a textual language to represent
metamodels in Ecore called KM3 [Bézivin
2004]. We provide an excerpt of our weaving
metamodel in Figure 4.

 WElement is the base element from which
all other elements inherit. WModel represents

the root element that contains every model
element. We have the notion of link extremity
(WLinkEnd). It makes reference to a
WElementRef. This element captures the
necessary information to make reference to
the elements of the woven model, providing a
flexible identification mechanism. The
element WLink references multiple
extremities, representing a weaving link.
WModel’s contains also WModelRef’s, which
is equivalent with the reference of WLinkEnd
and WElementRef, but for models as a whole.

 The weaving metamodels must adapt to
follow evolution in the woven models and in
the mapping requirements. New data mapping
specifications, e.g. weaving metamodels, are
incrementally composed with existing ones,
being able to express other complex
relationships. Each extension may be
separately saved and further reused (by
composition) with other weaving metamodels,
according to different mapping requirements.

 Consider we have a weaving metamodel
MMw. It contains the elements representing
the abstract metamodel described in Figure 4.
We have another metamodel MMdb with
elements representing foreign keys (fk_e) and
generation of automatic values (av_e). We
compose MMw with MMdb, adding an
inheritance association between fk_e and
WLinkEnd, and between av_e and WLinkEnd.
The elements fk_e and av_e become capable
of representing element correspondences, and
add semantic meaning to them. The new
weaving metamodel may be composed in turn
with a new extension that contains one
element defining ordering of elements.

 However the existing metamodel must not
change in a way it interferes with existing
weaving models. For example we may have
an element e1 that is woven with an element

e2 by the means of an equality element e (its
structured is defined in a mequal element in
the metamodel). The mequal element should
not be excluded or modified from the
metamodel; otherwise the current weaving
model becomes invalid. In this case it is
necessary to recreate the model.

4.2. Operational Mapping Production

A weaving model is not an executable entity:
the translation between data sources are
executed by model transformations that use
the weaving as specification. However
weaving models should not be dedicated to
one transformation engine. There are many
performing engines and languages that could
be used in specific cases. A weaving model
may also be translated into another mapping
language that will be used in its own mapping
platform.

 It is not desirable to directly create a
transformation from source model(s) into
target model(s); otherwise one should write by
hand a new transformation for every weaving
model. We define algorithms based on the
weaving metamodel and model elements.
They automatically produce different
transformation models, which body takes as
values the woven metamodel elements. We
may produce transformations in different
transformation languages or mappings, such
as ATL, SQL queries, XSLT or morphisms.
They are further serialized into the
appropriated representation. The serialized
form takes as input the woven models, to
actually perform the data translation between
the data sources in the dedicated
transformation engine.

 Thus, we may obtain different
transformations as output based on the same
weaving. This is possible because despite
having different syntax, expressive power and
capacity of calculation, the structure of
existing transformation languages follows
similar standards. This enables the creation of
weavings targeted for transformations in
general. We describe such standards below:

- input and output models and their
metamodels: are the source and target
models, e.g. an XML document, an

ontology, a relational table. The
metamodels may be explicitly specified or
implicitly implemented in one ad-hoc
engine;

- rules: are self contained commands
containing all the necessary constructs to
translate source elements into target
elements , e.g. an SQL view, an XSLT
stylesheet or an ATL rule;

- input elements: define which elements
from the input model are transformed.
Input patterns usually relate elements
formed by sub-elements or attributes, e.g.
ATL input patterns, XSLT matched
templates or SQL select from clauses;

- output elements: define the target
elements, strictly related with the input
elements, e.g. ATL out patterns, XSLT
elements or SQL create view clauses;

- selection expressions: define filters in the
input patterns to recuperate only a set of
elements, e.g. ATL filters, XPath
expressions or SQL where clause;

- equivalence expressions: define the
correspondences between the attributes of
a given input element and the attributes of
the output elements, e.g. ATL bindings,
XSLT value-of or SQL relation from the
select to the view clause. The weaving
elements indicating correspondences and
their semantics should be translated as
equivalence expressions;

- calculation expressions: return a new
value after executing calculations over
input element to be used in an equivalence
expression, e.g. OCL expressions [UML
2004], XPath or SQL functions.

5. Validation
In this section, we present a validation based
on our ATLAS Model Weaver (AMW)
prototype which we use to experiment with
the scenarios defined in Section 2. The
prototype is available in the Eclipse GMT
project [GMT 2005].

5.1 Model Weaver Prototype

AMW is a component-based platform with
separated components to handle each weaving
requirement. The platform is based on the
Eclipse [Eclipse 2005] contribution
mechanism: components are defined in
separated plugins. The plugins are further
interconnected to create the model weaver
workbench. Components for user interface,
matching algorithms and serialization of
models may be plugged as necessary. We
extend an existing architecture for model
manipulation (Eclipse EMF [EMF 2005]).
This extended component coordinates the
weaving actions. We use the EMF dynamic
API to obtain a standard weaving editor. The
editor adapts its interface according to the
weaving metamodel. Metamodel extensions
are plugged as KM3 files. Each KM3 file may
have an associated user interface to help in the
matching task. As representation
metametamodel we use Ecore, which is the
Eclipse EMF metametamodel similar to the
OMG Meta Object Facility [OMG 2002]. The
ATL transformation engine is plugged as the
standard transformation platform.

5.2 Experiments

To demonstrate support for data mapping
requirements, we start from the minimal
weaving metamodel as a basis. We
incrementally refine it with extensions
adapted for the application scenarios in
Section 2. The created weaving should be
used as a specification to automatically
generate transformations for different engines.

 We first defined a concrete version of the
abstract weaving metamodel, and created a
weaving model to represent mappings R1_X1
and X1_O1, first without specific semantics.
We were able to define similar structures as
morphisms and value correspondences. They
could be used in their respective mapping
environments, thus showing the feasibility of
integrating different mapping solutions in a
common core.

 We incrementally adapted the existing
weaving metamodel (represented by MMw),
e.g., mapping specification, composing it with
the new extensions until having a weaving

metamodel with all necessary semantics. We
have thus dedicated mapping specifications
with variable expressive power: we
represented from simple element links such as
Equals; then Nested and FK constraints;
Equivalent; until complex ones as Ordered, as
shown in Figure 5. This brings an advantage
over all purpose and complex mapping
languages because they are usually designed
focusing a specific environment and do not
adapt well.

FK

OrderedEquivalent

Metamodel 1

Metamodel 2

Metamodel 3 (Scenario 1)

Metamodel 4 (Scenario 2)

NestedEqualsMMw

NestedEqualsMMw

NestedEqualsMMw

EqualsMMw

Figure 5. Composed weaving

metamodels

 The weaving model was created and
modified in parallel with each new metamodel
composition, e.g., as soon as we created a new
metamodel, we changed the associated model,
which did not invalidate the existing elements.
 To be able to weave models created in
different contexts, the relational schema was
imported into our tool. The same applies to
the XML schema and to the ontologies. We
used simplified versions of the models and
metamodels, capable of representing only the
desired structures.

 The weaving model is used as specification
for producing operational mappings in two
different languages, ATL and XSLT. We also
generated morphisms, obtaining a different
mapping representation.

 We choose ATL because it enabled us to
apply sound model management concepts;
XSLT with XPath because it is the standard
transformation language for XML documents,
with several engines available; and morphisms
to obtain a different mapping representation,

even if it is not capable of expressing all the
desired semantics.

 We produced an ATL model, a XSLT
model and a model representation of
morphisms. They were serialized in their text
format. The generated ATL and XSLT were
actually used to transform the source models
into the target models. We show in Figure 6
an excerpt of the generated operational
mappings from Scenario 1 with the rules to
handle nested and foreign key semantics.

XSLT rule
<xsl:tem plate m atch="bookR cds">
 <xsl:e lem ent nam e="books">
 < xsl:a ttribute nam e="ISBN">
 < xsl:va lue-of se lect="@ ISBN "/>
 < /xsl:a ttribute>
 < xsl:variab le nam e="sid" se lect="@ SID"/>
 < xsl:apply-tem plates se lect="/descendant-or-
 se lf ::subjectRcd[@ SID =$sid]">
 < /xsl:apply-tem plates>
 < /xsl:e lem ent>

</xsl:tem plate>
<xsl:tem plate m atch="subjectR cd">
 <xsl:e lem ent nam e="subjects">
 < xsl:a ttribute nam e="SubjectID ">
 < xsl:va lue-of se lect="@ SID"/>
 < /xsl:a ttribute>
 < /xsl:e lem ent>
</xsl:tem plate>

A TL rule
ru le Books {
 from
 db : R DBM S!BookR cd
 to
 xm l : XM L!Book (
 ISBN <- db.ISBN,
 subjects <- R DBM S!SubjectR cd->
 a llInstances ()->select (e | e.S ID = db.S ID)
)
}
ru le Subjects {
 from
 db : R DBM S!SubjectR cd (R DBM S!BookR C D->
 a llInstances ()->exists(e | e.S ID = db.S ID))
 to
 xm l : XM L!Subject(
 SubjectID <- db.S ID ,
)
}

Figure 6. Generated XSLT and ATL

 In Figure 7 we see the AMW user interface
for Scenario 1. In the left we have the source
relational database schema, in the right the
target XML schema, and in the middle the
weaving model created conforming to the
Metamodel 3.

6. Related Work
Data mapping has been extensively studied in
the literature. There are several solutions

focusing on specific application domains, or
on specific mapping problems. Clio [Miller
2001 and Popa 2002] concentrates on
mapping schema-based structures such as
XML and relational databases, generating
SQL queries or XSLT transformations based
on value correspondences. Our model
representation of mappings enables mapping
models with different kinds of structure, and
we may generate transformations for a variety
of execution engines.

 In [Omelayenko 2002] a rich mapping
meta-ontology is defined to map between
XML DTDs and RDF schemas concentrating
on business integration. We have rich
mapping representations as well, however our
extensible weaving metamodel may be
applied to a wider family of problems.
MAFRA [Maedche 2002] is a framework for
aligning ontologies. It introduces the notion of
semantic bridges for mapping between
ontologies and it creates one “semantic bridge
ontology” with these mapping constructs. It
has a similar approach as the mapping
ontology for business integration, focusing on
ontologies in general, not fitting for specific
mappings requirements for other contexts,
such databases and XML documents.

 Rondo [Melnik 2003] is the most general
solution. It implements generic model
management operators such as Match¸ Merge,
Extract, as well as the necessary semantics to
generate well-formed models. It solves many
mappings problems; however the syntactic
representation is not capable of expressing
complex model constructs. These operators
produce mappings based on fixed semantics.
In our solution we have variation on mapping
structure, which allows obtaining domain
specific mapping languages. This variable
specification makes difficult the
implementation of the proposed operators in a
generic way, since the semantic is not known
in advance. Model management operations
over reified mappings are proposed in
[Bernstein 2003]. Our approach is similar in
the utilization of mappings however we
propose the execution of mappings in terms of
model transformations, and we provide
extensible mapping definitions.

Figure 7. Weaving in the AMW prototype

7. Conclusion
In this paper, we proposed a solution that
applies generic model management to data
mapping in order to better control the trade-
off between genericity, expressiveness and
efficiency of mappings. Our solution is based
on model weaving, a new way of establishing
fine-grained correspondences between model
elements. Since a weaving is considered to be
a model, it conforms to a metamodel that
specifies the possible formal structures. The
created weaving model may be later used by a
model transformation language to translate
source model(s) into target model(s).

 The main contributions of this paper may
be summarized as follows. First, we defined
model weaving, a generic model management
operation to create mappings between
complex models. The model weaving operator
weaves several correspondences into a
weaving element, which may represent
complex semantics. We defined a minimal
weaving metamodel to obtain a generic
representation.

 Second, we proposed the supporting
technology that enables the evolution and
reuse of mapping definitions and the

generation of operational mappings in
different languages. The composition of
weaving metamodels enables to add
constructs with greater expressiveness, having
dedicated mapping languages. This enables to
handle fine-grained problems that are not
addressed by overall mapping architectures.
The compositions may be done incrementally
to follow the evolution of mapping
requirements. We may reuse each metamodel
extension composing it with different weaving
metamodels. We separated mapping
specification and definition from operational
mapping production. We summarized the
common features of existing transformation
languages to be used as a guidance to define
weaving metamodels. It allowed us to
generate different mappings representations.

 Third, we validated our approach using the
ATLAS Model Weaver (AMW) prototype on
application scenarios. The weaving
metamodel was incrementally composed with
other metamodels. We reused two metamodels
extensions, having as result metamodels with
specialized semantics for each scenario. We
produced operational mappings in ATL and
XSLT, and morphisms. Experimentation with
this model weaving in the AMMA platform
has shown that many different proposals may

be unified by our model-based approach.
Coupling a weaving facility (like AMW) with
a transformation facility (such as ATL) gave
us good efficiency and flexibility.

 As future work we plan to use model
weaving in application scenarios not yet
explored, such as merging of models. We also
plan to study semi-automatic matching of
weavings to be used inside the model weaving
operation. For the time being we envision
using standard Eclipse plug-ins to solve this
problem, by plugging different matching
algorithms to help in the weaving model
creation.

8. Acknowledgments
The prototype was built with the help of
Erwan Breton and Guillaume Gueltas as part
of a collaboration with the Sodifrance
Company.

References
ATL 2005, ATLAS Transformation

Language. Reference site:
www.sciences.univ-nantes.fr/lina/atl/
(February 2005) or
http://www.eclipse.org/gmt

Batini, C., Lenzerini, M., and Navathe, S. B.
A Comparative Analysis of Methodologies
for Database Schema Integration. ACM
Computing Surveys 18, 4, 323–364, 1986.

Bernstein, P.A. Applying Model Management
to Classical Meta Data Problems, Proc.
CIDR 2003, pp. 209-220

Bézivin, J., Jouault, F., Rosenthal, P.,
Valduriez, P. The AMMA platform
support for modeling in the large and
modeling in the small. LINA research
report (04.09), November 2004

Bisbal J., Lawless D., Wu B., Grimson, J.
Legacy Information Systems: Issues and
Directions. IEEE Software,
September/October 1999, pp. 103-111,
Vol. 16, Issue 5. 1999.

Cui, Y., and Widom, J. Lineage Tracing for
General Data Warehouse Transformations.
VLDB Journal, 12(1):41-58, May 2003.

Didonet Del Fabro M., Bézivin J., Jouault F.,
Breton E., Gueltas G. AMW: a generic
model weaver In: Proceedings of the 1ère
Journée sur l'Ingénierie Dirigée par les
Modèles, Jun/Jul 2005

Eclipse 2005, Eclipse Project. Reference site:
http://www.eclipse.org

Ehrig M. York Sure: Ontology Mapping - An
Integrated Approach. ESWS 2004: 76-91

EMF 2005 Eclipse Modeling Framework
(EMF), 2005 Reference site:
http://www.eclipse.org/emf

Garcia-Molina H., Hammer, J., Ireland, K.,
Papakonstantinou, Y., Ullman, J., and
Widom, J. Integrating and Accessing
Heterogeneous Information Sources in
TSIMMIS. In Proc. of the AAAI
Symposium on Information Gathering,
Stanford, California, March 1995.

GMT 2005 Generative Model Transformer
(GMT), 2005 Reference site:
http://www.eclipse.org/gmt

GreenField J., Short K., Cook S., Kent S.
(foreword by Crupio J.) - Software
Factories, Assembling Applications with
Pattenrs, Models, Framewords and Tools,
Wiley Publishing, 2004

Lenzerini M. Data integration: a theoretical
perspective, Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database
systems, June 03-05, 2002, Madison,
Wisconsin

Li W, Clifton C. SemInt: a tool for identifying
attributes correspondences in
heterogeneous databases using neural
networks. Data & Knowledge Engineering
33(1):49–84, 2000

Maedche A., Motik .B, Silva N.,Volz R.
MAFRA - A Mapping Framework for
Distributed Ontologies; Proc. of the 13th
EKAW, Madrid, Spain, 2002.

Melnik, S., E. Rahm, Bernstein P. A. Rondo:
A Programming Platform for Generic
Model Management, Proc. SIGMOD 2003,
pp. 193-204

Melnik, S Generic Model Management:
Concepts and Algorithms, Ph.D.
Dissertation, University of Leipzig,
Springer LNCS 2967, 2004

Miller, R. J., Hernandez, M. A., Haas, L. M.,
Yan, L.-L., Ho, C. T. H., Fagin, R., and
Popa, L. The Clio Project: Managing
Heterogeneity. SIGMOD Record 30, 1,
78–83, March 2001.

Omelayenko B. RDFT: A Mapping Meta-
Ontology for Business Integration, In:
Proceedings of the Workshop on
Knowledge Transformation for the
Semantic Web (KTSW 2002) at the 15-th
European Conference on Artificial
Intelligence, 23 July, Lyon, France, 2002,
p. 76-83

OMG 2002 MOF: Meta Object Facility
(MOF) Specification. OMG Document
AD/02-04-03, April 2002.

Özsu T., Valduriez P. Principles of
Distributed Database Systems. 2nd
Edition, Prentice Hall, Englewood Cliffs,
New Jersey, 666 pages, 1999.

Popa L. ,Velegrakis Y., Hernandez M., Miller
R. J., Fagin R. Translating Web Data, in
28th International Conference for Very
Large Databases (VLDB 2002), August
2002.

UML 2004 UML OCL 2.0 Specification,
ptc/03-10-04,
http://www.omg.org/docs/ptc/03-10-14.pdf

Velegrakis Y., Miller R. J., Popa L. Adapting
Mappings in Frequently Changing
Environments, Int. Conf of Very Large
Databases (VLDB), Sep 2003.

	4. Data Mapping

