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Abstract. To effectively use ontologies on the Web, it is essential that changes
in ontologies are managed well. This paper analyzes the topic of ontology ver-
sioning in the context of the Web by looking at the characteristics of the version
relation between ontologies and at the identification of online ontologies. Then, it
describes the design of a web-based system that helps users to manage changes in
ontologies. The system helps to keep different versions of web-based ontologies
interoperable, by maintaining not only the transformations between ontologies,
but also the conceptual relation between concepts in different versions. The sys-
tem allows ontology engineers to compare versions of ontology and to specify
these conceptual relations. For the visualization of differences, it uses an adapt-
able rule-based mechanism that finds and classifies changes in RDF-based on-
tologies.

1 The Web needs change management for ontologies

The envisaged next generation of the Web (called Semantic Web [6]) will consist of
data defined and linked in such a way that it can be used for more effective discovery,
automation, integration, and reuse across various applications3. In this vision, ontolo-
gies have an important role in defining and relating concepts that are used to describe
data on the web. However, the distributed and dynamic character of the web will cause
that many versions and variants of ontologies will arise. Ontologies are often devel-
oped by several persons and continue to evolve over time. Moreover, domain changes,
adaptations to different tasks, or changes in the conceptualization might cause modifi-
cations of the ontology. This will likely cause incompatibilities in the applications and
ontologies that refer to them and will give wrong interpretations to data or make data
inaccessible [14].

To form a real SemanticWeb, it is necessary that the knowledge that is represented
in the different versions of ontologies is interoperable. It is therefore important to cre-
ate links between ontology versions that specify how the knowledge in the different
versions of the ontologies is related. These links can be used to re-interpret data and
knowledge under different versions of ontologies.

3 http://www.w3.org/2001/sw/Activity

http://www.w3.org/2001/sw/Activity


In this paper, we present various elements of a methodology for ontology version-
ing. We describe a method to specify relations between versions of ontologies and we
also propose an identification scheme for ontologies. We then present a web-based sys-
tem that supports the user in specifying the relations between ontology versions. The
system, called OntoView, can also be used store ontologies and to provide a transparent
interface to different versions. The goal of this system is not to provide a central registry
for ontologies, but to allow ontology engineers to store their versions and variants of
ontologies and relate them to other (possibly remote) ontologies. The resulting mapping
relations between versions can also be exported and used outside the system.

The rest of the paper is organized as follows. In the next section, we analyze the
characteristics of the relation between different versions of ontologies. Section 3 con-
tains a discussion of ontology identification and proposes a identification scheme for
ontologies. In section 4, we give an overview of the versioning support system and de-
scribe its the main functions. Section 5 describes the main feature of the system: com-
paring ontologies. In that section, we explain the mechanism we used to find changes
in RDF-based ontologies and present some of the rules that we used to encode change
types. We discuss some open issues in section 6, and we conclude the paper in section 7.

2 Characteristics of a version relation

There are three important aspects to discuss when considering an version relation be-
tween ontologies. First, this isthe difference between version relations and concep-
tual relations inside an ontology.

Ontologies usually consist of a set of class (or concept) definitions, property defi-
nitions and axioms about them. The classes, properties and axioms are related to each
other and together form a model of a part of the world. A change constitutes a new
version of the ontology and also aversion relationbetween the definitions of concepts
and properties in the original version of the ontology and those in the new version.4

The relations between concepts inside an ontology, e.g. between classA and class
B, are thus fundamentally different from the version relations between two versions
of a concept, e.g. between classA1.0 and classA2.0. In the first case, the relation is a
purely conceptual relation in the domain of interest; in the second case, however, the
relation describes meta-information about the change of the concept.

Nevertheless, two versions of a concept still havesomeconceptual relation. In other
words, although the update relation itself is not a conceptual relation, the participating
versions of a concept (e.g.A1.0 andA2.0) do have a particular conceptual (logical)
relation to each other.

Altogether, we distinguish the following properties of an version relation:

– transformation or actual change: a specification of what has actually changed
in an ontological definition, specified by a set of change operations (cf. [1]), e.g.,
change of a restriction on a property, addition of a class, removal of a property, etc.;

– conceptual relation: the relation between constructs in the two versions of the
ontology, e.g., specified by equivalence relations, subsumption relations, or logical
rules;

4 Except for removals and additions of classes and properties, of course.



– descriptive meta-data likedate, author, andintention of the update: this describes
the when, who and why of the change;

– scope: a description of the context in which the update is valid. In its simplest
form, this might consist of the date when the change is valid in the real world,
conform tovalid datein temporal databases [18] (in this terminology, the “date” in
the descriptive meta-data is calledtransaction date). More extensive descriptions
of the scope, in various degrees of formality, are also possible.

A well-designed ontology change specification mechanism should take all these char-
acteristics into account.

Another issue to discuss about ontology updates is thepossible discrepancy be-
tween changes in the specification and changes the conceptualization. We have seen
that an ontology is aspecificationof a conceptualization. The actual specification of
concepts and properties is thus aspecific representationof the conceptualization: the
same concepts could also have been specified differently. Hence, a change in the speci-
fication does not necessarily coincide with a change in the conceptualization [14], and
changes in the specification of an ontology are not per definition ontological changes.

For example, there are changes in the definition of a concept which are not meant
to change the concept itself: attaching a slot “fuel-type” to a class “Car”. Both class-
definitions still refer to the same ontological concept, but in the second version it is
described more extensively. Theoretically, the other way around is also possible: a con-
cept could change without a change in its specification. However, this usually means
that the concept is badly modelled.

It is important to distinguish changes in ontologies that affect the conceptualization
from changes that don’t. In [19] the following terms are used to make this distinction:

– conceptual change: a change in the way a domain is interpreted (conceptualized),
which results in different ontological concepts or different relations between those
concepts;

– explication change: a change in the way the conceptualization is specified, without
changing the conceptualization itself.

It is important to notice that it is not possible to determine automatically whether a
change is a conceptual change or a explication change. This requires insight in the con-
ceptualization, and is basically a decision of the ontology engineer. However, heuristics
can be applied to suggest the effects of changes. We will discuss that later on.

A third, somewhat different, aspect of an update is thepackaging of changes, i.e.,
the way in which updates are applied to an ontology. This is an important practical issue
for the development of an ontology change management system.

We can distinguish two different dimensions with respect to the packaging of the
change specification. One dimension is thegranularity of the specification: this can be
either the level of a single “definition” or the level of a “file” as a whole.

The second dimension is themethodof specification. There are several methods
thinkable:

– a “transformation specification”: an update specified by a list of change operations
(e.g., add A, change B, delete C);



– a “replacement”: an update specified by replacing the old version of a concept or
an ontology with a new version; this is an implicit change specification;

– a “mapping”: an update specified as a mapping between the original ontology and
another one. Although this is not a update in the regular sense, an explicit map-
ping to another ontology can be considered as an update to the viewpoint of that
ontology.

This gives several possible change specifications. For example, a change can be spec-
ified individually, as a mapping between one specific definition in one ontology and
another definition in another ontology, but it can also be done at a file level, by defining
the transformation of the ontology.

Notice that the packaging methods are not equivalent, i.e., they do not give the
same information about the update relation. It is clear that the mapping provides a
conceptual relation between versions of concepts, something that is not specified in
a transformation.

3 Ontology identification on the web

Identification of versions of ontologies is very important. Ontologies describe a consen-
sual view on a part of the world and function as reference for that specific conceptual-
ization. Therefore, they should have a unique and stable identification. A human, agent
or system that conforms to a specific ontology, should be able to refer to it unambigu-
ously. We will now discuss the major issues of ontology identification on the Web, and
outline an identification mechanism.

3.1 Identity of ontologies

The first question that has to be answered when we want to identify versions of an on-
tology on the web is: what is the identity of an ontology? This is not as trivial as it
seems. For example, one could ask whether an update of a natural language description
changes the identity of an ontology. If one regards a specificspecificationof a concep-
tualization as an essential characteristic of an ontology, then every modification to that
specification forms a new version of the ontology. In that case, the descriptions specify
different concepts, which areper definitionnot equal.

Looking at this from another perspective, one might regard an ontology primarily as
a conceptualization, which is represented as complete as possible in a specification. In
this case one could argue that an update to a natural language description of a concept is
not a conceptual change, but just a more precise description of the same conceptualiza-
tion. This would be an example of an explication change: the specification is changed,
but the concept that is described remains the same.

In this philosophical debate, we take the following (practical) position. We assume
that an ontology is represented in a file on the web. Every change that results in a
different character representation of the ontology constitutes a revision. In case the log-
ical definitions are not changed, it is the responsibility of the author of the revision



to decide whether this revision is conceptual change and thus forms an new concep-
tualization with its own identity, or just an change in the representation of the same
conceptualization.

If we relate this to the distinction between conceptual changes and explication
changes, this means that whenever there has been a conceptual change in an ontol-
ogy, it gets a new identifier. In case of explication changes, the ontology keeps the same
identifier if and only if these changes were non-logical changes (thus, changes in the
natural language description). This is summarized in table 1. Again, note that it is up to
the ontology engineer to decide whether a change is a conceptual change or not.

logical non-logical
conceptual new new
explication new unchanged

Table 1.Change types and their effect on the identity of an ontology.

3.2 Identification on the web

The second question is: how does this relate to web resources and their identity? To
answer this question, we have look at identification mechanisms on the web (i.e. URIs,
URNs and URLs) and see how we can use them for the identification of the “entities”
in our domain (i.e., the entities in the domain of ontology versions, e.g. a conceptual-
ization, a revision, a specification).

Things on the web are called “resources” in the W3C5-terminology. According to
the definition of Uniform Resource Identifiers (URI’s) (defined in [5]), “a resource can
be anything that has identity”. In [7] is stated: “a ‘resource’ is a conceptual entity (a
little like a Platonic ideal)”. Both definitions comprise our idea of an ontology. Hence,
an ontology can be regarded as a resource. An URI, which “is a compact string of char-
acters for identifying an abstract or physical resource” [5] can be used to identify the
resources. Notice that URI’s provide a general identification mechanisms, as opposed
to Uniform Resource Locators (URL’s), which are bound to thelocationof a resource.

Usually, the XML Namespace mechanism [8] is used for the identification of web-
based ontologies. This means that an ontology is identified by a URI. In practice, people
tend to use a URL for this. In other words, they couple the identity of an ontology with
the location of the ontology file on the web. The important step in our proposed method
is to separate the identity of ontologies completely from the identity of files on the
web that specify the ontology. In other words, the class of ontology resources should
be distinguished from the class of file resources. As we have seen above, a revision —
which is normally specified in a new file —mayconstitute a new ontology, but this is
no automatism. Every revision is a new file resource and gets a new file identifier, but
does not automatically get a new ontology identifier. If a change does not constitute a

5 The standardization body for the World Wide Web



conceptual change, the new version gets a new location, but does not get a new identifier.
For example, the location of an ontology can change from “../example/1.0/rev0” to
“../example/1.0/rev1”, while the identifier is still “../example/1.0”.

3.3 Baseline of an identification method

When we take into account all these considerations, we propose an identification
method that is based on the following points:

– a distinction between three classes of resources:
1. files;
2. ontologies;
3. lines of backward compatible ontologies.

– a change in a file results in a new file identifier;
– the use of a URL for the file identification;
– a change in the conceptualization or in the logical definition results in a new ontol-

ogy identifier, but a non-logical explication change doesn’t;
– a separate URI for ontology identification with a two level numbering scheme:
• minor numbers for backward compatible modifications (an ontology-URI end-

ing with a minor number identifies a specific ontology);
• major numbers for incompatible changes (an ontology-URI ending with a ma-

jor number identifies a line of backward compatible ontologies);
– individual concepts or relations, whose identifier only differs in minor number, are

assumed to be equivalent;
– ontologies are referred to by an ontology URI with the according major revision

number and theminimal extra commitment, i.e., the lowest necessary minor revision
number.

The ideas behind these points are the following. As already pointed out in the begin-
ning of this section, the distinction between ontology identity and file identity has the
advantage that file changes and location changes (e.g., copy of an ontology) can be iso-
lated from ontological changes. By using a separate URI, it is possible to encode all
the information in it that is necessary for our usage, and it also prevents confusion with
URL’s that specify a location.

The distinction between individual ontologies on the one hand and lines of back-
ward compatible ontologies on the other hand, provides a simple way to indicate a very
general type of compatibility, likewise the “BACKWARD-COMPATIBLE-WITH” field
in SHOE [13]. The distinction we make is also in line with the idea of “levels of gener-
ality”, which is discussed in [7]. Applications can conclude directly — without formal
analysis or deduction steps — that a version can be validly used on data sources with
the same major number and a equal or lower minor number. To achieve a maximal
backward compatibility, we also propose that not the minor number of the newest re-
vision is specified in a data source, but the minimal addition to the base version that is
used by this data source. For example, suppose an ontology with conceptsA,B andC.
Version 1.1 added a conceptD and version 1.2 added conceptE. Then a data source



data only relies on conceptsA, C andD, would specify its commitment only to ver-
sion 1.1, although there is already a version 1.2 available. We adopted this idea from
software-program library versioning, as described in [10].

An interesting point for discussion is whether it would be possible to specify the
real ontological commitment, instead of only the necessary extra commitment. In our
example, this would mean that the data sources specifies that it relies on exactlyA, C
andD. This would require a different type of identification.

The point that states that individual concepts with a identifier that only differs in
minor number are considered to be equivalent, is necessary to actually enable the back-
ward compatibility. By default, all resources on the web with a different identifier are
considered to different. This statement allows the creation of a stand-alone ontology
revision, which has concepts that are equal to a previous version.

4 OntoView: support for ontology versioning

Up to now, we discussed two theoretical aspects of ontology versioning: the character-
istics of a version relation and the identification of ontologies. Based on this, we will
now describe a system that provides support for the versioning of online ontologies.
The main function of the system is to help a user to manage changes in ontologies and
keep ontology versions as much interoperable as possible. It does that by comparing
versions of ontologies and highlighting the differences. It then allows the users to spec-
ify the conceptual relation between the different versions of concepts. This function is
described more extensively in the next section.

It also able to store ontologies and to provide a transparent interface to arbitrary
versions of ontologies. To achieve this, the system maintains an internal specification
of the relation between the different variants of ontologies, with the aspects that were
defined in section 2: it keeps track of themeta-data, theconceptual relationsbetween
constructs in the ontologies and thetransformations between them.

OntoView is inspired by the Concurrent Versioning System CVS [4], which is used
in software development to allow collaborative development of source code. The first
implementation is also based on CVS and its web-interface CVSWeb6. However, dur-
ing the ongoing development of the system, we are gradually shifting to a complete
new implementation that will be build on a solid storage system for ontologies, e.g.,
Sesame7.

The ideas underlying the versioning system are not depending on a specific ontology
language. However, the implementation of specific parts of the system assume RDF
based languages, for example the mechanism to detect changes. In the remainder of this
article, we will use DAML+OIL8 [11,12] and RDF Schema (RDFS) [9] as ontology
languages. These two languages are widely considered as basis for future ontology
languages for the Web.

Besides the ontology comparison feature — which will be described in detail in the
next section — the system has the following functions:

6 Available fromhttp://stud.fh-heilbronn.de/˜zeller/cgi/cvsweb.cgi/
7 A demo is available athttp://sesame.aidministrator.nl
8 Available fromhttp://www.daml.org/language/
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– Reading changes and ontologies.OntoView will accept changes and ontologies
via several methods. Currently, ontologies can be read in as a whole, either by pro-
viding a URL or by uploading them to the system. The user has to specify whether
the provided ontology is new or that it should be considered as an update to an
already known ontology. In the first case, the user also has to provide a “location”
for the ontology in the hierarchical structure of the OntoView system.
Then, the user is guided through a short process in which he is asked to supply the
meta-data of the version (as far as this can not be derived automatically, such as the
date and user), to characterize the types of the changes (see below in section 5), and
to decide about the identifier of the ontology.
In the future, OntoView will also accept changes by reading in transformations,
mapping ontologies, and updates to individual definitions. These update methods
provides the system with different information than the method described above.
For that reason, this also requires an adaptation of the process in which the user
gives additional information.

– Identification. OntoView uses the namespace mechanism with URIs for ontology
identification, separated from the location of the ontology file. Depending on the
compatibility effects of the type of change (see table 1), it assigns a new identifier
or it keeps the previous one.
OntoView supports two ways of persistent and unique identification of web-based
ontologies. First, it can in itself guarantee the uniqueness and persistency of names-
paces that start with “http://ontoview.org/”, because the system is located at the
domainontoview.org . Second, because the location and identification of on-
tologies are not necessarily coupled, it can also store ontologies with arbitrary
namespaces. In this case, the ontology engineer is responsible for guaranteeing the
uniqueness. The ontologies with arbitrary namespaces are not directly retrievable
by their namespace, but can be accessed via a search function.

– Analyzing effects of changes.Changes in ontologies do not only affect the data
and applications that use them, but they can also have unintended, unexpected and
unforeseeable consequences in the ontology itself [16].
OntoView provides some basic support for the analysis of these effects. First, on
request it can also highlight the places in the ontology where conceptually changed
concepts or properties are used. For example, if a property “hasChild” is changed,
it will highlight the definition of the class “Mother”, which uses the property
“hasChild”. In the future, this function should also exploit the transitivity of prop-
erties to show the propagation of possible changes through the ontology.
Further, we expect to extend the system with a reasoner to automatically verify the
changes and the specified conceptual relations between versions. For example, we
could couple the system with FaCT [3] and exploit the Description Logic semantics
of DAML+OIL to check the consistency of the ontology and look for unexpected
implied relations.

– Exporting changes.The main advantage of storing the conceptual relations be-
tween versions of concepts and properties is the ability to use these relations for
the re-interpretation of data and other ontologies that use the changed ontology.
To facilitate this, OntoView can export differences between ontologies as separate
mapping ontologies, which can be used as adapters for data sources or other ontolo-

ontoview.org


gies. The mappings are created on basis of conceptual information that is attached
to the update relation.
Mapping ontologies are separate ontologies that import definitions from two other
(versions of) ontologies and relates these definitions conceptually to each other.
They only provide a partial mapping, because not all changes can be specified con-
ceptually, e.g. complicated changes like splits of concepts, or deletions. The defi-
nitions are imported by the namespace mechanism. This mechanism allows RDF-
based ontologies to refer to definitions in other ontologies, by connecting the URI
(identifier) of an other ontology with a symbolic name. The exported mapping on-
tologies are represented with the standard constructs of the ontology langauge.
The meta-data about the ontology update is specified as a set of properties of the
conceptual relations themselves. In RDF Schema and DAML+OIL, this meant that
we also have to re-ify the mapping statements. For this purpose, we defined an
RDFS “meta-schema” that specifies the classes and properties that are used to at-
tach the meta-information about an update to the mapping statements. Due to space
restrictions, we cannot show it here.
This method has two advantages. First, when specified over re-ified statements, the
meta-data does not interfere with the actual ontological knowledge, as would be
the case when meta-data is specified as characteristics of classes and properties.
Second, because the meta-data is data about themappings themselves, agents or
systems that understand the meta-data can use this to decide which mappings are
applicable in a specific context and which are not.
In the future, it should also be possible to exporttransformationsbetween two
versions of an ontology. A transformation is a complete specification of all the
change operations. This can be used to re-execute changes and to update ontologies
that have some overlap with the versioned ontology in exactly the same way as the
original one. However, transformations facilitates data re-interpretations only to a
very small extent. A mapping ontology provides better re-interpretation, because it
also captures human knowledge about the relations.

5 Comparing ontologies

One of the central features of OntoView is the ability to compare ontologies at a struc-
tural level. The comparison function is inspired by UNIXdiff , but the implementation
is quite different. Standarddiff compares file version at line-level, highlighting the
lines that textually differ in two versions. OntoView, in contrast, compares version of
ontologies at astructural level, showing which definitions of ontological concepts or
properties are changed. An example of such a graphical comparison of two versions of
a DAML+OIL ontology is depicted in Figure 1.9

5.1 Types of change

The comparison function distinguishes between the following types of change:
9 This example is based on fictive changes to the DAML+OIL example ontology, available from

http://www.daml.org/2001/03/daml+oil-ex.daml .
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Fig. 1.Comparing two ontologies

– Non-logical change, e.g. in a natural language description. In DAML+OIL, this
are changes in the rdfs:label of an concept or property, or in a comment inside a
definition. An example is the first highlighted change in Figure 1 (class “Animal’).

– Logical definition change. This is a change in the definition of a concept or prop-
erty that affects its formal semantics. Examples of such changes are alterations of
subClassOf, domain, or range statements. Additions or deletions of local property
restrictions in a class are also logical changes. The second and third change in the
figure is (class “Male” and property “hasParent”) are examples of such changes.
Note that there are also logical changes that do not affect the semantics

– Identifier change. This is the case when a concept or property is given a new iden-
tifier, i.e. a renaming.

– Addition of definitions.
– Deletion of definitions.

Each type of change is highlighted in a different color, and the actually changed lines
are printed in boldface.

Most of these changes can be detected completely automatically, except for the
identifier change, because this change is not distinguishable from a subsequent deletion
and addition of a simple definition. In this case, the system uses the location of the
definition in the file as a heuristic to determine whether it is an identifier change or not.

It is a deliberate choice not to show all changes, but only the ones which we think
that are of interest to the ontology modeler. This choice is explained in the next para-



graphs, together with the mechanism that we use to detect and classify changes. Exper-
imental validation should show whether this list of change types is sufficient.

5.2 Detecting changes

There are two main problems with the detection of changes in ontologies. The first
problem is the abstraction level at which changes should be detected. Abstraction is
necessary to distinguish between changes in the representation that affect the meaning,
and those that don’t influence the meaning. It is often possible to represent the same
ontological definition in different ways. For example, in RDF Schema, there are several
ways to define a class:

<rdfs:Class rdf:ID="ExampleClass"/>

or:

<rdf:Description rdf:ID="ExampleClass">
<rdf:type rdf:resource="...org/2000/01/rdf-schema#Class"/>

</rdf:Description>

Both are valid ways to define a class and have exactly the same meaning. Such a change
in the representation would not change the ontology. Thus, detecting changes in the
representationalone is not sufficient.

However abstracting too far can also be a problem: considering thelogical meaning
only is not enough. In [2] is shown that different sets of ontological definitions can yield
the same set of logical axioms. Although the logical meaning is not changed in such
cases, the ontology definitely is. Finding the right level of abstraction is thus important.

Second, even when we found the correct level of abstraction for change detection,
the conceptual implication of such a change is not yet clear. Because of the difference
between conceptual changes and explication changes (as described in section 2), it is
not possible to derive the conceptual consequence of a change completely on basis of
the visible change only (i.e., the changes in the definitions of concepts and properties).
Heuristics can be used to suggest conceptual consequences, but the intention of the
engineer determines the actual conceptual relation between versions of concepts.

In the next two sections, we explain the algorithm that we used to compare ontolo-
gies at the correct abstraction level, and how users can specify the conceptual implica-
tion of changes.

5.3 Rules for changes

The algorithm uses the fact that the RDF data model [15] underlies a number of popular
ontology languages, including RDF Schema and DAML+OIL. The RDF data model
basically consists of triples of the form<subject, predicate, object> , which
can be linked by using the object of one triple as the subject of another. There are
several syntaxes available for RDF statement, but they all boil down to the same data
model. An set of related RDF statements can be represented as a graph with nodes and
edges. For example, consider the following DAML+OIL definition of a class “Person”.



<daml:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

When interpreted as a DAML+OIL definition, it states that a “Person” is a kind of
”Animal” and that the instances of its hasParent relation should be of type “Person”.
However, for our algorithm, we are first of all interested in the RDF interpretation of it.
That is, we only look at the triples that are specified, ignoring the DAML+OIL meaning
of the statements. Interpreted as RDF, the above definition results in the following set
of triples:

subject predicate object
Person rdf:type daml:Class
Person rdfs:subClassOf Animal
Person rdfs:subClassOf anon-resource
anon-resource rdf:type daml:Restriction
anon-resource daml:onProperty hasParent
anon-resource daml:toClass Person

This triple set is depicted as a graph in Figure 2. In this figure, the nodes are re-
sources that function as subject or object of statements, whereas the arrows represent
properties.

Fig. 2.An RDF graph of a DAML class definition.

The algorithm that we developed to detect changes is the following. We first split the
document at the first level of the XML document. This groups the statements by their
intended “definition”. The definitions are then parsed into RDF triples, which results in



a set of small graphs. Each of these graphs represent a specific definition of a concept
or a property, and each graph can be identified with the identifier of the concept or the
property that it represents.

Then, we locate for each graph in the new version the corresponding graph in the
previous version of the ontology. Those sets of graphs are then checked according to a
number of rules. Those rules specify the “required” changes in the triples set (i.e., the
graph) for a specific type of change, as described in section 5.1.

The rules have the following format:

IF exist:old
<A, Y, Z >*

exist:new
<X, Y, Z >*

not-exist:new
<X, Y, Z >*

THEN change-type A

They specify a set of triples that should exists in one specific version, and a set that
should not exists in another version (or the other way around) to signal a specific type
of change. With this rule mechanism, we were able to specify almost types of change
(except the identifier change).

For example, a rule to specify a change in the property type looks as follows:

IF exist:old
<X, rdf:type, rdf:#Property>
<X, rdf:type, daml:#UniqueProperty>

exist:new
<X, rdf:type, rdf:#Property>

not-exist:new
<X, rdf:type, daml:#UniqueProperty>

THEN logicalChange.propertytype X

The rules are specific for a particular RDF-based ontology language (in this case
DAML+OIL), because they encode the interpretation of the semantics of the language
for which they are intended. For another language other rules would have been neces-
sary to specify other differences in interpretation. The semantics of the language are
thus encoded in the rules. For example, the last example not looks at changes in values
of predicates (as the first does), but at a change in the type of property. This is a change
that is related to the specific semantics of DAML+OIL.

Also, notice that the mechanism relies on the “materialization” of allrdf:type

statements that are encoded in the ontology. In other words, the closure of the
RDF triples according to the used ontology language has to be computed. For ex-
ample, the rules in example rule above depend on the existence of a statement
<X,rdf:type,rdf:#Property> . However, this statement can only be derived using
the semantics of therdfs:subPropertyOf statement, which — informally spoken10

— says that if a property is an instance of typeX, then it is also an instance of the super-
types ofX. The application of the rules thus has to be preceded by the materialization of
10 The precise semantics of RDF Schema are still under discussion.



the superclass- and superproperty hierarchies in the ontology. For this materialization,
the entailment and closure rules in the RDF Model Theory11 can be used.

5.4 Specifying the conceptual implication of changes

The comparison function also allows the user tocharacterizethe conceptual implica-
tion of the changes. For the first three types of changes that were listed in section 5.1,
the user is given the option to label them either as “identical” (i.e., the change is an
explication change), or as “conceptual change”, using the drop-down list next to the
definition (Figure 1). In the latter case, the user can specify the conceptual relation
between the two version of the concept. For example, the change in the definition of
“hasParent” could by characterized with the relationhasParent 1.1 subPropertyOf

hasParent 1.3.
More complicated changes, such as deletions, splits of concepts, replacements

etcetera, require additional characterizations that specify how the new change should
be interpreted. We will developed this in the future.

6 Discussion

There are a few other issues and choices about the design of the system that we want
to discuss. First, we purposely do not provide support for finding mappings between
arbitrary ontologies. The intention of our system is to provide users with a system to
manage versions of ontologies and maintain their relations. Finding the relations is a
different task. However, it might be possible to incorporate this function in a future
version of the system, e.g. by interfacing it with a ontology mapping tool.

We did not yet specify the way in which the “scope” of the mapping is described.
The “scope” will have several dimensions, of which “time” is only one. This is some-
thing what still has to be done. Without such a specification, it is difficult to assess the
validness of a conceptual relation between concepts in different versions. We can as-
sume that such a relation is at least valid between two successive versions, but we do
not know whether such mapping is allowed to “propagate” via other mappings to other
ontologies. Research on this is necessary.

A situation in which versioning support is also necessary is the collaborative de-
velopment of an ontology [17]. We think that OntoView is also useful in this situation,
especially because all the conceptual implications of versions have to be characterized
individually by users. This integrates the conflict resolution in the update procedure.
That is, because users specify the conceptual relation of their changes with the previ-
ous version while specifying the update, it is not necessary to resolve conflict between
definitions afterwards. Every version of the definition has its own identifier and is con-
ceptually related to the other versions.

A side remark about the use of a versioning system for collaborative ontology de-
velopment is that this gives an evolutionary way of ontology building. Each person can
have its own conceptualization, which is conceptually linked to the conceptualizations

11 http://www.w3.org/TR/rdf-mt/
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of others. In this sense, the combination of versions and adaptations in itself forms a
sharedconceptualization of a domain.

Finally, we want to mention that the system is still under construction. In section 4
we extensively depicted the foreseen functionality of OntoView. However, as became
clear of some of the descriptions, not everything is already realized. The basis functions
are implemented, but a number of more advanced functions are still being developed.

7 Summary and conclusion

When ontologies are used in a distributed and dynamic context, versioning support is
essential ingredient to maintain interoperability. In this paper we have analyzed the
versioning relation, described its aspects, proposed an identification mechanism and
finally depicted a system that helps users to manage changes in online ontologies.

We described how this systems supports helps users to compare ontologies, and
what the problems and challenges are. We presented a algorithm to perform a compari-
son for RDF-based ontologies. This algorithm doesn’t operate on the representation of
the ontology, but on the data model that is underlying the representation. By grouping
the RDF-triples per definition, we still retained the necessary representational knowl-
edge. We also explained how ontology engineers have to specify the conceptual impli-
cation of changes. This honors the fact that it is not possible to derive all conceptual
implications of changes automatically, because this requires insight in the conceptual-
ization.

The analysis of a versioning relation between ontologies revealed several dimen-
sions of it. In the system that we described, all these dimensions are maintained sepa-
rately: the descriptivemeta-data, theconceptual relationsbetween constructs in the
ontologies, and thetransformations between the ontologies themselves. This multi-
dimensional specification allows both complete transformations of ontology represen-
tations and partial data re-interpretations, which help interoperability. The conceptual
differences can be exported and used stand alone, for example to adapt data sources and
ontologies.

The important step in the identification method that we proposed is to separate the
identity of ontologies completely from the identity of files that contain the specification
of the ontology. This allows to distinguish identity changing revisions from explication
changes. Moreover, we distinguish backward compatible revisions from incompatible
revisions.

The described versioning methodology and the system is not yet finished and have
to be developed further. Moreover, validation in a realistic setting is needed. However,
we believe that the things that we presented can help to manage changes in ontologies,
which will be an essential requirement for the interoperability of evolving ontologies
on the web.
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