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ABSTRACT 
This paper presents a brief summary of a 35 years study 
of the software process and the software evolution 
phenomenon. It draws attention, inter alia, to the SPE 
program classification, a principle of software 
uncertainty and laws of software evolution. Recent 
studies have led to refinement of earlier conclusions and 
provided a basis for formation of a theory of software 
evolution. Management rules and guidelines derived 
during the empirical FEAST studies, which are 
candidate theorems in the proposed theory, are briefly 
outlined to demonstrate that the topic has practical as 
well as theoretical significance. Rather than in depth 
discussion, this paper provides an introductory overview 
intended to encourage wider study, research and 
development 
 
Keywords: the software process, assumptions, software 
engineering, implementation and evolution, laws and 
theory of software evolution, the uncertainty principle, 
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INTRODUCTION – THE EARLY DAYS 

The term evolution describes a class of phenomena 
observable in many different domains, concrete and 
abstract. It can involve entities or sets of entities such as 
natural species, societies, cities, artefacts, concepts, 
theories, ideas. If any of these undergo continual 
progressive change in one or more of their attributes 
they are said to evolve over time. Change is defined as 
progressive if it results in improvement in some sense. 
Such improvement may, but need not, include the 
emergence of new properties. 

Often, the change will be driven by a need to adapt 
the individual entity, or a class as a whole, so as to 
maintain or improve its fitness within a changing 
environment or circumstances. The change may make 
the entity, or class of entities, more useful or 
meaningful, or increase its value in some other sense. It 
may also remove properties that are no longer of value 
or otherwise inappropriate. Radical or fundamental 
changes are, in general, not considered evolutionary 
changes. The latter are generally incremental and small 
relative to the entity or class as a whole, but exceptions 
may occur.  

This general definition of evolution is also 
appropriate for real world, that is E-type [leh85], 

software evolution. The latter has been consistently 
experienced over many years as evidenced by 
observations and data acquired by the present authors, 
their associates and others. The software evolution 
phenomenon was first identified in the late 60s [leh69] 
though not termed evolution till later [leh74]. Its study 
was pursued intermittently during the 70s, with early 
results collected together in [leh85]. The work that led 
to its discovery and exploration had been seeded by a 
nine month 1968/9 study of the IBM programming 
process [leh69,85]. The outcome of that study, recently 
judged to be as relevant today as it was then, led to the 
Lehman-Belady collaboration [leh85]. It concentrated 
primarily on measuring and interpreting the growth of 
software systems and evolutionary trends in other 
evolutionary attributes using both real and pseudo-time 
(rsn or release sequence numbers [cox66]) measures. 

The data that triggered the studies was obtained 
from IBM’s OS/360-70 operating system. Data from 
other systems [leh78,80a,b,85] followed. These early 
studies concentrated on the evolutionary behaviour of 
what were then termed large1 software systems and on 
the organisations that developed, maintained and 
evolved them [bel71,72, leh85]. The overall picture 
revealed a degree of discipline exemplified by 
similarities between growth trends of different systems. 
This suggested that underlying the detailed evolution of 
each specific system there is a common phenomenon 
that can be systematically studied and modelled. The 
resultant models could then be used to forecast future 
system growth and growth rates. 

The software process is conceived, directed, 
planned, managed, implemented and controlled by 
humans. At each stage of the process their decisions are 
assumed to drive and direct the process and determine 
product properties. In general management decisions are 
different from one situation to another and are expected 
to be dominated by the pressures of the moment, with 
these divergence possibly amplified by the subjective 
component in every the decision making, Thus, 
evolutionary behaviours should vary significantly from 
application to application, organisation to organisation, 
system to system, time to time and release to release. 
                                                           
1 The term large is, generally, used to describe software whose size in 

number of lines of code is greater than some arbitrary value. For 
reasons indicated in [leh79], it is more appropriate to define a large 
program as one developed by processes involving groups with two or 
more management levels. 
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The discovery of high level similarities in the 
evolutionary patterns of software addressing a widening 
spectrum of applications, development, marketing and 
user organisations and the emergence of common 
phenomenological interpretations contradicted this 
expectation. Instead, it suggested that similar underlying 
forces, drove evolutionary growth. It was suggested that 
the system of systems formed by the evolving software 
and the organisations involved in or relating to its 
evolution and usage constitute and behave like a 
feedback system; more precisely a self-stabilising 
[bel76], multi-level, multi-loop multi-agent, feedback 
system [leh94]. 

The models developed were relatively simplistic, 
limited in particular, by data availability. However, the 
investigations were not circumscribed to modelling and 
analysis of growth data and the dynamics of growth. 
They also included, for example, search for conceptual 
and theoretical models reflecting understanding of the 
phenomenon and the forces driving it [e.g. bel72]. This 
led to significant advances in understanding of the 
phenomenology as encapsulated in laws of software 
evolution [leh85]2. It also triggered a terminological 
change from software growth dynamics to software 
evolution [leh74]. 

THE SECOND WAVE 

The early work outlined above went largely 
unnoticed by the mainline Computer Science and 
Software Engineering communities. Gradually, 
however, the phenomenon began to attract other 
investigators [e.g. kit82, law82]. A major conceptual 
advance came with formulation of the software 
uncertainty principle [leh89,90,02a], the FEAST 
(Feedback, Evolution And Software Technology) 
hypothesis and the FEAST projects [leh96b,98]. The 
overall results of these studies and many of the 
conclusions to which they led have been widely 
reported [e.g. leh01a,b,02a,b,c, website]. Their wider 
impact include implications to real world computer 
usage. In particular, the insight that followed is very 
relevant to the growing and active interest in software 
process improvement. 

EVOLUTION: PHENOMENON AND ACTIVITY 

It is now widely accepted that software evolution 
may be systematically studied. There are, however, two 
aspects to such study. What has been termed a nounal 
view of evolution [leh00a], focuses on the nature of 
evolution, its causes, properties, characteristics, 
consequences, impact, management, control and 
exploitation. One may also adopt a verbal view [leh00a] 
concerning oneself with providing and improving 

                                                           
2 Termed laws instead of, for example, observations or hypotheses, 

because they reflect organisational, economic and social pressures 
leading to evolutionary behaviours which are largely independent of 
the individuals, organisations and domains involved in the evolution 
of the E-type systems studied [leh74]. 

means, processes, activities, languages, methods, tools 
for example, whereby evolution is implemented. 

These views are mutually supportive. Both are 
necessary and becoming increasingly important as 
society becomes ever more dependent on computers, 
and hence on software. As suggested by fig. 1, the need 
for continual change and adaptation of real world 
software in response to computer usage and changes in 
the applications and domains in which they are applied 
is inevitable and continual. The acts of developing, 
installing and using the computer system changes both 
the application and the domain within which it operates, 
which it influences, and, to some extent, controls. 

 

Figure 1 – Feedback: a driver of software evolution 
 

System functionality and behaviour must keep pace 
with all changes. Defects must be fixed, parameters 
adjusted, functionality refined and extended, 
performance improved. The system must be adapted to 
accommodate operational extension, the need and desire 
for changes to existing features and for new capability. 

As business operation, and organisational behaviour 
become ever more dependent on software, the 
consequences of a delay in keeping the system in tune 
with its changing purpose and domains range from 
frustration to disaster. Any improvement in means to 
support evolution will, in general, have an impact on 
quality, usability, timeliness, economic benefit, risk 
mitigation and so on, that is, on user satisfaction. 

Increased understanding of the characteristics, 
nature and impact of evolution, on the other hand, will 
benefit the software process, evolution planning, 
process management and process improvement 
[leh01b]. Insight into the causes, properties and 
implications of software evolution will make planning, 
control, execution of process improvement more 
systematic and effective. It will indicate into the types 
of activities, methods and tools required, which are 
likely to be most beneficial, when and how they should 
be used and how they relate to one another. Studies of 
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the two views of software evolution must move forward 
together. Progress in this direction will help 
development of a theoretical base and framework and 
accelerate that process. 

The approach to the study by Lehman and his 
collaborators assumed the nounal interpretation. The 
behavioural similarities across a variety of software 
systems, has led to the construction of growth models of 
the same form derived from empirical data though 
model parameter values are specific to each system 
[leh97, website]. The identification of qualitatively 
similar [ram03a,b] but staged [ben00] growth patterns 
and the resultant significant improvement of model 
predictive power has further increased confidence in the 
reality of the phenomenon and in the models. 

Fitting models to various attributes, combining data 
and other evidence from different studies, identification 
of differences, resolution of apparent incompatibilities, 
understanding the characteristics of individual stages, 
interpretation of observations [ram03a,b], all raise non-
trivial issues requiring further investigation. 
Appreciation of these challenges has not, however, 
undermined confidence in the results. The qualitative 
commonalities in the evolution of so many E-type 
systems provide a solid basis for confidence. 

LAWS OF E-TYPE SOFTWARE EVOLUTION 

The laws already mentioned, reflect the observed 
evolutionary behaviour of large E-type3 software 
systems and processes implementing their evolution. 
They are currently stated in natural language and 
encapsulate aspects of the common behaviour of many 
disparate systems. Evolutionary forces and constraints 
arise from human ambitions, competitive pressures, 
needs for sustained profitability of the organisations 
involved, the limited pool of human resources and 
expertise available for implementing evolution. Forces 
relating to technological aspects such as language and 
tool properties, usage and availability complement 
these. The former appear to have a far greater influence 
on the evolutionary behaviour described by the laws 
than the latter that exemplify the specifics of the 
technology. This conclusion, is, at first sight, counter-
intuitive. It is believed to be one of the most significant 
new insights to emerge from the recent studies. 

Over the years the laws have been refined and 
extended. The changes were driven by interpretation of 
models of additional data that had become available. A 
recent public discussion [icsm02] demonstrated broad 
consensus as to their continuing relevance. It is not the 
validity of the laws that still needs demonstration but 
their domain of relevance. As indicated above, it is the 
relevance of the laws to individual paradigms and how 
statement of the laws needs to be adjusted to widen their 
applicability which requires further behavioural data 

                                                           
3 The SPE application and software classification scheme is now well 

recognised and need not be discussed here. Further details may be 
found in the references cited above [e.g. leh85,02a]. 

and study. More detail is available in the published 
literature [leh74,78,80a,b,96a,97, ram02,03a,b]. 

The laws of software evolution were individually 
identified, formulated and presented over a twenty-year 
period. Possible relationships between them were only 
casually considered. It was the formulation of the 
FEAST hypothesis and its restatement as the eighth, 
Feedback System, law that suggested that the feedback 
nature of the process could lie at the root of such 
relationships. That law was seen as the cornerstone of a 
theoretical framework and to better understanding of the 
inter-relationships between the laws. 

Criticism of the laws and the alleged empirical 
support [law82, pir88, gdf00] has been based on various 
grounds. As a result of the FEAST studies some of these 
issues are now better understood [ram02] and can now 
be addressed and refuted [smi02, ram03a,b]. 

Amongst the concerns was the question whether 
laws could addressed a phenomenon, software 
evolution, whose activity is conducted by and dependent 
on human intellectual processes, decision taking and 
implementation. Critics also suggested that it was 
inappropriate to term the observations laws. However, 
as indicated in footnote 2, it was pointed out [leh74] that 
the statement of the laws reflect phenomena beyond the 
immediate control of those implementing system 
evolution. The statements emerge from observation of 
behavioural phenomena in the real world of software 
development and evolution and reflect the attitudes and 
behaviours of many groups and individuals engaged 
directly in software creation and evolution. They also 
relate to managers and, via feed forward and feedback, 
to other stakeholders in the end product. While locally 
significant, they appear to have, at most, a second order 
influence in the long term evolutionary trajectory of the 
system considered as a whole. That is, the activities of 
individuals directly involved in evolution activities are, 
in general, restricted to local areas of the evolving 
system. The drivers that underlie observed behaviours, 
as described for example by the laws, stem from group, 
organisational and societal behaviours and the multi-
level, multi-loop, multi-agent feedback information and 
control network that links, aggregates and constrains 
them. The individuals involved in the process each have 
their area of experience and expertise. No matter the 
degree of experience and understanding of individuals 
and groups, no matter the methods and tools used, the 
scope and impact of action is constrained by complex 
relationships between them as aggregated, mitigated, 
constrained and directed by the feedback network 
structure of the evolution process, organisational inertia 
and the related dynamics of evolution. 

Software engineers do not, in general, have the 
viewpoints, knowledge, experience or time to explore 
potential benefits of exploiting the feedback system 
properties of the software process. The causes of the 
behaviours and phenomena addressed by the statements 
will, in general lie outside their range of expertise. In 
general, they can do little or nothing to modify the 
behaviours implied by the laws. The behavioural 
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assertions relate to market and economic forces, 
societal, organisational and group behaviour and, at 
least for the moment, must be accepted as laws, as 
forces that must be accepted. 

As knowledge and understanding of the 
phenomenon increases and software engineering 
education is extended, organisational and process 
improvements and new forms of technology may help 
overcome some of the behavioural limitations and 
constraints reflected by the laws. As paradigms evolve 
and new approaches adopted, evolutionary behaviour of 
software systems may change. The laws as now stated 
may then require modification. New ones may be added, 
some dropped. However, it has been reasoned [e.g. 
leh00b], that, in the long run, such adjustments are 
likely to be minor. 

In summary, the specifics of the laws as presently 
stated may be questioned but the fact that it is 
meaningful to formulate and acknowledge such laws 
and that, in practice, they must be taken into account is 
now widely accepted [e.g. icsm02, bau03]. The 
phenomena addressed by them impact process planning, 
control and improvement. Their role in development of 
software evolution theory is likely to be significant. 

AN APPROACH TO THEORY FORMATION 

The approach to the study of software evolution 
taken in FEAST and earlier work was inspired by the 
traditional view of the scientific method. This involves 
empirical observation, measurement, hypothesis testing, 
phenomenological interpretation, further observation to 
confirm or reject the interpretation an so on. This 
approach includes Kelvin’s much quoted statement that: 

“…first essential step in the direction of learning 
any subject is to find principles of numerical reckoning 
and practicable methods for measuring some quality 
connected with it. I often say that when you can 
measure what you are speaking about, and express it in 
numbers, you know something about it; but when you 
cannot measure it, when you cannot express it in 
numbers, your knowledge is of a meager and 
unsatisfactory kind; it may be the beginning of 
knowledge, but you have scarcely in your thoughts 
advanced to the state of Science, whatever the matter 
may be.” [kel]. 

Given the numbers that result from such 
measurement, one looks for patterns, regularities, and 
trends that provide inputs for development of 
preliminary hypotheses, phenomenological and 
mathematical models. At any point in time, available 
mathematical approaches may prove inadequate. Thus 
scientific advances are, often, accompanied by 
development of new mathematical concepts and tools. 
Given appropriate models, one searches for 
interpretations in the domain of interest, refines 
hypotheses and extends them individually or as a set. 
Further observation and, when possible, real or 
synthetic experiments may support or reject these. 
Validation or rejection follows. As the number of and 
confidence in hypotheses builds up, one looks for 

relationships and develops the seeds of a theory from 
the collection of observations and inferences. The latter 
constitute the seeds of the developing theory, driving an 
iterative search for new data, hypotheses, refinement 
and theory extension. 

Application of this approach to the study of 
software evolution is, however, limited by the paucity of 
data that limits statistical analysis, interpretation of 
experiments and scaling up the results to industrial 
levels. 

A THEORY OF SOFTWARE EVOLUTION 

For many years now it has been observed that, apart 
from that provided by programming methodology as 
established by the work of WG 2.3 [ifip], software 
engineering has no solid theoretical base [e.g. nau68, 
leh85, ben00]. The former is vital in guiding the 
structure, implementation and underlying quality of the 
evolving software products, the evolvability of the 
resulting wider system. It lies at the heart of improving 
the means whereby evolution can be effectively 
achieved. But, though critical, programming 
methodology plays a relatively local part in the process. 
As indicated by FEAST results and also by other 
observers, long-term evolvability and the pattern of 
evolution is likely to be heavily dependent on more 
global mechanisms and subject to behaviours implied 
by the laws. The former include forward and feedback 
loops and mechanisms that involve players such as 
business executives, other stakeholders in the total 
evolution process, individual and organisational users, 
governments and economies. All influence disciplined 
and sustained improvement of the global software 
processes, system evolvability and the direction and rate 
of system evolution. A sound conceptual base with 
predictive and explanatory power, would contribute 
significantly to integration of these many influences, 
strengthen software engineering in general and guide 
improvement of software evolution processes.  

The history of science reflects many different ways 
of achieving an empirically grounded theory applicable 
to a natural, artificial or hybrid phenomenon. One 
particular approach, relevant to the search for a software 
evolution theory, is that emanating from Carnap’s work 
on theory formation [car66]. The envisaged theory is to 
be based on observation, hypotheses and assumptions. 
In particular, recent wide consensus expressed regarding 
relevance and potential value of the laws of software 
evolution4 as well as the principle of software 
uncertainty suggests that one may start by considering 
these as empirical generalisations as defined by him. 
Additional conclusions of the nounal aspects of 
software evolution studies should lead to a fuller set to 
include other generalisations of repeated real world 
observations of software evolution processes and 
evolution of their products. These can be supplemented 
by generalisations about the domains in which software 
is developed, used and evolved. Together with insight 

                                                           
4 For example, as expressed recently [icsm02]. 
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and understanding of the phenomenology reflected and 
relationships and dependencies identified, they provide 
a basis for the development of an encompassing theory. 
Confirmation obtained from the developing theory by 
further observation of the real world then provides 
partial validation, increasing confidence in the validity 
of the developing theory to the level of detail reached 
and over the domain in which the observations were 
made. Given such a partial theory one may then seek to 
formalise and extend it. This may involve refinement or 

rejection of previously formulated empirical 
generalisations, identification of additional ones, 
derivation of implications and formalisations to produce 
definitions, axioms and theorems. Iteration and 
continuing experimentation then permits the 
development of a fuller, but never complete, theory 
accepted as valid until shown to be inadequate or 
incorrect. The main activities involved in the proposed 
theory formation approach are depicted in figure 2. 
 

 

Figure 2 – An approach to the formation of a theory of software evolution 

 

The initial step in implementation of this formation 
process requires formal definition of terms used, or their 
acceptance, at least temporarily, as undefinable, but this 
remains a challenge. All are candidate formalisable 
generalisations. Once begun, one can initiate selection 
and statement of axioms followed by the identification 
and proofs of theorems. An outline proof of the software 
uncertainty principle has been generated [leh01a] and 
will be used as an example of the approach. Its 
completion and formalisation awaits wider discussion, 
formal definition of the terms used in its statement and 
progress in the formation process. 

Given an emerging theory, one may then formally 
develop its interpretations in the real world of industrial 
software development and derive practical implications 
for the planning, management, control and evaluation of 
system evolution, vital activities in a society ever more 
dependent on computers and their software. At present, 
improvement of these and other aspects of the software 
process is largely achieved informally, often intuitively. 
The research approach outlined above has the potential 
to merge the search for full understanding of the 
software evolution phenomenon and the development of 
effective, reliable, predictable and on time means for its 
achievement. 

The above generalisations provide initial inputs for 
development of an empirical theory and its formation as 
a formal theory. Rooted in earlier findings, 
supplemented by the results of the FEAST projects, the 
efforts of other groups in Europe, North America and 
Japan, and the related insight and understanding 
achieved, development of a such a theory appears to be 
within reach [leh01a,c]. Its development could represent 
a first step in the development of a more general theory 

to support the discipline of Software Engineering. 
Moreover, software has long been regarded as the fruit 
fly (Drosophila) of artificial systems [sim69]. Thus such 
a theory could, in turn, provide an input to the 
development of a general theory of artificial systems 
[sim69] evolution. But, if at all feasible, that is many 
years, possibly decades, away from realisation. 

EXAMPLE 

Any approach to theory formation begins with 
formulation of a set of definitions, to be revised and 
extended as development proceeds. The latter is seeded 
by empirical observation of the phenomenon to be 
reflected. Interpretation leads to assumptions judged 
reasonable in relation to the domain being addressed. 
These become the source for the derivation of 
inferences. The initial set of definitions provides the 
base of an emerging theory that, eventually, one will 
seek to formalise, in part or completely. Together with 
the observations and assumptions they constitute axioms 
from which new and established implications may be 
formally derived as theorems. In the absence of such 
derivation the observations remain, at best, hypotheses. 
Practical application such as, for example, methods and 
guidelines for program development and management 
then be derived from all of these as corollaries. 

The practical aspects of this approach to theory 
formation are illustrated by the lists that follow. These 
provide definitions, observations and implications that 
are believed to suffice for a formal proof of the principle 
of software uncertainty [leh90]. The derivation of such a 
proof must await more complete definition and 
formalisation and could not yet been undertaken. 
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•  The real world encompasses the entire universe and all 

happenings in it 
•  E-type operational domains and their attributes are, 

respectively, sub-domains and sub-sets of the real world 
and its attributes 

•  An E-type application addresses a problem or supports 
an activity in a specified E-type operational domain 

•  An E-type specification abstracts an E-type application, 
representing in a set of statements the recognised 
attributes required to define a solution in accord with the 
application needs or terms of reference 

•  An E-type program is a set of computer executable 
instructions defining a solution to an E-type application5 

•  A program is satisfactory as long as it is compatible with 
the solution required and the operational domains within 
which it is executed 

List 1 – Provisional Definitions 

 
•  The real world has an unbounded number of attributes 
•  It is dynamic with attributes continually changing 
•  It may be partitioned in an unbounded number of ways 

into domains that, in general, each possess an unbounded 
number of attributes 

•  The designed and implemented attribute set of an E-type 
program, as distinct from the totality of attributes of such 
programs in execution, is necessarily bounded 

•  Attributes of an E-type application must be appropriately 
addressed in the implementing program to make the 
latter satisfactory 

List 2 – Observations 

 

Every E–type operational domain, though abstracted by a 
finite specification, has an unbounded number of attributes6 

•  By design and implementation E–type specifications and 
programs have a bounded number of attributes which 
reflect an unbounded number of assumptions (at least 
one per each unaddressed attribute)7  

•  Every E–type program is essentially incomplete and 
there will be attributes of the operational domain not 
addressed by it 

•  Assumptions about the operational domain reflected in 
E-type specifications and programs may become invalid 
as a consequence of changes in the real world so 
invalidating either one or both 

•  Though both are models of the same specification, an E–
type program and its operational domain may be or may 
become incompatible 

•  E-type program execution entails a degree of 
uncertainty, sustained satisfaction cannot be guaranteed8 

•  Program evolution activity consists primarily of 
maintenance of the validity of the assumption set 
reflected in it 

•  Progressive change, that is evolution, of E-type 
programs is inevitable if satisfaction is to be maintained 

List 3 – Inferences 

 
 
                                                           
5 A program also is a model of an E-type specification. 
6 Some of which will change with usage and the passage of time. 
7 The assumptions issue is exemplified towards the end of the paper 

by three identified examples. The examples are the failure of the 
London Ambulance Service software, the Ariane 5 rocket disaster 
and the initial failure, during commissioning, of a new CERN 
accelerator. 

8 That is, sustained compatibility between the program and application 
it addresses, the domains within which it is executed. 

PRINCIPLE OF SOFTWARE UNCERTAINTY 
 

As already indicated, the proposed theory is not 
only of theoretical import. It, and theorems developed in 
it, should constitute a rich source of proposals for 
improvement of software development and evolution 
processes and for the derivation of best practice 
guidelines. This potential may be exemplified by 
pointing the reader to technical and management 
guidelines derived from the laws [leh01b] their practical 
implications and the principle of software uncertainty, 
as briefly discussed below. That analysis introduces, 
inter alia, the impact of assumptions on computer 
software, computer systems and their users. This topic is 
worthy of much wider attention than it has, with some 
exceptions [uch00], received. It provides just one, 
specific, example of the potential practical significance 
of the results of the studies based on the nounal 
interpretation of software evolution with its final 
outcome the formation of a conceptual framework 
encapsulated in a theory of software evolution. Mention 
of assumptions also draws attention to a neglected 
phenomenon with major practical consequences. 

A central ingredient of an informal demonstration 
[leh01a] of the validity of the principle of software 
uncertainty, as illustrated here by the most recent 
outline of lists 1 – 3, is the observation that all E-type 
software has embedded within it reflections of an 
uncountable number of assumptions. These will have 
been adopted by commission or omission, consciously 
or unconsciously, be known or unknown documented or 
undocumented. Their presence and inevitability follows 
from the fact that any real world computer application 
and its operational domain each have a potentially 
uncountable number of properties. Having been 
developed by humans, with finite resources in finite 
time, the static software (as distinct from the software in 
execution) on the other hand has a finite number of 
attributes as determined in the design and 
implementation processes. As a finite model-like 
reflection of unbounded domains, E-type software is, 
essentially, incomplete. It reflects an unbounded number 
of assumptions [leh02a] generated by the abstraction 
process that determines system needs, requirements and 
a, partially explicit, partially implicit system 
specification from the initial real-world application 
concept and the subsequent design and implementation 
process. 

Assumptions may relate to the application being 
addressed, to software functionality, application systems 
within which it executes, computer systems on which it 
runs, geographical, economic and societal domains on 
and in which it operates and which it supports, the 
processes by which it is produced, adapted and evolved 
and so on. Some will have been subjected to review. 
Others will be the consequences of decisions taken 
during system conception, specification, design, 
implementation, installation and operation. Others will 
be the result of overlooking or being ignorant of facts or 
situations that can affect the workings of the software, 
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the results of execution or its impact on the operations 
or domains served9 10 11. Still others will have appeared 
entirely inconsequential or irrelevant at the time at 
which, implicitly or explicitly, they were adopted and 
embedded. Whatever the source, and even supposing 
that all those where validity has meaning, were valid at 
the time when relevant decisions were taken, they may 
become invalid as a consequence of changes in the 
domains within which the software executes, with 
which it interacts and which it supports. E-type system 
execution will, inevitably, be influenced to some degree 
by invalid assumptions. Given that the number of 
assumptions is uncountable, one cannot, a priory, know 
absolutely which are invalid and what the impact of 
such invalidity will be. The degree of satisfaction 
derived from execution of an E-type system cannot be 
predicted or guaranteed. 

THE WIDER IMPACT OF ASSUMPTIONS 

The above reasoning reflects the phenomenology 
underlying the principle of software uncertainty. Except 
for inferences 7 and 8 reasoning based on the lists 1 to 3 
is, in fact, believed to suffice for a proof of the 
principle. This is not just of theoretical interest, but has 
important practical implications. Before addressing that 
issue, one point must be noted. In all the software 
systems recently examined that failed in development or 
use, it has been possible to show that the underlying 
cause of unsatisfactory operation or of failure was one 
or more implied assumptions that from the outset were 
unjustified, or that became invalid as a result of changes 
external to the software system (see footnotes to 
preceding section). There are good reasons to believe 
that this observation may, in fact, be generalised and 
applied to a high proportion of software, computer and 
computerisation project failures. They may be explained 
by assumptions about one aspect or another of the total 
computerisation process12. Clearly, assumptions play a 
critical role in the conception, birth, life and death of 
software systems. Hence, as many as possible must be 
identified, captured, questioned, confirmed and 
reviewed when adopted, as appropriate, thereafter. 
Moreover such justification must not concentrate on 
circumstances as they are then. The nature and direction 
of possible future changes, and their likelihood, must 
also be taken into account. Anything influencing 
viewpoints and decisions taken must be captured and 
stored in a way that will permit and trigger their review 
when external changes may have caused invalidity in 
the system. The frequency, times and extent of reviews, 
triggers for unscheduled reviews and so on will depend 
                                                           
9 Consider, for example, the failure of the London Ambulance Service 

Computer Aided Despatch System in 1992 where ambulance drivers 
reactions and their inability to operate a complex interface whilst 
driving were overlooked in the requirements phase. There was an 
implicit assumption that they could [las]. 

10 Another example is provided by the Ariane 5 rocket disaster which 
took place during its maiden flight on 4 June 1996 [ari5] 

11 A third example is the initial failure, during commissioning of the 
LEP accelerator in 1989 [cer98] 

12 An investigation of this hypothesis is being planned for the 
Software Forensic Centre at Middlesex University  

on the criticality of the application, volatility of the 
domains, the likelihood of domain changes, domain 
sensitivity to error and so on. 

The real world is dynamic and many of its 
attributes are subject to continual change. Even 
conscious assumptions that were justified at the moment 
of adoption, can eventually become invalid. As for the 
unbounded unknowns who knows? Total management 
and control of assumptions, though the hope, is, in 
practice, not possible. Resource and time considerations 
limit the frequency and detail of assumption-database 
review to check for continuing validity, a need for 
correction. As in all engineering, compromises must be 
made, decisions taken and implemented. Given those 
cognitive and managerial constraints it must be accepted 
that an E-type system cannot be made or maintained 
absolutely valid and up-to-date. 

But in current practice, industrial or otherwise 
conscious, explicit and continual attention to 
assumptions is the exception rather than the rule. For 
example, with one exception [uch00], the authors do not 
know of any specified inspection procedures at any 
process stage that calls for systematic questioning, 
recording of assumptions and questioning of their 
continued validity. We must do better than that. The 
management of assumptions over system lifetime must 
become an essential part of every software process to 
maximise the likelihood of sustained satisfactory 
operation of the software as it evolves. 

The same is, of course, true of any engineering or 
other system development process. But at least one of 
the aspects in which software differs from physical and 
other systems relates directly to what may be termed the 
assumption challenge. Other than what is foreseen, pre-
defined and precisely built into the system and its 
software, one cannot, in general and with current 
programming technology, build in code flexibility and 
tolerance limits that permit detection of a need to adapt 
the system to an external change and trigger design and 
implementation of the necessary fixes or changes. 
Concepts of absolute fit, forced fit, flexibility, tolerance 
and tolerance limits do not apply to software systems, 
except to the extent that specific needs can be foreseen 
procedures to address them built (coded) into the 
system. Logical statements, the basic constituents or 
bricks of the system have a precise and unambiguous 
meaning whose impact on system behaviour, in a 
specific context, is inflexible. However minor the 
adjustment, if it has not been foreseen it cannot be made 
except through human intervention. The consequences 
of a misfit may be irrelevant, minor, inconvenient or 
catastrophic. They cannot, in general, be predetermined.  

Recognition of the role, largely inadvertent, played 
by assumptions in the exploitation of computers and in 
the lifecycle of E-type software explains a fact that has 
been recognised since computers came into common 
usage, the continuing, ubiquitous, need for, so called, 
software maintenance, updating and upgrading. 
Whenever used, computer systems must provide sound 
solutions to problems addressed and processes 



Integrated Design and Process Technology, IDPT-2003 
Printed in the United States of America, 2003 

2003 Society for Design and Process Science 
supported. It is stakeholder and, in particular, user 
satisfaction and assumption set validity that need to be 
maintained. 

A software system does not, in general, adapt itself 
to changing situations or domains, though auto-update 
and upgrade mechanisms, triggered internally to 
download and apply software changes supplied from 
outside the system come close to this. In applications 
such as safety critical or defence systems, and to the 
extent permitted by economic considerations, 
developers can provide mechanisms which, by applying 
the necessary software changes, can accommodate 
future foreseeable external changes. But it is the 
domains within which software systems operate that 
change, often in unforeseen ways. Situations where a 
need and an appropriate mechanised auto-change can be 
anticipated, are the exception rather than the rule. 
Human intervention is required to maintain stakeholder 
satisfaction, by system adaptation to ensure continuing 
consistency that meets changing needs and desires of 
stakeholders and to continue to support the operational 
domains satisfactorily. That may be achieved by 
changing software, documentation and/or usage 
procedures, evolving the total system, not by restoring 
the software to its pristine beauty, as is the case when 
physical artefacts are maintained. In a strict sense 
software does not decay and, therefore, need not be 
maintained in the conventional sense as applied to 
physical artefacts. It must be evolved to meet new 
circumstances, and to remain satisfactory to its users, to 
the community it serves directly and to society at large. 

The software uncertainty principle highlights the 
risks associated with reliance on software for critical 
real time control decisions – as in weapon systems for 
example. There might be, of course, reasons for doing 
so. But it must be understood and accepted that ignoring 
the inherent uncertainty that is involved and the 
implications of the evolutionary pressures and 
embedded assumptions that are intrinsic to computer 
systems poses challenging problems. Systems and 
systems of systems, that involve human activity, 
business (or other type of relevant) processes and 
software must be designed and operated as safely as 
possible, with software remaining the slave, not the 
master in the decision and implementation chains. 
Society ignores this fact of life at its peril. 

PRACTICAL IMPLICATIONS 

The text and listings that follow summarise some 
rules and tools for software evolution planning, 
management and control. Note that the items are not 
listed in any specific order. For more details and the 
derivation of the guidelines from empirical 
generalisations such as the laws, the reader may refer to 
earlier publications [leh01b]. Note, however, that 
progress has been made since these were published and 
the list provided here, though only illustrative, has been 
updated. 

As an introduction, a general observation is 
important. Much of what is listed may appear self 

evident. Many of the items are already widely 
recognised and accepted as good practice. Originality is 
neither made nor implied for any item. Their collective 
listing does, however, demonstrate that the conceptual 
framework and the phenomenological interpretations on 
which it is based reflect the real world phenomenon as 
obtained from and described by real world observation 
and data. This agreement between the empirical 
framework and accepted good practice serves as 
encouraging support and strengthens the confidence in 
the validity of that framework. In other words, the 
originality does not lie in individual recommendations 
but in that they have been derived from and fit in with a 
common conceptual base and framework. It is likely 
that they will eventually become theorems in or follow 
from a theory, hopefully formal. A potential for this 
theory to be extended to address mentioned. 

 
Assumptions Management 

The first group of recommendations to be listed 
relate to assumptions, to the demonstrated fact that an 
unbounded number of these will be reflected in any E-
type system. As discussed above, this empirical 
generalisation leads to the principle of software 
uncertainty. It also underlies the hypothesis that a 
primary source of software and software project 
misbehaviour or failure can ultimately be traced back to 
assumptions, explicit or implicit, conscious or 
unconscious, recorded or unrecorded, by commission or 
omission, that were never valid or, more likely, that 
have become invalid as a result of changes outside the 
software system. 
 
•  Identify, capture, structure, record and update all 

rationale, assumptions, decisions 
•  Institute periodic and event-triggered reviews and 

assessments to anticipate or identify any need for 
corrections to assumption set 

•  Review and revalidate whenever a change occurs/is 
made in program specification, design or 
implementation or occurs in operational domain 

•  Improve questioning of assumptions, for example, by 
using independent implementation, validation and 
inspection teams 

•  Make search for and questioning of assumptions in all 
inspections and validations a specific and required 
activity 

•  Where software operates in a rapidly changing 
domain or volatile environment complement detailed 
assumption review with re-writing of appropriate 
elements of the software 

•  Develop and use tool support for all of these activities 
 
Evolution Management 

The underlying theme of this paper is, of course, 
software evolution. Recommendations relating 
specifically to this include: 
 
•  Consistently assess and pursue anti-regressive 

activities [leh74] such as full documentation, 
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complexity control and other refactoring [fow99] 
activities which, though having no immediate 
stakeholder impact, facilitate future evolvability 

•  Ensure that documentation includes identification and 
recording of assumptions 

•  Exploit metrics technology as below 
•  Assess the likelihood of functional and non-functional 

evolutionary trends in advance and review as part of 
release planning, taking system, domain volatility into 
account 

•  Involve application, domain specialists in assessment 
•  When validating, check interaction with, impact on 

unchanged parts of system and impact of assumptions 
•  Establish baselines of key measures over time - to 

support evolution planning and control 
 
Release Management 
•  Observe safe change rate limits that indicate whether 

increments are safe, risky, unsafe as discussed in 
[leh01b] and that are related to standards recognised 
in statistical process control 

•  When large functional increments appear 
unavoidable, distribute across several releases as in 
Gilb’s evolutionary development [gil81] 

•  If excessive functional increments are unavoidable, 
plan for follow on clean-up releases 

•  Follow established software engineering principles - 
e.g., information hiding – to minimise spread of 
change between system elements 

•  Assign appropriate resources to anti-regressive active, 
for example, to control complexity and its growth 

•  Consider the alternation of enhancement and 
extension with clean-up and restructuring releases 

•  When managing releases take the key role played by 
assumptions into account 

 
To support all of the above activities one should make 
provision for: 
 
Metrics and Modelling 
•  Develop tools to support data collection, modelling, 

and related activities 
•  For both the system and its parts, acquire, plot, model, 

interpret historical evolution data and determine 
trends, patterns, growth and their rates of change 

•  Progressively recalibrate and validate models as new 
data becomes available to reflect changes in the 
application, environments, process, evolution patterns 

•  Model and exploit the dynamics of global process to 
improve planning and process, identify interactions, 
assess and optimise policies, control strategies 

FURTHER WORK 

The early and more recent studies referred to in this 
paper concentrated on systems developed under 
industrial software process paradigms variants and 
extensions of the waterfall model [roy70]. With one 
exception [pir88], it was, however, not possible to 

investigate and relate differences in the details of the 
evolutionary patterns of individual systems to the 
domains in which they were developed or the type of 
applications in which they were used. Results from such 
investigation could make a major contribution to the 
software process improvement process. Some 
preliminary investigations of the evolutionary behaviour 
of open source software [pir88, gdf00,bau03] have been 
undertaken by others. But general validity of the 
observation that ‘software evolution is driven by similar 
forces’ in the context of newer paradigms such as object 
oriented, open source, agile programming and COTS-
based development cannot be taken for granted. When 
sufficient data of such wider studies become available, 
results obtained to date will certainly need modification 
and, probably, extension. But theoretical reasoning (see 
for example [leh00b]) suggests that the underlying 
evolution phenomenon will persist. If and when this is 
confirmed the more extensive results will widen the 
scope of validity of the contemplated theory of software 
evolution. 

In this paper, the discussion has mainly referred to 
the evolution of software as reflected in a series of 
releases or upgrades. Evolution that closely affects the 
continuing value, quality, cost and/or timeliness of 
software can and does, however, occur at many product 
and process levels [leh02c]. 

A fuller discussion of the levels, the role and the 
wider impact of evolution may be found in [leh02c]. 
Changes at any of these levels may have an impact on 
E-type software product properties or behaviour. 
Potential impact must be identified and considered 
during conception, specification, design, planning, 
management and execution of the processes that 
develop the products and maintain the software 
operationally satisfactory in a changing world. Hence, 
empirical study of the evolution phenomenon at all its 
levels is of considerable interest. 

The extension of results of software-related 
investigations to the evolution of other artificial [sim69] 
systems or even, more broadly to other areas as 
exemplified in the introduction to this paper is likely to 
lead to further conclusions. But that remains to be 
demonstrated. 

FINAL REMARK 

Software evolvability, the ability, inter alia, for 
responsiveness and timely implementation of needed 
changes, will play an increasingly more critical role in 
ensuring the survival of a society ever more dependent 
on computers. This requires means to ensure timely 
adaptation of the ever more integrated computer 
systems to maintain compatibility between the sub-
systems and the forever changing circumstances with, 
within and under which they operate. The goal here has 
been to convince the wider Computer Science and 
Software Engineering community that study of the 
software evolution phenomenon is of theoretical and 
practical importance and must be widely pursued. 
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