
Composing Schema Mappings:
Second-Order Dependencies to the Rescue

RONALD FAGIN

IBM Almaden Research Center

PHOKION G. KOLAITIS1

IBM Almaden Research Center

LUCIAN POPA

IBM Almaden Research Center

WANG-CHIEW TAN2

University of California, Santa Cruz

A schema mapping is a specification that describes how data structured under one schema (the

source schema) is to be transformed into data structured under a different schema (the target
schema). A fundamental problem is composing schema mappings: given two successive schema

mappings, derive a schema mapping between the source schema of the first and the target schema
of the second that has the same effect as applying successively the two schema mappings.

In this paper, we give a rigorous semantics to the composition of schema mappings and inves-

tigate the definability and computational complexity of the composition of two schema mappings.
We first study the important case of schema mappings in which the specification is given by a

finite set of source-to-target tuple-generating dependencies (source-to-target tgds). We show that

the composition of a finite set of full source-to-target tgds with a finite set of tgds is always
definable by a finite set of source-to-target tgds, but the composition of a finite set of source-to-

target tgds with a finite set of full source-to-target tgds may not be definable by any set (finite

or infinite) of source-to-target tgds; furthermore, it may not be definable by any formula of least
fixed-point logic, and the associated composition query may be NP-complete. After this, we in-

troduce a class of existential second-order formulas with function symbols and equalities, which

we call second-order tgds, and make a case that they are the “right” language for composing
schema mappings. Specifically, we show that second-order tgds form the smallest class (up to

logical equivalence) that contains every source-to-target tgd and is closed under conjunction and
composition. Allowing equalities in second-order tgds turns out to be of the essence, even though

the “obvious” way to define second-order tgds does not require equalities. We show that second-

order tgds without equalities are not sufficiently expressive to define the composition of finite sets
of source-to-target tgds. Finally, we show that second-order tgds possess good properties for data
exchange and query answering: the chase procedure can be extended to second-order tgds so that

it produces polynomial-time computable universal solutions in data exchange settings specified by
second-order tgds.
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1. INTRODUCTION & SUMMARY OF RESULTS

The problem of transforming data structured under one schema into data struc-
tured under a different schema is an old, but persistent problem, arising in several
different areas of database management systems. In recent years, this problem
has received considerable attention in the context of information integration, where
data from various heterogeneous sources has to be transformed into data structured
under a mediated schema. To achieve interoperability, data-sharing architectures
use schema mappings to describe how data is to be transformed from one represen-
tation to another. These schema mappings are typically specified using high-level
declarative formalisms that make it possible to describe the correspondence be-
tween different schemas at a logical level, without having to specify physical details
that may be relevant only for the implementation (run-time) phase. In particular,
declarative schema mappings in the form of GAV (global-as-view), LAV (local-as-
view), and, more generally, GLAV (global-and-local-as-view) assertions have been
used in data integration systems [Lenzerini 2002]. Similarly, source-to-target tuple-
generating dependencies (source-to-target tgds) have been used for specifying data
exchange between a relational source and a relational target [Fagin, Kolaitis, Miller
and Popa 2005; Fagin, Kolaitis and Popa 2003]; moreover, nested (XML-style)
source-to-target dependencies have been used in the Clio data exchange system
[Popa et al. 2002].

The extensive use of schema mappings has motivated the need to develop a frame-
work for managing these schema mappings and other related metadata. Bernstein
[Bernstein 2003] has introduced such a framework, called model management , in
which the main abstractions are schemas and mappings between schemas, as well as
operators for manipulating schemas and mappings. One of the most fundamental
operators in this framework is the composition operator , which combines successive
schema mappings into a single schema mapping. The composition operator can play
a useful role each time the target of a schema mapping is also the source of another
schema mapping. This scenario occurs, for instance, in schema evolution, where a
schema may undergo several successive changes. It also occurs in peer-to-peer data
management systems, such as the Piazza System [Halevy, Ives, Mork and Tatari-
nov 2003], and in extract-transform-load (ETL) processes in which the output of
a transformation may be input to another [Vassiliadis, Simitsis and Skiadopoulos
2002]. A model management system should be able to figure out automatically how
to compose two or more successive schema mappings into a single schema mapping
between the first schema and the last schema in a way that captures the interaction
of the schema mappings in the entire sequence. The resulting single schema map-
ping can then be used during the run-time phase for various purposes, such as query
ACM Transactions on Database Systems, Vol. , No. , 20.



· 3

answering and data exchange, potentially with significant performance benefits.

Bernstein’s approach provides a rich conceptual framework for model manage-
ment. The next stage in the development of this framework is to provide a rigorous
and meaningful semantics of the basic model management operators and to inves-
tigate the properties of this semantics. As pointed out by Bernstein [Bernstein
2003], while the semantics of the match operator have been worked out to a certain
extent, the semantics of other basic operators, including the composition opera-
tor, “are less well developed”. The problem of composing schema mappings has
the following general formulation: given a schema mapping M12 from schema S1

to schema S2, and a schema mapping M23 from schema S2 to schema S3, derive
a schema mapping M13 from schema S1 to schema S3 that is “equivalent” to the
successive application of M12 and M23. Thus, providing semantics to the composi-
tion operator amounts to making precise what “equivalence” means in this context.
Madhavan and Halevy [Madhavan and Halevy 2003] were the first to propose a se-
mantics of the composition operator. To this effect, they defined the semantics of
the composition operator relative to a class Q of queries over the schema S3 by stip-
ulating that “equivalence” means that, for every query q in Q, the certain answers
of q in M13 coincide with the certain answers of q that would be obtained by suc-
cessively applying the two schema mappings M12 and M23. They then established
a number of results for this semantics in the case in which the schema mappings
M12 and M23 are specified by source-to-target tgds (that is, GLAV assertions),
and the class Q is the class of all conjunctive queries over S3. The semantics of the
composition operator proposed by Madhavan and Halevy is a significant first step,
but it suffers from certain drawbacks that seem to be caused by the fact that this
semantics is given relative to a class of queries. To begin with, the set of formulas
specifying a composition M13 of M12 and M23 relative to a class Q of queries
need not be unique up to logical equivalence, even when the class Q of queries is
held fixed. Moreover, this semantics is rather fragile, because as we show, a schema
mapping M13 may be a composition of M12 and M23 when Q is the class of con-
junctive queries (the class Q that Madhavan and Halevy focused on), but fail to
be a composition of these two schema mappings when Q is the class of conjunctive
queries with inequalities.

In this paper, we first introduce a different semantics for the composition op-
erator and then investigate the definability and computational complexity of the
composition of schema mappings under this new semantics. Unlike the semantics
proposed by Madhavan and Halevy, our semantics does not carry along a class of
queries as a parameter. Specifically, we focus on the space of instances of schema
mappings and define a schema mapping M13 to be a composition of two schema
mappings M12 and M23 if the space of instances of M13 is the set-theoretic com-
position of the spaces of instances of M12 and M23, where these spaces are viewed
as binary relations between source instances and target instances. One advantage
of this approach is that the set of formulas defining a composition M13 of M12 and
M23 is unique up to logical equivalence; thus, we can refer to such a schema map-
ping M13 as the composition of M12 and M23. Moreover, our semantics is robust,
since it is defined in terms of the schema mappings alone and without reference to
a set of queries. In fact, it is easy to see that the composition (in our sense) of two
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schema mappings is a composition of these two schema mappings in the sense of
Madhavan and Halevy relative to every class of queries.

We explore in depth the properties of the composition of schema mappings spec-
ified by a finite set of source-to-target tuple-generating dependencies (source-to-
target tgds). A natural question to ask is whether the composition of two such
schema mappings can also be specified by a finite set of source-to-target tgds; if
not, in what logical formalism can it be actually expressed? On the positive side, we
show that the composition of a finite set of full source-to-target tgds with a finite
set of source-to-target tgds is always definable by a finite set of source-to-target
tgds (a source-to-target tgd is full if no existentially quantified variables occur in
the tgd). On the negative side, however, we show that the composition of a finite
set of source-to-target tgds with a finite set of full source-to-target tgds may not
be definable by any set (finite or infinite) of source-to-target tgds. We also show
that the composition of a finite set of source-to-target tgds with a finite set of full
source-to-target tgds may not even be definable in the finite-variable infinitary logic
Lω
∞ω, which implies that it is not definable in least fixed-point logic LFP; moreover,

the associated composition query can be NP-complete.

To ameliorate these negative results, we introduce a class of existential second-
order formulas with function symbols and equalities, called second-order tgds, which
express source-to-target constraints and which subsume the class of finite conjunc-
tions of (first-order) source-to-target tgds. We make a case that second-order tgds
are the right language both for specifying schema mappings and for composing such
schema mappings. To begin with, we show that the composition of two finite sets of
source-to-target tgds is always definable by a second-order tgd. Moreover, the com-
position of second-order tgds is also definable by a second-order tgd, and we give an
algorithm that, given two schema mappings specified by second-order tgds, outputs
a second-order tgd that defines the composition. Furthermore, the conjunction of
a finite set of second-order tgds is equivalent to a single second-order tgd. Hence,
the composition of a finite number of schema mappings, each defined by a finite set
of source-to-target (second-order) tgds, is always definable by a second-order tgd.
It should be pointed out that arriving at the right concept of second-order tgds is a
rather delicate matter. Indeed, at first one may consider the class of second-order
formulas that are obtained from first-order tgds by Skolemizing the existential first-
order quantifiers into existentially quantified function symbols. This process gives
rise to a class of existential second-order formulas with no equalities. Therefore,
the “obvious” way to define second-order tgds is with formulas with no equalities.
Interestingly enough, however, we show that second-order tgds without equalities
are not sufficiently expressive to define the composition of finite sets of (first-order)
source-to-target tgds. In fact, our second-order tgds (with equalities) form the
smallest class of formulas (up to logical equivalence) for composing schema map-
pings given by finite sets of source-to-target tgds; every second-order tgd defines
the composition of a finite sequence of schema mappings, each defined by a finite
set of source-to-target tgds.

We then show that second-order tgds possess good properties for data exchange.
In particular, the chase procedure can be extended to second-order tgds so that it
produces polynomial-time computable “universal solutions” (in the sense of [Fagin,
ACM Transactions on Database Systems, Vol. , No. , 20.
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Kolaitis, Miller and Popa 2005]) in data exchange settings specified by second-order
tgds. As a result, in such data exchange settings the certain answers of conjunctive
queries can be computed in polynomial time.

In spite of the richness of second-order tgds, they form a well-behaved fragment
of second-order logic for composing schema mappings. As we noted earlier, if the
data exchange setting is defined by second-order tgds, then the certain answers of
every conjunctive query can be computed in polynomial time (by doing the chase).
By contrast, when the source schema is described in terms of the target schema
by means of arbitrary first-order views, there are conjunctive queries for which
computing the certain answers is an undecidable problem [Abiteboul and Duschka
1998]. Thus, our second-order tgds form a fragment of second-order logic that in
some ways is more well-behaved than first-order logic.

There is a subtle issue about the choice of universe in the semantics of second-
order tgds. We take our universe to be a countably infinite set of elements that
includes the active domain. This is a natural choice for the universe, since second-
order tgds have existentially quantified function symbols and for this reason, one
needs sufficiently many elements in the universe in order to interpret these function
symbols without making any unnecessary combinatorial assumptions. In fact, we
show that as long as we take the universe to be finite but sufficiently large, then
the semantics of a second-order tgd remains unchanged from the infinite universe
semantics.

We show that determining whether a given instance over the source and target
schema satisfies a second-order tgd is in NP and can be NP-complete. This is in
contrast with the first order case, where such “model checking” can be done in
polynomial time.

Finally, we examine Madhavan and Halevy’s notion of composition, which we
refer to as “certain-answer adequacy”. Roughly speaking, a formula is certain-
answer adequate if it gives the same certain answers as the composition. A formula
σ that defines the composition (in our sense) is always certain-answer adequate for
every class Q of queries; however, other formulas that are not logically equivalent
to σ may also be certain-answer adequate for some classes Q of queries. This is why
we use the word “adequate”: logically inequivalent choices may both be adequate
for the job. We show that there are schema mappings where no finite set of source-
to-target tgds is certain-answer adequate for conjunctive queries. We also prove
the following “hierarchy” of results about certain-answer adequacy:

(A) A formula may be certain-answer adequate for conjunctive queries but not for
conjunctive queries with inequalities.

(B) A formula may be certain-answer adequate for conjunctive queries with in-
equalities but not for all first-order queries.

(C) A formula is certain-answer adequate for all first-order queries if and only if it
defines the composition (in our sense); furthermore, such a formula is certain-
answer adequate for all queries. It follows that if a formula is certain-answer
adequate for all first-order queries, then it is certain-answer adequate for all
queries.
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2. BACKGROUND

In this section, we review the basic concepts from data exchange that we will need.
A schema is a finite sequence R = 〈R1, . . . , Rk〉 of distinct relation symbols, each

of a fixed arity. An instance I (over the schema R) is a sequence 〈RI
1, . . . , R

I
k〉 such

that each RI
i is a finite relation of the same arity as Ri. We call RI

i the Ri-relation
of I. We shall often abuse the notation and use Ri to denote both the relation
symbol and the relation RI

i that interprets it.
Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas with no relation

symbols in common. We write 〈S,T〉 to denote the schema 〈S1, . . ., Sn, T1, . . .,
Tm〉. If I is an instance over S and J is an instance over T, then we write 〈I, J〉
for the instance K over the schema 〈S,T〉 such that SK

i = SI
i and TK

j = T J
j , for

1 ≤ i ≤ n and 1 ≤ j ≤ m.
If K is an instance and σ is a formula in some logical formalism, then we write

K |= σ to mean that K satisfies σ. If Σ is a set of formulas, then we write K |= Σ
to mean that K |= σ for every formula σ ∈ Σ. Recall that a (Boolean) query is
a class of instances that is closed under isomorphisms [Chandra and Harel 1982].
That is, if a structure is a member of the class, then so is every isomorphic copy of
the structure. If K is an instance and q is a query, then we write K |= q to mean
that K is a member of the class q of instances.

Definition 2.1. A schema mapping (or, in short, mapping) is a triple M =
(S,T, Σ), where S and T are schemas with no relation symbols in common and Σ
is a set of formulas of some logical formalism over 〈S,T〉.

Definition 2.2. Let M = (S,T,Σ) be a schema mapping.

(1) An instance of M is an instance 〈I, J〉 over 〈S,T〉 that satisfies every formula
in the set Σ.

(2) We write Inst(M) to denote the set of all instances 〈I, J〉 of M. Moreover, if
〈I, J〉 ∈ Inst(M), then we say that J is a solution for I under M.

Several remarks are in order now. In the sequel, if M = (S,T,Σ) is a schema
mapping, we will often refer to S as the source schema and to T as the target
schema. The formulas in the set Σ express constraints that an instance 〈I, J〉 over
the schema 〈S,T〉 must satisfy. We assume that the logical formalisms considered
have the property that the satisfaction relation between formulas and instances is
preserved under isomorphism, which means that if an instance satisfies a formula,
then every isomorphic instance also satisfies that formula. This is a mild condition
that is true of all standard logical formalisms, such as first-order logic, second-
order logic, fixed-point logics, and infinitary logics. Thus, such formulas represent
queries in the sense of [Chandra and Harel 1982]. An immediate consequence of this
property is that Inst(M) is closed under isomorphism; that is, if 〈I, J〉 ∈ Inst(M)
and 〈I ′, J ′〉 is isomorphic to 〈I, J〉, then also 〈I ′, J ′〉 ∈ Inst(M).

At this level of generality, some of the formulas in Σ may be just over the source
schema S and others may be just over the target schema T; thus, the set Σ may in-
clude constraints over the source schema S alone or over the target schema T alone,
along with constraints that involve both the source and the target schemas. We
note that, although the term “schema mapping” or “mapping” has been used ear-
lier in the literature (for instance, in [Miller, Haas and Hernández 2000; Madhavan
ACM Transactions on Database Systems, Vol. , No. , 20.
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and Halevy 2003]), it is a bit of a misnomer, as a schema mapping is not a map-
ping in the traditional mathematical sense, but actually it is a schema (although
partitioned in two parts) together with a set of constraints. Nonetheless, a schema
mapping M = (S,T,Σ) gives rise to a mapping such that, given an instance I over
S, it associates the set of all instances J over T that are solutions for I under M.
Note also that the terminology “J is a solution for I” comes from [Fagin, Kolaitis,
Miller and Popa 2005; Fagin, Kolaitis and Popa 2003], where J is a solution to the
data exchange problem associated with the mapping M and the source instance I.

Schema mappings are often specified using source-to-target tgds. They have been
used to formalize data exchange [Fagin, Kolaitis, Miller and Popa 2005; Fagin,
Kolaitis and Popa 2003]. They have also been used in data integration scenarios
under the name of GLAV assertions [Lenzerini 2002]. A source-to-target tuple-
generating dependency (source-to-target tgd) is a first-order formula of the form

∀x(φS(x) → ∃yψT (x,y)),

where φS(x) is a conjunction of atomic formulas over S, and where ψT (x,y) is a
conjunction of atomic formulas over T. We assume that every variable in x appears
in φS . A full source-to-target tuple-generating dependency (full source-to-target tgd)
is a source-to-target tgd of the form

∀x(φS(x) → ψT (x)),

where φS(x) is a conjunction of atomic formulas over S, and where ψT (x) is a
conjunction of atomic formulas over T. We again assume that every variable in x
occurs in φS .

Every full source-to-target tgd is logically equivalent to a finite set of full source-
to-target tgds each of which has a single atom in its right-hand side. Specifically, a
full source-to-target tgd of the form ∀x(φS(x) → ∧k

i=1Ri(xi)) is equivalent to the set
consisting of the full source-to-target tgds ∀x(φS(x) → Ri(xi)), for i = 1, . . . , k. In
contrast, this property fails for arbitrary source-to-target tgds, since the existential
quantifiers may bind variables used across different atomic formulas.

Example 2.3. Consider the following three schemas S1, S2 and S3. Schema S1

consists of a single binary relation symbol Takes, that associates student names
with the courses they take. Schema S2 consists of a similar binary relation symbol
Takes1, that is intended to provide a copy of Takes, and of an additional binary
relation symbol Student, that associates each student name with a student id.
Schema S3 consists of one binary relation symbol Enrollment, that associates stu-
dent ids with the courses the students take. Consider now the schema mappings
M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), where

Σ12 = { ∀n∀c(Takes(n, c) → Takes1(n, c)),
∀n∀c(Takes(n, c) → ∃sStudent(n, s)) }

Σ23 = { ∀n∀s∀c(Student(n, s) ∧ Takes1(n, c) → Enrollment(s, c)) }

The three formulas in Σ12 and Σ23 are source-to-target tgds. The second formula
in Σ12 is an example of a source-to-target tgd that is not full, while the other two
formulas are full source-to-target tgds. The first mapping, associated with the set
Σ12 of formulas, requires that “copies” of the tuples in Takes must exist in Takes1
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and, moreover, that each student name n must be associated with some student id
s in Student. The second mapping, associated with the formula in Σ23, requires
that pairs of student id and course must exist in the relation Enrollment, provided
that they are associated with the same student name.

Note that for a given set Σ of source-to-target tgds, checking whether an instance
〈I, J〉 satisfies Σ can be done in polynomial time. (This is true in general when Σ
is a set of first-order formulas.) We shall contrast this with the case of second-order
tgds, the more expressive mapping language that we shall introduce later. When Σ
is a second-order tgd, checking if 〈I, J〉 satisfies Σ is in NP and can be NP-complete
(Theorem 5.7).

For the rest of this section, we shall review notions and results from [Fagin,
Kolaitis, Miller and Popa 2005] about data exchange. The data exchange problem
associated with M and a source instance I is to find a solution J over the target
schema T. For any schema mapping M, there may be many solutions for a given
source instance I over S. Let R be a schema and J , J ′ two instances over R. A
function h is a homomorphism from J to J ′ if for every relation symbol R in R
and every tuple (a1, . . . , an) ∈ RJ , we have that (h(a1), . . . , h(an)) ∈ RJ′

. Given
a schema mapping M = (S,T,Σ) and a source instance I over S, a universal
solution of I under M is a solution J of I under M such that for every solution
J ′ of I under M, there exists a homomorphism h : J → J ′ with the property
that h(v) = v for every value v that occurs in I. Intuitively, universal solutions
are the “best” solutions among the space of all solutions for I. If Σ consists of
source-to-target tgds, then chasing I with Σ produces a universal solution J of I
under M. Furthermore, J can be computed in time polynomial in the size of I.
(This holds even in a more general setting that also includes target constraints.)
We will refer to this result several times during the technical development of this
paper. During the chase, target values may be introduced that do not appear in
the source instance; these are called nulls.

Given a schema mapping M = (S,T, Σ), an instance I over the source schema
S and a k-ary query q posed against the target schema T, the certain answers of
q on I with respect to M, denoted by certainM(q, I), is the set of all k-tuples t of
values from I such that, for every solution J of I under M, we have that t ∈ q(J),
where q(J) is the result of evaluating q on J . If J is a universal solution for I
under M, and q is a union of conjunctive queries, then certainM(q, I) equals q(J)↓,
which is the result of evaluating q on J and then keeping only those tuples formed
entirely of values from I (that is, tuples that do not contain nulls). The equality
certainM(q, I) = q(J)↓ holds for arbitrarily specified schema mappings M (as long
as such a universal solution J exists). Since a universal solution can be computed
in time polynomial in the size of I for schema mappings that contain only source-
to-target tgds, it follows that the certain answers of q on I with respect to such
schema mappings can also be computed in polynomial time.

3. THE SEMANTICS OF COMPOSITION

In this section, we define what it means for a schema mapping to be the composition
of two schema mappings. In later sections we will investigate under what conditions
such schema mappings exist and in what language they can be defined.
ACM Transactions on Database Systems, Vol. , No. , 20.
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If P1 and P2 are two binary relations, then by definition, the composition P1 ◦P2

of P1 and P2 is the binary relation

P1 ◦ P2 = {(x, y) : (∃z)((x, z) ∈ P1 ∧ (z, y) ∈ P2)}.

Clearly, if M = (S,T,Σ) is a schema mapping, then Inst(M) is a binary relation
between instances over S and instances over T. In what follows, we define the con-
cept of a composition of two schema mappings M12 and M23 using the composition
of the binary relations Inst(M12) and Inst(M23).

Definition 3.1. LetM12=(S1, S2, Σ12) andM23=(S2, S3, Σ23) be two schema
mappings such that the schemas S1,S2,S3 have no relation symbol in common
pairwise. A schema mapping M = (S1,S3,Σ13) is a composition of M12 and M23

if
Inst(M) = Inst(M12) ◦ Inst(M23),

which means that Inst(M) = {〈I1, I3〉 | there exists I2 such that 〈I1, I2〉 ∈ Inst(M12)
and 〈I2, I3〉 ∈ Inst(M23)}.

Example 3.2. Let M12 and M23 be the schema mappings defined in Exam-
ple 2.3. Define I1 by letting TakesI1 = {(Alice,Math), (Alice,Art)}. Define I2 by
letting TakesI2

1 = TakesI1 and StudentI2 = {(Alice, 1234)}. Here 1234 is Alice’s
student id. Define I3 by letting EnrollmentI3 = {(1234,Math), (1234,Art)}. It
is easy to verify that 〈I1, I2〉 ∈ Inst(M12) and that 〈I2, I3〉 ∈ Inst(M23). Hence,
〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23). One of the main problems that we study in this
paper is how to find, and in what language, a schema mapping M = (S1, S3, Σ13)
that is a composition of M12 and M23, according to Definition 3.1. In other words,
we will be looking for Σ13 (involving only S1 and S3) such that an instance 〈I1, I3〉
is in Inst(M12)◦ Inst(M23) if and only if 〈I1, I3〉 satisfies Σ13. A first guess for Σ13

in the example we are considering might be the source-to-target tgd

∀n∀c(Takes(n, c) → ∃sEnrollment(s, c)). (1)

However, formula (1) does not correctly capture the composition, since in (1), the
student id s depends on both the student name n and the course c. But the student
id s is supposed to depend only on the student name n (more precisely, (s, c) must
be a tuple in the Enrollment relation for every course c where (n, c) is in the
Takes relation). In fact, we shall show (in the proof of Proposition 4.4) that in this
example, the composition is not definable by any finite set of source-to-target tgds.

Since Inst(M12) and Inst(M23) are closed under isomorphism, their composition
Inst(M12) ◦ Inst(M23) is also closed under isomorphism. Consequently, the class
Inst(M12) ◦ Inst(M23) can be identified with the following query, which we call
the composition query of M12 and M23: the set of all instances 〈I1, I3〉 such that
〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23). Note that, according to Definition 3.1, asserting
that M = (S1,S3,Σ13) is a composition of M12 and M23 amounts to saying that
the composition query of M12 and M23 is exactly the set of instances over 〈S1,S3〉
that satisfy Σ13. In other words, this means that the composition query of M12

and M23 is defined by the formulas in the set Σ13.
It is well known and easy to see that every query is definable by an infinitary

disjunction of first-order formulas. Specifically, for each finite structure satisfy-
ing the query, we construct a first-order formula that defines the structure up to
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isomorphism and then take the disjunction of all these formulas. This infinitary
formula defines the query. Moreover, every query is definable by a set of first-
order formulas. Indeed, for each finite structure that does not satisfy the query, we
construct the negation of the first-order formula that defines the structure up to
isomorphism and then form the set of all such formulas. Note that this is an infi-
nite set of first-order formulas, unless the query is satisfied by all but finitely many
non-isomorphic instances. This set is equivalent to its conjunction. Thus, every
query is definable by an infinitary conjunction of first-order formulas. It follows
that a composition of two schema mappings always exists, since, given two schema
mappings M12 and M23, we can obtain a composition M = (S1,S3,Σ13) of M12

and M23 by taking Σ13 to be the singleton consisting of an infinitary formula that
defines the composition query of M12 and M23. Alternatively, we could take Σ13

to be the (usually infinite) set of first-order formulas that defines the composition
query of M12 and M23. Since Σ13 defines the composition query, this composition
Σ13 is unique up to logical equivalence in the sense that if M = (S1, S3, Σ13) and
M′ = (S1, S3, Σ′13) are both compositions of M12 and M23, then Σ13 and Σ′13 are
logically equivalent. For this reason, from now on we will refer to the composition
of M12 and M23, and will denote it by M12 ◦M23. We may also refer to Σ13 as
the composition of Σ12 and Σ23.

Since the composition query is always definable both by an infinitary formula and
by an infinite set of first-order formulas, it is natural to investigate when the com-
position of two schema mappings is definable in less expressive, but more tractable,
logical formalisms. It is also natural to investigate whether the composition of two
schema mappings is definable in the same logical formalism that is used to define
these two schema mappings. We embark on this investigation in the next section.

4. COMPOSING SOURCE-TO-TARGET TGDS

In this section, we investigate the definability and computational complexity of the
composition of two schema mappings M12 and M23 in which the dependencies Σ12

and Σ23 are finite sets of source-to-target tgds. We shall show the following results.

—If Σ12 and Σ23 are finite sets of full source-to-target tgds, then the composition
of M12 and M23 is also definable by a finite set of full source-to-target tgds.

—If Σ12 is a finite set of full source-to-target tgds and Σ23 is a finite set of source-
to-target tgds (not necessarily full), then the composition of M12 and M23 is
definable by a finite set of source-to-target tgds. In turn, this implies that the
associated composition query is polynomial-time computable.

—In contrast, if both Σ12 and Σ23 are finite sets of arbitrary source-to-target tgds
(not necessarily full), then the composition of M12 and M23 may not even be
first-order definable, and the associated composition query may be NP-complete.

4.1 Positive Results

Our first positive result shows the good behavior of the composition of mappings,
each of which is defined by finite sets of full source-to-target tgds. In the following,
whenever α is a formula in which variables z1, . . . , zl may occur, we may use the
notation α[z1 7→ a1, . . . , zl 7→ al] to denote the formula obtained by replacing the
variables z1, . . . , zl in α by a1, . . . , al, respectively.
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Proposition 4.1. Let M12 = (S1,S2,Σ12) and M23 = (S2, S3, Σ23) be two
schema mappings such that Σ12 and Σ23 are finite sets of full source-to-target tgds.
Then the composition M12 ◦M23 is definable by a finite set of full source-to-target
tgds. Consequently the composition query of M12 and M23 is a polynomial-time
query.

Proof. Without loss of generality, assume that each full source-to-target tgd in
Σ12 has a single atom in its right-hand side. We shall show that the composition
M12◦M23 is the schema mapping (S1,S3,Σ13), where Σ13 is constructed as follows.
For every full source-to-target tgd τ in Σ23 of the form ∀x((R1(x1)∧ ...∧Rk(xk)) →
S(x0)), if for some i there is no full source-to-target tgd in Σ12 of the form ∀zi(φi →
Ri(ui)), then no tgd will be constructed from τ . Otherwise, for each i with 1 ≤
i ≤ k and for for each selection of a full source-to-target tgd in Σ12 of the form
∀zi(φi → Ri(ui)), create a tgd by replacing each atom Ri(xi) in τ by the formula
φi[ui 7→ xi]. We thereby obtain a full source-to-target tgd from S1 to S3 of the
form

(∗) ∀z′∀x((φ1[u1 7→ x1] ∧ . . . ∧ φk[uk 7→ xk]) → S(x0)).

In the above, z′ includes all the variables in φ1, . . . , φk that are not affected by the
replacements. We obtain a finite set Στ of full source-to-target tgds from S1 to S3

by allowing each Ri(xi), for 1 ≤ i ≤ k, in τ to be replaced in all possible ways.
Then Σ13 is the union of all these sets Στ , and it is a finite set, since Σ12 and Σ23

are both finite sets.
We now show that Σ13 gives the composition. We begin by showing that if 〈I1, I3〉

is in Inst(M12) ◦ Inst(M23), then 〈I1, I3〉 satisfies Σ13. For every full tgd in Σ13 of
the form (*), if there exist tuples a and b of values that replace, correspondingly,
the variables in z′ and x, such that

(∗∗) I1 |= (φ1[u1 7→ x1] ∧ . . . ∧ φk[uk 7→ xk]) [z′ 7→ a,x 7→ b],

we show that I3 |= S(x0)[x 7→ b].
By the construction of tgds in Σ13, we know that there are full tgds ∀zi(φi →

Ri(ui)), for 1 ≤ i ≤ k, in Σ12 and a full tgd ∀x((R1(x1) ∧ ... ∧ Rk(xk)) → S(x0))
in Σ23. We know that there is I2 such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23.
Since 〈I1, I2〉 |= Σ12 we obtain from (**) that I2 |= Ri(xi)[x 7→ b], for each i with
1 ≤ i ≤ k. Since 〈I2, I3〉 |= Σ23, it then follows that I3 |= S(x0)[x 7→ b].

For the converse, assume that 〈I1, I3〉 satisfies Σ13. Let 〈I1, I2〉 be the result of
chasing 〈I1, ∅〉 with the full tgds in Σ12. It is immediate that 〈I1, I2〉 |= Σ12, by the
properties of the chase. We need to show that 〈I2, I3〉 |= Σ23. Let ∀x((R1(x1) ∧
... ∧ Rk(xk)) → S(x0)) be a full tgd in Σ23, and assume that there is a tuple b
of values such that I2 |= (R1(x1) ∧ ... ∧ Rk(xk)[x 7→ b]. We need to show that
I3 |= S(x0)[x 7→ b].

Since 〈I1, I2〉 is the result of chasing 〈I1, ∅〉 with the full tgds in Σ12, it follows
that there are tgds ∀zi(φi → Ri(ui)), with 1 ≤ i ≤ k, in Σ12, and a tuple a of
values such that the above condition (**) is true. By the construction of Σ13, we
know that a tgd of the form (*) must exist in Σ13. Since 〈I1, I3〉 satisfies this tgd, it
follows from the condition (**) that I3 |= S(x0)[x 7→ b]. This was to be shown.
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A special case of this proposition appeared in [Beeri and Vardi 1984b, Lemma
2.3]. An inspection of the proof of Proposition 4.1 shows that the same construction
yields the following result.

Proposition 4.2. Let M12 = (S1,S2,Σ12) and M23 = (S2, S3, Σ23) be two
schema mappings such that Σ12 is a finite set of full source-to-target tgds and Σ23

is a finite set of source-to-target tgds. Then the composition M12 ◦M23 is definable
by a finite set of source-to-target tgds. Consequently, the composition query of M12

and M23 is a polynomial-time query.

Proof. The construction of Σ13 is the same as in the proof of Proposition 4.1,
with the only difference being that for every source-to-target tgd in Σ23 of the form
∀x((R1(x1) ∧ ... ∧ Rk(xk)) → ∃yS(x0,y)), and for every i with 1 ≤ i ≤ k and for
every full source-to-target tgd in Σ12 of the form ∀zi(φi → Ri(ui)), we construct a
tgd in Σ13 of the form:

(∗) ∀z′∀x((φ1[u1 7→ x1] ∧ . . . ∧ φk[uk 7→ xk]) → ∃yS(x0,y)).

The rest of the proof remains the same as in the proof of Proposition 4.1.

Example 4.3. We now give an example that shows the use of algorithm of
Proposition 4.2. Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a unary relation EmpAcme that represents the employees of Acme, a
unary relation EmpAjax that represents the employees of Ajax, and a unary relation
Local that represents employees that work in the local office of their company.
Schema S2 consists of a unary relation Emp that represents all employees, a unary
relation Local1 that is intended to be a copy of Local, and a unary relation Over65
that is intended to represent people over age 65. Schema S3 consists of a binary
relation Office that associates employees with office numbers, and a unary relation
CanRetire that represents employees eligible for retirement. Consider now the
schema mappings M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), where

Σ12 = { ∀e(EmpAcme(e) → Emp(e)),
∀e(EmpAjax(e) → Emp(e)),
∀p(Local(p) → Local1(p)) }

Σ23 = { ∀e(Emp(e) ∧ Local1(e) → ∃oOffice(e, o)),
∀e(Emp(e) ∧ Over65(e) → CanRetire(e) }

The result Σ13 of applying the composition algorithm from the proof of Proposi-
tion 4.2 is

Σ13 = { ∀e(EmpAcme(e) ∧ Local(e) → ∃oOffice(e, o)),
∀e(EmpAjax(e) ∧ Local(e) → ∃oOffice(e, o)) }

Note that the first tgd of Σ23 is “used twice” (once when we replace Emp by EmpAcme
and once when we replace Emp by EmpAjax), and the second tgd of Σ23 is not used
(since there is nothing from S1 to replace Over65 by).

It is easy to see that the same result holds for Proposition 4.1 (and Proposi-
tion 4.2) when a sequence of more than two consecutive schema mappings is con-
sidered. In other words, given a sequence M12,M23, ...,Mk−1,k of schema map-
pings where each schema mapping is specified by a finite set of full source-to-target
ACM Transactions on Database Systems, Vol. , No. , 20.
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tgds, the composition M12 ◦ · · · ◦ Mk−1,k is also definable by a finite set of full
source-to-target tgds. If the last schema mapping Mk−1,k is specified by a finite
set of source-to-target tgds and all of the others are specified by a finite set of full
source-to-target tgds, then the composition M12 ◦ ... ◦ Mk−1,k is definable by a
finite set of source-to-target tgds.

4.2 Negative Results

We now present a series of negative results associated with the composition of
schema mappings specified by source-to-target tgds.

Proposition 4.4. There exist schema mappings M12 = (S1, S2, Σ12) and
M23 = (S2, S3, Σ23) such that Σ12 is a finite set of source-to-target tgds, Σ23

is a finite set of full source-to-target tgds, and the following hold for the composi-
tion M12 ◦M23:
1. M12 ◦ M23 is not definable by any finite set of source-to-target tgds, but it is

definable by an infinite set of source-to-target tgds.
2. M12 ◦M23 is definable by a first-order formula. Consequently, the composition

query of M12 and M23 is a polynomial-time query.

Proof. The two schema mappings that we use to prove the proposition are the
schema mappings M12 and M23 of Example 2.3. Assume that according to the
instance I1, a student with name n is taking courses c1, . . . , ck. According to the
second tgd of Σ12, this student n is assigned (at least one) student id s. According
to Σ23, the instance I3 then contains tuples (s, c1), . . . , (s, ck). These requirements
are described by the following source-to-target tgd, which we denote by φk:

∀n∀c1 . . .∀ck(Takes(n, c1) ∧ . . . ∧ Takes(n, ck) →
∃s(Enrollment(s, c1) ∧ . . . ∧ Enrollment(s, ck)))

We next show that the composition M12 ◦M23 is given by M = (S1,S3,Σ13),
where Σ13 is the infinite set {φ1, . . . , φk, . . .} of source-to-target tgds.

Assume first that 〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23). This means that there is I2
over S2 such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23. We need to show that 〈I1, I3〉 |=
φk, for each k ≥ 1. Assume that TakesI1 contains tuples (n, c1), . . . , (n, ck), where
n is a concrete student name, and c1, . . . , ck are concrete courses. Since 〈I1, I2〉 |=
Σ12, we obtain that TakesI2

1 contains the tuples (n, c1), . . . , (n, ck) and StudentI2

contains the tuple (n, s), for some value s. Since 〈I2, I3〉 |= Σ23, we then obtain
that EnrollmentI3 contains the tuples (s, c1), . . . , (s, ck). Hence, 〈I1, I3〉 |= φk.

Conversely, assume that 〈I1, I3〉 |= φk, for each k ≥ 1. We need to show that there
is I2 such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23. We construct I2 as follows. We let
StudentI2 be the set of all tuples (n, s) such that: (1) some tuple (n, c) occurs in
TakesI1 , (2) the set {c1, . . . , cl} is the set of all courses c such that (n, c) appears in
TakesI1 , and (3) s is such that EnrollmentI3 contains the tuples (s, c1), . . . , (s, cl).
We note that s as in condition (3) must exist, whenever TakesI1 contains tuples
(n, c1), . . . , (n, cl). This is due to the fact that 〈I1, I3〉 satisfies φl. Furthermore, we
let TakesI2

1 = TakesI1 . It is immediate that 〈I1, I2〉 |= Σ12.
We now show that 〈I2, I3〉 |= Σ23. Indeed, assume that StudentI2 contains a

tuple (n, s), and that TakesI2
1 contains a tuple (n, c); we must show that the tuple

ACM Transactions on Database Systems, Vol. , No. , 20.



14 ·

(s, c) is in EnrollmentI3 . By construction of TakesI2
1 , we know that (n, c) is in

TakesI1 . Let {c1, . . . , cl} be the set of all courses c′ such that (n, c′) is in TakesI1 ;
this set certainly contains c. By construction of StudentI2 , we know that s has
the property that EnrollmentI3 contains the tuples (s, c1), . . . , (s, cl). Since c is a
member of {c1, . . . , cl}, it follows that the tuple (s, c) is in EnrollmentI3 , as desired.

It can be verified that Σ13 is not equivalent to any finite subset of it. We now
show that, in fact, Σ13 is not equivalent to any finite set of source-to-target tgds.
The proof of this uses the chase as well as the concept of universal solution. Suppose
there is a finite set Σfin

13 of source-to-target tgds that is logically equivalent to Σ13.
Let Mfin = (S1,S3,Σfin

13 ) and consider the following source instance I1:

TakesI1 = {(n, c1), . . . , (n, cm)}

where n is some student name and c1, . . . , cm are the courses that this student
takes. We assume that m is a large enough number, that we shall specify shortly.

We construct an instance I3 over S3, by chasing (as in [Fagin, Kolaitis, Miller
and Popa 2005]) the instance 〈I1, ∅〉 with the source-to-target tgds in Σfin

13 , where ∅
is an empty instance. The chase applies the source-to-target tgds in Σfin

13 and adds
into I3 all the necessary tuples whenever it finds a source-to-target tgd that is not
satisfied. This is repeated until all the source-to-target tgds are satisfied. Note that
the chase terminates, since we are chasing with xource-to-target tgds. New values,
also called nulls, different from the source values in I1 and different from any other
values that may have been added earlier, may appear as part of the tuples added
in a chase step with a source-to-target tgd. These nulls are used to replace the
existentially quantified variables. Since I3 is the result of the chase, it follows from
a theorem in [Fagin, Kolaitis, Miller and Popa 2005] that I3 is a universal solution
of I1 under Mfin.

In particular, I3 is solution of I1 under Mfin, that is, 〈I1, I3〉 |= Σfin
13 . Since

Σfin
13 and Σ13 are equivalent, we have that 〈I1, I3〉 |= Σ13, and in particular,

〈I1, I3〉 |= φm. It follows that EnrollmentI3 must contain a set of tuples of the form
(s, c1), . . . , (s, cm) for some value s. We now show that s cannot appear among the
values of I1. In other words, we show that s must be a null. For this, we use the
fact that I3 is universal.

Consider the following instance V over S3: EnrollmentV = {(S, c1), . . . , (S, cm)}
where S is a null representing a student id. It is easy to see that 〈I1, V 〉 |= Σ13.
Since Σfin

13 and Σ13 are equivalent, it follows that 〈I1, V 〉 |= Σfin
13 and, hence, V is a

solution for I1 under Mfin. Since I3 is a universal solution for I1 under Mfin, there
must exist a homomorphism h from I3 to V such that h(v) = v for every source
value v. But every homomorphism from I3 to V is forced to map s into the null S.
Hence, s cannot be a source value (or, otherwise, h(s) would have to be s). Thus,
we showed that EnrollmentI3 contains a set {(s, c1), . . . , (s, cm)} of tuples where s
is a null.

Let l be the maximum number of atoms that are under the scope of existential
quantifiers in any source-to-target tgd in Σfin

13 . Since I3 is the result of the chase
with Σfin

13 , it follows that a null in I3 can occur in at most l tuples. However, if
we take m to be larger than l, then the above obtained set {(s, c1), . . . , (s, cm)} of
tuples gives a contradiction. Therefore, Σ13 is not logically equivalent to any finite
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set of source-to-target tgds.
Finally, the composition M12 ◦M23 of the two schema mappings is definable by

the first-order formula ∀n∃s∀c(Takes(n, c) → Enrollment(s, c)). We shall verify
this in Example 5.1, where we show that a logically equivalent formula defines the
composition.

It is an interesting open problem to consider the complexity of deciding, given
schema mappings M12 and M23, each defined by finite sets of source-to-target tgds,
whether the composition M12 ◦M23 is definable by a finite set of source-to-target
tgds. In particular, it is not even clear whether this problem is decidable.

We have just given an example in which the composition is definable by an infinite
set of source-to-target tgds, but it is not definable by any finite set of source-to-
target tgds. There is also a different example in which the composition is not
definable even by an infinite set of source-to-target tgds. This is stated in the
next result, which amplifies the limitations of the language of source-to-target tgds
with respect to composition. A proof appears in Section 5.1, after we develop the
necessary machinery.

Proposition 4.5. There exist schema mappings M12 = (S1, S2, Σ12) and
M23 = (S2, S3, Σ23) such that Σ12 consists of a single source-to-target tgd, Σ23 is
a finite set of full source-to-target tgds, and the composition M12 ◦M23 cannot be
defined by any finite or infinite set of source-to-target tgds.

In the example given in Proposition 4.4, the composition query is polynomial-
time computable, since it is first-order. In what follows, we will show that there
are schema mappings M12 and M23 such that Σ12 is a finite set of source-to-target
tgds, Σ23 consists of a single full source-to-target tgd, but the composition query for
M12◦M23 is NP-complete. Furthermore, this composition query is not definable by
any formula of the finite-variable infinitary logic Lω

∞ω, which is a powerful formalism
that subsumes least fixed-point logic LFP (hence, it subsumes first-order logic and
Datalog) on finite structures (see [Abiteboul, Hull and Vianu 1995]).

Theorem 4.6. There exist schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2, S3, Σ23) such that Σ12 is a finite set of source-to-target tgds, each having at
most one existential quantifier, Σ23 consists of one full source-to-target tgd, and
such that the following hold for the composition M12 ◦M23:
1. The composition query of M12 and M23 is NP-complete.
2. The composition M12 ◦M23 is not definable by any formula of Lω

∞ω, and hence
of least fixed-point logic LFP.

Proof. Later (Proposition 4.8), we shall show that the composition query of
schema mappings definable by finite sets of source-to-target tgds is always in NP. As
we now describe, NP-hardness can be obtained by a reduction of 3-Colorability
to the composition query of two fixed schema mappings. The schema S1 consists
of a single binary relation symbol E, the schema S2 consists of two binary relation
symbols C and F , and the schema S3 consists of one binary relation symbol D.
The set Σ12 consists of the following three source-to-target tgds:

∀x∀y(E(x, y) → ∃uC(x, u))
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∀x∀y(E(x, y) → ∃uC(y, u))
∀x∀y(E(x, y) → F (x, y)).

Intuitively, C(x, u) means that node x has color u. The third tgd of Σ12 intuitively
copies the edge relation E into the relation F . Finally, Σ23 consists of a single full
source-to-target tgd:

∀x∀y∀u∀v(C(x, u) ∧ C(y, v) ∧ F (x, y) → D(u, v)).

Intuitively, this tgd says that if u and v are the colors of adjacent nodes, then the
tuple (u, v) is in the “distinctness” relation D, which we shall take to consist of
tuples of distinct colors. Thus, if u and v are the colors of adjacent nodes, then we
are forcing u and v to be distinct colors.

Let I3 be the instance over the schema S3 with

DI3 = {(r, g), (g, r), (b, r), (r, b), (g, b), (b, g)}.

In words, DI3 contains all pairs of different colors among the three colors r, g, and b.
Let G = (V,E) be a graph and let I1 be the instance over S1 consisting of the edge
relation E of G. We claim that G is 3-colorable if and only if 〈I1, I3〉 ∈ Inst(M12)◦
Inst(M23). This is sufficient to prove the theorem, since 3-Colorability is NP-
complete [Garey, Johnson and Stockmeyer 1976].

If G is 3-colorable, then there is a function c from V to the set {r, b, g} such that
for every edge (x, y) ∈ E, we have that c(x) 6= c(y). Let I2 be the instance over
S2 with CI2 = {(x, c(x)) : x ∈ V } and F I2 = E. Clearly, 〈I1, I2〉 ∈ Inst(M12) and
〈I2, I3〉 ∈ Inst(M23). Therefore, 〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23).

Conversely, assume that 〈I1, I3〉 is in Inst(M12) ◦ Inst(M23). This means there
exists an instance I2 over S2 such that 〈I1, I2〉 ∈ Inst(M12) and 〈I2, I3〉 ∈ Inst(M23).
The first two source-to-target tgds in Σ12 state that for each node n incident to an
edge there exists some u such that C(n, u), while the third source-to-target tgd in
Σ12 asserts that the edge relation E is contained in F I2 . We construct a coloring
function c as follows. For each node n that is incident to an edge we take c(n) = u,
where u is picked arbitrarily among those u that satisfy C(n, u). Since DI3 is the
inequality relation on {r, g, b}, the full source-to-target tgd in Σ23 enforces that for
every edge of G, and no matter which u we picked for a given n, the two vertices of
that edge are assigned different colors among the three colors r, g and b. Therefore,
G is 3-colorable, as desired.

The above reduction of 3-Colorability to the composition query of M12 and
M23 belongs to a class of weak polynomial-time reductions known as quantifier-free
reductions, since the instance 〈I1, I3〉 of the composition query can be defined from
the instance G = (V,E) using quantifier-free formulas (see [Immerman 1999] for
the precise definitions). Dawar [Dawar 1998] showed that 3-Colorability is not
expressible in the finite-variable infinitary logic Lω

∞ω. Since definability in Lω
∞ω is

preserved under quantifier-free reductions, it follows that the composition query of
M12 and M23 is not expressible in Lω

∞ω. In turn, this implies that the composition
query of M12 and M23 is not expressible in least fixed-point logic LFP, since
Lω
∞ω subsumes LFP on the class of all finite structures (see [Ebbinghaus and Flum

1999]).
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Proposition 4.2 and Theorem 4.6 yield a sharp boundary on the definability of
the composition of schema mappings specified by finite sets of source-to-target tgds.
Specifically, the composition of a finite set of full source-to-target tgds with a finite
set of source-to-target tgds is always definable by a first-order formula (and, in fact,
definable by a finite conjunction of source-to-target tgds), while the composition of
a finite set of source-to-target tgds, each having at most one existential quantifier,
with a set consisting of one full source-to-target tgd may not even be Lω

∞ω-definable.
Similarly, the computational complexity of the associated composition query may
jump from solvable in polynomial time to NP-complete.

The Homomorphism Problem over the schema S is the following decision
problem: given two instances I and J of S, is there a homomorphism from I
to J? (Recall that a homomorphism from I to J is a function h such that for
every relation symbol R in S and every tuple (a1, . . . , an) ∈ RI , we have that
(h(a1), . . . , h(an)) ∈ RJ .) This is a fundamental algorithmic problem because,
as shown by Feder and Vardi [Feder and Vardi 1998], all constraint satisfaction
problems can be identified with homomorphism problems. In particular, 3-Sat and
3-Colorability are special cases of the Homomorphism Problem over suitable
schemas. For instance, 3-Colorability amounts to the following problem: given
a graph G, is there a homomorphism from G to the complete 3-node graph K3?
A slight modification of the proof of the preceding Theorem 4.6 shows that for
every schema S, the Homomorphism Problem over S has a simple quantifier-free
reduction to the composition query of two schema mappings specified by finite sets
of source-to-target tgds.

Proposition 4.7. For every schema S = 〈R1, . . . , Rm〉, there are schema map-
pings M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23) such that Σ12 is a finite set
of source-to-target tgds and Σ23 is a finite set of full source-to-target tgds, with the
property that the Homomorphism Problem over S has a quantifier-free reduction
to the composition query of M12 and M23.

Proof. The schema S1 is the same as the schema S = 〈R1, . . . , Rm〉. The
schema S2 is 〈H,T1, ..., Tm〉, where H is a binary relation symbol and each Ti has
the same arity as Ri, for 1 ≤ i ≤ m. The schema S3 is 〈P1, . . . , Pm〉, where each
Pi has the same arity as Ri, for 1 ≤ i ≤ m. The dependencies in Σ12 and Σ23 are
as follows:

Σ12 = { ∀x1...∀xk1(R1(x1, ..., xk1) → ∃y1...∃yk1 (H(x1, y1) ∧ ... ∧H(xk1 , yk1))),
...
∀x1...∀xkm

(Rm(x1, ..., xkm
) → ∃y1...∃ykm

(H(x1, y1) ∧ ... ∧H(xkm
, ykm

))),
∀x(R1(x) → T1(x)),
...
∀x(Rm(x) → Tm(x)) }

Σ23 = { ∀x1∀y1...∀xk1∀yk1

((H(x1, y1) ∧ ... ∧H(xk1 , yk1) ∧T1(x1, ..., xk1)) → P1(y1, ..., yk1)),
...
∀x1∀y1...∀xkm

∀ykm
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((H(x1, y1) ∧ ... ∧H(xkm
, ykm

) ∧Tm(x1, ..., xkm
)) → Pm(y1, ..., ykm

)) }.

Intuitively, the Ri relation is being copied into the Ti relation, for 1 ≤ i ≤ m,
and H(x, y) means that a homomorphism is mapping x to y.

Let I = 〈RI
1, ..., R

I
m〉 and J = 〈RJ

1 , . . . , R
J
m〉 be two instances of S. Since S1 is

the same as S, we have that I is an instance of S1. Let J ′ be the instance over
S3 where P J′

i = RJ
i , for 1 ≤ i ≤ m. (Thus, J ′ is the same as J except that the

relation names reflect schema S3 rather than S1.) It is easy to verify that there is
a homomorphism from I to J if and only if 〈I, J ′〉 is in Inst(M12) ◦ Inst(M23).

The next result establishes an upper bound on the computational complexity of
the composition query associated with two schema mappings specified by finite sets
of source-to-target tgds. It also shows that the composition of two such mappings
is always definable by an existential second-order formula.

Proposition 4.8. If M12 = (S1,S2,Σ12) and M23 = (S2, S3, Σ23) are schema
mappings such that Σ12 and Σ23 are finite sets of source-to-target tgds, then the
composition query of M12 and M23 is in NP. Consequently, the composition M12◦
M23 is definable by an existential second-order formula.

Proof. To establish membership in NP, it suffices to show that if 〈I1, I3〉 ∈
Inst(M12)◦Inst(M23), then there is an instance I2 over S2 that has size polynomial
in the sizes of I1 and I3, and is such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23.

Suppose we have I1 and I3 as above. Then there is an instance J such that
〈I1, J〉 |= Σ12 and 〈J, I3〉 |= Σ23. Since Σ12 is a set of source-to-target tgds, the
schema mapping M12 is a data exchange setting with source S1 and target S2

(and no target dependencies). Moreover, by results of [Fagin, Kolaitis, Miller and
Popa 2005], in this data exchange setting there is a universal solution U for I1 of
size polynomial in the size of I1. By definition, a universal solution U for I1 has
the property that, for every solution for I1, there is a homomorphism h from U to
that solution such that h is the identity on values from I1. In particular, there is
a homomorphism h : U → J such that h(v) = v, for every value v from I1. Let
I2 = h(U). Clearly, I2 is an instance over S2, has size at most the size of U , and is a
subinstance of J . Since (a) Σ12 is a set of source-to-target tgds, (b) 〈I1, U〉 |= Σ12,
and (c) h is a homomorphism from U to I2 that is the identity on values from I1,
we have that 〈I1, I2〉 |= Σ12. Furthermore, since (a) Σ23 is a set of source-to-target
tgds, (b) 〈J, I3〉 |= Σ23, and (c) I2 is a subinstance of J , we have that 〈I2, I3〉 |= Σ23.

The fact that the composition query of M12 and M23 is in NP implies, by Fagin’s
Theorem [Fagin 1974], that the composition M12 ◦M23 is definable on instances
〈I1, I3〉 over 〈S1,S3〉 by an existential second-order formula, where the existential
second-order variables are interpreted over relations on the union of the set of values
in I1 with the set of values in I3.

We conclude this section by showing that the results of Proposition 4.8 may fail
dramatically for schema mappings specified by arbitrary first-order formulas.

Proposition 4.9. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23) such that Σ12 consists of a single first-order formula, Σ23 is the empty
set, and the composition query of M12 and M23 is undecidable.
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Proof. We define M12 in such a way that 〈I1, I2〉 ∈ Inst(M12) precisely when I1
is the encoding of a Turing machine and I2 represents a terminating computation of
that Turing machine (thus, Σ12 consists of a first-order formula that expresses this
connection). We let the schema S3 consist of, say, a single unary relation symbol,
and let Σ23 be the empty set. So, the composition M12 ◦M23 consists of all 〈I1, I3〉
where I1 is the encoding of a halting Turing machine, and I3 is arbitrary. The
result follows from the fact that it is undecidable to determine if a Turing machine
is halting.

5. SECOND-ORDER TGDS

We have seen in the previous section that the composition of two schema map-
pings specified by finite sets of source-to-target tgds may not be definable by a
set (finite or infinite) of source-to-target tgds. From Proposition 4.8, however, we
know that such a composition is always definable by an existential second-order
formula. We shall show in this section that, in fact, the composition of schema
mappings, each specified by a finite set of source-to-target tgds, is always definable
by a restricted form of existential second-order formula, which we call a second-order
tuple-generating dependency (SO tgd). Intuitively, an SO tgd is a source-to-target
tgd suitably extended with existentially quantified functions and with equalities.
Every finite set of source-to-target tgds is equivalent to an SO tgd. Furthermore,
an SO tgd is capable of defining the composition of two schema mappings that
are specified by SO tgds. In other words, SO tgds are closed under composition.
Moreover, we shall show in Section 6 that SO tgds possess good properties for data
exchange. All these properties justify SO tgds as the right language for representing
schema mappings and for composing schema mappings.

Example 5.1. The proof of Proposition 4.4 shows that for the two schema
mappings of Example 2.3 there is no finite set of source-to-target tgds that can
define the composition. At the end of the proof of Proposition 4.4, it was noted
that the composition is defined by the first-order formula ∀n∃s∀c(Takes(n, c) →
Enrollment(s, c)). If we Skolemize this formula, we obtain the following formula,
which is an SO tgd that defines the composition:

∃f( ∀n∀c (Takes(n, c) → Enrollment(f(n), c)) ) (2)

In this formula, f is a function symbol that associates each student name n with a
student id f(n). The SO tgd states that whenever a student name n is associated
with a course c in Takes, then the corresponding student id f(n) is associated with c
in Enrollment. This is independent of how many courses a student takes: if student
name n is associated with courses c1, . . . , ck in Takes, then f(n) is associated with
all of c1, . . . , ck in Enrollment.

We now verify that (2) does indeed define the composition. Assume first that
〈I1, I3〉 ∈ Inst(M12) ◦ Inst(M23). Then there is I2 over S2 such that 〈I1, I2〉 |= Σ12

and 〈I2, I3〉 |= Σ23. We construct a function f0 as follows. For each n such that
(n, c) is in TakesI1 , we set f0(n) = s, where s is such that (n, s) is in StudentI2

(such s is guaranteed to exist according to the second source-to-target tgd in Σ12,
and we pick one such s). It is immediate that 〈I1, I3〉 satisfies the SO tgd when the
existentially quantified function symbol f is instantiated with the constructed f0.
Conversely, assume that 〈I1, I3〉 satisfies the SO tgd. Then there is a function f0

ACM Transactions on Database Systems, Vol. , No. , 20.



20 ·

such that for every (n, c) in TakesI1 we have that (f0(n), c) is in EnrollmentI3 . Let
I2 be such that StudentI2 = {(n, f0(n) | (n, c) ∈ TakesI1} and TakesI2

1 = TakesI1 .
It can be verified that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23.

Example 5.2. This example illustrates a slightly more complex form of a second-
order tgd that contains equalities between terms. Consider the following three
schemas S1, S2 and S3. Schema S1 consists of a single unary relation symbol Emp
of employees. Schema S2 consists of a single binary relation symbol Mgr1, that
associates each employee with a manager. Schema S3 consists of a similar binary
relation symbol Mgr, that is intended to provide a copy of Mgr1. and an addi-
tional unary relation symbol SelfMgr, that is intended to store employees who are
their own manager. Consider now the schema mappings M12 = (S1, S2,Σ12) and
M23 = (S2,S3,Σ23), where

Σ12 = { ∀e (Emp(e) → ∃mMgr1(e,m)) } Σ23 = { ∀e∀m (Mgr1(e,m) → Mgr(e,m)),
∀e(Mgr1(e, e) → SelfMgr(e)) }.

It is straightforward to verify that the composition of M12 and M23 is M13, where
Σ13 is the following second-order tgd:

∃f( ∀e(Emp(e) → Mgr(e, f(e))) ∧
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))).

In fact, we shall derive this later when we give a composition algorithm.
We will use this example in Section 5.1 to show that equalities in SO tgds are

strictly necessary for the purposes of composition, and also to give a proof for the
earlier Proposition 4.5.

Before we formally define SO tgds, we need to define terms. Given a collection
x of variables and a collection f of function symbols, a term (based on x and f) is
defined recursively as follows:

1. Every variable in x is a term.
2. If f is a k-ary function symbol in f and t1, . . . , tk are terms, then f(t1, . . . , tk)

is a term.

We now give the precise definition of an SO tgd.3
Definition 5.3. Let S be a source schema and T a target schema. A second-

order tuple-generating dependency (SO tgd) is a formula of the form:

∃f((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))), (3)

where

1. Each member of f is a function symbol.
2. Each φi is a conjunction of
• atomic formulas of the form S(y1, ..., yk), where S is a k-ary relation symbol of
schema S and y1, . . . , yk are variables in xi, not necessarily distinct,
and
• equalities of the form t = t′ where t and t′ are terms based on xi and f .

3This definition is slightly different from that given in our conference version [Fagin, Kolaitis,

Popa and Tan 2004]. Every SO tgd as defined here is an SO tgd as defined in [Fagin, Kolaitis,

Popa and Tan 2004], but not conversely. However, every SO tgd as defined in [Fagin, Kolaitis,
Popa and Tan 2004] is logically equivalent to an SO tgd as defined here.
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3. Each ψi is a conjunction of atomic formulas T (t1, ..., tl), where T is an l-ary
relation symbol of schema T and t1, . . . , tl are terms based on xi and f .

4. Each variable in xi appears in some atomic formula of φi.
We may refer to each subformula ∀xi(φi → ψi) as a conjunct of the second-order

tgd; we may also use the shorthand notation Ci for this conjunct.
The fourth condition is a “safety” condition, analogous to that made for (first-

order) source-to-target tgds. As an example, the following formula is not a valid
second-order tgd:

∃f∃g∀x∀y(S(x) ∧ (g(y) = f(x)) → T (x, y)).

The safety condition is violated, since the variable y does not appear in an atomic
formula on the left-hand side.

There is a subtlety in the definition of SO tgds, namely, the semantics of existen-
tialized function symbols.4 What should the domain and range of the corresponding
functions be? Thus, if we are trying to evaluate whether the SO tgd (3) is satisfied
by 〈I, J〉, what should the domain and range be for the concrete functions that
may replace the existentialized function symbols in f? Perhaps the most obvious
choice is to let the domain and range be the active domain of 〈I, J〉 (the active do-
main of 〈I, J〉 consists of those values that appear in I and/or J). In the proof of
Proposition 4.8, the existential second-order variables are interpreted over relations
on the active domain. But as we shall see in Section 7.3, this choice of the active
domain as the universe may give us the “wrong answer”. Intuitively, if our instance
〈I, J〉 is 〈I1, I3〉, we may wish the functions to take on values in the “missing middle
instance” I2, which may be much bigger than I1 and I3.

We define the semantics by converting each instance 〈I, J〉 into a structure
〈U ; I, J〉, which is just like 〈I, J〉 except that it has a universe U . The domain
and range of the functions is then taken to be U . We take the universe U to be
a countably infinite set that includes the active domain. The intuition is that the
universe contains the active domain along with an infinite set of nulls. Then, if σ
is an SO tgd, we define 〈I, J〉 |= σ to hold precisely if 〈U ; I, J〉 |= σ under the stan-
dard notion of satisfaction in second-order logic (see, for example, [Ebbinghaus and
Flum 1999] or [Enderton 2001]). The standard notion of satisfaction says that if σ
is ∃fσ′, where σ′ is first-order, then 〈U ; I, J〉 |= σ precisely if there is a collection
f0 of functions with domain and range U such that 〈U ; I, J〉 satisfies σ′ when each
function symbol in f is replaced by the corresponding function in f0. We may write
〈U ; I, J〉 |= σ′[f 7→ f0] to represent this situation, or simply 〈I, J〉 |= σ′[f 7→ f0]
when the universe U is fixed and understood from the context. As we shall see in
Section 5.2, instead of taking the universe U to be infinite, we can take it to be
finite and “sufficiently large”.

Several remarks are in order now. First, SO tgds are closed under conjunction.
That is, if σ1 and σ2 are SO tgds, then the conjunction σ1∧σ2 is logically equivalent
to an SO tgd. This is because we simply rename the function symbols in σ2 to be
disjoint from those in σ1; then, if σ1 is ∃f1σ′1, and σ2 is ∃f2σ′2, with f1 and f2 disjoint,
the conjunction ∃f1σ′1 ∧ ∃f2σ′2 is logically equivalent to ∃f1∃f2(σ′1 ∧ σ′2). Of course,

4This subtlety was pointed out to us by Sergey Melnik, in the context of domain independence
(which we shall discuss in Section 5.2).
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the fact that SO tgds are closed under conjunction implies that every finite set of
SO tgds is logically equivalent to a single SO tgd. For this reason, when we consider
schema mappings specified by SO tgds, it is enough to restrict our attention to the
case where the set Σst consists of one SO tgd. We will then identify the singleton
set Σst with the SO tgd itself, and refer to Σst as an SO tgd.

Second, it should not come as a surprise that every (first-order) source-to-target
tgd is equivalent to an SO tgd. In fact, it is easy to see that every source-to-
target tgd is equivalent to an SO tgd without equalities. Specifically, let σ be the
source-to-target tgd

∀x1 . . .∀xm(φS(x1, . . . , xm) → ∃y1 . . .∃ynψT (x1, . . . , xm, y1, . . . , yn)).
Then σ is equivalent to the following SO tgd without equalities, which is obtained
by Skolemizing σ:

∃f1 . . .∃fn∀x1 . . .∀xm(φS(x1, . . . , xm) →
ψT (x1, . . . , xm, f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))).

Given a finite set Σ of source-to-target tgds, we can find an SO tgd that is equiv-
alent to Σ by taking, for each tgd σ in Σ, a conjunct of the SO tgd to capture σ
as described above (we use disjoint sets of function symbols in each conjunct, as
before).

Third, we point out that every SO tgd is equivalent to an SO tgd in a “normal
form” where the right-hand sides (that is, the formulas ψi in (3)) are atomic for-
mulas, rather than conjunctions of atomic formulas. For example, consider the SO
tgd

∃f∀x(R(x) → (S(x, f(x)) ∧ T (f(x), x))).

This SO tgd is logically equivalent to the SO tgd

∃f(∀x(R(x) → S(x, f(x))) ∧ ∀x(R(x) → T (f(x), x))).

This is unlike the situation for (first-order) source-to-target dependencies, where
we would lose expressive power if we required that the right-hand sides consist only
of atomic formulas and not conjunctions of atomic formulas. In our composition
algorithm that we shall present in Section 7, we begin by converting SO tgds to
this normal form.

The next three subsections delve into further details on second-order tgds. We
first show that equalities are strictly needed in the definition of SO tgds (or else we
lose expressive power). We then show that the choice of the universe for SO tgds
does not really matter, as long as the universe contains the active domain and is
sufficiently large. The section concludes with a consideration of the model-checking
problem and how it differs from the first-order case.

5.1 The Necessity of Equalities in Second-Order TGDs

Our definition of SO tgds allows for equalities between terms in the formulas φi,
even though we just saw that SO tgds that represent first-order tgds do not require
equalities. The next theorem (or its corollary) tells us that such equalities are
necessary, since it may not be possible to define the composition of two schema
mappings otherwise. This theorem is stated in more generality than simply saying
that equalities are necessary, in order to provide a proof of Proposition 4.5.
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Theorem 5.4. There exist schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2, S3, Σ23) where Σ12 consists of a single source-to-target tgd, Σ23 is a finite
set of full source-to-target tgds, and the composition M12 ◦M23 is given by an SO
tgd that is not logically equivalent to any finite or infinite set of SO tgds without
equalities.

Proof. Let S1, S2, S3, Σ12, Σ23, and Σ13 be as in Example 5.2. We need only
show that there is no finite or infinite set of SO tgds without equalities that is
logically equivalent to Σ13.

Define I1 by letting EmpI1 = {Bob}. Define I3 by letting MgrI3 = {(Bob,Susan)}
and SelfMgrI3 = ∅. Define I ′3 by letting MgrI′

3 = {(Bob,Bob)} and SelfMgrI′
3 = ∅.

It is easy to see that 〈I1, I3〉 |= Σ13; intuitively, we let f(Bob) = Susan. It is also
easy to see that 〈I1, I ′3〉 6|= Σ13, since SelfMgrI′

3 does not contain Bob.
We shall show that every SO tgd without equalities that is satisfied by 〈I1, I3〉

is also satisfied by 〈I1, I ′3〉. Since also 〈I1, I3〉 |= Σ13 but 〈I1, I ′3〉 6|= Σ13, it follows
easily that Σ13 is not equivalent to any finite or infinite set of SO tgds without
equalities, which proves the theorem.

Let σ be an SO tgd without equalities that is satisfied by 〈I1, I3〉. The proof is
complete if we show that σ is satisfied by 〈I1, I ′3〉. Assume that σ is

∃f ((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))).

We begin by showing that SelfMgr does not appear in σ. Assume that SelfMgr
appears in σ; we shall derive a contradiction. By the definition of an SO tgd, we
know that there is i and some term t such that SelfMgr(t) appears in ψi. Since
by assumption φi does not contain any equalities, it follows that φi contains only
formulas of the form Emp(x), with x a member of xi. So φi can be satisfied in I1,
by letting Bob play the role of all of the variables in xi. Since SelfMgrI3 is empty,
it follows that ψi is not satisfied under this (or any) assignment. Therefore, σ is
not satisfied in 〈I1, I3〉, which is the desired contradiction.

We conclude the proof by showing that 〈I1, I ′3〉 satisfies σ. Let the role of every
function symbol in f be played by a constant function (of the appropriate arity)
that always takes on the value Bob. Consider a conjunct ∀xi(φi → ψi) of σ. We
must show that if φi holds in I1 for some assignment to the variables in xi, then
ψi holds in I ′3 for the same assignment. It follows from the fourth condition (the
safety condition) in the definition of SO tgds that the conjuncts of φi are precisely
all formulas of the form Emp(x) for x in xi. Since φi holds in I1, every variable x in
xi is assigned the value Bob. Therefore, every term in ψi is assigned the value Bob.
Since by assumption ψi does not contain SelfMgr, it follows that every conjunct in
ψi is of the form Mgr(t1, t2). Since, as we just showed, t1 and t2 are both assigned
the value Bob, it follows that ψi holds in I ′3. This was to be shown.

Our desired result about the necessity of equalities in SO tgds is an immediate
corollary.

Corollary 5.5. There exist schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2, S3, Σ23) where Σ12 and Σ23 are finite sets of source-to-target tgds, and the
composition M12 ◦M23 is given by an SO tgd that is not equivalent to any SO tgd
without equalities.
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We consider it quite interesting that allowing equalities in SO tgds is necessary to
make them sufficiently expressive. This is particularly true because the “obvious”
way to define SO tgds does not allow equalities. Indeed, as we saw, when we
Skolemize a source-to-target tgd to obtain an SO tgd, no equalities are introduced.

Because of the generality with which we stated Theorem 5.4, we obtain a proof
of Proposition 4.5.

Proof of Proposition 4.5: This follows immediately from Theorem 5.4 and the
fact, noted earlier, that every source-to-target tgd is equivalent to an SO tgd without
equalities.

5.2 The Choice of Universe

In our definition of the semantics of SO tgds, we took the universe (which serves as
the domain and range of the existentially quantified functions) to be a countably
infinite set that includes the active domain. In this section, we show that if instead
of taking the universe to be infinite, we take it to be finite but sufficiently large,
then the semantics is unchanged. We also show that the choice of the universe does
not matter, as long as the universe contains the active domain and is large enough.

Before we state and prove this theorem about the choice of the universe, we need
another definition, that we will make use of several times in this paper. Let x be a
collection of variables and f a collection of function symbols. Similarly to our earlier
definition of terms, a term (based on x and f) of depth d is defined recursively as
follows:

1. Every member of x and every 0-ary function symbol (constant symbol) of f is a
term of depth 0.

2. If f is a k-ary function symbol in f with k ≥ 1, and if t1, . . . , tk are terms, with
maximum depth d− 1, then f(t1, . . . , tk) is a term of depth d.

Theorem 5.6. Let σ be a second-order tgd. Then there is a polynomial p, which
depends only on σ, with the following property. If 〈I, J〉 is an instance with active
domain of size N , and if U and U ′ are sets (finite or infinite) that each contain
the active domain and are of size at least p(N), then 〈U ; I, J〉 |= σ if and only
〈U ′; I, J〉 |= σ.

Proof. Let f be the collection of function symbols that appear in σ, and let x
be a collection of variables. It is straightforward to verify that for each d, there is
a polynomial pd with nonnegative coefficients, where pd depends only on f , such
that the number of terms based on x and f , of depth at most d, is at most pd(m),
where m is the size of x.

Let 〈I, J〉 be an instance with active domain D of size N . Let DI , of size NI ,
be the active domain of I. We refer to the set of terms based on DI and f as the
Herbrand universe. For each s, let Hs denote the set of members of the Herbrand
universe of depth at most s.

Let σ be the SO tgd (3). Let U and U ′ be sets (finite or infinite) that each
contain the active domain and are of size at least pd(NI). We shall show that
〈U ; I, J〉 |= σ if and only 〈U ′; I, J〉 |= σ. This is sufficient to prove the theorem,
since the facts that NI ≤ N and that pd has nonnegative coefficients immediately
imply that pd(NI) ≤ pd(N). Intuitively, the key to the proof is that σ refers only
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to members of Hd. Assume without loss of generality that the size |U ′| of U ′ is at
most the size |U | of U . By renaming members of U if necessary, we can assume
that U ′ ⊆ U .

Assume first that 〈U ′; I, J〉 |= σ; we shall show that 〈U ; I, J〉 |= σ. Since
〈U ′; I, J〉 |= σ, there is a collection f ′0 of functions with domain and range U ′

such that whenever 1 ≤ i ≤ n and xi 7→ ai is an assignment of xi to members of
DI , we have 〈U ′; I, J〉 |= (φi → ψi)[f 7→ f ′0,xi 7→ ai]. Extend every function f ′0 in
f ′0 to a function f0 with domain and range U by letting f0(a) = f ′0(a) for a ∈ U ′
and letting f0(a) be an arbitrary member of U otherwise. Let f0 be the collection
of these extensions f0. It is easy to see that the interpretation of the members of
the Herbrand universe (of arbitrary depth), under the assignment f 7→ f0, lies in U ′,
since each f0 maps U ′ into U ′. Since every term in φi → ψi refers to members of the
Herbrand universe, and since f0 and f ′0 agree on U ′. it follows that for 1 ≤ i ≤ n,
we have 〈U ; I, J〉 |= (φi → ψi)[f 7→ f0,xi 7→ ai]. Therefore, 〈U ; I, J〉 |= σ, which
was to be shown.

Conversely, assume that 〈U ; I, J〉 |= σ; we shall show that 〈U ′; I, J〉 |= σ. Since
〈U ; I, J〉 |= σ, there is a collection f0 of functions with domain and range U such
that whenever 1 ≤ i ≤ n and xi 7→ ai is an assignment of xi to members of DI , we
have 〈U ; I, J〉 |= (φi → ψi)[f 7→ f0,xi 7→ ai]. For each f0 in f0, define the function
f ′0 (with domain and range U ′) so that the interpretation of members of Hd is the
same using either f0 or f ′0 (the size of U ′ is big enough that this is possible). Since
every term in φi → ψi refers only to members of Hd, it follows that for 1 ≤ i ≤ n,
we have 〈U ′, I, J〉 |= (φi → ψi)[f 7→ f ′0,xi 7→ ai]. Therefore, 〈U ′; I, J〉 |= σ, which
was to be shown.

5.3 Model-Checking for Second-Order TGDs

We now show that model checking for second-order tgds, that is, verifying whether
a pair of source and target instances satisfies a second-order tgd, is in NP and can
be NP-complete. This is in contrast with the case of (first-order) source-to-target
tgds, for which model checking is always in polynomial time.

Theorem 5.7. Let M = (S,T, σ) be a schema mapping, where σ is an SO tgd.
The problem of deciding, given I and J , whether 〈I, J〉 satisfies σ, is in NP and
can be NP-complete.

Proof. The NP upper bound follows immediately from the “easy direction” of
Fagin’s Theorem [Fagin 1974], along with the fact (Theorem 5.6) that the universe
can be taken to be of polynomial size. We now prove the lower bound.

Let the source schema S consist of a single binary relation symbol E, and let
the target schema T consist of a single binary relation symbol D. Let σ be the SO
tgd ∃f(E(x, y) → D(f(x), (f(y))). We now show that the problem of deciding if
〈I, J〉 |= σ is NP-complete.

Let J be the same as the instance I3 in the proof of Theorem 4.6. Thus, J is the
target instance with

DJ = {(r, g), (g, r), (b, r), (r, b), (g, b), (b, g)}.

In words, DJ contains all pairs of different colors among the three colors r, g, and
b. Let G = (V,E) be a graph and let I be the instance over S1 consisting of the
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edge relation E of G. We claim that G is 3-colorable if and only if 〈I, J〉 |= σ.
This is sufficient to prove the theorem, since 3-Colorability is NP-complete.

Assume first that G is 3-colorable. Then there is a coloring function c that maps
members of V to the set {r, b, g} such that c(x) 6= c(y) for every edge (x, y) ∈ E. It is
easy to see that 〈I, J〉 |= (E(x, y) → D(f(x), f(y)))[f 7→ c]. Therefore, 〈I, J〉 |= σ.

Conversely, assume that 〈I, J〉 |= σ. Then there is c such that 〈I, J〉 |= (E(x, y) →
D(f(x), f(y)))[f 7→ c]. It is easy to see that c is a function that maps members of
V to the set {r, b, g} such that c(x) 6= c(y) for every edge (x, y) ∈ E. Therefore, G
is 3-colorable.

Although model-checking for SO tgds can be NP-complete, there are practical
problems involving SO tgds other than model-checking. For example, in the two
important cases of data exchange and query answering, all that is needed is to
materialize the result of data exchange given a source instance or to compute the
answers to a target query given a source instance. We shall later show that SO
tgds have polynomial-time properties for such scenarios. Furthermore, we shall
also show that SO tgds compose. Thus, SO tgds form a good candidate for the
schema mapping language.

6. CHASE AND DATA EXCHANGE WITH SECOND-ORDER TGDS

Our main motivation for studying composition of schema mappings stems from data
exchange [Fagin, Kolaitis, Miller and Popa 2005; Fagin, Kolaitis and Popa 2003]. A
specific case of data exchange is one in which we are given a source schema, a target
schema, and a schema mapping specified by a finite set of source-to-target tgds.
Given an instance over the source schema, we are interested in materializing a target
instance that satisfies the specification. In the case of two or more successive data
exchange scenarios and when only a final instance over the final target schema is of
interest, we would like to avoid materializing intermediate instances, and hence use
the schema mapping that is the composition of the sequence of schema mappings.
However, as we have argued so far, the language of source-to-target tgds may no
longer be appropriate in this case. We instead use second-order tgds.

In Section 6.1, we modify the classical chase technique [Beeri and Vardi 1984a]
to handle SO tgds (rather than the usual first-order tgds). In Section 6.2 we prove
a technical lemma about chasing with SO tgds. We subsequently use this lemma
in Section 6.3 to show that the chase with SO tgds yields a universal solution for
data exchange (as is the case with first-order tgds [Fagin, Kolaitis, Miller and Popa
2005]). We also show that chasing with SO tgds is a polynomial-time procedure
(polynomial in the size of the source instance). As a consequence, computing the
certain answers of conjunctive queries in data exchange settings specified by SO
tgds can be done in polynomial time.

6.1 The Chase with Second-Order TGDs

We first define ground terms and ground instances. Given a set V of values and a
collection f of function symbols, a ground term u over V and f is defined recursively
as either a value of V or a function term of the form f(u1, . . . , uk), where u1, . . . , uk

are ground terms over V and f , and f is a k-ary function symbol in f . A ground
instance, with respect to V and f , is an instance whose values are ground terms
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over V and f . Note that an instance (in the usual sense) with values in V is also a
ground instance over V and f (for every f). Homomorphisms are defined on ground
instances in the same way they are defined on usual instances. The only difference
is that the domain of such homomorphisms includes now all the ground terms over
V and f .

Using an example, we illustrate next, informally, the chase with SO tgds.
Example 6.1. Consider the schema mapping M = (S,T, Σst) where Σst is the

following SO tgd:

∃f( ∀x∀y (R(x, y) → U(x, y, f(x)))∧
∀x∀x′∀y∀y′ (R(x, y) ∧R(x′, y′) ∧ (f(x) = f(x′)) → T (y, y′)))

Each of the formulas of the form ∀x(φ1 → φ2) that appear under the scope of
the existentially quantified functions can be thought of as a source-to-target “tgd”.
The difference from a normal source-to-target tgd is that now we can have function
terms in the relational atoms of φ2, as well as equality atoms in φ1, and we do
not have any existential quantifiers in φ2. Suppose now that we are given a source
instance I where R consists of the following three tuples: (a, b), (a, c), and (d, e).
The chase starts with an instance of the form 〈I, ∅〉 and constructs an instance of
the form 〈I, J〉 by applying all the “tgds” until these “tgds” are all satisfied. A
“tgd” is applied when the left-hand side φ of the “tgd” can be mapped to I but the
corresponding right-hand side ψ does not yet exist in J , in which case we add it
to J . By applying the first “tgd” in Σst, for the first tuple (a, b) of R we generate
a tuple (a, b, f(a)) in U . In applying the same “tgd”, this time for the tuple (a, c)
of R, we generate (a, c, f(a)) in U (the same ground function term f(a) appears
again). Finally, for the last tuple (d, e) and the same “tgd” we generate (d, e, f(d))
in U . Note that the values that may now appear in tuples of J are ground terms
over the set of source values of I and over the singleton set {f} of function symbols.

To apply the second “tgd” in Σst, we see that only the combinations f(a) = f(a)
and f(d) = f(d) can satisfy the equality f(x) = f(x′). (Two ground terms are
treated as equal precisely if they are syntactically identical.) Hence the chase will
generate the tuples (b, b), (b, c), (c, b), (c, c) and (e, e) in T .

At the end of the chase, the resulting instance satisfies all the “tgds”. This
instance is formed with source values together with ground function terms that are
added during the chase.

Note that we view each one of the ground function terms as a distinct value. In
practice, one can substitute the ground function terms with values from a concrete
domain such that the term structure is “forgotten”. For example, we could replace
all occurrences of the term f(a) in J with a null X. However, such replacement
is more of an implementation issue that is orthogonal to the general concepts and
results that we will give here.

We now give the formal details of the chase with second-order tgds. In the
following definitions, whenever we refer to a schema mapping M = (S,T, σ) where
σ is a second-order tgd, we assume that σ has the general form:

∃f ((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))).

For each i, we may, as before, denote the conjunct ∀xi(φi → ψi) of σ by Ci. We
start by defining the notion of homomorphism from an SO tgd to an instance. We
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first introduce an auxiliary notion.
Definition 6.2. Let M be a schema mapping defined by a second-order tgd.

Let I be a source instance and let h be a function mapping the variables in xi into
values of I. Let t and t′ be terms over xi and f . We say that the equality t = t′ is
satisfied in I under h if: (1) the equality is of the form x = x′, and h(x) and h(x′)
are the same value, or (2) the equality is of the form f(t1, . . . , tl) = f(t′1, . . . , t

′
l)

where f is in f , and the equalities t1 = t′1, . . ., tl = t′l are satisfied in I under h.
(Note that the definition is recursive.)

Definition 6.3. Let M be a schema mapping defined by a second-order tgd.
Let I be a source instance and let h be a function mapping the variables in xi

into values of I. We say that h is a homomorphism from the conjunct Ci of σ
to the instance I if the following conditions hold: (1) for every relational atom
S(y1, . . . , yk) in φi, the tuple (h(y1), . . . , h(yk)) is in SI , and (2) every equality
in φi is satisfied in I under h. In the literature, what we call in this context a
homomorphism is sometimes called a valuation, or a variable assignment [Abiteboul,
Hull and Vianu 1995].

We extend h on terms in the natural way by defining h(f(t1, . . . , tl)) to be
f(h(t1), . . . , h(tl)) for every term f(t1, . . . , tl) that occurs in ψi.

Definition 6.4 (Chase Step). Let M be a schema mapping defined by a
second-order tgd σ. Let V be a set of values and let I be an instance, with values
in V, over the source schema S. Furthermore, let J1 be a ground instance, with
respect to V and f , over the target schema T.

Assume that there is a homomorphism h from some conjunct Ci = ∀x(φi → ψi)
of σ into I with the property there is at least one atomic formula T (t1, . . . , tp) in
ψi such that (h(t1), . . . , h(tp)) is not a tuple in T J1 . We say that Ci can be applied
to 〈I, J1〉 with homomorphism h.

Furthermore, let J2 be the ground instance with respect to V and f that is defined
as follows: for every target relation T , let T J2 be the union of T J1 with the set
of all tuples (h(t1), . . . , h(tp)) where T (t1, . . . , tp) is an atomic formula in ψi. We

say that 〈I, J2〉 is the result of applying Ci to 〈I, J1〉 with h and write 〈I, J1〉
Ci,h−→

〈I, J2〉. We also call this a chase step.
In the following, as before, we will denote by ∅ an empty instance.
Definition 6.5 (Chase). Let M be a schema mapping where σ is a second-

order tgd, and let I be a source instance.

(1) A chase sequence of 〈I, ∅〉 with σ is a finite sequence of chase steps 〈I, Jk〉
Ck,hk−→

〈I, Jk+1〉, for 0 ≤ k < m, with J0 = ∅ and Ck a conjunct of σ.

(2) A chase of 〈I, ∅〉 with σ is a chase sequence 〈I, Jk〉
Ck,hk−→ 〈I, Jk+1〉, for 0 ≤

k < m, such that it is not the case that there is a conjunct Ci of σ and a
homomorphism h where Ci can be applied to 〈I, Jm〉 with h. We say that
〈I, Jm〉 is the result of this chase.

It is easy to verify that if 〈I, J〉 is the result of some chase with a second-order
tgd σ then 〈I, J〉 satisfies σ. Indeed, we can take the universe U to be the set of
all the ground terms over V and f . (This universe includes the active domains of
I and J .) Then, 〈U ; I, J〉 satisfies σ. In particular, for each f in f , we take the
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following interpretation: assuming that f is k-ary, we define the value of f applied
to u1, . . . , uk (where u1, . . . , uk are ground terms over V and f) to be precisely the
ground term f(u1, . . . , uk). It can be seen that under this interpretation for f , we
have that 〈U ; I, J〉 satisfies all the conjuncts of σ (otherwise, additional chase steps
would be applicable). Moreover, Theorem 5.6 says that we can change U to an
arbitrary universe U ′ that includes the active domain of I and J and is sufficiently
large, and we still have that 〈U ′; I, J〉 satisfies σ.

We now make the following observation to compare and contrast chasing with
SO tgds and chasing with first-order tgds. Although complicated by the presence of
function symbols and equalities, chasing with SO tgds is at the same time simpler
than chasing with first-order tgds due to the following. There is an explicit parti-
tioning of the schema into the source schema S and the target schema T; moreover,
the source instance I is never changed during the chase and the homomorphisms
from conjuncts of σ that can apply during the chase are all homomorphisms into I.
Hence, it is possible to enumerate a priori, before the chase, all the homomorphisms
that will ever apply during the chase (since they do not depend on J). In fact, the
number of homomorphisms can be precisely bounded to be polynomial in the size
of the given source instance. Consequently, the chase with second-order tgds takes
time polynomial in the size of I. We will give a precise analysis in Section 6.3.

The above observation can also be used to give an equivalent, more declarative,
formulation of the chase with SO tgds.5 We make this precise by the following
proposition, which is an immediate consequence of the fact that all homomorphisms
that ever apply during the chase can be enumerated before the chase.

Proposition 6.6. Let σ be a second-order tgd and let I be an instance over S.
For each conjunct C of σ and each homomorphism h from C into I, let JC,h be the
ground instance that contains a tuple (h(t1), . . . , h(tp)) in T JC,h whenever there is
an atomic formula T (t1, . . . , tp) in the right-hand side of C. Then the following are
equivalent:

(1 ) 〈I, Jm〉 is the result of a chase of 〈I, ∅〉.
(2 ) Jm consists of the union (relation by relation) of all JC,h over all conjuncts C

of σ and all homomorphisms h from C into I.

The above proposition also shows that for every two chases of 〈I, ∅〉 with a second-
order tgd σ, with results 〈I, J〉 and, respectively, 〈I, J ′〉, it is the case that J and
J ′ are identical (since they are both equal to the union of instances stated in (2)).
In other words, chasing with second-order tgds is Church-Rosser.

6.2 A Basic Property of the Chase with Second-Order TGDs

We next prove a technical lemma about chasing with second-order tgds. This
lemma, that we shall subsequently use, is a variation of a known result in the case
of chasing with (first-order) tgds [Beeri and Vardi 1984a; Fagin, Kolaitis, Miller
and Popa 2005].

5This formulation was suggested by one of the referees of this paper.
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Lemma 6.7. Let M = (S,T, σ) be a schema mapping where σ is a second-order
tgd of the form:

∃f ((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))).

Let 〈I ′, J ′〉 be an instance over the schema 〈S,T〉 such that 〈I ′, J ′〉 satisfies σ, that
is, 〈U ′; I ′, J ′〉 satisfies σ, for a countably infinite universe U ′ that includes the active
domain. Moreover, let f0 be a collection of functions over U ′ such that

〈I ′, J ′〉 |=
∧
i

(∀xi(φi → ψi))[f 7→ f0].

Let I be an instance over S, with values in some domain V, and let J1 and J2 be
two ground instances with respect to V and f such that 〈I, J1〉

Ci,h−→ 〈I, J2〉 is a chase
step with some conjunct Ci of σ and some homomorphism h. Assume that g is a
homomorphism from 〈I, J1〉 to 〈I ′, J ′〉 such that:

(∗) g(f(u1, . . . , uk)) = f0(g(u1), . . . , g(uk)),

for every ground function term f(u1, . . . , uk) over V and f .
Then g is a homomorphism from 〈I, J2〉 to 〈I ′, J ′〉.

Proof. We first show that the function g ◦ h from the variables xi of Ci to U ′

satisfies the following two properties:
(1) for every atom S(y1, . . . , yk) in φi (where we recall that φi denotes the

left-hand side of the implication in Ci), the tuple (g ◦h(y1), . . . , g ◦h(yk)) is in SI′
,

and
(2) for every equality t = t′ in φi, we have that:

(∗∗) t[f 7→ f0,xi 7→ g ◦ h(xi)] = t′[f 7→ f0,xi 7→ g ◦ h(xi)]

(i.e., the two members of the equation represent the same value of U ′).
We verify (1) first. Since h is a homomorphism from the conjunct Ci into I, it

follows by Definition 6.3 that the tuple (h(y1), . . . , h(yk)) is in SI . Moreover, g is
a homomorphism from I to I ′. Hence, the tuple (g(h(y1)), . . . , g(h(yk))) is in SI′

.
As for property (2), we prove the following stronger statement: For every equality

t = t′ that is satisfied in I under h, we have that condition (**) holds. Since h is
a homomorphism from Ci into I, it must be the case that every equality of φi is
satisfied in I under h. Therefore, property (2) is proven under the assumption that
the stronger statement holds.

The proof of the stronger statement is by induction on the structure of t = t′.
Base case: the equality t = t′ is of the form x = x′. Then it must be the case

that h(x) = h(x′) and therefore g ◦ h(x) = g ◦ h(x′). This is the same as saying
that (**) holds for x = x′.

Inductive case: the equality t = t′ is of the form f(t1, . . . , tl) = f(t′1, . . . , t
′
l)

where f is in f and the equalities t1 = t′1, . . ., tl = t′l are satisfied in I under h. By
the inductive hypothesis, we have that:

t1[f 7→ f0,xi 7→ g ◦ h(xi)] = t′1[f 7→ f0,xi 7→ g ◦ h(xi)]
. . .

tl[f 7→ f0,xi 7→ g ◦ h(xi)] = t′l[f 7→ f0,xi 7→ g ◦ h(xi)]
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It then follows that the following equality holds:

f0(t1[f 7→ f0,xi 7→ g ◦ h(xi)], . . . , tl[f 7→ f0,xi 7→ g ◦ h(xi)])
=

f0(t′1[f 7→ f0,xi 7→ g ◦ h(xi)], . . . , t′l[f 7→ f0,xi 7→ g ◦ h(xi)])

But this equality is the same as saying that condition (**) holds for f(t1, . . . , tl) =
f(t′1, . . . , t

′
l). This concludes the proof of the inductive case.

So far, we have shown that g ◦ h is an assignment for the variables in xi with
values in U ′ such that properties (1) and (2) hold. This is the same as saying that
I ′ |= φi[f 7→ f0,xi 7→ g ◦ h(xi)]. Since 〈I ′, J ′〉 |= (∀xi(φi → ψi))[f 7→ f0] (where
we recall that ψi denotes the right-hand side of the implication in Ci), it must be
the case that J ′ |= ψi[f 7→ f0,xi 7→ g ◦ h(xi)]. In other words, for every atom
T (t1, . . . , tp) of ψi, the tuple u, which is defined as

(t1[f 7→ f0,xi 7→ g ◦ h(xi)], . . . , tp[f 7→ f0,xi 7→ g ◦ h(xi)]),

is in T J′
. But as we now show, this tuple u is the same as the tuple (g◦h(t1), . . . , g◦

h(tp)). First, for 1 ≤ l ≤ p, we have that h(tl) = tl[xi 7→ h(xi)], from the way h
is defined on terms (see Definition 6.3). It follows that g(h(tl)) = g(tl[xi 7→ h(xi)],
for 1 ≤ l ≤ p. Since g satisfies condition (*), it is the case that

g(tl[xi 7→ h(xi)]) = tl[f 7→ f0,xi 7→ g ◦ h(xi)],

for 1 ≤ l ≤ p. Hence, g ◦ h(tl) = g(h(tl)) = tl[f 7→ f0,xi 7→ g ◦ h(xi)], for
1 ≤ l ≤ p. In other words, the tuple (g ◦ h(t1), . . . , g ◦ h(tp)) is the same as u.
Putting this together with the earlier fact that for every atom T (t1, . . . , tp) of ψi,
the tuple u is in T J′

, we obtain that for every atom T (t1, . . . , tp) of ψi, the tuple
(g ◦ h(t1), . . . , g ◦ h(tp)) is in T J′

.
We can show now that g is a homomorphism from 〈I, J2〉 to 〈I ′, J ′〉. It is enough

to show that the image, under g, of each of the “new ” tuples in J2, that are added
during the chase step with Ci and h, is a tuple in the corresponding relation of J ′.
Indeed, let (h(t1), . . . , h(tp)) be a “new” tuple of T J2 , for some atom T (t1, . . . , tp)
of ψi. We need to prove that (g(h(t1)), . . . , g(h(tp))) is in T J′

. But we have just
shown this, for every atom T (t1, . . . , tp) of ψi. This concludes the proof.

6.3 Data Exchange and Query Answering with Second-Order TGDs

Let M = (S,T,Σst) be a schema mapping where Σst contains only source-to-target
tgds, and let I be a source instance over the schema S. It is known [Fagin, Kolaitis,
Miller and Popa 2005] that chasing I with Σst produces, in polynomial time in
the size of I, a universal solution of I under M. The next theorem asserts that a
similar result holds when we chase a source instance I with SO tgds.

Theorem 6.8. Let M = (S,T, σ) be a schema mapping where σ is an SO tgd.
Then for every source instance I over S, chasing 〈I, ∅〉 with σ terminates in polyno-
mial time (in the size of I) with a result 〈I, J〉. Moreover, J is a universal solution
for I under M.

Proof. We first prove that the chase terminates in time polynomial in the size
of I. We consider M fixed. Let k be the maximum number of universally quantified
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variables in a conjunct of σ, let n be the total number of distinct values in I, and
let c be the total number of conjuncts in σ. For a given conjunct C of σ, there can
be at most nk homomorphisms. Since there are c conjuncts, the total number of
homomorphisms from σ into I is at most c × nk. Each such homomorphism can
yield at most one chase step of I with σ. (Once a chase step with a homomorphism
h from a conjunct C is applied, then there cannot be another chase step with the
same homomorphism and same conjunct, because all the “required” target tuples
have already been added in the first chase step.) Furthermore, I is not modified by
the chase; hence, no new homomorphisms can arise during the chase. Therefore,
we can have at most c× nk chase steps.

We now estimate the time spent during one chase step. Let t be the maximum
number of atoms in ψ, over all conjuncts ∀x(φ → ψ) in σ. Let m be the total
number of tuples that will exist in the target after the chase. This number m
is bounded by the number of chase steps, which is c × nk, times the number of
tuples that can be added in one chase step, which is at most t. Thus, m is at most
t× c× nk.

At each chase step we may spend c× nk × q(n) time to search for an applicable
homomorphism. Here, c × nk is the maximum number of functions that we may
need to search through, while q(n) is the time to check whether such a function
is a homomorphism or not, using Definition 6.3. It is easy to verify that q is a
polynomial in n. (Note that we could actually reduce the above time c×nk × q(n),
if we enumerate the list of all the candidate homomorphisms before the chase, and
then at each chase step we pick the next homomorphism from this list. This is an
optimization that does not affect the overall upper bound.) In addition, if the chase
step involves a conjunct ∀x(φ → ψ), for each of the atoms in ψ we need to check
whether the corresponding tuple already exists in the target, before adding it into
the target. This takes at most t (the maximum number of atoms in ψ) times m
(the maximum number of tuples in the target), or at most t2 × c × nk. Thus, the
time spent at each chase step is at most t2 × c× nk + c× nk × q(n).

Overall, the time to chase is at most c × nk, the number of chase steps, times
t2 × c × nk + c × nk × q(n), the time spent at each chase step. This number is a
polynomial in the size of I.

We now prove that J is a universal solution for I under M. We will make use of
Lemma 6.7. Assume that σ is of the form:

∃f ((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))).

Let K be an arbitrary solution of I under M. Thus, 〈U ; I,K〉 |= σ, where U is the
universe. Let f0 be a collection of functions over U such that

〈I,K〉 |=
∧
i

(∀xi(φi → ψi))[f 7→ f0].

Let us denote with V the set of values in I, and let g be the identity function on V.
We extend g to ground terms over V and f , by defining g′(v) = g(v), for every value
v in V, and g′(f(u1, . . . , uk)) = f0(g′(u1), . . . , g′(uk)), for every ground function
term f(u1, . . . , uk) over V and f . It is immediate that g′ is a homomorphism from
〈I, ∅〉 to 〈I,K〉 (since g is a homomorphism from I to I and there are no tuples in
the target side of 〈I, ∅〉).
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By definition of g′, we have that g′ satisfies the condition (*) from Lemma 6.7,
where g′ plays the role of g. Hence the lemma becomes applicable at every chase
step in the chase sequence from 〈I, ∅〉 to 〈I, J〉. We obtain that g′ : 〈I, J〉 → 〈I,K〉
is a homomorphism. In particular, g′ is a homomorphism from J to K satisfying
g′(v) = g(v) whenever v is in V. Since g is the identity function on V, we obtain
that g′ is a homomorphism from J to K satisfying g′(v) = v whenever v is in V.
Since K was picked to be an arbitrary solution of I under M, we conclude that J
is a universal solution of I under M.

The above theorem has an immediate but important consequence in terms of
query answering over the target schema. Let us recall the definitions of conjunctive
queries (with and without inequalities, since we will make use of conjunctive queries
with inequalities later), and unions of conjunctive queries. A conjunctive query
q(x) is a formula of the form ∃yφ(x,y) where φ(x,y) is a conjunction of atomic
formulas. If, in addition to atomic formulas, the conjunction φ(x,y) is allowed to
contain inequalities of the form zi 6= zj , where zi, zj are variables among x and y, we
call q(x) a conjunctive query with inequalities. We also impose a safety condition,
that every variable in x and y must appear in an atomic formula, not just in an
inequality. A union of conjunctive queries is a disjunction q(x) = q1(x)∨ . . .∨qn(x)
where q1(x), . . . , qn(x) are conjunctive queries.

It was shown in [Fagin, Kolaitis, Miller and Popa 2005] that if J is a universal
solution for I under M and q is a union of conjunctive queries, then certainM(q, I)
equals q(J)↓, which is the result of evaluating q on J and then keeping only those
tuples formed entirely of values from I. The equality certainM(q, I) = q(J)↓ holds
for arbitrarily specified schema mappings M. In particular, it holds for schema
mappings specified by SO tgds. This fact, taken together with Theorem 6.8, implies
the following result.

Corollary 6.9. Let M = (S,T, σ) be a schema mapping where σ is an SO tgd.
Let q be a union of conjunctive queries over the target schema T. Then for every
source instance I over S, the set certainM(q, I) can be computed in polynomial time
(in the size of I).

We point out an interesting contrast between the above result and one of the
results on query answering given in [Abiteboul and Duschka 1998]. There it was
shown that when the source schema is described in terms of the target schema
by means of arbitrary first-order views, computing the certain answers of conjunc-
tive queries becomes undecidable. In contrast, our result shows that although the
schema mappings that we consider go beyond first-order, computing the certain
answers of unions of conjunctive queries remains in polynomial time, as it is with
schema mappings specified by source-to-target tgds [Fagin, Kolaitis, Miller and
Popa 2005]. Thus, second-order tgds form a well-behaved fragment of second-order
logic, since for the purposes of data exchange and query answering, second-order
tgds behave similarly to source-to-target tgds.

7. COMPOSABILITY OF SECOND-ORDER TGDS

As we saw in Theorem 4.5, sets of source-to-target tgds are not closed under com-
position. By contrast, we show that SO tgds are closed under composition. That
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is, given two schema mappings M12 and M23 where Σ12 and Σ23 are SO tgds,
the composition of M12 and M23 is always definable by an SO tgd. We show this
by exhibiting a composition algorithm in this section and then showing that the
composition algorithm is correct.

Algorithm Compose(M12, M23)
Input: Two schema mappings M12 = (S1,S2,Σ12) and M23 = (S2,S3,Σ23),
where Σ12 and Σ23 are SO tgds.
Output: A schema mapping M13 = (S1,S3,Σ13), which is the composition of
M12 and M23 and where Σ13 is an SO tgd.
1. (Normalize the SO tgds in Σ12 and Σ23.)

Rename the function symbols so that the function symbols that appear in Σ12

are all distinct from the function symbols that appear in Σ23. For notational
convenience, we shall refer to variables in Σ12 as x’s, possibly with subscripts,
and the variables in Σ23 as y’s, possibly with subscripts. Initialize S12 and S23

to each be the empty set. Assume that the SO tgd in Σ12 is

∃f ((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))).

Put each of the n implications φi → ψi, for 1 ≤ i ≤ n, into S12. We do likewise
for Σ23 and S23. Each implication χ in S12 has the form φ(x) →

∧k
j=1Rj(tj)

where every member of x is a universally quantified variable, and each tj, for
1 ≤ j ≤ k, is a sequence of terms over x. We then replace each such implication
χ in S12 with k implications:

φ(x) → R1(t1), ..., φ(x) → Rk(tk)

2. (Compose S12 with S23.)
Repeat the following until every relation symbol in the left-hand side of every
formula in S23 is from S1.
For each implication χ in S23 of the form ψ → γ where there is an atom R(y)
in ψ such that R is a relation symbol in S2, we perform the following steps to
replace R(y) with atoms over S1. (The equalities in ψ are left unchanged.) Let

φ1 → R(t1), ..., φp → R(tp)

be all the implications in S12 whose right-hand side has the relation symbol R
in it. If no such implications exist in S12, we remove χ from S23. Otherwise,
for each such implication φi → R(ti), rename the variables in this implication
so that they do not overlap with the variables in χ. (In fact, every time we
compose with this implication, we take a fresh copy of the implication, with new
variables.) Let θi be the conjunction of the equalities between the variables in
R(y) and the corresponding terms in R(ti), position by position. For example,
the conjunction of equalities, position by position, between R(y1, y2, y3) and
R(x1, f2(x2), f1(x3)) is (y1 = x1) ∧ (y2 = f2(x2)) ∧ (y3 = f1(x3)). Observe that
every equality that is generated has the form y = t where y is a variable in Σ23

and t is a term based on variables in Σ12 and on f . Remove χ from S23 and
add p implications to S23 as follows: replace R(y) in χ with φi ∧ θi and add the
resulting implication to S23, for 1 ≤ i ≤ p.

ACM Transactions on Database Systems, Vol. , No. , 20.



· 35

3. (Remove variables originally in Σ23.)
For each implication χ constructed in the previous step, perform the following
operation until every variable y from Σ23 is removed. Select an equality y = t
that was generated in the previous step (thus, y is a variable in Σ23, and t is a
term based on variables in Σ12 and on f). Remove the equality y = t from χ
and replace every remaining occurrence of y in χ by t.

4. (Construct M13.)
Let S23 = {χ1, ..., χr} where χ1, . . . , χr are all the implications from the previous
step. Let Σ13 be the following SO tgd:

∃g (∀z1χ1 ∧ ... ∧ ∀zrχr)

where g is the collection of all the function symbols that appear in any of the
implications in S23, and where the variables in zi are all the variables found in
the implication χi, for 1 ≤ i ≤ r.
Return M13 = (S1,S3,Σ13).

The need in Step 2 for taking a fresh copy of an implication φi → R(ti) in S12

with new variables each time we compose with it, rather than simply renaming the
variables once at the beginning, arises when we compose this implication with an
implication χ in S23 where the relational symbol R appears multiple times in the
left-hand side of χ.

It is straightforward to verify that in Step 3, every variable y originally in Σ23

is indeed removed, so that the only remaining variables are among the variables
x originally in Σ12. This is because every variable y originally in Σ23 that is in
an implication χ that remains after Step 2 appears in an equality y = t that is
introduced in Step 2. Then y is removed in Step 3. It follows easily that the
safety condition of Definition 5.3 continues to hold, and so the algorithm generates
second-order tgds that are valid according to Definition 5.3.

Note that the number of formulas in the set S13, and hence the size of Σ13, is
exponential in the maximum number of relational atoms that can appear in the
left-hand side of an implication in Σ23. In Section 7.2, we give an exponential lower
bound, which shows that this exponentiality is unavoidable.

We can make use of the algorithm to compose schema mappings where Σ12 and
Σ23 are specified by finite sets of source-to-target tgds by first transforming each
of Σ12 and Σ23 into an SO tgd (by using the Skolemization described in Section 5)
and then passing the resulting schema mappings to the composition algorithm.

Example 7.1. We illustrate the steps of the composition algorithm using the
schema mappings of Example 5.2. We transform Σ12 and Σ23 into the following
SO tgds, Σ′12 and Σ′23:

Σ′12 : ∃f(∀e(Emp(e) → Mgr1(e, f(e)))) Σ′23 : ∀e∀m(Mgr1(e,m) → Mgr(e,m))∧
∀e(Mgr1(e, e) → SelfMgr(e))

We run the composition algorithm withM12 = (S1,S2, Σ′12) andM23 = (S2,S3,Σ′23).
After Step 1, the sets S12 and S23 consist of the following implications:

S12 : Emp(e) → Mgr1(e, f(e)) S23 : Mgr1(e,m) → Mgr(e,m)
Mgr1(e, e) → SelfMgr(e)
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In Step 2, we first replace the Mgr1 atom of the first implication χ in S23 by using
the implication in S12. The variable e of the implication in S12 is renamed to e0 so
that it does not overlap with the variables of χ. The result of this replacement is:

Emp(e0) ∧ (e = e0) ∧ (m = f(e0)) → Mgr(e,m)

Next, we replace the Mgr1 atom of the second implication by using the impli-
cation in S12. The variable e of the implication in S12 is renamed to e1 before
the replacement occurs. So after Step 2, the set S23 contains two implications, as
follows:

Emp(e0) ∧ (e = e0) ∧ (m = f(e0)) → Mgr(e,m)
Emp(e1) ∧ (e = e1) ∧ (e = f(e1)) → SelfMgr(e)

In Step 3, if we first remove the variable e in both implications, we are left with
the following two implications:

Emp(e0) ∧ (m = f(e0)) → Mgr(e0,m)
Emp(e1) ∧ (e1 = f(e1)) → SelfMgr(e1)

In Step 3, if we then remove the variable m from the first implication, we are left
with the following two implications, which we denote by χ1 and χ2:

χ1 : Emp(e0) → Mgr(e0, f(e0))
χ2 : Emp(e1) ∧ (e1 = f(e1)) → SelfMgr(e1)

Therefore, after Step 4, the algorithm returns M13 = (S1, S3, Σ13) where Σ13 is
the following SO tgd:

∃f(∀e0 χ1 ∧ ∀e1 χ2)

After substituting for χ1 and χ2, we obtain exactly the SO tgd that was shown in
Example 5.2 (except with the variables renamed).

We note that in this example (unlike the example described immediately after
the composition algorithm), it was not really necessary to rename the variable e
of the implication in S12 once as e0, and another time as e1: it could simply have
been renamed to e0 at the beginning and not be renamed again.

7.1 Correctness of the Composition Algorithm

We now show that the above composition algorithm is correct; that is, given two
schema mappings specified by second-order tgds, the algorithm returns a second-
order tgd that is indeed their composition. This completely proves our earlier
statement that second-order tgds are closed under composition. The correctness
proof uses the chase with second-order tgds introduced in Section 6.1.

Theorem 7.2. Let M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), where Σ12

and Σ23 are SO tgds. Then the algorithm Compose(M12, M23) returns a schema
mapping M13 = (S1, S3, Σ13) such that Σ13 is an SO tgd and M13 = M12 ◦M23.

Proof. Instead of working with Σ13, it is convenient to work with a slightly
different but logically equivalent version Σ∗13. We obtain Σ∗13 from Σ12 and Σ23 by
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making two changes to the composition algorithm. The first change is to eliminate
Step 3. The second change is to modify Step 4 of the algorithm by letting g be
the collection of all the function symbols that appear in Σ12 or Σ23. Thus, some of
these existentialized function symbols may not appear in the body (the first-order
part) of Σ∗13. It is easy to verify that Σ∗13 is logically equivalent to Σ13. Because
of the elimination of Step 3 of the composition algorithm, Σ∗13 is not necessarily an
SO tgd (it may violate the safety condition). However, it is more convenient for us
to prove that Σ∗13 defines the composition than to prove directly that Σ13 defines
the composition. Since Σ∗13 is logically equivalent to Σ13, this is sufficient to prove
our desired result that Σ13 defines the composition.6

Let T12 be the body of Σ12. So Σ12 is ∃fT12, where f consists of the function
symbols that appear in Σ12. Similarly, let T23 be the body of Σ23, and let T ∗13 be the
body of Σ∗13. In order to simplify notation, we assume (without loss of generality)
that each conjunct in Σ12 is of the form ∀x(φ(x) → R(t)) for a relation symbol R.
If Σ12 is not of this form, then as we noted earlier, it can be equivalently rewritten
in this form (and this is essentially what Step 1 in the algorithm does for Σ12).

To show that the schema mapping M13 generated by the algorithm satisfies
M13 = M12 ◦M23, we need to show that for every I1 over schema S1 and for every
I3 over schema S3, we have that 〈I1, I3〉 |= Σ∗13 if and only if there is an I2 over
schema S2 such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23.

Proof of the “only if” direction. Assume that 〈I1, I3〉 |= Σ∗13, that is,
〈U ; I1, I3〉 |= Σ∗13, for a countably infinite universe U that includes the values in I1
and I3. We show that there is an I2 such that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23, for
the same choice U of the universe, that is, 〈U ; I1, I2〉 |= Σ12 and 〈U ; I2, I3〉 |= Σ23.
We take Ic

2 such that 〈I1, Ic
2〉 is the result of chasing 〈I1, ∅〉 with Σ12. As we re-

marked right after Definition 6.5, we have that 〈I1, Ic
2〉 |= Σ12, where the universe

is the set of ground terms over V and f , where V is the set of values in I1.
Let g0 be the collection of concrete functions over U such that 〈I1, I3〉 |= T ∗13[g 7→

g0]. By assumption, the function symbols f that appear in Σ12 are all in g. We
denote by f0 those functions in g0 that replace function symbols in f .

We now take I2 to be the instance that is obtained from Ic
2 by instantiating each

ground term u of Ic
2 with the concrete value that results when we “evaluate” all

the function terms in u by using the concrete functions f0. It is easy to see that
I2 is an instance whose values are in U . Furthermore, it is easy to verify that
〈I1, I2〉 |= T12[f 7→ f0]. In particular, we also have that 〈U ; I1, I2〉 |= Σ12. We will
now show that 〈U ; I2, I3〉 |= Σ23.

Let f ′ be the collection of all the existentially quantified function symbols in Σ23.
We can assume without loss of generality that each f ′ in f ′ appears in a conjunct of
Σ23. We show that there are functions f ′0 over U such that 〈I2, I3〉 |= T23[f ′ 7→ f ′0].
In particular, this shows that 〈U ; I2, I3〉 |= Σ23. By construction of Σ∗13, each f ′ in
f ′ appears among g as some g. We take f ′0 to be g0.

We now show that 〈I2, I3〉 |= T23[f ′ 7→ f ′0]. We need to show that for every

6Although the formula Σ∗
13 is not an SO tgd under the definition given in this paper, it is an SO

tgd under the definition given our conference version [Fagin, Kolaitis, Popa and Tan 2004]. This

is the difference, mentioned in Footnote 3, between the definition of SO tgds in this paper and in
the conference version.
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conjunct ∀y(ψ → γ) in Σ23, we have that 〈I2, I3〉 |= (∀y(ψ → γ))[f ′ 7→ f ′0].
Assume that a is a sequence of values of I2 such that I2 |= ψ[f ′ 7→ f ′0,y 7→ a].
Moreover, we can assume without loss of generality that ψ is of the form

R1(y1) ∧ . . . ∧Rk(yk) ∧ θ

where the first k literals are the relational atoms of ψ and θ is the conjunction of
the equalities in ψ. The variables in yp, for each p with 1 ≤ p ≤ k, appear among
the variables in y. (Also recall that the only terms that appear in such relational
atoms are variables, by the definition of a second-order tgd.)

Since I2 |= ψ[f ′ 7→ f ′0,y 7→ a], it must be the case that I2 contains a tuple ap

in Rp, for each p with 1 ≤ p ≤ k. Here, ap is a sub-tuple of a, consisting of the
sequence of values of a that replace the variables in yp. We also have that all the
equalities in θ are true when y is replaced by a and f ′ is replaced by f ′0. That is,
for each equality t = t′ in θ, we have that t[f ′ 7→ f ′0,y 7→ a] and t′[f ′ 7→ f ′0,y 7→ a]
represent the same value.

We know that 〈I1, Ic
2〉 is the result of chasing 〈I1, ∅〉 with Σ12, and I2 is the result

of the subsequent “evaluation” of the ground terms in Ic
2 by using f0. Thus, it

must be the case that for each tuple ap, with 1 ≤ p ≤ k, there is some conjunct
∀xp(φp(xp) → Rp(tp)) in Σ12 such that there is a homomorphism hp from this
conjunct into I1 such that ap is the result of “evaluating” hp(tp) by using f0. By
the definition of a homomorphism from a conjunct into an instance, it must be the
case that I1 |= φp(hp(xp)), for every p with 1 ≤ p ≤ k. Let h be the union of
h1, . . . , hk. Thus, h acts on the union x of the variables in x1, . . . , xk, and h(x)
is defined to be hp(x), whenever x is among xp. (The variables in xi and xj are
assumed to be disjoint, for every i and j with 1 ≤ i < j ≤ k.) We obtain that

I1 |= (φ1(x1) ∧ (y1 = t1) ∧ . . . ∧ φk(xk) ∧ (yk = tk)) [x 7→ h(x),y 7→ a, f 7→ f0].

Putting this together with the earlier observation that all the equalities in θ are
true when y is replaced by a and f ′ is replaced by f ′0, we obtain that

(∗) I1 |= (φ1(x1) ∧ (y1 = t1) ∧ . . . ∧ φk(xk) ∧ (yk = tk) ∧ θ)
[x 7→ h(x),y 7→ a, f 7→ f0, f ′ 7→ f ′0].

Since by assumption the function symbols g consist precisely of the function symbols
in f along with those in f ′, condition (*) is equivalent to:

(∗∗) I1 |= (φ1(x1) ∧ (y1 = t1) ∧ . . . ∧ φk(xk) ∧ (yk = tk) ∧ θ)
[x 7→ h(x),y 7→ a,g 7→ g0].

By the composition algorithm (Step 2), and by the fact that there is some conjunct
∀xp(φp(xp) → Rp(tp)) in Σ12 for each p with 1 ≤ p ≤ k, we are guaranteed that
Σ∗13 contains a conjunct that is obtained from the conjunct ∀y(ψ → γ) in Σ23, by
replacing each of the literals Rp(yp) in ψ with the conjunction φp(xp)∧ (yp = tp).
Thus, Σ∗13 contains the following conjunct:

∀x∀y((φ1(x1) ∧ (y1 = t1) ∧ . . . ∧ φk(xk) ∧ (yk = tk) ∧ θ) → γ).

We know by assumption that 〈I1, I3〉 |= T ∗13[g 7→ g0]. Together with condition (**),
this last fact implies that I3 |= γ[y 7→ a, f ′ 7→ f ′0]. We used here that the variables
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in x do not appear in γ; we also used the fact that the function symbols that are
in g but not in f ′ do not appear in γ (thus their instantiations do not matter).

Thus, given that I2 |= ψ[f ′ 7→ f ′0,y 7→ a] for some arbitrary tuple a of values, we
have concluded that I3 |= γ[f ′ 7→ f ′0,y 7→ a]. It follows that 〈I2, I3〉 |= (∀y(ψ →
γ))[f ′ 7→ f ′0]. This concludes the “only if” direction in the proof.

Proof of the “if” direction. Assume that 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23.
By Theorem 5.6, if we take a large enough U that includes the active domains of
I1, I2 and I3, we have that 〈U ; I1, I2〉 |= Σ12 and 〈U ; I2, I3〉 |= Σ23. We will show
that 〈U ; I1, I3〉 |= Σ∗13.

As in the proof of the “only if” direction, let f , f ′ and g denote the collections
of existentially quantified function symbols in Σ12, Σ23 and Σ∗13, respectively. We
know that there are concrete functions f and f ′ over U such that 〈I1, I2〉 |= T12[f 7→
f0] and 〈I2, I3〉 |= T23[f ′ 7→ f ′0]. By the composition algorithm, each function
symbol g in g is either (1) a function symbol f that occurs in Σ12 and therefore is
in f , or (2) a function symbol f ′ that occurs in Σ23 and therefore is in f ′. In the
first case, we take g0 to be f0. In the second case, we take g0 to be f ′0. We now
show that 〈I1, I3〉 |= T13[g 7→ g0].

By the composition algorithm, every conjunct in Σ∗13 has the form C, which we
define to be

∀x∀y((φ1(x1) ∧ (y1 = t1) ∧ . . . ∧ φk(xk) ∧ (yk = tk) ∧ θ) → γ),

obtained from a conjunct

∀y((R1(y1) ∧ . . . ∧Rk(yk) ∧ θ) → γ)

in Σ23 and k conjuncts

∀x1(φ1(x1) → R1(t1)) . . . ,∀xk(φk(xk) → Rk(tk))

in Σ12. Here, the variables x consist precisely of the variables in x1, . . . ,xk, while
the variables y consist precisely of the variables in y1, . . . ,yk.

We need to show that 〈I1, I3〉 |= C[g 7→ g0]. Assume that a and b are sequences
of values such that

(i) I1 |= (φ1(x1)∧(y1 = t1)∧. . .∧φk(xk)∧(yk = tk)∧θ) [x 7→ a,y 7→ b,g 7→ g0].

To complete the proof, it suffices to show that I3 |= γ[x 7→ a,y 7→ b,g 7→ g0]. This
is the same as saying that

(ii) I3 |= γ[y 7→ b, f ′ 7→ f ′0].

Here we made use of the fact that the variables in x do not occur in γ. We also
made use of the fact that every function symbol g in g that occurs in γ is some f ′

in f ′, and we had earlier picked g0 to be equal to f ′0.
We know that 〈I1, I2〉 |= T12[f 7→ f0]. This implies, in particular, that 〈I1, I2〉 |=

∀xp(φp(xp) → Rp(tp))[f 7→ f0], for each p with 1 ≤ p ≤ k. From (i) we derive that
I1 |= φp(xp)[x 7→ a], for each p with 1 ≤ p ≤ k. It follows that I2 |= Rp(tp)[x 7→
a, f 7→ f0], for each p with 1 ≤ p ≤ k. At the same time, we can also derive from
(i) that yp[y 7→ b] and tp[x 7→ a, f 7→ f0] represent the same tuple of values, for
each p with 1 ≤ p ≤ k. Here we made use of the fact that every function symbol g
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in g that occurs in tp is some f in f , and we had earlier picked g0 to be equal to
f0. We obtain that

I2 |= (R1(y1) ∧ . . . ∧Rk(yk))[y 7→ b].

Furthermore, from (i), we know that for every equality t = t′ in θ, we have that
t[y 7→ b,g 7→ g0] and t′[y 7→ b,g 7→ g0] represent the same value. (Since θ is from
Σ23, the variables in x do not occur in θ and therefore their values do not matter.)
We now make use of the fact that every function symbol g in g that occurs in θ
must occur in f ′ as some f ′, and that we had earlier picked g0 to be f ′0. We can
therefore infer that all the equalities in θ are satisfied when y is replaced by b and
f ′ is replaced by f ′0. We thus obtain the following:

(iii) I2 |= (R1(y1) ∧ . . . ∧Rk(yk) ∧ θ) [y 7→ b, f ′ 7→ f ′0].

We know that 〈I2, I3〉 |= T23[f ′ 7→ f ′0]. This implies, in particular, that 〈I2, I3〉 |=
∀y(R1(y1) ∧ . . . ∧ Rk(yk) ∧ θ → γ)[f ′ 7→ f ′0]. Together with (iii), this implies the
earlier statement (ii). This concludes the “if” direction in the proof.

7.2 The Size of the Composition Formula

Assume that M13 = M12 ◦M23 where M13 = (S1,S3,Σ13). We may refer to Σ13

as the composition formula. When we defined our composition algorithm, we noted
that the size of the composition formula that we constructed might be exponential.
We now prove an exponential lower bound, which shows that this exponentiality is
unavoidable.

Proposition 7.3. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are finite sets of full source-to-target tgds, such
that if M12 ◦M23 = (S1, S3, Σ13), then every set Σ′13 of source-to-target tgds that
is logically equivalent to Σ13, and every SO tgd Σ′13 that is logically equivalent to
Σ13, is of size exponential in the size of Σ12 ∪ Σ23.

Proof. Let S1 consist of the unary relation symbols R1, . . . , Rn and R′1, . . . R
′
n.

Let S2 consist of the unary relation symbols S1, . . . , Sn, and let S3 consist of the
unary relation symbol T . Let Σ12 consist of the full source-to-target tgds Ri(x) →
Si(x), for 1 ≤ i ≤ n, and the full source-to-target tgds R′i(x) → Si(x), for 1 ≤ i ≤ n.
Let Σ23 consist of the single full source-to-target tgd S1(x)∧· · ·∧Sn(x) → T (x). Let
Σ13 consist of all of the source-to-target tgds of the form U1(x)∧· · ·∧Un(x) → T (x),
where Ui is either Ri or R′i, for 1 ≤ i ≤ n. It is straightforward to verify that
M12 ◦ M23 = (S1, S3, Σ13). Let Σ′13 be a set of source-to-target tgds that is
logically equivalent to Σ13. We shall show that Σ′13 contains at least 2n members.
A similar proof show that if Σ′13 is an SO tgd, then it contains at least 2n conjuncts.
This is sufficient to prove the theorem.

We first show that the left-hand side of every member of Σ′13 must contain at
least one of Ri or R′i, for each i. Assume not; we shall derive a contradiction. Let
τ be a member of Σ′13 such that there is i for which τ does not contain Ri and τ
does not contain R′i. Let I be a source instance (an S1 instance) that consists of
the facts Rj(0) and R′j(0) for each j 6= i, but where the Ri and R′i relations are
empty. Let J be a target instance (an S3 instance) where the T relation is empty.
It is clear that 〈I, J〉 satisfies Σ13, since every member of Σ13 contains either Ri
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or R′i in its left-hand side. However, 〈I, J〉 does not satisfy τ , since when every
variable appearing in the left-hand side of τ takes on the value 0, the left-hand
side of τ is satisfied but the right-hand side of τ is not (since the T relation of J
is empty). Since 〈I, J〉 satisfies Σ13 but does not satisfy Σ′13, this contradicts the
assumption that Σ′13 is logically equivalent to Σ13. So indeed, the left-hand side of
every member of Σ′13 must contain at least one of Ri or R′i, for each i.

We now show that for each of the 2n vectors x = (x1, . . . , xn) where each xi is
either 0 or 1, there is a member σx of Σ′13 such that for each i, the left-hand side
of σx contains Ri precisely if xi = 0, and the left-hand side contains R′i precisely
if xi = 1. Assume not; we shall derive a contradiction. Let y = (y1, . . . , yn) be a
specific 0,1 vector where this condition is violated, that is, where Σ′13 has no such
member σy. Let I be a source instance that contains exactly n facts, namely, for
each i, the fact Ri(0) when yi = 0 or the fact R′i(0) when yi = 1, Let J be a
target instance where the T relation is empty. We now show that 〈I, J〉 satisfies
every member of Σ′13. Let τ be an arbitrary member of Σ′13. From what we showed
earlier, we know that the left-hand side of τ must contain at least one of Ri or
R′i, for each i. Since also τ is not of the form σy, it follows that either there is i
such that yi = 0 and τ contains R′i, or yi = 1 and τ contains Ri. Therefore 〈I, J〉
satisfies τ , since the left-hand side of τ is never satisfied in I, no matter what the
choice is of the variables in the left-hand side of τ . Since τ is an arbitrary member
of Σ′13, it follows that 〈I, J〉 satisfies Σ′13. Now Σ13 has a member γ of the form σy.
It is easy to see that 〈I, J〉 does not satisfy γ, and so 〈I, J〉 does not satisfy Σ13.
Since 〈I, J〉 satisfies Σ′13 but does not satisfy Σ13, this contradicts the assumption
that Σ′13 is logically equivalent to Σ13.

Since Σ′13 contains a member σx for each of the 2n vectors x = (x1, . . . , xn) where
each xi is either 0 or 1, and since it is clear that each such member σx is distinct,
it follows that Σ′13 contains at least 2n members. This was to be shown.

7.3 Failure of the Active Domain Semantics

In our definition of the semantics of SO tgds, we took the universe (which serves as
the domain and range of the existentially quantified functions) to be a countably
infinite set that includes the active domain. (We later showed that a finite but large
enough universe that includes the active domain also suffices.) In this section, we
show that if we were to instead take the universe to be simply the active domain,
then an SO tgd that results after applying the composition algorithm might have
a meaning that is different from that of composition. We also include a discussion
on domain independence of SO tgds. Let us refer to our usual semantics as the
“infinite universe semantics”, and let us refer to the semantics where the universe
is taken to be the active domain as the “active domain semantics”.

Example 7.4. We consider a slight variation of Example 5.2, with the following
schemas S1, S2 and S3. Schema S1 consists of a single unary relation symbol Emp of
employees. Schema S2 consists of a single binary relation symbol Mgr, associating
each employee with a manager. Schema S3 consists of a single unary relation symbol
SelfMgr, intended to store employees who are their own manager. Consider the
schema mappings M12 = (S1, S2,Σ12) and M23 = (S2,S3,Σ23), where

Σ12 = { ∀e (Emp(e) → ∃mMgr(e,m)) } Σ23 = { ∀e(Mgr(e, e) → SelfMgr(e)) }.
ACM Transactions on Database Systems, Vol. , No. , 20.



42 ·

It is easy to verify that the composition algorithm tells us that the composition of
M12 and M23 is M13 = (S1, S3,Σ13), where Σ13 is the following second-order tgd:

∃f(∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))). (4)

In the infinite universe semantics, this formula (4) is equivalent to “Truth”, that
is, formula (4) is a tautology that holds for every choice of 〈I1, I3〉. This is because
we can simply select an arbitrary function f such that f(e) 6= e for every e in the
domain. Then the left-hand side Emp(e) ∧ (e = f(e)) is false for every e, and so
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e)) holds for this f . And indeed, “Truth” is
the right answer for the composition of M12 and M23, as we now show. Let I1 be
an arbitrary instance of schema S1 and let I3 be an arbitrary instance of schema
S3. To show that the composition is indeed “Truth”, we must show that 〈I1, I3〉
is in the composition. Define the instance I2 of schema S2 by letting Bob be some
element different from every member of EmpI1 , and letting MgrI2 contain all tuples
(e,Bob), where e is in EmpI1 . Then 〈I1, I2〉 |= Σ12 and 〈I2, I3〉 |= Σ23, and so 〈I1, I3〉
is in the composition, as desired.

We now show that in the active domain semantics, the formula (4) is not equiv-
alent to “Truth”. Therefore, the formula (4) given by the composition algorithm,
does not have the right meaning, of composition, under the active domain seman-
tics. We need only show that there is an instance I1 of schema S1 and an instance I3
of schema S3 such that 〈I1, I3〉 does not satisfy (4) in the active domain semantics.

Define I1 by letting EmpI1 contain the single element Alice. Define I3 by letting
SelfMgrI3 be empty. The active domain is {Alice}, and there is only one function
with domain and range {Alice}, namely the function f0 where f0(Alice) = Alice.
Using this function f0 (the only function available) for f , the left-hand side Emp(e)∧
(e = f(e)) is satisfied when e is Alice, but the right-hand side SelfMgr(e) is not.
So 〈I1, I3〉 does not satisfy the formula (4) in the active domain semantics, which
was to be shown.

A formula is said to be domain independent if its truth does not depend on the
choice of universe, as long as the universe contains the active domain. Fagin [Fagin
1982] was the first to observe that the safety condition for first-order dependencies
(that every universally quantified variable must appear in the left-hand side) makes
them domain independent. This comment applies to the (first-order) source-to-
target tgds we consider. However, it follows from Example 7.4 that SO tgds are
not domain independent. Thus, in this example, let U ′ = {Alice}, which is the
active domain, and let U = {Alice,Bob}. It follows easily from the discussion in
Example 7.4 that 〈U ; I, J〉 |= Σ13 but 〈U ′; I, J〉 6|= Σ13. Therefore, the SO tgd Σ13

is not domain independent.7 On the other hand, our earlier Theorem 5.6 implies
that SO tgds obey a limited form of domain independence: the choice of universe
does not matter, as long as it contains the active domain and is sufficiently large.

8. SO TGDS ARE EXACTLY THE NEEDED CLASS

We have introduced SO tgds since (1) every finite set of (first-order) source-to-
target tgds is logically equivalent to an SO tgd and (2) SO tgds are closed under

7Sergey Melnik pointed out to us that SO tgds are not necessarily domain independent, using
essentially this example.
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composition. We therefore obtain the following theorem.

Theorem 8.1. The composition of a finite number of schema mappings, each
defined by a finite set of source-to-target tgds, is defined by an SO tgd.

In this section, we prove a converse to Theorem 8.1. Specifically, we prove the
following theorem.

Theorem 8.2. Every SO tgd defines the composition of a finite number of schema
mappings, each defined by a finite set of source-to-target tgds.

We note that in Theorem 8.2, the “intermediate” schemas depend on the SO
tgd. We now show that Theorem 8.2 gives us the next theorem. This next theorem
shows the naturalness and “inevitability” of the class of SO tgds.

Theorem 8.3. SO tgds form the smallest class (up to logical equivalence) that
contains every source-to-target tgd and is closed under conjunction and composition.

Proof. We already noted that every source-to-target tgd is logically equivalent
to an SO tgd, and that the conjunction of a pair of SO tgds is logically equivalent
to an SO tgd. Also, Theorem 7.2 tells us that the composition of two schema
mappings, each defined by an SO tgd, is defined by an SO tgd. These facts tell us
that, up to logical equivalence, the class of SO tgds contains every source-to-target
tgd and is closed under conjunction and composition.

We now show that the class of SO tgds is (up to logical equivalence) the smallest
such class. Let Y be a class that contains every source-to-target tgd and is closed
under conjunction and composition. We must show that for each SO tgd σ there is
a member of Y that is logically equivalent to σ. By Theorem 8.2, there are finite
sets Σ12, ..., Σn(n+1) of source-to-target tgds such that σ defines the composition
of the mappings given by Σ12, ..., Σn(n+1). For each i, with 1 ≤ i ≤ n, since
Σi(i+1) is a finite set of source-to-target tgds, and since Y contains each member of
Σi(i+1) and is closed under conjunction, it follows that Y contains the conjunction
of the members of Σi(i+1). Since Y is closed under composition, Y contains the
composition formula of the schema mappings defined by Σ12, ..., Σn(n+1). But this
composition formula is logically equivalent to σ. So there is a member of Y that is
logically equivalent to σ. This was to be shown.

It remains to prove Theorem 8.2. We shall prove Theorem 8.2 by proving a
slightly stronger theorem. Before we state this stronger theorem, we need a defini-
tion. The depth of a term is as defined in Section 5.2. We define the nesting depth
of an SO tgd σ to be the largest depth of the terms that appear in σ. For example,
let σ be the SO tgd

∃f∃g(S(x, y) → T (x, f(y), g(x, f(y))).

Then σ has nesting depth 2, since the term with the largest depth that appears in
σ is g(x, f(y)), which has depth 2.

We shall prove the following theorem, which immediately implies Theorem 8.2.

Theorem 8.4. Every SO tgd of nesting depth r defines the composition of r+1
schema mappings, each defined by a finite set of source-to-target tgds.

ACM Transactions on Database Systems, Vol. , No. , 20.



44 ·

Proof. It is instructive to first prove this theorem for some special cases, to get
the idea of the construction. Let σ′ be the formula ∀x(S(x) → T (f(x), g(x), f(g(x))),
and let σ be the SO tgd ∃f∃gσ′. Thus, σ is

∃f∃g∀x(S(x) → T (f(x), g(x), f(g(x))).

Define Σ12 to consist of the following source-to-target tgds:

∀x(S(x) → S1(x))
∀x(S(x) → ∃yF1(x, y))
∀x(S(x) → ∃yG1(x, y)).

Intuitively, we take S1 to copy S, we take F1(x, y) to encode f(x) = y, and we take
G1(x, y) to encode g(x) = y. The second dependency has the effect of guaranteeing
that f(x) is defined whenever S(x) holds, and the third dependency has the effect
of guaranteeing that g(x) is defined whenever S(x) holds.

Define Σ23 to consist of the following source-to-target tgds:

∀x(S1(x) → S2(x))
∀x∀y(F1(x, y) → F2(x, y))
∀x∀y(G1(x, y) → G2(x, y))
∀x∀y(G1(x, y) → ∃zF2(y, z)).

Intuitively, we take S2 to copy S1, F2 to copy F1, and G2 to copy G1. The fourth
dependency has the effect of guaranteeing that f(y) is defined for all y in the range
of g.

Define Σ34 to consist of the following source-to-target tgd:

∀x∀y∀y′∀z((S2(x) ∧ F2(x, y) ∧G2(x, y′) ∧ F2(y′, z)) → T (y, y′, z)). (5)

Intuitively, formula (5) says

∀x∀y∀y′∀z((S(x) ∧ (f(x) = y) ∧ (g(x) = y′) ∧ (f(y′) = z) → T (y, y′, z)). (6)

In turn, formula (6) says

∀x(S(x) → T (f(x), g(x), f(g(x))). (7)

Note that formula (7) is exactly the “body” of σ.
We now show that 〈I1, I4〉 |= σ if and only if there are I2, I3 such that 〈I1, I2〉 |=

Σ12, 〈I2, I3〉 |= Σ23, and 〈I3, I4〉 |= Σ34. This is sufficient to prove the theorem
in this special case. Assume first that 〈I1, I4〉 |= σ. So there are f0, g0 such that
〈I1, I4〉 |= σ′[f 7→ f0, g 7→ g0]. We see from Theorem 5.6 that we can assume
without loss of generality that the universe is finite. Define I2 by taking S1 to
equal S, taking F1(a, b) to hold in I2 precisely if f0(a) = b, and taking G1(a, b)
to hold in I2 precisely if g0(a) = b. Define I3 by taking S2 to equal S, taking F2

to equal F1, and taking G2 to equal G1. Note that I2 and I3 are finite, because
of our assumption that the universe is finite. It is straightforward to verify that
〈I1, I2〉 |= Σ12, 〈I2, I3〉 |= Σ23, and 〈I3, I4〉 |= Σ34.

Assume now that 〈I1, I2〉 |= Σ12, 〈I2, I3〉 |= Σ23, and 〈I3, I4〉 |= Σ34. Let U (the
universe) be a countably infinite set that contains all values that appear in any of
I1, I2, I3, or I4. Define f0(a) for a in U as follows. If there is some b such that
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F2(a, b) holds in I3, then let f0(a) be an arbitrary value of b such that F2(a, b)
holds in I3. (Note that this is reminiscent of our choice of the coloring function in
the proof of Theorem 4.6.) For all other a in U , let f0(a) be an arbitrary member
of U . Define g0(a) for a in U as follows. If there is some b such that G2(a, b) holds
in I3, then let g0(a) be an arbitrary value of b such that G2(a, b) holds in I3. For
all other a in U , let g0(a) be an arbitrary member of U . It is straightforward to
verify that 〈I1, I4〉 |= σ′[f 7→ f0, g 7→ g0]. So 〈I1, I4〉 |= σ, as desired.

We note that if we were to apply our composition algorithm to find the result
of composing the schema mappings defined by Σ12, Σ23 and Σ34, we would obtain
a different formula than σ (although this formula is logically equivalent to σ). In
particular, when we convert the source-to-target tgds in Σ12 and Σ23 to SO tgds,
we would introduce different Skolem functions for dealing with the tgd ∀x(S(x) →
∃yF1(x, y)) of Σ12 and the tgd ∀x∀y(G1(x, y) → ∃zF2(y, z)) of Σ23. However, it is
possible to use the same Skolem function in both cases. The reason is, intuitively,
that because of the tgd ∀x∀y(F1(x, y) → F2(x, y)) of Σ23, the Skolem function
needed for the tgd ∀x∀y(G1(x, y) → ∃zF2(y, z)) of Σ23 can simply be an extension
to a larger domain of the Skolem function needed for the tgd ∀x∀y(G1(x, y) →
∃zF2(y, z)) of Σ12.

We now modify our example to allow an equality. Let us take σ1 to be

∃f∃g∀x((S(x) ∧ (f(x) = g(x))) → T (f(x), g(x), f(g(x))).

Thus, σ1 is the result of adding the equality f(x) = g(x) to the left-hand side of
σ. We then take Σ′12 to be Σ12, and Σ′23 to be Σ23. We take Σ′34 to consist of the
following source-to-target tgd:

∀x∀y∀z((S2(x) ∧ F2(x, y) ∧G2(x, y) ∧ F2(y, z)) → T (y, y, z)).

Thus, Σ′34 is the result of replacing y′ by y in Σ34. We then have, similarly to
before, that 〈I1, I4〉 |= σ1 if and only if there are I ′2, I

′
3 such that 〈I1, I ′2〉 |= Σ′12,

〈I ′2, I ′3〉 |= Σ′23, and 〈I ′3, I4〉 |= Σ′34. In fact, we can define I ′2 and I ′3 with the same
definitions as we gave for I2 and I3 earlier.

We now give the argument in the general case. Let σ be an SO tgd with nesting
depth r, with source schema S and target schema T. Let us write σ as ∃fσ′, where
σ′ is first-order. We must define r + 2 schemas S1, . . . ,Sr+2. We let S1 be S and
let Sr+2 be T. For every k-ary relation symbol S of S, and for 2 ≤ i ≤ r+1, we let
the schema Si contain a new k-ary relation symbol Si−1. For every k-ary function
symbol f that appears in σ, and for 2 ≤ i ≤ r + 1, we let the schema Si contain a
new (k + 1)-ary relation symbol Fi−1. We say that Fi−1 represents f in Si.

We now define the sets Σi(i+1) for 1 ≤ i ≤ r + 1. We first define the set Σ12.
For every k-ary relation symbol S of S, we let Σ12 contain the source-to-target
tgd ∀x1 . . .∀xk(S(x1, . . . , xk) → S1(x1, . . . , xk)). Next, we let Σ12 contain source-
to-target tgds that guarantee, intuitively, that each of the function symbols of σ
is defined on the active domain of the instance of schema S. Thus, for every
(k + 1)-ary relation symbol F1 of S1 that represents a k-ary function symbol of
σ in S2, and for every combination of choices of atomic formulas from S1 and
every combination of choices of variables v1, . . . , vk that appear in these atomic
formulas, we let Σ12 contain a source-to-target tgd that guarantees that there is y
such that F1(v1, . . . , vk, y) holds. For example, if F1 is a ternary relation symbol

ACM Transactions on Database Systems, Vol. , No. , 20.



46 ·

that represents a binary function symbol of σ in S2, and if R and S are binary
relation symbols of S, then Σ12 contains the source-to-target tgd

∀x1∀x2∀x3∀x4((R(x1, x2) ∧ S(x3, x4)) → ∃yF1(x2, x3, y)).

We now define the sets Σi(i+1) for 2 ≤ i ≤ r. For every k-ary relation symbol S
of S, we let Σi(i+1) contain the source-to-target tgd ∀x1 . . .∀xk(Si−1(x1, . . . , xk) →
Si(x1, . . . , xk)). For every k-ary function symbol f that appears in σ, we let Σi(i+1)

contain the source-to-target tgd ∀x1 . . .∀xk(Fi−1(x1, . . . , xk+1) → Fi(x1, . . . , xk+1)),
where Fi−1 is the relation symbol that represents f in Si, and Fi is the relation
symbol that represents f in Si+1. Next, we let Σi(i+1) contain source-to-target tgds
that guarantee, just as we did in the case of Σ12, that each of the function symbols
of σ is defined on the active domain of the instance of schema Si. For example, if
Gi is a ternary relation symbol that represents a binary function symbol of σ in
Si+1, and if R is a binary relation symbol of S (so that Ri−1 is a binary relation
symbol of Si) and Fi−1 is a binary relation symbol that represents a unary function
symbol of σ in Si, then Σi(i+1) contains the source-to-target tgd

∀x1∀x2∀x3∀x4((Ri−1(x1, x2) ∧ Fi−1(x3, x4)) → ∃yGi(x1, x4, y)).

Note that we did not bother with putting all of these source-to-target tgds into Σ23

in our example at the beginning of the proof, since they were not all needed.
Finally, we define the set Σ(r+1)(r+2). For each conjunct Cj of σ, where Cj is

∀xj(φj → ψj), we shall define full source-to-target tgds τ ′j (with left-hand side L′j
and right-hand side R′j) and τj (with left-hand side Lj and right-hand side Rj),
and we let Σ(r+1)(r+2) consist of the tgds τj . The difference between τ ′j and τj is
that in constructing τ ′j , we shall neglect the equalities that appear in Cj ; we shall
then obtain τj by modifying τ ′j to take into account the equalities. We begin by
defining, for every term t that appears in Cj , a terminal variable vt and a formula
β′t. If t is a variable x, then vt and β′t are both x. If t is the term f(t1, . . . , tk), then
we take the terminal variable vt to be a new variable, and recursively define β′t to
be Fr(vt1 , . . . , vtk

, vt), where Fr represents f in Sr+1. The left-hand side L′j of τ ′j
is a conjunction of the following formulas:

Sr(x1, . . . , xp), for every atomic formula S(x1, . . . , xp) that appears in φj

β′t, for every term t that appears in Cj (including as a subterm).

We can assume without loss of generality that ψj consists of a single atomic formula
T (t1, . . . , tm). The right-hand side R′j of τ ′j then is taken to be T (vt1 , . . . , vtm

).
We now describe how we obtain τj from τ ′j . Let Xj be the set of equalities t = t′

that appear in Cj , and let X ′
j be the set of equalities in the transitive, symmetric,

reflexive closure of Xj . Then the terms that are the left-hand side or right-hand side
of equalities in Cj form equivalence classes based on X ′

j (so that t and t′ are in the
same equivalence class when the equality t = t′ appears in Cj). For each equivalence
class, select one term from that equivalence class to be the “representative” of that
equivalence class. If some member of the equivalence class is a variable, then let
a variable be the representative. If t and t′ are in the same equivalence class and
if t is the representative of that equivalence class, then form τj by replacing every
occurrence of vt′ in τ ′j by vt (do this in parallel for each equivalence class). For each
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term t, denote the formula in τj that was obtained from β′t under this replacement
by βt.

We now show that 〈I1, Ir+2〉 |= σ if and only if there are I2, I3, . . . , Ir+1 such
that 〈Ii, Ii+1〉 |= Σi(i+1) for 1 ≤ i ≤ r + 1. This is sufficient to prove the theorem.
Assume first that 〈I1, Ir+2〉 |= σ; we shall show that there are I2, I3, . . . , Ir+1 such
that 〈Ii, Ii+1〉 |= Σi(i+1) for 1 ≤ i ≤ r + 1. Find f0 such that

〈I1, Ir+2〉 |= σ′[f 7→ f0].

In particular, for each conjunct Cj of σ′, we have

〈I1, Ir+2〉 |= Cj [f 7→ f0]. (8)

We see from Theorem 5.6 that we can assume without loss of generality that the
universe is finite. Define I2 by taking the S1 relation of I2 to equal the S relation
of I1, for each relation symbol S of S, and taking F1(a1, . . . , ak, b) to hold in I2
precisely if f0(a1, . . . , ak) = b, for each function symbol f that appears in σ, where
F1 is the relation symbol that represents f in S2. Note that F1 is finite, by our
assumption on the universe. For 3 ≤ i ≤ r + 1, define Ii by taking the Si−1

relation of Ii to equal the S relation of I1, for each S in S, and taking the Fi−1

relation of Ii to equal the F1 relation of I2, for each Fi−1 that represents a function
symbol f of σ in Si. It is easy to see that by construction of I2, . . . , Ir+1, we have
〈Ii, Ii+1〉 |= Σi(i+1) for 1 ≤ i ≤ r+1. We now show that 〈Ir+1, Ir+2〉 |= Σ(r+1)(r+2).

Let σ̂ be the result of replacing each relation symbol S that appears in the left-
hand side of a conjunct of σ′ by Sr, let Ĉj be the conjunct of σ̂ that corresponds
to Cj , and let φ̂j be the left-hand side of Ĉj . Since the Sr relation of Ir+1 equals
the S relation of I1, it follows from (8) that

〈Ir+1, Ir+2〉 |= Ĉj [f 7→ f0]. (9)

By construction, Fr(a1, . . . , ak, b) holds in Ir+1 precisely if f0(a1, . . . , ak) = b, for
each function symbol f that appears in σ. Let τj be the member of Σ(r+1)(r+2)

that corresponds to the clause Cj of σ. We must show that 〈Ir+1, Ir+2〉 |= τj .
Let Cj be ∀xj(φj → T (t1, . . . , tm)). Let v 7→ v0 be an assignment of entries of

Ir+1 to the terminal variables where vt and vt′ are assigned the same values if t and
t′ are in the same equivalence class. Let xj 7→ x0

j be the assignment of entries of
Ir+1 to members of xj determined by v 7→ v0 (recall that xj ⊆ v since vx is simply
x for variables x). To prove that 〈Ir+1, Ir+2〉 |= τj , we need only show that if

Ir+1 |= Lj [v 7→ v0], (10)

then

Ir+2 |= Rj [v 7→ v0]. (11)

It is sufficient to restrict to assignments v 7→ v0 of the type we have described,
since if t and t′ are in the same equivalence class, then at most one of vt or vt′

appears in Lj .
Now Lj is obtained from L′j by replacing certain variables vt′ by variables vt

where t and t′ are in the same equivalence class. Since in this case, v0
t = v0

t′ , it
follows that (10) is equivalent to the statement

Ir+1 |= L′j [v 7→ v0], (12)
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By the same argument, it follows that (11) is equivalent to the statement Ir+2 |=
R′j [v 7→ v0], that is,

Ir+2 |= T (vt1 , . . . , vtm
)[v 7→ v0]. (13)

We are trying to show that (10) implies (11). Since (10) is equivalent to (12) and
since (11) is equivalent to (13), we need only show that (12) implies (13). Assume
that (12) holds; we must show that (13) holds.

We now show by induction on depth that if t is a term that appears in Cj , then

v0
t = t[xj 7→ x0

j , f 7→ f0]. (14)

The base case of depth 0 is immediate, since then t is one of the variables in xj. We
now prove the inductive step. Assume that t is the term f(t1, . . . , tk). Let ai denote
ti[xj 7→ x0

j , f 7→ f0], for 1 ≤ i ≤ k. Then t[xj 7→ x0
j , f 7→ f0] = f0(a1, . . . , ak). We

must show that v0
t = f0(a1, . . . , ak). Since Fr(vt1 , . . . , vtk

, vt) is the conjunct β′t of
L′j , we see from (12) that

Ir+1 |= Fr(vt1 , . . . , vtk
, vt)[v 7→ v0]. (15)

By inductive assumption, for 1 ≤ i ≤ k, we have v0
ti

= ai. By our construction
of the Fr relation of Ir+1, it then follows from (15) that v0

t = f0(a1, . . . , ak), as
desired. This completes the induction, and so completes the proof that (14) holds.

Now φ̂j is the conjunction of certain atomic formulas (all of whose variables are in
xj) and certain equalities between terms. The atomic formulas in φ̂j are guaranteed
to hold in Ir+1 under the assignment xj 7→ x0

j because of (12) and the fact that
these same atomic formulas appear in L′j . Whenever t = t′ is an equality that
appears in φ̂j , we have v0

t = v0
t′ by definition of the assignment v 7→ v0. So by (14),

it follows that t and t′ take on the same value in the assignment xj 7→ x0
j , f 7→ f0.

Hence, both the atomic formulas of φ̂j and the equalities of φ̂j are guaranteed to
hold in Ir+1 under the assignment xj 7→ x0

j , f 7→ f0. That is,

Ir+1 |= φ̂j [xj 7→ x0
j , f 7→ f0]. (16)

From (9) and (16) and the fact that φ̂j is the left-hand side of Ĉj , it follows that
the right-hand side of Ĉj also holds, that is,

Ir+2 |= T (t1, . . . , tm)[xj 7→ x0
j , f 7→ f0]. (17)

From (14) and (17), we obtain (13), as desired. This completes the proof that
〈Ii, Ii+1〉 |= Σi(i+1) for 1 ≤ i ≤ r + 1.

Assume now that 〈Ii, Ii+1〉 |= Σi(i+1) for 1 ≤ i ≤ r + 1; we shall show that
〈I1, Ir+2〉 |= σ. Let U (the universe) be a countably infinite set that contains all
values that appear in one or more of the Ii’s. For each k-ary function symbol f
that appears in σ, define f0(a1, . . . , ak) for a1, . . . , ak in U as follows. If there
is some b such that Fr(a1, . . . , ak, b) holds in Ir+1, then let f0(a1, . . . , ak) be an
arbitrary value of b such that Fr(a1, . . . , ak, b) holds in Ir+1. For every other choice
of a1, . . . , ak in U , let f0(a1, . . . , ak) be an arbitrary member of U .

To prove that 〈I1, Ir+2〉 |= σ, we need only show that (8) holds for each j. Thus,
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assume

I1 |= φj [xj 7→ x0
j , f 7→ f0]; (18)

we must show that (17) holds. Since φ̂j is the result of replacing each relation
symbol S of φj by Sr, and since the Sr relation of Ir+1 equals the S relation of I1,
it follows from (18) that (16) holds.

For simplicity of notation, let us denote t[xj 7→ x0
j , f 7→ f0] by t0. We now show,

by induction on s with 1 ≤ s ≤ r, that Σ12, . . . ,Σs(s+1) assure that if t is a term
f(t1, . . . , tk) of depth s, then Fs(t01, . . . , t

0
k, t

0) holds in Is+1 (and in particular t0

appears in Is+1).
Let us consider first the base case s = 1. In this case, t01, . . . , t

0
k are each

members of the active domain of I1, and Σ12 guarantees that there is b such
that F1(t01, . . . , t

0
k, b) holds in I2. By our construction of f0, it then follows that

F1(t01, . . . , t
0
k, t

0) holds in I2.
The inductive step is similar. Let t be the term f(t1, . . . , tk) of depth s + 1,

where s < r. Then t1, . . . , tk each have depth at most s, and so by inductive
hypothesis, Σ12, . . . ,Σs(s+1) assure that t01, . . . , t

0
k appear in Is+1. Then Σ(s+1)(s+2)

guarantees additionally that there is b such that Fs+1(t01, . . . , t
0
k, b) holds in Is+2.

By our construction of f0, it then follows that Fs+1(t01, . . . , t
0
k, t

0) holds in Is+2.
This completes the induction. Therefore, Σ12, . . . ,Σr(r+1) assure that if t is a term
f(t1, . . . , tk) that appears in Cj , then Fr(t01, . . . , t

0
k, t

0) holds in Ir+1. That is,

Ir+1 |= Fr(t1, . . . , tk, t)[xj 7→ x0
j , f 7→ f0]. (19)

For each terminal variable vt, define the assignment v 7→ v0 via (14). Note that
this assignment agrees with the assignment xj 7→ x0

j if t is a variable. From (14)
and (19), we obtain (15).

We now show that (12) holds. The formula L′j is the conjunction of certain atomic
formulas Sr(x1, . . . , xp) and formulas β′t. The atomic formulas Sr(x1, . . . , xp) in L′j
are guaranteed to hold in Ir+1 under the assignment xj 7→ x0

j (and hence under the
assignment v 7→ v0) because of (16) and the fact that these same atomic formulas
appear in φ̂j . From (15) we see that the formula β′t holds under this assignment.
So (12) holds, as desired.

Because of (16), we know that whenever t = t′ is an equality that appears in φ̂j ,
necessarily t and t′ take on the same value in the assignment xj 7→ x0

j , f 7→ f0. So
by (14), we know that vt and vt′ take on the same value in the assignment v 7→ v0.
Therefore, it follows as before that (10) is equivalent to (12), and (11) is equivalent
to (13). Hence, since (12) holds, it follows that (10) holds,

Since 〈Ir+1, Ir+2〉 |= τj , and since (10) tells us that the left-hand side of τj holds
under the assignment v 7→ v0, it follows that the right-hand side of τj also holds,
that is, (11) holds. Hence, since (11) is equivalent to (13), we know that (13) holds.
Since (13) and (14) hold, it follows that (17) holds. This was to be shown. This
completes the proof that 〈I1, Ir+2〉 |= σ.

It is interesting to note that every source-to-target tgd in Σi(i+1) in our proof,
for 1 ≤ i ≤ r, has a single existential quantifier, and every source-to-target tgd in
Σ(r+1)(r+2) in our proof is full. This may seem counterintuitive, especially if we
start with a source-to-target tgd with multiple existential quantifiers, and convert it
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to an equivalent SO tgd, and then apply the algorithm in the proof of Theorem 8.4.
How can we get away with such sets Σi(i+1)? Let us consider one more example.

Example 8.5. Let τ be the source-to-target tgd

∀x(S(x) → ∃y∃zT (x, y, z)).

Then an equivalent SO tgd is

∃f∃g∀x(S(x) → T (x, f(x), g(x))).

When we apply the algorithm in the proof of Theorem 8.4, we obtain the following
sets Σ12 and Σ23 of source-to-target tgds. The set Σ12 consists of:

∀x(S(x) → S1(x))
∀x(S(x) → ∃yF1(x, y))
∀x(S(x) → ∃yG1(x, y)).

The set Σ23 consists of:

∀x∀y∀z((S1(x) ∧ F1(x, y) ∧G1(x, z)) → T (x, y, z)).

Then the schema mapping defined by the source-to-target tgd τ with two exis-
tential quantifiers is equivalent to the composition of the schema mapping defined
by Σ12 (where each source-to-target tgd has only one existential quantifier) and
Σ23 (where the only source-to-target tgd is full).

9. CERTAIN-ANSWER ADEQUACY

In this section, we compare and contrast our notion of composition with a different
notion of composition that was introduced by Madhavan and Halevy [Madhavan
and Halevy 2003], and further explore their notion.

9.1 Certain-Answer Equivalence

Before introducing Madhavan and Halevy’s notion of composition, it is worthwhile
to introduce a more general notion, that of certain-answer equivalence of schema
mappings. This notion is independent of composition, and is a more “relaxed”
notion of equivalence for schema mappings than logical equivalence. We will then
formulate Madhavan and Halevy’s notion of composition in terms of certain-answer
equivalence.

Definition 9.1. Let M = (S,T,Σst) and M′ = (S,T,Σ′st) be schema map-
pings from S to T, and let q be a query. We say that M and M′ are certain-answer
equivalent with respect to q (and that Σst and Σ′st are certain-answer equivalent
with respect to q) if certainM(q, I) = certainM′(q, I) for all instances I over S. Let
Q be a class of queries. We say that M and M′ are certain-answer equivalent with
respect to Q (and that Σst and Σ′st are certain-answer equivalent with respect to
Q) if M and M′ are certain-answer equivalent with respect to q for each q in Q.

It is clear that if Σst and Σ′st are logically equivalent, then they are certain-
answer equivalent for every class Q of queries. What about the converse? If Q is
sufficiently rich (for example, if Q is the class of conjunctive queries), and if Σst and
Σ′st are certain-answer equivalent with respect to Q, are Σst and Σ′st necessarily
logically equivalent? The next proposition says that the answer is “No.”. Thus,
certain-answer equivalence is weaker than logical equivalence.
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Proposition 9.2. There are schema mappings M = (S,T,Σst) and M′ =
(S,T,Σ′st), where Σst and Σ′st are second-order tgds that are not logically equiva-
lent, such that M and M′ are certain-answer equivalent with respect to conjunctive
queries.

Proof. Let M = (S,T,Σst), where S, T, and Σst are, respectively, S1, S3, and
the composition formula Σ13 from Example 5.2. Thus, Σst is

∃f( ∀e(Emp(e) → Mgr(e, f(e)))∧
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))).

Let Σ′st be the second-order tgd that results from dropping the second clause of
Σst. Thus, Σ′st is ∃f(∀e(Emp(e) → Mgr(e, f(e)))). Let I be an arbitrary instance of
schema S, and let 〈I, J0〉 be the result of chasing 〈I, ∅〉 with Σst. It is easy to see
that 〈I, J0〉 is also the result of chasing 〈I, ∅〉 with Σ′st. By Theorem 6.8, J0 is a
universal solution for I under both M and M′. As we noted in Section 2, it was
shown in [Fagin, Kolaitis, Miller and Popa 2005] that if q is a conjunctive query
(or even a union of conjunctive queries), then q(J)↓ = certainM(q, I) when J is a
universal solution for I. Therefore, q(J0)↓ = certainM(q, I), and similarly, q(J0)↓ =
certainM′(q, I), when q is a conjunctive query. So certainM(q, I) = certainM′(q, I).
Therefore, Σst and Σ′st are certain-answer equivalent with respect to conjunctive
queries. So we need only show that Σst and Σ′st are not logically equivalent. Let I1
and I3 be as in the proof of Theorem 5.4. As noted there, 〈I1, I3〉 6|= Σst. However,
it is easy to see that 〈I1, I3〉 |= Σ′st. So indeed, Σst and Σ′st are not logically
equivalent.

By way of contrast, the next proposition says that this difference between certain-
answer equivalence and logical equivalence does not arise when we consider sets of
source-to-target tgds instead of SO tgds.

Proposition 9.3. Assume that M = (S,T,Σst) and M′ = (S,T,Σ′st) are
schema mappings where Σst and Σ′st are sets of source-to-target tgds. Then M
and M′ are certain-answer equivalent with respect to conjunctive queries if and
only if Σst and Σ′st are logically equivalent.

Proof. One direction is immediate: logical equivalence implies certain-answer
equivalence (with respect to every class of queries, in fact). For the converse, as-
sume that certainMst

(q, I) = certainM′
st

(q, I), for every instance I over S and
for every conjunctive query q over T. Let I be an arbitrary instance over S
and let J and J ′ be universal solutions for I with respect to Mst and M′

st,
respectively (such universal solutions can be obtained from I by chasing with
Mst and M′

st, respectively). As noted in the proof of Proposition 9.2, it was
shown in [Fagin, Kolaitis, Miller and Popa 2005] that if q is a conjunctive query,
then q(J)↓ = certainMst

(q, I). Similarly, q(J ′)↓ = certainM′
st

(q, I). Since by as-
sumption, certainMst

(q, I) = certainM′
st

(q, I), it follows that q(J)↓ = q(J ′)↓. So
q(J)↓ = q(J ′)↓, for every conjunctive query q.

From the last equality we will derive next that J and J ′ are homomorphically
equivalent. That is, we shall show that there is a homomorphism h from J to
J ′ such that h(c) = c for every value c of J that is among the values of I, and
there is a similar homomorphism in the other direction. To prove the existence of
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the first homomorphism, we construct the following canonical conjunctive query qJ
associated with J . Let c1, . . . , cn be the distinct elements of J that appear in I and
let d1, . . . , dm be all the distinct remaining elements of J (the nulls of J). Let ψ
be the conjunction of all atomic formulas over x1, . . . , xn, y1, . . . , ym that hold in
J when xi plays the role of ci and yj plays the role of dj , for each i and j. For
example, R(c2, d4) holds in J if and only if one conjunct in ψ is R(x2, y4). Then
we define qJ(x1, . . . , xn) to be ∃y1 . . .∃ymψ.

It is easy to see that the tuple (c1, . . . , cn) is in qJ(J)↓. Since qJ(J)↓ = qJ(J ′)↓,
it follows that (c1, . . . , cn) is in qJ(J ′)↓. Hence, there must be a valuation from the
variables x1, . . . , xn, y1, . . . , ym of qJ to values of J ′ such that all atoms of ψ are
mapped homomorphically (i.e., preserving relations) into tuples of J ′, and moreover
xi is mapped to ci for each i. Given the construction of qJ from J , we obtain a
homomorphism h from J to J ′ such that h(ci) = ci for each i. Since c1, . . . , cn
are all the values of J that occur in I, we obtain that h is a homomorphism from
J to J ′ such that h(c) = c for every value c of J that occurs in I. A symmetric
argument shows the existence of a similar homomorphism from J ′ to J .

We now show that Σst and Σ′st are logically equivalent. Let I and K be arbitrary
instances over S and T. Assume that 〈I,K〉 |= Σst. In other words, K is a
solution for I with respect to Mst. Let J and J ′ be universal solutions for I, with
respect to Mst and M′

st, respectively. The universality of J implies that there is a
homomorphism g from J to K such that g(c) = c for every value c of J that occurs
in I. Moreover, we have shown that J and J ′ are homomorphically equivalent. In
particular, there is a homomorphism h′ from J ′ to J such that h′(c′) = c′ for every
value c′ of J ′ that occurs in I. Composing homomorphisms yields homomorphisms.
We thus obtain a homomorphism k from J ′ to K that moreover satisfies k(c′) = c′

for every value c′ of J ′ that is in I. Furthermore, we have that 〈I, J ′〉 |= Σ′st, since
J ′ is in particular a solution for I with respect to M′

st.
Finally, we use the following property of source-to-target tgds, which can be easily

verified: if 〈I, J ′〉 satisfies a source-to-target tgd τ and there is a homomorphism
from J ′ to K that maps values of I into themselves, then 〈I,K〉 also satisfies τ .
Applying this property to the above I, J ′ and K and the set Σ′st of source-to-
target tgds, we obtain that 〈I,K〉 |= Σ′st. We have shown that if 〈I,K〉 |= Σst,
then 〈I,K〉 |= Σ′st. We thus proved that Σst logically implies Σ′st. A symmetric
argument shows the reverse implication.

We now define Madhavan and Halevy’s notion of composition using our termi-
nology and notation. Let M12 and M23 be schema mappings, with M12 = (S1,
S2, Σ12) and M23 = (S2,S3,Σ23). Assume that M13 = (S1,S3,Σ13) and M′

13 =
(S1,S3,Σ′13) are schema mappings, where M13 is the composition M12 ◦M23. Let
q be a query. We say that Σ′13 is certain-answer adequate for q (with respect to
M12, M23) if Σ13 and Σ′13 are certain-answer equivalent with respect to q. Let
Q be a class of queries. We say that Σ′13 is certain-answer adequate for Q (with
respect to M12, M23) if Σ′13 is certain-answer adequate for q (with respect to M12,
M23) for each q in Q. Thus, Σ′13 is certain-answer adequate for Q (with respect to
M12, M23) precisely if certainM13(q, I) = certainM′

13
(q, I) for all instances I over

S1 and all queries q in Q. Intuitively, certain-answer adequacy says that the certain
answers of queries in Q (over S3) with respect to an instance I of S1 are the same
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whether we use the schema mappings M12 and M23 or the schema mapping M′
13

to arrive at the answers. Madhavan and Halevy used certain-answer adequacy as
their notion of composition. They were especially interested in the case where Q is
the class of conjunctive queries.

The next proposition follows immediately from the definition of certain-answer
adequacy.

Proposition 9.4. Let M12 and M23 be schema mappings, and let Σ13 be the
composition formula. Let q be an arbitrary query. Then Σ13 is certain-answer
adequate for q with respect to M12,M23.

Note that in Proposition 9.4, we make no assumption on M12 and M23, such as
that Σ12 and Σ13 are sets of source-to-target tgds.

We now show that in some situations, there exists Σ′13 that is certain-answer
adequate but not logically equivalent to the composition formula Σ13. This is why
we use the word “adequate”: logically inequivalent choices may both be adequate
for the job.

Theorem 9.5. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are finite sets of source-to-target tgds, and there
are two logically inequivalent formulas that are each certain-answer adequate for
conjunctive queries with respect to M12,M23.

Proof. Let M12 and M23 be as in Example 5.2. Let Σ13 and Σ′13 be, respec-
tively, Σst and Σ′st from the proof of Proposition 9.2. Let M13 = (S1, S3, Σ13)
and M′

13 = (S1, S3, Σ′13). The proof of Proposition 9.2 shows that Σ13 is the com-
position formula, that M13 and M′

13 are certain-answer equivalent with respect
to conjunctive queries, and Σ13 and Σ′13 are logically inequivalent. So Σ13 and
Σ′13 are logically inequivalent formulas that are each certain-answer adequate for
conjunctive queries with respect to M12,M23. This proves the theorem.

9.2 Dependence of Certain-Answer Adequacy on the Class of Queries

In this section, we explore the dependence of certain-answer adequacy on the class
of queries. We prove the following results:

(A) A formula may be certain-answer adequate for conjunctive queries but not for
conjunctive queries with inequalities.

(B) A formula may be certain-answer adequate for conjunctive queries with in-
equalities but not for all first-order queries.

(C) A formula is certain-answer adequate for all first-order queries if and only if it
is (logically equivalent to) the composition formula. It follows that if a formula
is certain-answer adequate for all first-order queries, then it is certain-answer
adequate for all queries.

Since the composition formula is certain-answer adequate for all queries, we see
from (B) that there is a scenario where there are two different formulas (namely,
the formula guaranteed by (B) and the composition formula) that are both certain-
answer adequate for conjunctive queries with inequalities. This strengthens the
result we already had (Theorem 9.5) that there is a scenario where there are two
different formulas that are both certain-answer adequate for conjunctive queries.
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We now prove these results. We begin by proving (A).

Theorem 9.6. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are finite sets of source-to-target tgds, and where
there is a formula that is certain-answer adequate for conjunctive queries with re-
spect to M12,M23 but not certain-answer adequate for conjunctive queries with
inequalities with respect to M12,M23.

Proof. Let M12 and M23 be as in Example 5.2. Let σ be

∃f( ∀e(Emp(e) → Mgr(e, f(e)))∧
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))).

As shown in Example 5.2, σ is the composition formula. In the proof of Propo-
sition 9.2, we gave a formula (in fact, an SO tgd) that was denoted by Σst that
is certain-answer equivalent to σ with respect to conjunctive queries but is not
logically equivalent to σ. We now give another formula (in this case, not an SO
tgd) such that σ and σ′ are certain-answer equivalent with respect to conjunctive
queries, but are not certain-answer equivalent with respect to conjunctive queries
with inequalities. This is sufficient to prove the theorem, since it implies that σ′

is certain-answer adequate for conjunctive queries with respect to M12,M23 but
not certain-answer adequate for conjunctive queries with inequalities with respect
to M12,M23.

Let σ′ be the following formula:

∃f( ∀e(Emp(e) → Mgr(e, f(e)))∧
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))∧
∀e∀e′(Emp(e) ∧ Emp(e′) ∧ (f(e) = f(e′)) → (e = e′))).

Thus, the only difference between σ and σ′ is that σ′ requires that the existentialized
function f be one-to-one on the domain of the Emp relation.

We now show that σ and σ′ are certain-answer equivalent with respect to conjunc-
tive queries. Let M13 = (S1, S3, σ) and M′

13 = (S1, S3, σ
′). Let I be an instance

over S1, and let q be a conjunctive query. We must show that certainM13(q, I) =
certainM′

13
(q, I). Since σ′ logically implies σ, it follows easily that certainM13(q, I) ⊆

certainM′
13

(q, I). We now show the reverse inclusion. Let t be a tuple in certainM′
13

(q, I).
That is,

t ∈
⋂
{q(J) : 〈I, J〉 ∈ Inst(M′

13)} (20)

It is easy to see that t contains no nulls. Let 〈I, J0〉 be a result of chasing 〈I, ∅〉 with
σ. Since the chase process associates a unique null with each syntactically different
term generated during the chase process, it follows that J0 satisfies not just σ but
also σ′. So from (20), it follows that t ∈ q(J0). Since t contains no nulls, we have
t ∈ q(J0)↓. Since J0 is a universal solution for I under M13 (by Proposition 6.8)
and q is a conjunctive query, it follows as before that q(J0)↓ = certainM13(q, I).
Therefore, t ∈ certainM13(q, I), as desired.

We show next that σ and σ′ are not certain-answer equivalent with respect
to conjunctive queries with inequalities. Let q be the query ∃y1∃y2((y1 6= y2) ∧
Mgr(x1, y1)∧ Mgr(x2, y2). Then q is a conjunctive query with inequalities. Let I be
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{Emp(Alice), Emp(Bob)}. Since σ′ forces f(Alice) 6= f(Bob), it follows easily that

certainM′
13

(q, I) = {(Alice,Bob), (Bob,Alice)}.

However, certainM13(q, I) = ∅, since one solution J (for which 〈I, J〉 |= σ) is

{Mgr(Alice,Alice), Mgr(Bob,Alice), SelfMgr(Alice)},

where there is no tuple that satisfies q. Therefore,

certainM13(q, I) 6= certainM′
13

(q, I). (21)

Hence, σ and σ′ are not certain-answer equivalent with respect to q, which is a
conjunctive query with inequalities. This was to be shown

Theorem 9.6 says that a formula may be certain-answer adequate for conjunctive
queries but not certain-answer adequate for conjunctive queries with inequalities.
This brings up the natural question as to whether a formula that is certain-answer
adequate for conjunctive queries with inequalities is necessarily certain-answer ad-
equate for all queries, or at least for all first-order queries. The next theorem says
that this is not the case.

Theorem 9.7. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are finite sets of source-to-target tgds, and where
there is a formula that is certain-answer adequate for conjunctive queries with in-
equalities with respect to M12,M23 but not certain-answer adequate for all first-
order queries with respect to M12,M23.

Proof. Let S1 be a schema with three unary relation symbols A1, B1, C1; let S2

be a schema with three unary relation symbols A2, B2, C2; and let S3 be a schema
with three unary relation symbols A3, B3, C3. Consider now the schema mappings
M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), where

Σ12 = { ∀x(A1(x) → A2(x)), Σ23 = { ∀x(A2(x) → A3(x)),
∀x(B1(x) → B2(x)), ∀x(B2(x) → B3(x)),
∀x(C1(x) → C2(x)) } ∀x(C2(x) → C3(x)) }

Then the composition formula Σ13 is

∀x((A1(x) → A3(x)) ∧ (B1(x) → B3(x)) ∧ (C1(x) → C3(x)).

Let Σ′13 be the conjunction of Σ13 with ∀x(C3(x) → ∃y((A3(y) ∨ B3(y)). We shall
show that Σ′13 is certain-answer adequate for conjunctive queries with inequalities
with respect to M12,M23 but not certain-answer adequate for all first-order queries
with respect to M12,M23.

We first show that Σ′13 is certain-answer adequate for conjunctive queries with
inequalities with respect to M12,M23. Let q be a conjunctive query with inequal-
ities. Define M13 = (S1, S3, Σ13) and M′

13 = (S1, S3, Σ′13). We must show
that

certainM13(q, I) = certainM′
13

(q, I). (22)

If either the A1 or B1 relation of I is nonempty, then it is easy to see that for every
J , we have 〈I, J〉 |= Σ13 if and only if 〈I, J〉 |= Σ′13, which implies that (22) holds.
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So we are done unless the A1 and B1 relations of I are empty. Assume that the A1

and B1 relations of I are empty. If q contains some conjunct of the form A3(x) or
some conjunct of the form B3(x), then it is easy to see that the left-hand side and
right-hand side of (22) are both empty, and hence equal. Therefore, assume that q
contains only inequalities and formulas of the form C3(x). By the safety condition
on conjunctive queries with inequalities, for every inequality x 6= y that appears in
q, the formulas C3(x) and C3(y) appear in q. Let q∗ be the result of replacing each
occurrence of C3 by C1. It is easy to see that both the left-hand side and right-hand
side of (22) contain precisely the tuples t such that q∗(t) holds in I. So once again,
the left-hand side and right-hand side of (22) are equal. This concludes the proof
that Σ′13 is certain-answer adequate for conjunctive queries with inequalities with
respect to M12,M23.

Finally, we show that Σ′13 is not certain-answer adequate for all first-order queries
with respect to M12,M23. Let q be the first-order query C3(x) → ∃y((A3(y) ∨
B3(y)). We shall show that Σ′13 is not certain-answer adequate for q with respect
to M12,M23. Let I = {A3(0)}. Then

certainM′
13

(q, I) = {0}, (23)

since for each J where 〈I, J〉 |= Σ′13, we have 0 ∈ q(J). However,

certainM13(q, I) = ∅, (24)

since if we let J = {C3(0)}, then we see that 〈I, J〉 |= Σ13 and q(J) = ∅. It follows
from (23) and (24) that

certainM13(q, I) 6= certainM′
13

(q, I).

Thus, Σ′13 is not certain-answer adequate for q with respect to M12,M23. This
concludes the proof.

Theorems 9.6 and 9.7 both demonstrate that there is a formula that is certain-
answer adequate for all queries in a class Q1 but not for a richer class Q2. The
next theorem will be used to prove that once Q1 consists of all first-order queries,
there is no such class Q2.

Theorem 9.8. Let M12 and M23 be schema mappings. The only formula (up
to logical equivalence) that is certain-answer adequate for all first-order queries with
respect to M12,M23 is the composition formula.

Proof. We shall show that there is at most one formula that is certain-answer
adequate for all first-order queries. Since by Proposition 9.4, we know that the
composition formula is certain-answer adequate for every query with respect to
M12,M23, this is sufficient to prove the theorem.

Assume that there are two formulas Σ′13 and Σ′′13 that are each certain-answer
adequate for all first-order queries with respect to M12,M23. We must show that
Σ′13 and Σ′′13 are logically equivalent. Assume that 〈I, J〉 |= Σ′13; we shall show that
〈I, J〉 |= Σ′′13.

Let Σ13 be the composition formula. Assume that M12 = (S1, S2, Σ12) and M23

= (S2, S3, Σ23). Define M13 = (S1, S3, Σ13), M′
13 = (S1, S3, Σ′13), and M′′

13 =
(S1, S3, Σ′′13). Let q be an arbitrary first-order query. Since Σ′13 is certain-answer
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adequate for q, we have

certainM13(q, I) = certainM′
13

(q, I). (25)

Similarly, since Σ′′13 is certain-answer adequate for q, we have

certainM13(q, I) = certainM′′
13

(q, I). (26)

It follows from (25) and (26) that

certainM′
13

(q, I) = certainM′′
13

(q, I). (27)

Let c1, . . . , cn be the distinct elements of I that appear in J , and let d1, . . . , dm be
the distinct remaining elements of J . Let ψ1 be the formula that is the conjunction
of all atomic formulas and negations of atomic formulas over x1, . . . , xn, y1, . . . , ym

that hold in J when xi plays the role of ci, and yj plays the role of dj , for each i, j.
For example, if R(c3, d9) holds in J , then one conjunct is R(x3, y9). If R(c3, d9)
does not hold in J , then one conjunct is ¬R(x3, y9). Let ψ2 be the conjunction of
all of the inequalities xi 6= xj for i 6= j, all of the inequalities yi 6= yj for i 6= j, and
all of the inequalities xi 6= yj . Let ψ3 be the formula

∀x( (x = x1) ∨ (x = x2) ∨ . . . ∨ (x = xn) ∨ (x = y1) ∨ (x = y2) ∨ . . . ∨ (x = ym)).

Let φ′ be the formula ψ1 ∧ ψ2 ∧ ψ3, let φ be the formula ∃y1 · · · ∃ymφ
′, and let

q be the query ¬φ. Then (c1, . . . , cn) is not in certainM′
13

(q, I), since J |= φ′[x1 7→
c1, . . . , xn 7→ cn] So by (27), we know that (c1, . . . , cn) is not in certainM′′

13
(q, I).

This means that there is J ′ where 〈I, J ′〉 |= Σ′′13 such that J ′ |= φ′[x1 7→ c1, . . . , xn 7→
cn]. But by the design of φ, we know that J ′ is isomorphic to J under an isomor-
phism that maps each member of I onto itself. Hence, 〈I, J ′〉 is isomorphic to
〈I, J〉. Since 〈I, J ′〉 |= Σ′′13, and since 〈I, J ′〉 is isomorphic to 〈I, J〉, it follows that
〈I, J〉 |= Σ′′13. This was to be shown.

Corollary 9.9. Let M12 and M23 be schema mappings, and let φ be a formula
that is certain-answer adequate for all first-order queries with respect to M12,M23.
Then φ is certain-answer adequate for every query with respect to M12,M23.

Proof. Let φ be a formula that is certain-answer adequate for all first-order
queries with respect to M12,M23. Theorem 9.8 says that φ is the composition
formula. Proposition 9.4 then says that φ is certain-answer adequate for every
query with respect to M12,M23.

Note that in Theorem 9.8 and Corollary 9.9, as in Proposition 9.4, we make no
assumption on M12 and M23, such as that Σ12 and Σ13 are sets of source-to-target
tgds.

An examination of the proof of Theorem 9.8 shows that the proof actually shows
the stronger result that the only formula that is certain-answer adequate for all ∀∃
first-order queries is the composition formula.

9.3 The Inadequacy of Finite Sets of TGDs

Our earlier Proposition 4.4 tells us that in some cases, the composition is not
definable by any finite set of source-to-target tgds. A natural question at this point
is whether a finite set of tgds is always sufficient for certain-answer adequacy for
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conjunctive queries when the schema mappings M12 and M23 are finite sets of
tgds. Our next result answers this question negatively.

Theorem 9.10. There are schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3,Σ23), where Σ12 and Σ23 are finite sets of source-to-target tgds, where no
finite set of source-to-target tgds is certain-answer adequate for conjunctive queries
with respect to M12,M23.

Proof. The proof is based on the proof of Proposition 4.4. As in that proof,
the schema mappings that we use to prove the theorem are M12 and M23 of
Example 2.3. Let Σ13 be the composition formula, and let M13 = (S1, S3, Σ13).
Let I1 be as in the proof of Proposition 4.4. Let qm be the conjunctive query

∃y(Enrollment(y, x1) ∧ · · · ∧ Enrollment(y, xm)).

It follows from the proof of Proposition 4.4 that (c1, . . . , cm) ∈ certainM13(qm, I1).
Let Σfin

13 be a finite set of source-to-target tgds, and let Mfin
13 = (S1, S3, Σfin

13 ). It
follows from the proof of Proposition 4.4 that (c1, . . . , cm) 6∈ certainMfin

13
(qm, I1) ifm

is sufficiently large. So certainM13(qm, I1) 6= certainMfin
13

(qm, I1) if m is sufficiently

large. Hence, Σfin
13 is not certain-answer adequate for conjunctive queries with

respect to M12,M23.

We note that Madhavan and Halevy gave an example where an infinite set of
tgds is certain-answer adequate for conjunctive queries but no finite subset of it is.
The above Theorem 9.10 shows a stronger negative example where no finite set of
tgds whatsoever suffices for certain-answer adequacy.

9.4 Contrasting Our Approach with Madhavan and Halevy’s Approach

We close this section with some comparisons between our notion of composition
and Madhavan and Halevy’s notion (which we call certain-answer adequacy). Our
approach has the following advantages over theirs:

(1) Our approach is, we feel, more natural than theirs, in that the intent in both
cases is to capture the notion of composition, and we do that directly.

(2) Our approach is sufficiently powerful to capture theirs, in that the composition
formula is always certain-answer adequate for every query (Proposition 9.4).

(3) Certain-answer adequacy is defined relative to a class Q of queries, whereas the
composition formula is not. The class Q of queries matters, as demonstrated by
Theorem 9.6, which says that there is a formula that is certain-answer adequate
for conjunctive queries but not certain-answer adequate for conjunctive queries
with inequalities.

(4) There may be logically inequivalent formulas that are each certain-answer ade-
quate for conjunctive queries (Theorem 9.5), whereas the composition formula
is unique (up to logical equivalence).

(5) An infinite set Σ of tgds may be required for certain-answer adequacy for con-
junctive queries (Theorem 9.10), whereas an SO tgd, which is finite, suffices to
define the composition. Madhavan and Halevy give a representation for this
infinite set Σ that is sometimes finite. We note that SO tgds always serve as
such a finite representation.
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Schema

Mapping
Language

Compose? Model

Checking

Universal

Solution

Certain An-

swers for CQs

Equivalence same as

certain-answer equiv-
alence for CQs?

source-

to-target
tgds

No PTIME PTIME PTIME Yes

SO tgds Yes NP, can be
NP-complete

PTIME PTIME No

Table I. Differences between SO tgds and source-to-target tgds.

10. CONCLUSIONS

We have introduced what we believe to be the right notion of the composition of
two schema mappings. We have also introduced second-order tgds, which are a
generalization of finite sets of source-to-target tgds, but with function symbols and
equalities. We believe that second-order tgds are the right language for specifying
and composing schema mappings. We show that second-order tgds are robust, in
that the composition of mappings, each given by a second-order tgd, is also given by
a second-order tgd. By contrast, when the mappings are each given by a finite set
of source-to-target tgds, their composition may not be definable by even an infinite
set of source-to-target tgds. We show that second-order tgds form the smallest
class (up to logical equivalence) that contains every source-to-target tgd and is
closed under conjunction and composition. We also show that second-order tgds
possess good properties for data exchange. As in the case of data exchange with
a finite set of source-to-target tgds, a universal solution for a fixed data exchange
setting, specified with a second-order tgd, can be computed in polynomial time.
Consequently, the certain answers for conjunctive queries can also be computed in
polynomial time. Table I summarizes some of the differences between second-order
tgds and source-to-target tgds.
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