
Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science

Software Evolution – Background, Theory, Practice

Meir M Lehman
School of Computing
Middlesex University
Bounds Green Road

London N11 2NQ, U.K.
tel. +44-20-8411 4225 fax +44-20-8411 6411

mml@mdx.ac.uk
http://www.cs.mdx.ac.uk/staffpages/mml/

Juan F Ramil

Computing Dept.
Faculty of Maths and Computing

The Open University
Walton Hall, Milton Keynes MK7 6AA, U.K.
tel. +44-1908-65 4088 fax +44-1908-65 2140

j.f.ramil@open.ac.uk
http://mcs.open.ac.uk/jfr46

ABSTRACT
This paper presents a brief summary of a 35 years study
of the software process and the software evolution
phenomenon. It draws attention, inter alia, to the SPE
program classification, a principle of software
uncertainty and laws of software evolution. Recent
studies have led to refinement of earlier conclusions and
provided a basis for formation of a theory of software
evolution. Management rules and guidelines derived
during the empirical FEAST studies, which are
candidate theorems in the proposed theory, are briefly
outlined to demonstrate that the topic has practical as
well as theoretical significance. Rather than in depth
discussion, this paper provides an introductory overview
intended to encourage wider study, research and
development

Keywords: the software process, assumptions, software
engineering, implementation and evolution, laws and
theory of software evolution, the uncertainty principle,
best practice, management rules and guidelines

INTRODUCTION – THE EARLY DAYS

The term evolution describes a class of phenomena
observable in many different domains, concrete and
abstract. It can involve entities or sets of entities such as
natural species, societies, cities, artefacts, concepts,
theories, ideas. If any of these undergo continual
progressive change in one or more of their attributes
they are said to evolve over time. Change is defined as
progressive if it results in improvement in some sense.
Such improvement may, but need not, include the
emergence of new properties.

Often, the change will be driven by a need to adapt
the individual entity, or a class as a whole, so as to
maintain or improve its fitness within a changing
environment or circumstances. The change may make
the entity, or class of entities, more useful or
meaningful, or increase its value in some other sense. It
may also remove properties that are no longer of value
or otherwise inappropriate. Radical or fundamental
changes are, in general, not considered evolutionary
changes. The latter are generally incremental and small
relative to the entity or class as a whole, but exceptions
may occur.

This general definition of evolution is also
appropriate for real world, that is E-type [leh85],

software evolution. The latter has been consistently
experienced over many years as evidenced by
observations and data acquired by the present authors,
their associates and others. The software evolution
phenomenon was first identified in the late 60s [leh69]
though not termed evolution till later [leh74]. Its study
was pursued intermittently during the 70s, with early
results collected together in [leh85]. The work that led
to its discovery and exploration had been seeded by a
nine month 1968/9 study of the IBM programming
process [leh69,85]. The outcome of that study, recently
judged to be as relevant today as it was then, led to the
Lehman-Belady collaboration [leh85]. It concentrated
primarily on measuring and interpreting the growth of
software systems and evolutionary trends in other
evolutionary attributes using both real and pseudo-time
(rsn or release sequence numbers [cox66]) measures.

The data that triggered the studies was obtained
from IBM’s OS/360-70 operating system. Data from
other systems [leh78,80a,b,85] followed. These early
studies concentrated on the evolutionary behaviour of
what were then termed large1 software systems and on
the organisations that developed, maintained and
evolved them [bel71,72, leh85]. The overall picture
revealed a degree of discipline exemplified by
similarities between growth trends of different systems.
This suggested that underlying the detailed evolution of
each specific system there is a common phenomenon
that can be systematically studied and modelled. The
resultant models could then be used to forecast future
system growth and growth rates.

The software process is conceived, directed,
planned, managed, implemented and controlled by
humans. At each stage of the process their decisions are
assumed to drive and direct the process and determine
product properties. In general management decisions are
different from one situation to another and are expected
to be dominated by the pressures of the moment, with
these divergence possibly amplified by the subjective
component in every the decision making, Thus,
evolutionary behaviours should vary significantly from
application to application, organisation to organisation,
system to system, time to time and release to release.

1 The term large is, generally, used to describe software whose size in

number of lines of code is greater than some arbitrary value. For
reasons indicated in [leh79], it is more appropriate to define a large
program as one developed by processes involving groups with two or
more management levels.

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
The discovery of high level similarities in the
evolutionary patterns of software addressing a widening
spectrum of applications, development, marketing and
user organisations and the emergence of common
phenomenological interpretations contradicted this
expectation. Instead, it suggested that similar underlying
forces, drove evolutionary growth. It was suggested that
the system of systems formed by the evolving software
and the organisations involved in or relating to its
evolution and usage constitute and behave like a
feedback system; more precisely a self-stabilising
[bel76], multi-level, multi-loop multi-agent, feedback
system [leh94].

The models developed were relatively simplistic,
limited in particular, by data availability. However, the
investigations were not circumscribed to modelling and
analysis of growth data and the dynamics of growth.
They also included, for example, search for conceptual
and theoretical models reflecting understanding of the
phenomenon and the forces driving it [e.g. bel72]. This
led to significant advances in understanding of the
phenomenology as encapsulated in laws of software
evolution [leh85]2. It also triggered a terminological
change from software growth dynamics to software
evolution [leh74].

THE SECOND WAVE

The early work outlined above went largely
unnoticed by the mainline Computer Science and
Software Engineering communities. Gradually,
however, the phenomenon began to attract other
investigators [e.g. kit82, law82]. A major conceptual
advance came with formulation of the software
uncertainty principle [leh89,90,02a], the FEAST
(Feedback, Evolution And Software Technology)
hypothesis and the FEAST projects [leh96b,98]. The
overall results of these studies and many of the
conclusions to which they led have been widely
reported [e.g. leh01a,b,02a,b,c, website]. Their wider
impact include implications to real world computer
usage. In particular, the insight that followed is very
relevant to the growing and active interest in software
process improvement.

EVOLUTION: PHENOMENON AND ACTIVITY

It is now widely accepted that software evolution
may be systematically studied. There are, however, two
aspects to such study. What has been termed a nounal
view of evolution [leh00a], focuses on the nature of
evolution, its causes, properties, characteristics,
consequences, impact, management, control and
exploitation. One may also adopt a verbal view [leh00a]
concerning oneself with providing and improving

2 Termed laws instead of, for example, observations or hypotheses,

because they reflect organisational, economic and social pressures
leading to evolutionary behaviours which are largely independent of
the individuals, organisations and domains involved in the evolution
of the E-type systems studied [leh74].

means, processes, activities, languages, methods, tools
for example, whereby evolution is implemented.

These views are mutually supportive. Both are
necessary and becoming increasingly important as
society becomes ever more dependent on computers,
and hence on software. As suggested by fig. 1, the need
for continual change and adaptation of real world
software in response to computer usage and changes in
the applications and domains in which they are applied
is inevitable and continual. The acts of developing,
installing and using the computer system changes both
the application and the domain within which it operates,
which it influences, and, to some extent, controls.

Figure 1 – Feedback: a driver of software evolution

System functionality and behaviour must keep pace
with all changes. Defects must be fixed, parameters
adjusted, functionality refined and extended,
performance improved. The system must be adapted to
accommodate operational extension, the need and desire
for changes to existing features and for new capability.

As business operation, and organisational behaviour
become ever more dependent on software, the
consequences of a delay in keeping the system in tune
with its changing purpose and domains range from
frustration to disaster. Any improvement in means to
support evolution will, in general, have an impact on
quality, usability, timeliness, economic benefit, risk
mitigation and so on, that is, on user satisfaction.

Increased understanding of the characteristics,
nature and impact of evolution, on the other hand, will
benefit the software process, evolution planning,
process management and process improvement
[leh01b]. Insight into the causes, properties and
implications of software evolution will make planning,
control, execution of process improvement more
systematic and effective. It will indicate into the types
of activities, methods and tools required, which are
likely to be most beneficial, when and how they should
be used and how they relate to one another. Studies of

Application
concept

Application domain

Stepn Step 2

Step 1

Stepi Stepi+1

Exogenous
change

Program
Operational

Program

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
the two views of software evolution must move forward
together. Progress in this direction will help
development of a theoretical base and framework and
accelerate that process.

The approach to the study by Lehman and his
collaborators assumed the nounal interpretation. The
behavioural similarities across a variety of software
systems, has led to the construction of growth models of
the same form derived from empirical data though
model parameter values are specific to each system
[leh97, website]. The identification of qualitatively
similar [ram03a,b] but staged [ben00] growth patterns
and the resultant significant improvement of model
predictive power has further increased confidence in the
reality of the phenomenon and in the models.

Fitting models to various attributes, combining data
and other evidence from different studies, identification
of differences, resolution of apparent incompatibilities,
understanding the characteristics of individual stages,
interpretation of observations [ram03a,b], all raise non-
trivial issues requiring further investigation.
Appreciation of these challenges has not, however,
undermined confidence in the results. The qualitative
commonalities in the evolution of so many E-type
systems provide a solid basis for confidence.

LAWS OF E-TYPE SOFTWARE EVOLUTION

The laws already mentioned, reflect the observed
evolutionary behaviour of large E-type3 software
systems and processes implementing their evolution.
They are currently stated in natural language and
encapsulate aspects of the common behaviour of many
disparate systems. Evolutionary forces and constraints
arise from human ambitions, competitive pressures,
needs for sustained profitability of the organisations
involved, the limited pool of human resources and
expertise available for implementing evolution. Forces
relating to technological aspects such as language and
tool properties, usage and availability complement
these. The former appear to have a far greater influence
on the evolutionary behaviour described by the laws
than the latter that exemplify the specifics of the
technology. This conclusion, is, at first sight, counter-
intuitive. It is believed to be one of the most significant
new insights to emerge from the recent studies.

Over the years the laws have been refined and
extended. The changes were driven by interpretation of
models of additional data that had become available. A
recent public discussion [icsm02] demonstrated broad
consensus as to their continuing relevance. It is not the
validity of the laws that still needs demonstration but
their domain of relevance. As indicated above, it is the
relevance of the laws to individual paradigms and how
statement of the laws needs to be adjusted to widen their
applicability which requires further behavioural data

3 The SPE application and software classification scheme is now well

recognised and need not be discussed here. Further details may be
found in the references cited above [e.g. leh85,02a].

and study. More detail is available in the published
literature [leh74,78,80a,b,96a,97, ram02,03a,b].

The laws of software evolution were individually
identified, formulated and presented over a twenty-year
period. Possible relationships between them were only
casually considered. It was the formulation of the
FEAST hypothesis and its restatement as the eighth,
Feedback System, law that suggested that the feedback
nature of the process could lie at the root of such
relationships. That law was seen as the cornerstone of a
theoretical framework and to better understanding of the
inter-relationships between the laws.

Criticism of the laws and the alleged empirical
support [law82, pir88, gdf00] has been based on various
grounds. As a result of the FEAST studies some of these
issues are now better understood [ram02] and can now
be addressed and refuted [smi02, ram03a,b].

Amongst the concerns was the question whether
laws could addressed a phenomenon, software
evolution, whose activity is conducted by and dependent
on human intellectual processes, decision taking and
implementation. Critics also suggested that it was
inappropriate to term the observations laws. However,
as indicated in footnote 2, it was pointed out [leh74] that
the statement of the laws reflect phenomena beyond the
immediate control of those implementing system
evolution. The statements emerge from observation of
behavioural phenomena in the real world of software
development and evolution and reflect the attitudes and
behaviours of many groups and individuals engaged
directly in software creation and evolution. They also
relate to managers and, via feed forward and feedback,
to other stakeholders in the end product. While locally
significant, they appear to have, at most, a second order
influence in the long term evolutionary trajectory of the
system considered as a whole. That is, the activities of
individuals directly involved in evolution activities are,
in general, restricted to local areas of the evolving
system. The drivers that underlie observed behaviours,
as described for example by the laws, stem from group,
organisational and societal behaviours and the multi-
level, multi-loop, multi-agent feedback information and
control network that links, aggregates and constrains
them. The individuals involved in the process each have
their area of experience and expertise. No matter the
degree of experience and understanding of individuals
and groups, no matter the methods and tools used, the
scope and impact of action is constrained by complex
relationships between them as aggregated, mitigated,
constrained and directed by the feedback network
structure of the evolution process, organisational inertia
and the related dynamics of evolution.

Software engineers do not, in general, have the
viewpoints, knowledge, experience or time to explore
potential benefits of exploiting the feedback system
properties of the software process. The causes of the
behaviours and phenomena addressed by the statements
will, in general lie outside their range of expertise. In
general, they can do little or nothing to modify the
behaviours implied by the laws. The behavioural

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
assertions relate to market and economic forces,
societal, organisational and group behaviour and, at
least for the moment, must be accepted as laws, as
forces that must be accepted.

As knowledge and understanding of the
phenomenon increases and software engineering
education is extended, organisational and process
improvements and new forms of technology may help
overcome some of the behavioural limitations and
constraints reflected by the laws. As paradigms evolve
and new approaches adopted, evolutionary behaviour of
software systems may change. The laws as now stated
may then require modification. New ones may be added,
some dropped. However, it has been reasoned [e.g.
leh00b], that, in the long run, such adjustments are
likely to be minor.

In summary, the specifics of the laws as presently
stated may be questioned but the fact that it is
meaningful to formulate and acknowledge such laws
and that, in practice, they must be taken into account is
now widely accepted [e.g. icsm02, bau03]. The
phenomena addressed by them impact process planning,
control and improvement. Their role in development of
software evolution theory is likely to be significant.

AN APPROACH TO THEORY FORMATION

The approach to the study of software evolution
taken in FEAST and earlier work was inspired by the
traditional view of the scientific method. This involves
empirical observation, measurement, hypothesis testing,
phenomenological interpretation, further observation to
confirm or reject the interpretation an so on. This
approach includes Kelvin’s much quoted statement that:

“…first essential step in the direction of learning
any subject is to find principles of numerical reckoning
and practicable methods for measuring some quality
connected with it. I often say that when you can
measure what you are speaking about, and express it in
numbers, you know something about it; but when you
cannot measure it, when you cannot express it in
numbers, your knowledge is of a meager and
unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely in your thoughts
advanced to the state of Science, whatever the matter
may be.” [kel].

Given the numbers that result from such
measurement, one looks for patterns, regularities, and
trends that provide inputs for development of
preliminary hypotheses, phenomenological and
mathematical models. At any point in time, available
mathematical approaches may prove inadequate. Thus
scientific advances are, often, accompanied by
development of new mathematical concepts and tools.
Given appropriate models, one searches for
interpretations in the domain of interest, refines
hypotheses and extends them individually or as a set.
Further observation and, when possible, real or
synthetic experiments may support or reject these.
Validation or rejection follows. As the number of and
confidence in hypotheses builds up, one looks for

relationships and develops the seeds of a theory from
the collection of observations and inferences. The latter
constitute the seeds of the developing theory, driving an
iterative search for new data, hypotheses, refinement
and theory extension.

Application of this approach to the study of
software evolution is, however, limited by the paucity of
data that limits statistical analysis, interpretation of
experiments and scaling up the results to industrial
levels.

A THEORY OF SOFTWARE EVOLUTION

For many years now it has been observed that, apart
from that provided by programming methodology as
established by the work of WG 2.3 [ifip], software
engineering has no solid theoretical base [e.g. nau68,
leh85, ben00]. The former is vital in guiding the
structure, implementation and underlying quality of the
evolving software products, the evolvability of the
resulting wider system. It lies at the heart of improving
the means whereby evolution can be effectively
achieved. But, though critical, programming
methodology plays a relatively local part in the process.
As indicated by FEAST results and also by other
observers, long-term evolvability and the pattern of
evolution is likely to be heavily dependent on more
global mechanisms and subject to behaviours implied
by the laws. The former include forward and feedback
loops and mechanisms that involve players such as
business executives, other stakeholders in the total
evolution process, individual and organisational users,
governments and economies. All influence disciplined
and sustained improvement of the global software
processes, system evolvability and the direction and rate
of system evolution. A sound conceptual base with
predictive and explanatory power, would contribute
significantly to integration of these many influences,
strengthen software engineering in general and guide
improvement of software evolution processes.

The history of science reflects many different ways
of achieving an empirically grounded theory applicable
to a natural, artificial or hybrid phenomenon. One
particular approach, relevant to the search for a software
evolution theory, is that emanating from Carnap’s work
on theory formation [car66]. The envisaged theory is to
be based on observation, hypotheses and assumptions.
In particular, recent wide consensus expressed regarding
relevance and potential value of the laws of software
evolution4 as well as the principle of software
uncertainty suggests that one may start by considering
these as empirical generalisations as defined by him.
Additional conclusions of the nounal aspects of
software evolution studies should lead to a fuller set to
include other generalisations of repeated real world
observations of software evolution processes and
evolution of their products. These can be supplemented
by generalisations about the domains in which software
is developed, used and evolved. Together with insight

4 For example, as expressed recently [icsm02].

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
and understanding of the phenomenology reflected and
relationships and dependencies identified, they provide
a basis for the development of an encompassing theory.
Confirmation obtained from the developing theory by
further observation of the real world then provides
partial validation, increasing confidence in the validity
of the developing theory to the level of detail reached
and over the domain in which the observations were
made. Given such a partial theory one may then seek to
formalise and extend it. This may involve refinement or

rejection of previously formulated empirical
generalisations, identification of additional ones,
derivation of implications and formalisations to produce
definitions, axioms and theorems. Iteration and
continuing experimentation then permits the
development of a fuller, but never complete, theory
accepted as valid until shown to be inadequate or
incorrect. The main activities involved in the proposed
theory formation approach are depicted in figure 2.

Figure 2 – An approach to the formation of a theory of software evolution

The initial step in implementation of this formation
process requires formal definition of terms used, or their
acceptance, at least temporarily, as undefinable, but this
remains a challenge. All are candidate formalisable
generalisations. Once begun, one can initiate selection
and statement of axioms followed by the identification
and proofs of theorems. An outline proof of the software
uncertainty principle has been generated [leh01a] and
will be used as an example of the approach. Its
completion and formalisation awaits wider discussion,
formal definition of the terms used in its statement and
progress in the formation process.

Given an emerging theory, one may then formally
develop its interpretations in the real world of industrial
software development and derive practical implications
for the planning, management, control and evaluation of
system evolution, vital activities in a society ever more
dependent on computers and their software. At present,
improvement of these and other aspects of the software
process is largely achieved informally, often intuitively.
The research approach outlined above has the potential
to merge the search for full understanding of the
software evolution phenomenon and the development of
effective, reliable, predictable and on time means for its
achievement.

The above generalisations provide initial inputs for
development of an empirical theory and its formation as
a formal theory. Rooted in earlier findings,
supplemented by the results of the FEAST projects, the
efforts of other groups in Europe, North America and
Japan, and the related insight and understanding
achieved, development of a such a theory appears to be
within reach [leh01a,c]. Its development could represent
a first step in the development of a more general theory

to support the discipline of Software Engineering.
Moreover, software has long been regarded as the fruit
fly (Drosophila) of artificial systems [sim69]. Thus such
a theory could, in turn, provide an input to the
development of a general theory of artificial systems
[sim69] evolution. But, if at all feasible, that is many
years, possibly decades, away from realisation.

EXAMPLE

Any approach to theory formation begins with
formulation of a set of definitions, to be revised and
extended as development proceeds. The latter is seeded
by empirical observation of the phenomenon to be
reflected. Interpretation leads to assumptions judged
reasonable in relation to the domain being addressed.
These become the source for the derivation of
inferences. The initial set of definitions provides the
base of an emerging theory that, eventually, one will
seek to formalise, in part or completely. Together with
the observations and assumptions they constitute axioms
from which new and established implications may be
formally derived as theorems. In the absence of such
derivation the observations remain, at best, hypotheses.
Practical application such as, for example, methods and
guidelines for program development and management
then be derived from all of these as corollaries.

The practical aspects of this approach to theory
formation are illustrated by the lists that follow. These
provide definitions, observations and implications that
are believed to suffice for a formal proof of the principle
of software uncertainty [leh90]. The derivation of such a
proof must await more complete definition and
formalisation and could not yet been undertaken.

Observational

Theoretical

Two levels

Initial
Data

Determination
of Rules, Guidelines

Definitions,
Empirical

Generalisation

Continued
Observation

Formal Theory
Formation

Interpretation
Explanation
Modelling
Prediction

Observational

Theoretical

Two levels

Initial
Data

Determination
of Rules, Guidelines

Definitions,
Empirical

Generalisation

Continued
Observation

Formal Theory
Formation

Interpretation
Explanation
Modelling
Prediction

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
• The real world encompasses the entire universe and all

happenings in it
• E-type operational domains and their attributes are,

respectively, sub-domains and sub-sets of the real world
and its attributes

• An E-type application addresses a problem or supports
an activity in a specified E-type operational domain

• An E-type specification abstracts an E-type application,
representing in a set of statements the recognised
attributes required to define a solution in accord with the
application needs or terms of reference

• An E-type program is a set of computer executable
instructions defining a solution to an E-type application5

• A program is satisfactory as long as it is compatible with
the solution required and the operational domains within
which it is executed

List 1 – Provisional Definitions

• The real world has an unbounded number of attributes
• It is dynamic with attributes continually changing
• It may be partitioned in an unbounded number of ways

into domains that, in general, each possess an unbounded
number of attributes

• The designed and implemented attribute set of an E-type
program, as distinct from the totality of attributes of such
programs in execution, is necessarily bounded

• Attributes of an E-type application must be appropriately
addressed in the implementing program to make the
latter satisfactory

List 2 – Observations

Every E–type operational domain, though abstracted by a
finite specification, has an unbounded number of attributes6

• By design and implementation E–type specifications and
programs have a bounded number of attributes which
reflect an unbounded number of assumptions (at least
one per each unaddressed attribute)7

• Every E–type program is essentially incomplete and
there will be attributes of the operational domain not
addressed by it

• Assumptions about the operational domain reflected in
E-type specifications and programs may become invalid
as a consequence of changes in the real world so
invalidating either one or both

• Though both are models of the same specification, an E–
type program and its operational domain may be or may
become incompatible

• E-type program execution entails a degree of
uncertainty, sustained satisfaction cannot be guaranteed8

• Program evolution activity consists primarily of
maintenance of the validity of the assumption set
reflected in it

• Progressive change, that is evolution, of E-type
programs is inevitable if satisfaction is to be maintained

List 3 – Inferences

5 A program also is a model of an E-type specification.
6 Some of which will change with usage and the passage of time.
7 The assumptions issue is exemplified towards the end of the paper

by three identified examples. The examples are the failure of the
London Ambulance Service software, the Ariane 5 rocket disaster
and the initial failure, during commissioning, of a new CERN
accelerator.

8 That is, sustained compatibility between the program and application
it addresses, the domains within which it is executed.

PRINCIPLE OF SOFTWARE UNCERTAINTY

As already indicated, the proposed theory is not
only of theoretical import. It, and theorems developed in
it, should constitute a rich source of proposals for
improvement of software development and evolution
processes and for the derivation of best practice
guidelines. This potential may be exemplified by
pointing the reader to technical and management
guidelines derived from the laws [leh01b] their practical
implications and the principle of software uncertainty,
as briefly discussed below. That analysis introduces,
inter alia, the impact of assumptions on computer
software, computer systems and their users. This topic is
worthy of much wider attention than it has, with some
exceptions [uch00], received. It provides just one,
specific, example of the potential practical significance
of the results of the studies based on the nounal
interpretation of software evolution with its final
outcome the formation of a conceptual framework
encapsulated in a theory of software evolution. Mention
of assumptions also draws attention to a neglected
phenomenon with major practical consequences.

A central ingredient of an informal demonstration
[leh01a] of the validity of the principle of software
uncertainty, as illustrated here by the most recent
outline of lists 1 – 3, is the observation that all E-type
software has embedded within it reflections of an
uncountable number of assumptions. These will have
been adopted by commission or omission, consciously
or unconsciously, be known or unknown documented or
undocumented. Their presence and inevitability follows
from the fact that any real world computer application
and its operational domain each have a potentially
uncountable number of properties. Having been
developed by humans, with finite resources in finite
time, the static software (as distinct from the software in
execution) on the other hand has a finite number of
attributes as determined in the design and
implementation processes. As a finite model-like
reflection of unbounded domains, E-type software is,
essentially, incomplete. It reflects an unbounded number
of assumptions [leh02a] generated by the abstraction
process that determines system needs, requirements and
a, partially explicit, partially implicit system
specification from the initial real-world application
concept and the subsequent design and implementation
process.

Assumptions may relate to the application being
addressed, to software functionality, application systems
within which it executes, computer systems on which it
runs, geographical, economic and societal domains on
and in which it operates and which it supports, the
processes by which it is produced, adapted and evolved
and so on. Some will have been subjected to review.
Others will be the consequences of decisions taken
during system conception, specification, design,
implementation, installation and operation. Others will
be the result of overlooking or being ignorant of facts or
situations that can affect the workings of the software,

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
the results of execution or its impact on the operations
or domains served9 10 11. Still others will have appeared
entirely inconsequential or irrelevant at the time at
which, implicitly or explicitly, they were adopted and
embedded. Whatever the source, and even supposing
that all those where validity has meaning, were valid at
the time when relevant decisions were taken, they may
become invalid as a consequence of changes in the
domains within which the software executes, with
which it interacts and which it supports. E-type system
execution will, inevitably, be influenced to some degree
by invalid assumptions. Given that the number of
assumptions is uncountable, one cannot, a priory, know
absolutely which are invalid and what the impact of
such invalidity will be. The degree of satisfaction
derived from execution of an E-type system cannot be
predicted or guaranteed.

THE WIDER IMPACT OF ASSUMPTIONS

The above reasoning reflects the phenomenology
underlying the principle of software uncertainty. Except
for inferences 7 and 8 reasoning based on the lists 1 to 3
is, in fact, believed to suffice for a proof of the
principle. This is not just of theoretical interest, but has
important practical implications. Before addressing that
issue, one point must be noted. In all the software
systems recently examined that failed in development or
use, it has been possible to show that the underlying
cause of unsatisfactory operation or of failure was one
or more implied assumptions that from the outset were
unjustified, or that became invalid as a result of changes
external to the software system (see footnotes to
preceding section). There are good reasons to believe
that this observation may, in fact, be generalised and
applied to a high proportion of software, computer and
computerisation project failures. They may be explained
by assumptions about one aspect or another of the total
computerisation process12. Clearly, assumptions play a
critical role in the conception, birth, life and death of
software systems. Hence, as many as possible must be
identified, captured, questioned, confirmed and
reviewed when adopted, as appropriate, thereafter.
Moreover such justification must not concentrate on
circumstances as they are then. The nature and direction
of possible future changes, and their likelihood, must
also be taken into account. Anything influencing
viewpoints and decisions taken must be captured and
stored in a way that will permit and trigger their review
when external changes may have caused invalidity in
the system. The frequency, times and extent of reviews,
triggers for unscheduled reviews and so on will depend

9 Consider, for example, the failure of the London Ambulance Service

Computer Aided Despatch System in 1992 where ambulance drivers
reactions and their inability to operate a complex interface whilst
driving were overlooked in the requirements phase. There was an
implicit assumption that they could [las].

10 Another example is provided by the Ariane 5 rocket disaster which
took place during its maiden flight on 4 June 1996 [ari5]

11 A third example is the initial failure, during commissioning of the
LEP accelerator in 1989 [cer98]

12 An investigation of this hypothesis is being planned for the
Software Forensic Centre at Middlesex University

on the criticality of the application, volatility of the
domains, the likelihood of domain changes, domain
sensitivity to error and so on.

The real world is dynamic and many of its
attributes are subject to continual change. Even
conscious assumptions that were justified at the moment
of adoption, can eventually become invalid. As for the
unbounded unknowns who knows? Total management
and control of assumptions, though the hope, is, in
practice, not possible. Resource and time considerations
limit the frequency and detail of assumption-database
review to check for continuing validity, a need for
correction. As in all engineering, compromises must be
made, decisions taken and implemented. Given those
cognitive and managerial constraints it must be accepted
that an E-type system cannot be made or maintained
absolutely valid and up-to-date.

But in current practice, industrial or otherwise
conscious, explicit and continual attention to
assumptions is the exception rather than the rule. For
example, with one exception [uch00], the authors do not
know of any specified inspection procedures at any
process stage that calls for systematic questioning,
recording of assumptions and questioning of their
continued validity. We must do better than that. The
management of assumptions over system lifetime must
become an essential part of every software process to
maximise the likelihood of sustained satisfactory
operation of the software as it evolves.

The same is, of course, true of any engineering or
other system development process. But at least one of
the aspects in which software differs from physical and
other systems relates directly to what may be termed the
assumption challenge. Other than what is foreseen, pre-
defined and precisely built into the system and its
software, one cannot, in general and with current
programming technology, build in code flexibility and
tolerance limits that permit detection of a need to adapt
the system to an external change and trigger design and
implementation of the necessary fixes or changes.
Concepts of absolute fit, forced fit, flexibility, tolerance
and tolerance limits do not apply to software systems,
except to the extent that specific needs can be foreseen
procedures to address them built (coded) into the
system. Logical statements, the basic constituents or
bricks of the system have a precise and unambiguous
meaning whose impact on system behaviour, in a
specific context, is inflexible. However minor the
adjustment, if it has not been foreseen it cannot be made
except through human intervention. The consequences
of a misfit may be irrelevant, minor, inconvenient or
catastrophic. They cannot, in general, be predetermined.

Recognition of the role, largely inadvertent, played
by assumptions in the exploitation of computers and in
the lifecycle of E-type software explains a fact that has
been recognised since computers came into common
usage, the continuing, ubiquitous, need for, so called,
software maintenance, updating and upgrading.
Whenever used, computer systems must provide sound
solutions to problems addressed and processes

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
supported. It is stakeholder and, in particular, user
satisfaction and assumption set validity that need to be
maintained.

A software system does not, in general, adapt itself
to changing situations or domains, though auto-update
and upgrade mechanisms, triggered internally to
download and apply software changes supplied from
outside the system come close to this. In applications
such as safety critical or defence systems, and to the
extent permitted by economic considerations,
developers can provide mechanisms which, by applying
the necessary software changes, can accommodate
future foreseeable external changes. But it is the
domains within which software systems operate that
change, often in unforeseen ways. Situations where a
need and an appropriate mechanised auto-change can be
anticipated, are the exception rather than the rule.
Human intervention is required to maintain stakeholder
satisfaction, by system adaptation to ensure continuing
consistency that meets changing needs and desires of
stakeholders and to continue to support the operational
domains satisfactorily. That may be achieved by
changing software, documentation and/or usage
procedures, evolving the total system, not by restoring
the software to its pristine beauty, as is the case when
physical artefacts are maintained. In a strict sense
software does not decay and, therefore, need not be
maintained in the conventional sense as applied to
physical artefacts. It must be evolved to meet new
circumstances, and to remain satisfactory to its users, to
the community it serves directly and to society at large.

The software uncertainty principle highlights the
risks associated with reliance on software for critical
real time control decisions – as in weapon systems for
example. There might be, of course, reasons for doing
so. But it must be understood and accepted that ignoring
the inherent uncertainty that is involved and the
implications of the evolutionary pressures and
embedded assumptions that are intrinsic to computer
systems poses challenging problems. Systems and
systems of systems, that involve human activity,
business (or other type of relevant) processes and
software must be designed and operated as safely as
possible, with software remaining the slave, not the
master in the decision and implementation chains.
Society ignores this fact of life at its peril.

PRACTICAL IMPLICATIONS

The text and listings that follow summarise some
rules and tools for software evolution planning,
management and control. Note that the items are not
listed in any specific order. For more details and the
derivation of the guidelines from empirical
generalisations such as the laws, the reader may refer to
earlier publications [leh01b]. Note, however, that
progress has been made since these were published and
the list provided here, though only illustrative, has been
updated.

As an introduction, a general observation is
important. Much of what is listed may appear self

evident. Many of the items are already widely
recognised and accepted as good practice. Originality is
neither made nor implied for any item. Their collective
listing does, however, demonstrate that the conceptual
framework and the phenomenological interpretations on
which it is based reflect the real world phenomenon as
obtained from and described by real world observation
and data. This agreement between the empirical
framework and accepted good practice serves as
encouraging support and strengthens the confidence in
the validity of that framework. In other words, the
originality does not lie in individual recommendations
but in that they have been derived from and fit in with a
common conceptual base and framework. It is likely
that they will eventually become theorems in or follow
from a theory, hopefully formal. A potential for this
theory to be extended to address mentioned.

Assumptions Management

The first group of recommendations to be listed
relate to assumptions, to the demonstrated fact that an
unbounded number of these will be reflected in any E-
type system. As discussed above, this empirical
generalisation leads to the principle of software
uncertainty. It also underlies the hypothesis that a
primary source of software and software project
misbehaviour or failure can ultimately be traced back to
assumptions, explicit or implicit, conscious or
unconscious, recorded or unrecorded, by commission or
omission, that were never valid or, more likely, that
have become invalid as a result of changes outside the
software system.

• Identify, capture, structure, record and update all

rationale, assumptions, decisions
• Institute periodic and event-triggered reviews and

assessments to anticipate or identify any need for
corrections to assumption set

• Review and revalidate whenever a change occurs/is
made in program specification, design or
implementation or occurs in operational domain

• Improve questioning of assumptions, for example, by
using independent implementation, validation and
inspection teams

• Make search for and questioning of assumptions in all
inspections and validations a specific and required
activity

• Where software operates in a rapidly changing
domain or volatile environment complement detailed
assumption review with re-writing of appropriate
elements of the software

• Develop and use tool support for all of these activities

Evolution Management

The underlying theme of this paper is, of course,
software evolution. Recommendations relating
specifically to this include:

• Consistently assess and pursue anti-regressive

activities [leh74] such as full documentation,

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
complexity control and other refactoring [fow99]
activities which, though having no immediate
stakeholder impact, facilitate future evolvability

• Ensure that documentation includes identification and
recording of assumptions

• Exploit metrics technology as below
• Assess the likelihood of functional and non-functional

evolutionary trends in advance and review as part of
release planning, taking system, domain volatility into
account

• Involve application, domain specialists in assessment
• When validating, check interaction with, impact on

unchanged parts of system and impact of assumptions
• Establish baselines of key measures over time - to

support evolution planning and control

Release Management
• Observe safe change rate limits that indicate whether

increments are safe, risky, unsafe as discussed in
[leh01b] and that are related to standards recognised
in statistical process control

• When large functional increments appear
unavoidable, distribute across several releases as in
Gilb’s evolutionary development [gil81]

• If excessive functional increments are unavoidable,
plan for follow on clean-up releases

• Follow established software engineering principles -
e.g., information hiding – to minimise spread of
change between system elements

• Assign appropriate resources to anti-regressive active,
for example, to control complexity and its growth

• Consider the alternation of enhancement and
extension with clean-up and restructuring releases

• When managing releases take the key role played by
assumptions into account

To support all of the above activities one should make
provision for:

Metrics and Modelling
• Develop tools to support data collection, modelling,

and related activities
• For both the system and its parts, acquire, plot, model,

interpret historical evolution data and determine
trends, patterns, growth and their rates of change

• Progressively recalibrate and validate models as new
data becomes available to reflect changes in the
application, environments, process, evolution patterns

• Model and exploit the dynamics of global process to
improve planning and process, identify interactions,
assess and optimise policies, control strategies

FURTHER WORK

The early and more recent studies referred to in this
paper concentrated on systems developed under
industrial software process paradigms variants and
extensions of the waterfall model [roy70]. With one
exception [pir88], it was, however, not possible to

investigate and relate differences in the details of the
evolutionary patterns of individual systems to the
domains in which they were developed or the type of
applications in which they were used. Results from such
investigation could make a major contribution to the
software process improvement process. Some
preliminary investigations of the evolutionary behaviour
of open source software [pir88, gdf00,bau03] have been
undertaken by others. But general validity of the
observation that ‘software evolution is driven by similar
forces’ in the context of newer paradigms such as object
oriented, open source, agile programming and COTS-
based development cannot be taken for granted. When
sufficient data of such wider studies become available,
results obtained to date will certainly need modification
and, probably, extension. But theoretical reasoning (see
for example [leh00b]) suggests that the underlying
evolution phenomenon will persist. If and when this is
confirmed the more extensive results will widen the
scope of validity of the contemplated theory of software
evolution.

In this paper, the discussion has mainly referred to
the evolution of software as reflected in a series of
releases or upgrades. Evolution that closely affects the
continuing value, quality, cost and/or timeliness of
software can and does, however, occur at many product
and process levels [leh02c].

A fuller discussion of the levels, the role and the
wider impact of evolution may be found in [leh02c].
Changes at any of these levels may have an impact on
E-type software product properties or behaviour.
Potential impact must be identified and considered
during conception, specification, design, planning,
management and execution of the processes that
develop the products and maintain the software
operationally satisfactory in a changing world. Hence,
empirical study of the evolution phenomenon at all its
levels is of considerable interest.

The extension of results of software-related
investigations to the evolution of other artificial [sim69]
systems or even, more broadly to other areas as
exemplified in the introduction to this paper is likely to
lead to further conclusions. But that remains to be
demonstrated.

FINAL REMARK

Software evolvability, the ability, inter alia, for
responsiveness and timely implementation of needed
changes, will play an increasingly more critical role in
ensuring the survival of a society ever more dependent
on computers. This requires means to ensure timely
adaptation of the ever more integrated computer
systems to maintain compatibility between the sub-
systems and the forever changing circumstances with,
within and under which they operate. The goal here has
been to convince the wider Computer Science and
Software Engineering community that study of the
software evolution phenomenon is of theoretical and
practical importance and must be widely pursued.

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
ACKNOWLEDGEMENTS

Sincere thanks are due to many colleagues and
collaborators for sharing their insights, many useful
discussions, and constructive criticism over more than
thirty years of observation and investigation.

REFERENCES

[ari5] http://www.ima.umn.edu/~arnold/disasters/ariane5rep
<as of July 2003>

[bau03] Bauer A and Pizka M, The Contribution of Free
Software to Software Evolution, IWPSE 03, Amsterdam, 2
Sept, 2003

[bel71] Belady LA, Lehman MM, Programming System
Dynamics or the Metadynamics of Systems in
Maintenance and Growth, IBM Res. Rep., T. J. Watson
Res. Centre, Yorktown Heights, NY 10598, RC 3546.
Also as ch. 5 in [leh85]

[bel72] Belady LA, Lehman MM, An Introduction to Program
Growth Dynamics, in W Freiburger (ed.), Statistical
Computer Performance Evaluation, Academic Press, NY:
503 – 511. Also as ch. 6 in [leh85]

[bel76] Belady LA, Lehman MM, A Model of Large Program
Development, IBM Sys J., vol 15, no. 3, 1976, pp. 225 –
252. Also as ch. 8 in [leh85]

[ben00] Bennett KH and Rajlich VT, Software Maintenance
and Evolution: a Roadmap, in A. Finkelstein (ed.), The
Future of Software Engineering, in conj. With ICSE 22,
June 4-11, 2000 Limerick, Ireland

[car66] Carnap R, Philosophical Foundations of Physics, Basic
Books Inc., 1966

[cer98] CERN Bulletin 09/98; 23 February 1998
http://bulletin.cern.ch/9809/art1/Text_E.html <as of July
2003>

[cox66] Cox DR and Lewis PAW, The Statistical Analysis of
Series of Events, Methuen, London, 1966

[fow99] Fowler M; Refactoring: Improving the Design of
Existing Code, Addison Wesley, NY, 1999, 461 pp

[gdf00] Godfrey MW, Tu Q, Evolution in Open Source
Software: A Case Study, Proc. ICSM 2000, 11-14 Oct.,
San Jose, CA: 131 – 142

[gil81] Gilb T, Evolutionary Development, ACM Softw. Eng.
Notes, April 1981

[icsm02] Madhavji NH, Introduction to the Panel Session
Lehman’s Laws of Software Evolution, in Context, Proc.
ICSM 2002, Montreal, Canada: 66 – 66

[ifip] IFIP, Working Group 2.3 on Programming
Methodology, http://www.ifip-tc2.org/ <as of October
2003>

[kel] Kelvin, WT, Popular Lectures and Addresses. 1891-1894
[kit82] Kitchenham BA, System Evolution Dynamics of

VME/B, ICL Tech. J., May 1982, pp. 42 – 57
[las] http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html <as

of July 2003>
[law82] Lawrence MJ, An Examination of Evolution

Dynamics, Proc. ICSE 6, Tokyo, 13 - 16 Sep. 1982, pp
188 – 196

[leh69] Lehman MM, The Programming Process, IBM Res.
Rep. RC 2722, Dec. 1969, 46 pp. Also as ch. 3 in [leh85]

[leh74] Lehman MM, Programs, Cities, Students, Limits to
Growth?, Inaugural Lecture, in Imperial College of
Science and Technology Inaugural Lecture Series, v. 9,

1970, 1974, pp. 211–229. Also in Programming
Methodology, Gries D (ed.), Springer Verlag, 1978, pp. 42
– 62. Also in [leh85]

[leh78] Lehman MM, Laws of Program Evolution - Rules and
Tools for Programming Management, Proc. of the
Infotech State of the Art Conf., Why Software Projects
Fail, Apr.: 11/1 – 11/25. Reprinted as ch. 12 in [leh85]

[leh79] Lehman MM, The Environment of Design
Methodology, in Cox TA (ed.), Proc. Symp. on Formal
Design Methodology, Cambridge, UK, 9-12 April 1979,
pp. 17 – 18, pub. by STL Ltd, Harlow, Essex, UK, 1980

[leh80a] Lehman MM, On Understanding Laws, Evolution
and Conservation in the Large Program Life-Cycle, J.
Syst. and Softw., 1(3)

[leh80b] Lehman MM, Programs, Life Cycles and Laws of
Software Evolution, Proc. IEEE Spec. Iss. on Software
Eng, Sept.: 1060 – 1076. With more detail as “Programs,
Programming and the Software Life-Cycle”, in System
Design, Infotech State of the Art, Rep, Se 6, No 9,
Pergamon Infotech Ltd, Maidenhead, 1981: 263 – 291.
Reprinted as ch. 19 in [leh85]

[leh85] Lehman MM and Belady LA, Program Evolution –
Process of Software Change, Acad. Press, London, 1985

[leh89] Lehman MM, Uncertainty in Computer Application
and its Control through the Engineering of Software, J. of
Software Maint., Research and Practice, vol. 1, 1 Sept.
1989, pp 3 - 27

[leh90] Lehman MM, Uncertainty in Computer Application,
Technical Letter, CACM, vol. 33, no. 5, pp. 584, May
1990

[leh94] Lehman MM, Feedback in the Software Evolution
Process, Keynote Addr., CSR Eleventh Annual Workshop
on Softw. Evolution: Models and Metrics, Dublin, 7-9th
Sept. 1994, also in Information & Softw. Tech., sp. Iss. on
Softw. Maintenance, Vol. 38, n. 11, 1996: 681 – 686

[leh96a] Lehman MM, Laws of Software Evolution Revisited,
Proc. EWSPT'96, Nancy, October 1996, LNCS 1149,
Springer Verlag, 1997: 108 – 124

[leh96b] Lehman MM and Stenning V, FEAST/1: Case for
Support, ICSTM, DoC, EPSRC Proposal, Nov.
1995/March 1996, 11 pp

[leh97] Lehman MM., Perry DE, Ramil JF, Turski WM and
Wernick P, Metrics and Laws of Software Evolution - The
Nineties View, Proc. Metrics '97, Albuquerque, NM, 5 - 7
Nov. 1997: 20-32. Also as Chapter 17 in El Eman K. and
Madhavji N.H. (eds.), Elements of Software Process
Assessment and Improvement, IEEE CS Press, Los
Alamitos, CA, 1999: 343 – 368

[leh98] Lehman MM, FEAST/2: Case for Support, DoC, Imp.
Col., London, EPSRC Proposal, July 1998, 11 pp.

[leh00a] Lehman MM, Ramil JF and Kahen G, Evolution as a
Noun and Evolution as a Verb, SOCE 2000 Workshop on
Software and Organisation Co- evolution, Imp. Col.,
London, 12-13 Jul. 2000

[leh00b] Lehman MM and Ramil JF, Software Evolution
Phenomenology and Component Based Software
Engineering, IEE Proc. Softw., sp. issue on Component
Based Software Engineering, v. 147, n. 6, Dec. 2000,
pp. 249 - 255

[leh01a] Lehman MM and Ramil JF, An Approach to a
Theory of Software Evolution, IWPSE 2001, Vienna, 10-
11 Sept. 2001. Also in Proc. IWPSE 2001, IEEE CS Press,
Los Alamitos, CA, 2002

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, 2003

2003 Society for Design and Process Science
[leh01b] Lehman MM and Ramil JF, Rules and Tools for

Software Evolution Planning and Management, Annals of
Software Engineering, special issue on Software
Management, 2001, vol. 11, pp. 15 – 44

[leh01c] Lehman MM, SETH – Approach to a Theory of
Software Evolution, Case for Support, Part 2, DoC,
Imperial College, London, September 2001
http://www.cs.mdx.ac.uk/staffpages/mml/seth_p2.pdf <as
of July 2003>

[leh02a] Lehman MM and Ramil JF, Software Uncertainty,
Soft-Ware 2002, 1st Intl. Conference on Computing in an
Imperfect World, Belfast, North Ireland, 8-10 April 2002,
In D Bustard, W Liu and R Sterritt (eds.), Soft-Ware 2002,
LNCS 2311, 2002, pp. 174–190

[leh02b] Lehman MM and Ramil JF, An Overview of Some
Lessons Learnt in FEAST, Proc. WESS’02, Montreal,
2nd Oct 2002

[leh02c] Lehman MM and Ramil JF, Software Evolution and
Software Evolution Processes, Inv. Contr. to sp. iss. on
Process-based Software Engineering, Annals of Softw.
Eng. Nov. 2002 , vol. 14, pp. 275 – 309

[nau68] Naur P and Randell B (eds.), Software Engineering,
Report on a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7th to 11th October
1968, January 1969, 231 pps

[pir88] Pirzada SS, An Statistical Examination of the
Evolution of the Unix System, PhD Thesis, Dept. of
Computing, Imperial College, London, 1988

[ram02] Ramil JF, Laws of Software Evolution and their
Empirical Support, Invited Panel Statement, Proc. ICSM
02, Montreal, 3-6 Oct 2002: 71 – 71

[ram03a] Ramil JF, Continual Resource Estimation for
Evolving Software, PhD Thesis, Dept. of Com., Imp. Col.,
London, January 2003

[ram03b] Ramil JF and Smith N, Qualitative Simulation of
Models of Software Evolution, spec. issue on software
process simulation modelling, Journal of Software
Process, Improvement and Practice, to appear, 2003

[roy70] Royce WW, Managing the Development of Large
Software Systems: Concepts and Techniques, Proc.
WESCON, IEEE Computer Society Press, Los Alamitos,
CA, 1970, reprinted in Proc. ICSE'87, Monterey, CA,
March 30 - April 2, 1987

[sim69] Simon HA, The Sciences of the Artificial, 3rd.
edition, The MIT Press, Cambridge, MA, 1996, 231 pp,
first pub. 1969

[smi02] Smith N and Ramil JF, Qualitative Simulation of
Software Evolution Processes, WESS’ 02, Montreal, 2nd
Oct 2002, pp. 41 – 47

[uch00] Uchitel S and Yankelevich D. Enhancing
Architectural Mismatch Detection with Assumptions.
Proc. of the 7th IEEE Int. Conf. on the Engineering of
Computer Based Systems (ECBS 2000). Scotland, UK,
April 2000

[website] http://www.cs.mdx.ac.uk/staffpages/mml/ <as of
July 2003>

mml707/3 20 October 2003

