
Sergey Melnik

Generic Model Management:

Concepts and Algorithms

D I S S E R T A T I O N

University of Leipzig

Endorsed by

Prof. Dr. Erhard Rahm, University of Leipzig
Dr. Philip A. Bernstein, Microsoft Research
Prof. Emeritus Gio Wiederhold, Stanford University

For Tanja and Juri,
my parents.

Abstract

Many challenging problems facing information systems engineering involve
the manipulation of complex metadata artifacts, or models, such as database
schemas, interface specifications, or object diagrams, and mappings between
models. The applications that solve metadata manipulation problems are
complex and hard to build. The goal of generic model management is to
reduce the amount of programming needed to develop such applications by
providing a database infrastructure in which a set of high-level algebraic
operators, such as Match, Merge, and Compose, are applied to models and
mappings as a whole rather than to their individual building blocks.

This dissertation presents an initial study of the concepts and algorithms
for generic model management. We describe the first prototype of a generic
model management system, introduce the algebraic operators that are used to
manipulate models and mappings, clarify the semantics of the operators, and
develop novel algorithms for implementing them. In particular, we present an
innovative algorithm based on fixpoint computation that is used for imple-
menting the generic operator Match, which finds correspondences between
two models. Using the prototype and the operators presented in the disser-
tation, we develop solutions for several practically relevant problems, such as
change propagation and reintegration.

Acknowledgements

I would like to express my deep gratitude to everyone who helped me shape
the ideas explored in this dissertation, either by giving technical advice or
encouraging and supporting my work in many other ways.

I enjoyed a rare privilege of collaborating closely with several distinguished
database researchers. This dissertation would not have come into existence
without their hands-on advice and motivation:

Professor Erhard Rahm supervised and guided my work from the very
first day. He gave me the opportunity to conduct this doctoral research and
helped me made the right strategic decisions at many forks along the way.
He kept me on track while allowing me to broaden my research horizon in
tangential areas. His insightful comments, which densely filled the margins
of each draft that I gave to him, gave rise to many creative ideas.

Professor Hector Garcia-Molina invited me to Stanford University and
taught me the art of turning hard research challenges into fun and expressing
my thoughts clearly using examples. From him I learned that solid research
requires patience: for example, he suggested that a draft of our joint paper
[Melnik, Garcia-Molina, Rahm 2002] needed more polishing and so we missed
a conference deadline. Later that paper, which underpins Part III of the
dissertation, received the Best Student Paper Award at the Intl. Conf. on
Data Engineering.

Professor Emeritus Gio Wiederhold showed me what it takes to step back
and see a big picture, and yet keep the details in focus. He gave me the oppor-
tunity to collaborate in the DARPA DAML project at Stanford and to get a
foretaste of metadata management problems in the context of interoperation
on the Semantic Web.

Doctor Philip A. Bernstein has been the driving force behind the emerging
research area of generic model management, the subject of the dissertation.
His vision papers and talks inspired much of the work done in this thesis. His
insightful suggestions on our joint papers and his guidance in designing the
first prototype for model management, which is presented in Part I of the
dissertation, have been invaluable.

Professor Alon Halevy helped me keep my spirits high while I worked on
Part II, a more theoretical part of the dissertation. His encouragement and
advice made this work a real pleasure.

I am grateful to Professors Serge Abiteboul, Paolo Atzeni, Stefano Ceri,
Martin Kersten, Renée Miller, and Gerhard Weikum for helpful discussions.

I would like to thank my colleagues and friends in the Database Groups in
Leipzig and Stanford, the members of the Graduate Programme on Knowl-
edge Representation in Leipzig, and the colleagues in the RDF Core Working
Group at the World-Wide Web Consortium for fruitful exchange of ideas.
The members of the Stanford Database Group helped me conduct the user
study presented in Part III.

I am indebted to Doctors Stefan Decker, Andreas Paepcke, Bertram
Ludäscher, Felix Naumann, and Arturo Crespo for their support and many
informal discussions, which helped me put my academic research into per-
spective.

I owe very special thanks to my wife Teresa. Her love and energy con-
stantly recharged my forces. She has been my perpetual source of creativity
and inspiration, in so many respects.

This dissertation is dedicated to my parents, Tanja and Juri, who are
truly the origin of all great things that ever happened to me.

The contributions of the above people made the work on this dissertation
a rewarding and memorable experience. I thank you all.

Table of Contents

Part I. A Programming Platform for Model Management

1. Introduction . 3
1.1 Metadata Management . 3
1.2 The Problem. 5
1.3 A Vision for Management of Complex Models 6
1.4 Outline and Contributions of the Dissertation 9

2. Conceptual Structures and Operators . 13
2.1 Motivating Scenario . 13
2.2 Conceptual Structures . 18

2.2.1 Models . 19
2.2.2 Morphisms . 20
2.2.3 Selectors . 22

2.3 Operators . 22
2.3.1 Primitive Operators . 24
2.3.2 Derived Operators . 26
2.3.3 Extract and Delete . 27
2.3.4 Match . 28
2.3.5 Merge. 28

3. Implementation and Applications . 31
3.1 Conceptual Structures . 31
3.2 Operators . 32

3.2.1 Extract and Delete . 32
3.2.2 Dependencies . 34
3.2.3 ExtractMin . 35
3.2.4 DeleteHard and DeleteSoft . 37
3.2.5 Diff . 38
3.2.6 Match . 39
3.2.7 Merge. 40

3.3 Prototype “Rondo” . 44
3.4 View-Reuse Scenario . 47
3.5 Reintegration Scenario . 49
3.6 Conclusions . 53

Part II. A Semantics for Model Management Operators

4. State-Based Semantics . 57
4.1 Basic Concepts . 58

4.1.1 Models . 58
4.1.2 Mappings . 60
4.1.3 Formal Notation . 62
4.1.4 Semantics of Scripts . 63
4.1.5 Preliminaries . 64

4.2 Operators . 66
4.2.1 Compose Operator . 67
4.2.2 Invert Operator . 69
4.2.3 Extract Operator . 70
4.2.4 Merge Operator . 75
4.2.5 Diff Operator . 79
4.2.6 Confluence Operator . 86
4.2.7 Match Operator . 88

4.3 Materialization . 88

5. Change Propagation Scenario . 93
5.1 Propagating Additions . 94
5.2 Propagating Deletions . 95
5.3 A General Solution . 97
5.4 Schema Evolution Scenario . 98
5.5 Variants of Change Propagation . 100

6. State-Based Semantics in Rondo . 103
6.1 Semantics of Morphisms . 103
6.2 Semantics of Selectors . 107
6.3 Structural vs. State-Based Operators . 108
6.4 Revisiting Change Propagation . 111
6.5 Conclusions . 114

Part III. Schema Matching

7. Similarity Flooding Algorithm . 119
7.1 Overview of the Approach . 121
7.2 Similarity Flooding Algorithm . 124

7.2.1 Similarity Propagation Graph . 124
7.2.2 Fixpoint Computation . 125

7.3 Generalized Version of the Algorithm . 126
7.4 Convergence and Complexity of the Algorithm 128
7.5 Features of the Algorithm by Example . 129

vi

7.5.1 Semistructured Data . 130
7.5.2 XML Schemas . 132
7.5.3 Matching XML Schemas Using Instance Data 134
7.5.4 Finding Related Data . 134

8. Filters . 139
8.1 Constraints . 140
8.2 Selection Metrics . 141
8.3 FilterBest Algorithm . 144
8.4 Expressing FilterBest in SQL . 146

9. Evaluation and Tuning . 149
9.1 Matching Accuracy . 150
9.2 Intended Match Result . 151
9.3 User Study . 153
9.4 Evaluation of Algorithm and Filters . 155
9.5 Propagation Coefficients . 158
9.6 Conclusions and Open Issues . 158

Part IV. Model Management in Perspective

10. Related Work . 165
10.1 Data Integration and Merge . 166

10.1.1 Schema Integration . 167
10.1.2 Answering Queries Using Views . 172

10.2 Schema Matching and Match . 175
10.3 Mapping Composition and Compose . 180
10.4 View Selection and Extract . 183
10.5 View Complement and Diff . 184
10.6 Approaches to Specifying Semantics . 186

10.6.1 Semantics of Models and Mappings 186
10.6.2 Information Capacity . 188
10.6.3 Category Theory . 189

10.7 Metadata Repositories . 191
10.8 Metadata-Intensive Applications . 192

10.8.1 Declarative Mediation . 192
10.8.2 Change Propagation . 195

10.9 Other Related Work . 197

11. Conclusions and Outlook . 201
11.1 Summary of Contributions . 201
11.2 Concluding Discussion . 202
11.3 Open Technical Challenges . 207

11.3.1 Decidability and Complexity . 207

vii

11.3.2 Equivalence and Entailment of Scripts 207
11.3.3 Completeness and Redundancy . 208
11.3.4 N -ary Mappings . 211
11.3.5 Formalization of Model-Management Problems 212

A. User Study . 215
A.1 BizTalk schemas (XML) . 216
A.2 Property listing schemas (XML) . 217
A.3 Library schemas (XML) . 217
A.4 Product schemas with data instances (XML) 217
A.5 University schemas with data instances (XML) 218
A.6 Catalogs with data instances (XML) . 219
A.7 Personnel schemas (relational) . 220
A.8 University schemas (relational) . 221
A.9 Personnel/university schemas (relational) 222

B. Proofs of Simplification Theorems . 223
B.1 Extract operator . 223
B.2 Merge operator . 225
B.3 Diff operator . 227

References . 231

viii

List of Figures

1.1 A high-level architecture of model management 8

2.1 Scenario illustrating propagation of changes from a relational
schema to an XML schema . 14

2.2 Schematic representation of a solution for change propagation sce-
nario of Fig. 2.1 . 15

2.3 Converted schema c and support element ORDERS in c′ 16
2.4 Sample model shown as graph and 4-tuples . 19
2.5 A morphism between a relational and an XML schema 21
2.6 Graph representation of XML schema in Fig. 2.5 21
2.7 Example of a selector . 22
2.8 Examples of copying the model of Fig. 2.4 using selector {a1, a2,

a3, a4} . 26

3.1 Examples of extraction and deletion from a relational schema m . . 33
3.2 Example of existential dependencies in a relational schema 35
3.3 Example of existential dependencies in an XML schema 35
3.4 Merging two sample schemas . 41
3.5 Architecture of the prototype . 44
3.6 Code size breakdown in prototype (in lines of code) 47
3.7 Morphism between sources S1 and S2 . 47
3.8 Merging two SQL views . 48
3.9 Reintegration scenario (3-way merge) . 50
3.10 Schematic representation of the reintegration scenario 52

4.1 Some instances of relational schema R(Name: char(3), Sex: bool) . 59
4.2 Portion of a mapping . 60
4.3 Schematic representation for Example 4.2.6 (Extract) 70
4.4 Illustration of Extract operator . 72
4.5 Schematic representation for Example 4.2.12 (Merge) 75
4.6 Illustration of Merge operator . 76
4.7 Schematic representation for Example 4.2.17 (Diff) 79
4.8 Illustration of Diff operator . 80
4.9 Example of Diff result by Theorem 4.2.5 . 82
4.10 The output mapping in Diff is not determined up to isomorphism . 82

4.11 Illustration of Theorem 4.2.11 (Mirror Merge) 87
4.12 Materialization of models and mappings . 90

5.1 Propagating additions . 94
5.2 Propagating deletions . 96
5.3 Propagating deletions over bijection. 96
5.4 Change propagation: a general solution . 98
5.5 Schema evolution: a special case of change propagation 99
5.6 Addition only, convert first then Diff . 100
5.7 Addition only, Diff first, then convert . 101

6.1 Three alternative semantics for a morphism . 104
6.2 Relationship between cites and zip codes is not preserved on com-

position . 106
6.3 Structural composition vs. state-based composition (the latter

with and without NULLs; predicate ↔ denotes if-and-only-if) 109
6.4 Structural extraction yields materialization of the state-based op-

erator . 110
6.5 Schematic representation for structural change propagation script 113

7.1 Matching two relational schemas: Personnel and Employee-
Department . 121

7.2 A portion of graph representation G1 for relational schema S1 122
7.3 Example illustrating the Similarity Flooding algorithm 124
7.4 Matching of semistructured data . 130
7.5 Matching of two XML schemas: AccountOwner (S1) vs. Customer

(S2) . 132
7.6 Two different representations of XML data: OEM/Lore-like vs.

XML/DOM-like . 133
7.7 Matching of two XML schemas using instance data in DOM graph

representation . 136
7.8 Excerpt of relationships in the Stanford DB Group 137

8.1 Cumulative similarity vs. “stable marriage” . 139
8.2 Relative similarities for the example in Fig. 8.1 140
8.3 Example illustrating execution of FilterBest in SQL 146

9.1 Matching accuracy as a function of trel-threshold for intended
match results Sparse, Expected, and Verbose from Table 9.1 153

9.2 Average matching accuracy for 7 users and 9 matching problems . 154
9.3 Matching accuracy for different filters and four versions of the

algorithm. 155
9.4 Impact of randomizing initial similarities on matching accuracy . . 157
9.5 Impact of different ways of computing propagation coefficients on

overall matching accuracy in the user study . 158

x

10.1 Use of composition in (Shanmugasundaram et al. 2001a) 182

11.1 Schematic representation for Conjecture 11.3.1 (Associative Merge)208
11.2 Illustration of Intersect operator . 209

xi

List of Tables

2.1 Summary of key operators in Rondo . 23
2.2 Definitions of primitive operators . 25

3.1 Comparison of variants of extraction and deletion 38

4.1 Summary of key model-management operators 66

7.1 A portion of initialMap obtained by string matching (10 of total
26 entries are shown) . 122

7.2 The mapping after applying SelectThreshold on result of SFJoin . 123
7.3 Variations of the fixpoint formula . 126
7.4 The mapping after applying SFJoin ◦ SelectLeft to semistructured

data in Fig. 7.4 . 131
7.5 Parameters of the fixpoint computation for S1 and S2 134
7.6 Match results for XML schemas in Fig. 7.5 using two different

graph representations . 135
7.7 Match results for XML element tags in Fig. 7.7 using similarity

threshold 0.05 . 137
7.8 Relatedness of faculty members in the DB group based on data in

Fig. 7.8 . 138

9.1 Three plausible intended match results for matching problem in
Fig. 7.1 . 152

9.2 Sizes of graphs in the user study . 155
9.3 Illustration of convergence properties of variations of fixpoint

formula for tasks T1, . . . , T9 in the user study. Shows iterations
needed until length of residual vector got below 0.05. 157

9.4 Different approaches to computing the propagation coefficients
π{l,r}(〈x, p, A〉, 〈y, q, B〉) . 159

10.1 Data integration scenarios . 167

Part I

A Programming Platform for Model
Management

1

1. Introduction

“Life is pretty simple: You do some stuff. Most fails. Some works.
You do more of what works. If it works big, others quickly copy it.
Then you do something else. The trick is the doing something else.”

– Leonardo da Vinci (1452-1519)

This chapter highlights the background of the dissertation and outlines its
structure. In Sect. 1.1, we introduce metadata management, the general sub-
ject of this work. The deficiencies of today’s metadata management tech-
niques are examined in Sect. 1.2. In Sect. 1.3, we sketch the approach to meta-
data management explored in the dissertation, called generic model manage-
ment, and formulate our main objectives. An overview of the structure and
contributions of the dissertation is given in Sect. 1.4.

1.1 Metadata Management

Metadata is descriptive information about data and applications. Metadata is
used to specify how data is represented, stored, and transformed, or may de-
scribe interfaces and behavior of software components. There are two kinds of
metadata that are commonly used (Bretherton and Singley 1994). One kind
of metadata, called structural or control metadata, is deployed primarily by
computer programs. Examples of structural metadata are an interface def-
inition in a programming environment or a database schema in a database
system. The other kind of metadata, called guide metadata, is intended solely
for use by humans and is expressed in natural language. It contains keyword
descriptions or documentation, and is often used to facilitate information
retrieval. The focus of this work is on structural metadata, i.e., schemas, in-
terface definitions, and other data-structure-like artifacts that directly affect
database or other computer system operations.

The first use of structural metadata for data processing was reported in
(McGee 1959). Since then, metadata-related tasks and applications have be-
come truly pervasive. They arise in data management, website and portal

4 1. Introduction

management, network management, and in various fields of computer-aided
engineering. In data management, the flagship application areas that rely
heavily on metadata include data integration (Batini et al. 1986), data trans-
lation (Shu et al. 1977), and database design (Wiederhold 1977). In website
and portal management, metadata is used to generate entire websites from
databases (Fernandez et al. 1997; Mecca et al. 1998). In network management,
explicit models of devices and services are deployed to facilitate control of
complex networks (Ahn 1994). In software engineering, metadata is used to
describe the interfaces and behavior of software components (OMG 2002b).
Feature descriptions of idealized objects such as a point mass or an ideal rope
are utilized in physics tools (Kook and Novak 1991). In applications related
to computation and mathematics, metadata is used to describe the proper-
ties of computer algorithms (Günther et al. 1997) or discrete optimization
problems (Blanning 1982; Becker 1996).

In fact, metadata management plays a major role in today’s informa-
tion systems. In addition to the aforementioned areas, its importance has
been emphasized in the context of scientific (Shoshani et al. 1984), statisti-
cal (McCarthy 1982), geographic (Blott and Vckovski 1995), and biological
(Davidson et al. 1995b) information systems. The aim of metadata manage-
ment is to support the design, manipulation, and maintenance of complex
metadata artifacts such as database schemas, interface definitions, or website
layouts.

To illustrate some typical metadata management tasks consider data in-
tegration, one of the major research topics in database systems (the tasks
mentioned below are highlighted in italics). A key objective of data integra-
tion is to provide a uniform view covering a number of heterogeneous data
sources. Using such a view, the data that resides at the sources can be ac-
cessed in a uniform fashion. This data is usually described using database
schemas, such as relational, object-oriented, or XML schemas. To construct
a uniform view, source schemas are matched to identify their similarities and
discrepancies. The relevant portions of schemas are extracted and integrated
into a uniform schema. The translation of data from the representation used
at the sources into the representation conforming to the uniform schema is
specified using database transformations, which may be expressed in SQL,
XQuery, XSLT or other data manipulation languages. The queries that are
stated against the uniform view are transparently rewritten into queries on
sources. Should the source schemas change, the database transformations and
the uniform schema may have to be updated accordingly.

Examining metadata-related tasks of data integration leads to two obser-
vations. First, these tasks are not specific to database schemas and trans-
formations. Beside database schemas, approaches in the literature addressed
integration of ontologies (Mitra et al. 2000; Noy and Musen 2000), knowledge
bases (Baral et al. 1991; Subrahmanian 1994), or specifications of software
components (Davies and Woodcock 1996). Second, the tasks that we listed

1.2 The Problem 5

are not unique to data integration scenarios. Some of them have been stud-
ied in the context of different or specialized applications, such as website
management or data warehousing, and became distinctive names in the liter-
ature, such as schema matching, data translation, view selection, or change
management.

Although the nature of the metadata artifacts manipulated by metadata-
intensive applications often differs, the addressed tasks are strikingly similar.
For example, Roddick et al. (2000) notice that many approaches to change
management have remarkable similarity while the subject of the change may
be quite different. They suggest that development of conceptual modeling
tools is needed to support change management. Other authors argue that that
the data translation task (Atzeni and Torlone 1996) or the schema integration
task (Barsalou and Gangopadhyay 1992) can be approached in a uniform
fashion for a variety of schema languages.

1.2 The Problem

Despite the commonalities in the design of metadata-intensive tools and ap-
plications, little progress has been made in metadata management in the
past decades. Applications that address metadata manipulation tasks re-
main complex and hard to build. Several major reasons contribute to their
complexity:

– Metadata applications are developed using low-level programming inter-
faces. Such interfaces typically provide access to the individual elements
of metadata artifacts, such as individual attribute definitions of database
schemas. The programming of metadata applications against such inter-
faces requires extensive amount of navigational code and incurs high de-
velopment and maintenance cost.

– Most approaches are application-specific. That is, adopting the code and
infrastructure developed say for change management to data integration
requires a major customization effort.

– The solutions are language-specific, i.e., are developed for SQL, UML,
XML, or RDF and are not easily portable to other domains. For exam-
ple, solutions developed for change management of database schemas are
hard to adopt to managing changes of websites.

– No general-purpose platform is available to simplify the development of
metadata-intensive tools and applications. The existing general-purpose
solutions typically focus on persistent storage or graphical design environ-
ments for metadata artifacts and do not go far enough to support the devel-
opers of metadata applications. In fact, many of today’s metadata-related
tasks are still solved manually, because an automated approach requires
too much implementation effort due to the lack of a common programming
platform.

6 1. Introduction

Akin Problems Call for Akin Solutions. To understand better the nature of
the problems that we address and to set the stage for the approach exploited
in the thesis, it is instructive to take a brief look at the state of the art in
data management that prevailed three decades ago (Wiederhold 1977; Date
1995).

In fact, there appears to be a striking similarity between today’s problems
in metadata management and the challenges in data management before the
adoption of the relational model in 1970’s. At that time, data management
applications were developed using extensive amount of navigational code,
which was hard to write, maintain, and optimize. The same techniques were
reapplied to one new problem after another without getting much leverage
from each succeeding step. The data management code was embedded into
individual applications which used incompatible storage and access structures
and were not portable between different domains. The existing database man-
agement systems focused on persistent storage of data but offered little help
in programming of database applications.

The groundbreaking idea, which eventually revolutionized the database
research field, was to raise the level of abstraction in developing data-intensive
applications. In the late 1950’s, McGee observed that “there are certain broad
data processing operations which are common to all or most data processing
applications” and suggested that the key to effective data processing was in
identifying such generic operations and making them available to application
developers (McGee 1959, page 6).

This idea culminated in the pioneering work by Codd (1970). Instead
of then-common navigational access to individual records and data values,
Codd suggested a set of algebraic operations on entire relations, such as
selection, projection, or join. This approach allowed factoring out many sim-
ilar aspects of data management and free application code from ordering,
indexing, and access path dependencies. The relational algebra helped to
drastically simplify the programming of data-intensive applications and laid
out the foundation of query optimization. In fact, the relational model and
algebra are considered to be “the single most important development in the
entire history of the database field” (Date 1995, page 22).

1.3 A Vision for Management of Complex Models

The idea of factoring out common aspects of applications by raising the level
of abstraction worked exceptionally well for data management and is, by it-
self, not new. However, applying a similar approach to metadata management
has been suggested only relatively recently. Initial thoughts on a high-level
algebraic approach and three operators for manipulation of knowledge bases,
Intersection, Union, and Difference, were presented in (Wiederhold 1994).
Further operators such as Extract and Match were proposed in (Jannink
et al. 1999) for manipulation of ontologies, dictionaries, and schemas. More

1.3 A Vision for Management of Complex Models 7

recently, Bernstein et al. (2000b) outlined a vision to provide a truly generic
and powerful environment to enable rapid development of metadata-intensive
applications in different domains. They called this capability generic model
management.

A central concept in generic model management is that of a model. A
model is a formal description of a metadata artifact. Examples of models
include database schemas, ontologies, interface definitions, object diagrams,
control flow diagrams, and form definitions. The manipulation of models usu-
ally involves designing transformations between models. Formal descriptions
of such transformations are called mappings. Examples of mappings are SQL
views, XSL transformations, ontology articulations, mappings between class
definitions and relational schemas, mappings between two versions of a model,
mappings between device specifications and device functions, etc.

The key idea behind generic model management is to develop a set of alge-
braic operators that generalize the transformation operations utilized across
various metadata applications. These operators are applied to models and
mappings as a whole rather than to their individual elements, and simplify
the programming of metadata applications. The operators are generic, i.e.,
they can be utilized for various problems and different kinds of metadata
artifacts. Some of the major model management operators are:

– Match: automatically create a mapping between two models.
– Merge: merge two models into a third model using a mapping between the

two models.
– Extract: return a portion of a model that participates in a mapping.
– Compose: return the composition of two mappings.

Model-management operators can be used for solving schema evolution,
data integration, and other scenarios using short programs, or scripts. For
example, consider the simple script shown below:

m1 m2 = Match(m1, m2);
〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2);

In the first line of the script, the models m1 and m2 are “matched”. The
result of matching is the mapping m1 m2 that describes the correspondences
between m1 and m2. Then, the models are “merged”. The merging is driven
by the mapping produced in the previous step and yields the model m and
the mappings m m1, m m2 that describe how m relates to m1 and m2.

The scripts such as the one above are executed by a model management
system. Although each of the operators can be invoked by the applications
individually, the maximal benefit is achieved when an entire sequence of op-
erations is passed to the model management system as a script for execution
and optimization. A high-level architecture of model management is depicted
in Fig. 1.1. The tools that deploy a model management system may main-
tain models and mappings in their own repositories. In this case, models and

8 1. Introduction

mappings that are utilized in a script need to be imported into the model
management system before the script runs. Alternatively, the tools may ex-
ploit the persistence capabilities of the model management system and use it
as a shared repository (Do and Rahm 2000). The tools remain responsible for
the management of model instances, such as data that resides in operational
databases, XML documents, web pages, or device specifications, and may be
capable of executing the mappings, i.e., transforming instances of one model
into instances of another model.

Model Management System

Model 1
Mapping

Model 2

Tool 1

Data

warehousing

Tool 2

Portal

management

Tool 3

Network

management

import / exportimport / export

DB schemas,
ETL, SQL data

layout, sche-
mas, XSLT pages

schemas,
statecharts

device
specs

Fig. 1.1. A high-level
architecture of model
management

If successful, generic model management may improve programmer pro-
ductivity for metadata-intensive applications by an order of magnitude. How-
ever, the vision for management of complex models raises many hard ques-
tions. In fact, at a panel that took place at the VLDB 2000 conference in
Cairo it was debated whether the approach is feasible at all (Bernstein et al.
2000a). Some of the questions discussed by the panelists were the following:

– Is it feasible to develop a generic infrastructure for managing models and
mappings? If so, what would it need to do, beyond what is offered in today’s
database management systems and repositories?

– Can we devise a useful generic notion of model that treats all popular in-
formation structures as specializations (SQL schemas, ER diagrams, XML
DTDs, object-oriented (OO) schemas, website maps, make scripts, etc.)?

– Can we produce a generic model manipulation algebra that generalizes
transformation operations developed for data integration, data translation,
and data warehousing?

– Does a generic approach offer any advantages for metadata management
areas of current interest, such as data integration and XML?

The questions raised in the panel set the stage for the subject of this
dissertation. One of the conclusions of the panel discussion was that realizing
the vision of generic model management would take years of research and

1.4 Outline and Contributions of the Dissertation 9

that substantial implementation effort and theoretical work was required to
answer the above questions to the full extent.

The objective of this first dissertation on generic model management is
to demonstrate that model management operators are implementable and
useful. The problem that we address is very challenging. It took dozens of
Ph.D. theses, hundreds of thousands lines of code, and many years of work to
demonstrate that the relational model and algebra were implementable and
useful (Stonebraker 2003). We do not expect the investigation of practica-
bility of generic model management to be any easier. In fact, an additional
complicating factor is that the formal foundations of generic model manage-
ment are much less clear than those underlying the relational algebra.

1.4 Outline and Contributions of the Dissertation

The dissertation presents an initial study of the concepts and algorithms for
generic model management. It consists of four parts.

Part I. We present the first implemented prototype of a programming plat-
form for model management, called Rondo1. The prototype supports the
execution of model management scripts that are written using high-level op-
erators, which manipulate models and mappings as first-class objects. The
usefulness of operators is studied in several model-management scenarios,
such as change propagation and reintegration, which involve different kinds
of models and mappings. In prior work, e.g., in (Bernstein et al. 2000b; Bern-
stein and Rahm 2000), detailed walkthroughs of various model-management
problems have been examined to address the question of whether metadata
management can be done in a generic fashion. Our contribution is that we
succeeded in making such abstract programs executable.

Primarily, our prototype supports the developers of model-management
solutions, by providing a high-level programming environment. However, it
also addresses the needs of the engineers who deploy these solutions by offer-
ing a graphical user interface (GUI) to receive their feedback in semiautomatic
operations. In designing and implementing our prototype, we consciously fo-
cus on simplicity. We investigate how far we can go with a comparatively
weak representation of models and mappings that can be used to solve an
interesting class of problems. We also determine how much code is needed
for a basic, but still useful, model management system.

The conceptual structures and operators used in the prototype are pre-
sented in Chap. 2. The implementation of the prototype, its architecture,
and the algorithms that we developed are addressed in Chap. 3. The results

1 Rondo is a musical work in which the main theme returns a number of times. We
called our prototype Rondo to reflect the fact that different variations of similar
metadata problems keep arising in numerous applications.

10 1. Introduction

presented in Part I have been published in (Melnik et al. 2003a; Melnik et al.
2003b).2

Part II. The operator definitions presented in Part I are largely syntactic: the
models, such as relational and XML schemas, are represented as graphs, and
the semantics of the operators is defined in terms of graph transformations.
We call this semantics structural, since it is driven by the structural properties
of models, i.e., by the relationships between the individual models elements.

And yet, the effect of applying “syntactic” operators to models ultimately
needs to be expressed in terms of what the operators do to the instances
of these models, such as entire database states. We call this other kind of
semantics state-based semantics. Focusing on state-based semantics makes it
possible to define the properties of operators without relying on a particular
representation of models.

In Chap. 4, we define the state-based semantics for models, mappings,
operators, and scripts. We present detailed examples that illustrate the state-
based definitions using relational schemas and SQL views. We derive alterna-
tive formulations of operator definitions that are substantially easier to work
with. In Chap. 5, we revisit the change propagation scenario presented in
Part I and argue the correctness of our solution using state-based semantics.
In Chap. 6, we discuss the state-based semantics of the conceptual structures
and operators used in our prototype.

Part III. Although many model-management tasks can be automated, there
remain critical places where human decision-making is needed, e.g., to ad-
dress the semantic heterogeneity. Thus, some of the operations are inherently
semiautomatic and require feedback of a human engineer before, during, or
after the operator execution. The operator Match, which establishes corre-
spondences between models, is among the most difficult to automate.

In Chap. 7, we present an algorithm called Similarity Flooding (SF) that
can be used for matching of diverse data structures and is utilized for imple-
menting the operator Match in the prototype. The input models are repre-
sented as directed labeled graphs and are used in an iterative fixpoint com-
putation whose results tell us what nodes in one graph are similar to nodes
in the second graph. For computing the similarities, we rely on the intu-
ition that elements of two distinct models are similar when their adjacent
elements are similar. Over a number of iterations, the initial similarity of any
two nodes propagates through the graphs. We demonstrate the applicability
of the algorithm for diverse matching tasks and examine its computational
properties.

Usually, for every element in the matched models, the SF algorithm de-
livers a large set of match candidates. Hence, the immediate result of the
fixpoint computation may still be too voluminous for many matching tasks.
In Chap. 8, we examine several filters that can be used for choosing the

2 Reprinted from (Melnik et al. 2003a) with permission from Elsevier.

1.4 Outline and Contributions of the Dissertation 11

best match candidates from the list of ranked matches returned by the SF
algorithm.

The evaluation and tuning of the SF algorithm is addressed in Chap. 9. We
suggest a novel accuracy metric for evaluating automatic schema matching
algorithms and evaluate the effectiveness of our algorithm on the basis of a
user study that we conducted. A summary of the results presented in Part III
has been published in (Melnik et al. 2002).

Part IV. The individual aspects of metadata management have been studied
extensively in the literature. The operator definitions that we give in Part I
and the formal properties of the operators that we examine in Part II are
inspired by the established model-management problems and scenarios, such
as data integration, schema matching, view selection, or view complement.

In Chap. 10, we review in detail the major related work and show how
our operator definitions reflect the properties of the approaches suggested
in the literature. We also sum up our prior work on declarative mediation
that served as part of the motivation to address metadata management in a
generic fashion.

Generic model management is an extremely rich emerging area of research.
This dissertation presents a first treatment of some fundamental challenging
issues in this area. In our work, we uncovered a wide spectrum of exciting
open problems, which are summarized in Chap. 11.

12 1. Introduction

2. Conceptual Structures and Operators

“I can’t work without a model.”

– Vincent Van Gogh (1853-1890)

In this chapter, we describe the conceptual structures and operators that are
used in the prototype of a programming platform for model management that
we developed. The chapter is organized as follows.

– In Sect. 2.1, we walk through a model-management scenario to motivate
the conceptual structures and operator definitions that we present.

– In Sect. 2.2, we introduce conceptual structures used for representing mod-
els and mappings. We explore a simple class of mappings between models
that we call morphisms and suggest a new structure called selector.

– In Sect. 2.3, we define the structural semantics of the key model-
management operators on the conceptual structures that we introduce,
and suggest several new generic operators.

2.1 Motivating Scenario

To motivate the operator definitions that we give in this chapter, we use a
scenario that is illustrated in Fig. 2.1 and exemplifies one of the patterns that
can be found in many metadata-intensive applications.

Example 2.1.1. Consider an e-commerce company that needs to supply its
purchase order data to a business partner that does the accounting, invoicing
or data warehousing. The data is stored in a relational database according
to a relational schema s1. For the purpose of data exchange, both companies
agree to use a common XML schema d1. (The correspondences between the
elements of schema s1 and d1 are depicted as light gray lines). Schema d1

differs from s1 in terms of structure and naming.
The relational schema used by the company undergoes periodic changes

due to the dynamic nature of its business. Assume that s2 is a new version

14 2. Conceptual Structures and Operators

OrderID

OrderDate

Customer

PONum

SalesTaxRate

PurchaseOrder

ProductID

ProductName

Brand
Quantity

Price

Discount

Product

OID

OrderDate

Employee

Customer

PONum

SalesTaxRate

ORDERS

DID

Quantity

Price

Discount

O-DETAILS

PID

PName

Brand

PRODUCTS

OID
PID

s1 d1original

relational

schema

original

XML

schema

OrderID

OrderDate

Customer

PONum

SalesTaxRate

PurchaseOrder

ProductID

ProductName

Quantity

Price

Product

ShipDate

FreightCh

Rebate

d2 updated

XML

schema

modified

relational

schema

OID

OrderDate

Employee

Customer

PONum

SalesTaxRate

ShipDate

FreightCh

Rebate

ORDERS

DID

Quantity

Price

O-DETAILS

PID

PName

PRODUCTS

OID

PID

s2

Fig. 2.1. Scenario illustrating propagation of changes from a relational schema to
an XML schema

of the relational schema s1, in which columns “Brand” and “Discount” have
been deleted, and columns “ShipDate”, “FreightCh” (freight charge), and
“Rebate” have been added. These changes (highlighted in bold in Fig. 2.1)
need to be propagated to the XML schema, so that d1 becomes d2.

The change propagation described above can be done as follows. First,
the changes introduced by s2 need to be detected, i.e., s1 and s2 need to
be matched. Then, the d1 images of the elements deleted in s1 need to be
removed from d1. Finally, the XML schema counterparts of the added and
renamed columns in s1 need to be merged into d1 to obtain d2. During these
steps, intervention of a human engineer may be required, for example, to
decide whether the new column “Rebate” should indeed be added to the
exchange schema or is not part of the exchanged data and should be omitted.
Still, a major portion of the work is mechanical and can be automated.

Notice that the procedure sketched above could be applied in the re-
verse case, when the XML schema d1 is the one that has been modified and
the changes are to be propagated back to the relational schema s1. Another
instance of the same pattern is round-tripping the modifications from a rela-
tional schema like s1 to an existing conceptual schema of the data, which may
be expressed as an Entity-Relationship (ER) diagram. A key idea of generic
model management is to solve such tasks at a high level of abstraction using
a concise generic script.

Below we present an actual model-management script that implements
the above solution for our change propagation scenario, and is directly ex-

2.1 Motivating Scenario 15

ecutable by our prototype. We will use the script to introduce the major
model-management operators, which we define in the subsequent sections.
To explain the individual steps of the script, we use a schematic representa-
tion of the solution shown in Fig. 2.2. The rectangles labeled s1, s2, d1, and
d2 represent the four schemas of Fig. 2.1. The arcs between the rectangles
denote the mappings between the schemas. For example, the correspondences
between schemas s1 and d1 in Fig. 2.1 are shown as a single arc from rectangle
s1 to d1 in Fig. 2.2.

c_c�

s1_d1

s
2 _c

d
2 _d

1 �

d 2
_c

�

s2_d2

c
�_

d
1 �

s
1 _

s
2

Legend:

s1 = original source model

s2 = modified source model

d1 = target model

d1� = d1 without elements deleted

by way of s2

c = converted from s2

c� = elements added to s2

(after conversion)

d2 = updated target model

s1

s2

d1

d1�

c

c�

d2

c�

d1�

d1_d1�

Fig. 2.2. Schematic representation of a solution for change propagation scenario
of Fig. 2.1

At the bottom of Fig. 2.2, there is a schema c, which does not appear in
Fig. 2.1. To see why it is needed, recall that s1 and d1 are expressed using
two different schema languages. The new schema elements added to s1 by
way of s2 have no counterparts in schema d1. That is, the new elements need
to be converted from the source schema language to the target language.
For example, the attribute “ShipDate” added to relation “ORDERS” needs
to be converted to a subelement of the complex type “PurchaseOrder” in
the XML schema. This step is often referred to as schema translation in the
literature. In our solution, we assume that such a translation tool is available
as an operator, say SQL2XSD, which takes as input a relational schema and
produces as output an XML schema and a mapping between the original
and converted schema elements. Thus, the schema c and the mapping s2 c
between s2 and c shown in Fig. 2.2 are obtained as 〈c, s2 c〉 = SQL2XSD(s2).
Schema c is illustrated in Fig. 2.3. Note that c is not yet the desired result d2;
for example, c contains an unneeded complex type O-DETAILS, and differs
from d2 structurally.

Now, our solution for the change propagation scenario can be expressed
as the following script:

16 2. Conceptual Structures and Operators

DID

O-DETAILS

OID

OrderDate

Employee

Customer

PONum

SalesTaxRate

ShipDate

FreightCh

Rebate

ORDERS

c

Quantity

Price

PRODUCTS

PID

Name

modified

relational schema

OID

OrderDate

Employee

Customer

PONum

SalesTaxRate

ShipDate

FreightCh

Rebate

ORDERS

DID

Quantity

Price

O-DETAILS

PID

PName

PRODUCTS

OID

PID

s2

converted

XML schema

ShipDate

FreightCh

Rebate

ORDERS c�

extracted

XML schema

support element

Fig. 2.3. Converted schema c and support element ORDERS in c′

operator PropagateChanges(s1, d1, s1 d1, s2, c, s2 c)
1. s1 s2 = Match(s1, s2);
2. 〈d′1, d1 d′1〉 = Delete(d1, Traverse(All(s1)−Domain(s1 s2), s1 d1));
3. 〈c′, c c′〉 = Extract(c, Traverse(All(s2)− Range(s1 s2), s2 c));
4. c′ d′1 = Invert(c c′) ∗ Invert(s2 c) ∗ Invert(s1 s2) ∗ s1 d1 ∗ d1 d′1;
5. 〈d2, d2 c′, d2 d′1〉 = Merge(c′, d′1, c′ d′1);
6. s2 d2 = s2 c ∗ c c′ ∗ Invert(d2 c′) +

Invert(s1 s2) ∗ s1 d1 ∗ d1 d′1 ∗ Invert(d2 d′1);
7. return 〈d2, s2 d2〉;

The script defines a generic operator PropagateChanges, which takes six
parameters as input (including the converted schema c), and produces two
return values 〈d2, s2 d2〉 as output. Below, we explain the script line by line.

1. In line 1, schemas s1 and s2 are “matched” to detect the changes. The
result is a mapping s1 s2 shown schematically in Fig. 2.2. Speaking in-
formally, the mapping connects the equivalent elements of s1 and s2. The
new elements of s2 (e.g., “ShipDate”) and deleted elements of s1 (e.g.,
“Brand”) have no matching counterparts, so they remain unconnected.

2. Line 2 illustrates how operators can be combined. First, the deleted ele-
ments of s1 are identified using the expression All(s1)−Domain(s1 s2),
i.e., all elements of s1 without the matched (and thus not deleted) ele-
ments. Then, these elements are used to “traverse” the mapping s1 d1.
For example, the deleted relational attribute “Brand” traverses s1 d1 and
yields the XML schema element “Brand” of d1. Finally, these d1 images
of the deleted elements are removed from d1 using the operator Delete.
The result is a new schema d′1 (a “subschema” of d1), and a mapping
d1 d′1, which describes how d1 relates to d′1.

3. Line 3 is quite similar to line 2. The new elements of s2, i.e., those missing
from the range of s1 s2, traverse s2 c into the converted model c. For
example, the image of relational attribute “ShipDate” is an XML schema

2.1 Motivating Scenario 17

element “ShipDate” obtained by conversion. A “subschema” c′ containing
the images of the new elements is then extracted from c using the operator
Extract, which also returns the mapping c c′. In addition to the elements
obtained by traversal like “ShipDate”, c′ contains an extra element of
c, the complex type “ORDERS” that encloses “ShipDate”. Such extra
elements are called support elements (Bernstein 2003). Support elements
may have to be extracted to make c′ a well-formed XML schema.

4. At this point, d′1 is a subschema of d1 without the deleted elements, and c′

contains the added elements and their support elements. Schemas d′1 and
c′ need to be merged to obtain the final result d2 (line 5). As we explain in
Sect. 2.3.5, the merging of two schemas is driven by a mapping that tells
how elements of the two schemas, specifically the support elements of c′,
correspond to each other. The mapping between d′1 and c′ is shown in
Fig. 2.2 as an arc connecting the two enclosed rectangles. This mapping
can be obtained by “composing” the existing mappings between c′, c, s1,
s2, d1, and d′1 as Invert(c c′)∗ Invert(s2 c)∗ Invert(s1 s2)∗s1 d1 ∗d1 d′1.
To get the composition right, mappings c c′, s2 c, and s1 s2 need to
be ‘inverted’, i.e., the domains and ranges of the mappings need to be
swapped. Thus, we determine by composition that the support element
“ORDERS” in c′ corresponds to the element “PurchaseOrder” in d′1.

5. The final result of change propagation, schema d2, is computed by the
Merge operator. Among other things, the operator Merge creates a sin-
gle complex type definition from complex type “ORDERS” from c′ and
“PurchaseOrder” from d′1. Additionally, the operator returns two map-
pings, d2 c′ and d2 d′1, which describe how d2 relates to the inputs to
Merge, c′ and d′1.

6. As a last step, we compute s2 d2, a new version of the mapping s1 d1

given as part of the input. We need s2 d2 to ensure that our change
propagation script can be re-applied if the source schema evolves again.
Since d2 is obtained by merging d′1 and c′, the mapping s2 d2 is essen-
tially a union of two mappings, the one between s2 and the d′1-portion
of d2, and the one between the s2 and c′-portion of d2. These two map-
pings can be obtained by composition as s2 c ∗ c c′ ∗ Invert(d2 c′) and
Invert(s1 s2) ∗ s1 d1 ∗ d1 d′1 ∗ Invert(d2 d′1), respectively. Their union
is denoted using the plus sign (+). To illustrate, the first mapping es-
tablishes the correspondences between the added elements “ShipDate”,
“FreightCh”, “Rebate” in s2 and their d2 counterparts. The second map-
ping in the union tells us that “OID” in s2 corresponds to “OrderID” in
d2, etc.

Notice that the above script is not limited to propagating changes from
relational schemas to XML schemas. In fact, the reverse propagation problem
can be solved using the same script by assigning the original and modified
XML schemas to s1 and s2, and the relational schema to d1. Of course, the

18 2. Conceptual Structures and Operators

input parameters c and s2 c need to be obtained using a different converter,
e.g., as 〈c, s2 c〉 = XSD2SQL(s2).

In our implementation, every intermediate result of a script such as the
one above can be examined and adjusted by a human engineer using a graph-
ical tool. Specifically, the result of Match in line 1 can be post-processed to
remove the incorrectly suggested matches and add the missing ones. Similarly,
the merging step of line 5 is in general a semiautomatic process, which may
require human feedback. Finally, by adjusting the intermediate results of op-
erator compositions in lines 2 and 3 the engineer can decide which additions
and deletions should not be propagated.

In the above discussion, we introduced several operators informally. To
make these operators effective and usable by developers, their semantics needs
to be specified precisely. Our goal is to make the semantics as “generic” as
possible, so the operators can serve a broad range of model-management
tasks. In the next two sections we describe this semantics, first by defining
the structures on which they operate, and then by describing the operators
themselves.

2.2 Conceptual Structures

Model-management applications deal with a wide range of metadata artifacts,
which include not only schemas, such as the relational and XML schemas in
our motivating scenario, but also view definitions, interface specifications,
etc. We represent the formal descriptions, or models, of these artifacts as
directed labeled graphs. This graph representation is quite flexible and can
accommodate virtually any type of model.

We also introduce two additional structures, called morphisms and selec-
tors. Morphisms are binary relationships that establish n : m correspondences
between the elements of two models (i.e., nodes of two graphs). For example,
in our motivating scenario morphisms are used for keeping track of the XML
counterparts of the relational schema elements. Two morphisms, one between
s1 and d1 and another between s2 and d2, are shown in Fig. 2.1 using light
gray lines. The third conceptual structure, selector, is a set of elements used
in models. A major benefit of using selectors is that various operations, in
particular the set operations, which would typically produce non-well-formed
models if used on models, can be applied to selectors safely.

In the following subsections, we define models, morphisms, and selectors
as abstract graph and set structures. We also describe them in an equiva-
lent representation as relations. The latter will make it easier to define the
semantics of the operators, which follow later.

We briefly review the conventional metadata terminology that we use be-
low. A meta-model can be thought of as a model that describes the structure
of another model. Typically, it contains the type definitions for the objects
used in models. For example, the Open Information Model (OIM) (Bernstein

2.2 Conceptual Structures 19

et al. 1999) defines meta-models for several database schema and transfor-
mation languages. A meta-meta model is a representation language in which
models and meta-models are represented. For example, the Unified Model-
ing Language (UML) specification uses an object-oriented meta-meta model
called MOF (Meta-Object Facility (OMG 2002a)). The meta-meta model of
our prototype, which we discuss below, is based on directed labeled graphs.
All models and meta-models can be viewed as instances of the meta-meta
model.

2.2.1 Models

We represent models as directed labeled graphs. The nodes of such graphs
denote model elements, such as relations and attributes in relational schemas,
type definitions in XML schemas, clauses of SQL statements, etc. We assume
that each element is uniquely identified by an object identifier (OID). A
directed labeled graph is a set of edges 〈s, p, o〉 where s is the source node, p
is the edge label, and o is the target node1. The order of the nodes in a graph
can be captured by an ordinal property on edges. Thus, conceptually a graph
can be viewed as a relation M with four attributes, M(S: OID, P: OID, O:
OID ∪ Literal, N: integer), where N is an optional attribute used for ordering
and S, P, O form a unique key. The node identifiers and edge labels are drawn
from the set of OIDs, which can be implemented as integers, pointers, URIs,
etc. The literals include strings, integers, floats, and other data types. The
type of attribute O is defined as a union type of OIDs and literals.

“PName”namea3

PrimaryKeytypea4

“PRODUCTS”namea1

2a3columna1

intSQLtypea2

“PID”namea2

Columntypea3

varcharSQLTypea3

Columntypea2

a2keyCola4

a2

Table

O

1columna1

type

P NS
a1

“PName”namea3

PrimaryKeytypea4

“PRODUCTS”namea1

2a3columna1

intSQLtypea2

“PID”namea2

Columntypea3

varcharSQLTypea3

Columntypea2

a2keyCola4

a2

Table

O

1columna1

type

P NS
a1

a1

Table

a2

a3

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2
name

name

name

SQLtype

SQLtype

CREATE TABLE PRODUCTS (

PID int PRIMARY KEY,

PName varchar

)

a4 PrimaryKey
type

keyCol

Fig. 2.4. Sample model
shown as graph and 4-
tuples

Consider the example in Fig. 2.4. It illustrates how a relational table
PRODUCTS defined in SQL DDL (top left) is represented as a graph (bot-
tom left) and as a corresponding set of 4-tuples (on the right). The ovals in
the graph denote OIDs, and rectangles denote literals. Nodes a1, a2, a3 rep-
resent the table PRODUCTS and its columns PID and PName, respectively.
Node a4 represents the primary key constraint on PID. For readability, the

1 The notation (s, p, o) stands for (subject, predicate, object).

20 2. Conceptual Structures and Operators

identifiers such as Table or Column are spelled out as names rather than
opaque IDs.

The order of the columns identified by the nodes a2 and a3 is determined
by the values 1 and 2 of attribute N (fourth attribute of the table with 4-
tuples). In general, the node ordering for a given {src node} and {edge label}
is determined by the SQL query: SELECT M.O FROM M WHERE M.S={src
node} AND M.P={edge label} ORDER BY M.N. In the example, we have
M.S=a1 AND M.P=column.

A formal specification of the rules for encoding a model as a graph is called
a meta-model. A model is well-formed if it conforms to its meta-model. For
example, Fig. 2.4 illustrates a graph encoding of relational schemas that uses
specific edge labels, such as SQLtype or name, and auxiliary nodes, such as
Table, varchar, or PrimaryKey. If we know the relational meta-model, we can
tell whether or not a given graph represents a well-formed relational schema.
For example, if we know that each column must have an SQL type, then
removing the edge 〈a2, SQLtype, int〉 from the graph in Fig. 2.4 yields a model
that is not well-formed. For the purposes of this chapter, it is unimportant
how a meta-model is represented and how one checks that a model conforms
to its meta-model. The details of the graph representation of models remain
opaque to the developer of model management applications. Of course, the
representation is visible to developers of model management operators. So,
a developer must be aware of the representation to implement a custom,
non-generic operator, e.g., an operator to normalize relational schemas.

2.2.2 Morphisms

Many metadata-intensive applications, such as data integration and ware-
housing tools, use a graphical metaphor like the one shown in Fig. 2.1 for
representing schema mappings. These mappings are shown to the engineer
as sets of lines connecting the elements of two schemas. We call such map-
pings (schema) morphisms. Thus, a morphism is a binary relation over two
(possibly overlapping) sets of OIDs, i.e., a set of pairs 〈l, r〉 drawn from
OID×OID.

Clearly, a morphism is a weaker representation of a transformation be-
tween two models than an SQL view or the mapping languages and expres-
sions suggested in (Bergamaschi et al. 1999; Bernstein et al. 2000b; Davidson
et al. 1995a; Miller et al. 1994; Mitra et al. 2000). In particular, a morphism
carries no semantics about the transformation of instances that conform to
the models (e.g., no SQL WHERE-clause). Still, we have found that many
mappings can be expressed in this way such as in our change propagation
scenario of Sect. 2.1. The morphisms have several other advantages. Given
our graph representation of models, a morphism can represent a mapping be-
tween different kinds of models, e.g., between a relational and XML schema.
A morphism can always be inverted and composed. (In contrast, an SQL
view cannot be composed with an XSL transformation in an obvious way).

2.2 Conceptual Structures 21

And since morphisms can be expressed as binary relations, they can be im-
plemented and manipulated easily.

<schema xmlns=“…”>

<complexType name=“Product”>

<element name=“ProductID” type=“xs:int”/>

<element name=“ProductName” type=“xs:string”/>

<element name=“ProductType” type=“xs:string”/>

</complexType>

</schema>

CREATE TABLE PRODUCTS (

PID int,

PName varchar

)

b5a3

b4a3

b3a2

b2

RL
a1

b5a3

b4a3

b3a2

b2

RL
a1

Fig. 2.5. A morphism between a relational and an XML schema

Consider the example in Fig. 2.5. The top part of the figure shows the
relational schema of Fig. 2.4 and an XML schema. A morphism between the
two schemas is depicted graphically as four arcs that connect the elements
of the schemas. The bottom part of the figure shows the same morphism
represented as a relation. The node identifiers a1, a2, a3 correspond to those
of Fig. 2.4. The nodes b2, b3, b4, b5 denote respectively the complex type
“Product” and the elements “ProductID”, “ProductName”, and “Product-
Type” defined in the XML schema (its graph representation is illustrated in
Fig. 2.6). Notice that a node can be connected to multiple nodes; e.g., a3
(“PName”) is connected to b4 (“ProductName”) and b5 (“ProductType”).
Moreover, various kinds of model elements, such as relations or attributes,
can participate in a morphism.

type
name

name

name

type

type

tag

b1

b4

b2

child:3

child:1
schema

tag

complexType

element

b3

b5

child:1

child:2

Productname

tag
tag

tag
ProductID

ProductName

ProductType

int

string Fig. 2.6. Graph representation of XML
schema in Fig. 2.5

In an implementation, it may be convenient to annotate the pairs 〈l,
r〉 with additional properties. For example, most implementations of the
Match operator compute similarity values between the elements of two mod-
els. These values can be returned conveniently using a morphism in which
each pair has an additional similarity property. Hence, although we define a

22 2. Conceptual Structures and Operators

morphism conceptually as a binary relation H(L: OID, R: OID), it may con-
tain additional attributes, as required by the individual operators. Typically,
the L elements originate from one model, and the R elements from another.

2.2.3 Selectors

A selector is a set of node identifiers, which may originate from a single or
multiple models. It can be represented as a relation with a single attribute,
S(V: OID), where V is a unique key. Fig. 2.7 shows an example of a selector
that contains all OIDs used in the model depicted in Fig. 2.4.

Column

a3

PrimaryKey

Table

int

varchar

a4

a2

V
a1

Column

a3

PrimaryKey

Table

int

varchar

a4

a2

V
a1

Fig. 2.7. Example of a selector

2.3 Operators

In our motivating scenario, we introduced several high-level operators whose
inputs and outputs are models, morphisms and selectors, such as Match,
Delete, Traverse, Extract, and Invert. Such operators raise the level of ab-
straction of manipulating metadata structures by considering whole models
and morphisms at a time, as opposed to using node-at-a-time primitives.
For easy reference, the signatures and informal descriptions of the operators
that are used in scripts most frequently are summarized in Table 2.1. In this
section, we define the precise semantics of these operators on the structures
defined in Sect. 2.2. We call this semantics structural. The implementation of
the operators is covered in Chap. 3.

We start our presentation of operator semantics in Sect. 2.3.1 with what
we call primitive operators. These are generic operators whose semantics
can be defined formally using the relational algebraic manipulation of the
relational representations of Sect. 2.2. For notational convenience, we express
this manipulation in SQL. After that, we introduce the other more powerful
operators: such as Extract, Delete, Match, and Merge, whose semantics is
more subtle and still a subject of ongoing research2.
2 In (Melnik et al. 2003a; Melnik et al. 2003b), we used slightly different operator

signatures for Extract, Merge, and Diff. In this dissertation, we changed the
directionality of the output mappings of these operators to facilitate a more
natural notation when the mappings are functional. This difference is, however,
purely syntactic.

2.3 Operators 23

Table 2.1. Summary of key operators in Rondo

Signature Description

Primitive operators
s = Domain(map) Returns selector s that holds the

elements in the domain of mor-
phism map

map2 = Invert(map1) Swaps the “left” and “right” side of
the input morphism map1

map2 = RestrictDomain(map1, s) Restricts the domain of mor-
phism map1 to the elements in
selector s

s = All(m) Returns a selector s containing all el-
ements of model m

map = Id(s) Returns the identity morphism map
for selector s

m1 m3 = Compose(m1 m2, m2 m3)
= m1 m2 ∗ m2 m3

Composes morphisms m1 m2 and
m2 m3

Derived operators
s = Range(map) Returns selector s that holds the ele-

ments in the range of morphism map
map2 = RestrictRange(map1, s) Restricts the range of mor-

phism map1 to the elements in
selector s

s2 = Traverse(s1, map) Returns selector s2 holding the ele-
ments in the range of morphism map
that are reachable by traversing map
from s1

〈md, m md〉 = Delete(m, s) Returns a “submodel” md of m that
does not contain the elements in se-
lector s

More complex operators
〈mx, m mx〉 = Extract(m, s) Extracts a “submodel” mx of m that

contains the elements in selector s
m1 m2 = Match(m1, m2 [, seed]) Computes a morphism m1 m2 be-

tween m1 and m2 using an optional
initial morphism seed

〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2)

Merges models m1 and m2 using mor-
phism m1 m2

24 2. Conceptual Structures and Operators

As we will see, some operators, such as Subgraph or Copy, are agnostic
about the kind of models passed as input, whereas the semantics of others
depends on the underlying meta-model. The GUI operators EditMap and
EditSelector allow arbitrary transformations of morphisms and selectors by
an engineer. Thus, their semantics cannot be constrained any further.

2.3.1 Primitive Operators

Table 2.2 lists the definitions of seven primitive operators. The left column
contains the operator definitions expressed in SQL. Variables m, s, and map
hold a model, a selector, and a morphism, respectively. The right column illus-
trates the application of the operators using simple examples. All primitive
operators defined in the table are standard set-theoretic operators. Notice
that their definitions are expressed declaratively, i.e., the implementation of
these operators, or functional combinations thereof, can be optimized using
standard query optimization techniques.

The operator Domain extracts the “left” elements from a morphism and
returns a selector that holds the result. The operator RestrictDomain restricts
a morphism to a smaller element domain, which is specified by the selector
passed as a second parameter of the operator. The Invert operator swaps
the left and right elements of a morphism. The Compose (∗) operator is
defined as the natural join of two morphisms, yielding another morphism.
The TransitiveClosure operator on morphisms is specified using a recursive
SQL definition. The Id operator creates an identity morphism over a given
selector.

The operator Subgraph(m, s) extracts from model m a subgraph induced
by the nodes referenced in s. The literals attached to the nodes in s are
also extracted from m. In the example of Table 2.2, the literal “PID” is
not contained in the input selector s, but the edge 〈a2, name, “PID”〉 is
nevertheless returned as part of the result. The extracted subgraph may not
be a well-formed model. That is, it may not be fully connected and may not
conform to its meta-model.

The set operators Union (+), Difference (−), and Intersection (∩) are
another three important primitive operators. We define these on models,
morphisms, and selectors by the corresponding set operations on their repre-
sentation as relations. For example,

Union(x, y) := SELECT * FROM x UNION SELECT * FROM y

Note that applying the set operations to well-formed models may produce
a model that is not well-formed.

The last two primitive operators are All and Copy. The operator All(m)
returns a selector that contains only those nodes of m that denote the model
elements of the model’s meta-model, such as tables or columns in the rela-
tional meta-model. For example, for the model of Fig. 2.4 the operator All

2.3 Operators 25

Table 2.2. Definitions of primitive operators

Definition Example

Domain(map) :=
SELECT DISTINCT map.L AS V
FROM map

Domain() =
b2a2

b1a1

b2a2

b1a1

a2

a1

a2

a1

RestrictDomain(map, s) :=
SELECT * FROM map
WHERE map.L IN s

RestrictDomain(,) = b1a1 b1a1a1a1
b2a2

b1a1

b2a2

b1a1

Invert(map) :=
SELECT map.R AS L,

map.L AS R
FROM map

Invert() =
b2a2

b1a1

b2a2

b1a1

a2b2

a1b1

a2b2

a1b1

Compose(map1, map2) :=
SELECT DISTINCT map1.L,

map2.R
FROM map1, map2

WHERE map1.R = map2.L

Compose(,) = c1a1 c1a1c1b1 c1b1
b2a2

b1a1

b2a2

b1a1

TransitiveClosure(map) :=
WITH RECURSIVE TC(L, R) AS

(map UNION
SELECT DISTINCT TC.L,

map.R
FROM TC, map
WHERE TC.R = map.L)

SELECT * FROM TC

TransitiveClosure () =
cb

ba

cb

ba

cb

ca

ba

cb

ca

ba

Id(s) :=
SELECT s.V AS L, s.V AS R
FROM s

Id() =
a2

a1

a2

a1
a2a2

a1a1

a2a2

a1a1

Subgraph(m, s) :=
SELECT *
FROM m
WHERE m.S IN s AND

(m.O IN s OR isLiteral(m.O))

a2

Column

int

PID

type

name

SQLtypeSubgraph(M,) =
Column

int

a2

Column

int

a2

M = model of Fig. 2.4

26 2. Conceptual Structures and Operators

yields the selector {a1, a2, a3, a4} and filters out all auxiliary nodes, such as
Table or PrimaryKey, that are used in the graph encoding.

Frequently, it is important to ensure that a given node identifier is used
in exactly one model. Furthermore, unique node IDs make it possible to refer
to model elements across model boundaries. For these reasons, we use the
operator Copy to create a copy of a model m in which the selected node
IDs are replaced by new, uniquely created IDs. In the following definition of
Copy, the function uniqueOID() generates a unique OID on each call, and the
function ifNULL(x, y, z) returns y whenever x is a NULL value, z otherwise.
If s = All(m), the output morphism m m′ is a bijection between All(m) and
All(m′).

Copy(m, s) :=
m m′ = SELECT s.V AS L, uniqueOID() AS R FROM s;
m′ = SELECT ifNULL(T1.R, m.S, T1.R), m.P,

ifNULL(T2.R, m.O, T2.R)
FROM m, m m′ AS T1, m m′ AS T2
LEFT OUTER JOIN ON m.S=T1.L, m.O=T2.L;

return 〈m′, m m′〉;
Fig. 2.8 illustrates the operator Copy. The operator takes as input the

model m of Fig. 2.4 and selector {a1, a2, a3, a4} = All(m). As a result of
copying, a new model has been created (on the right), in which the nodes
IDs a1, a2, a3, a4 have been replaced by the generated unique IDs a5, a6, a7,
a8, respectively.

a1

Table

a2

a3

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2
name

name

name

SQLtype

SQLtype

a4 PrimaryKey
type

keyCol

a1

Table

a2

a3

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2
name

name

name

SQLtype

SQLtype

a4 PrimaryKey
type

keyCol

a5

Table

a6

a7

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2
name

name

name

SQLtype

SQLtype

a8 PrimaryKey
type

keyCol

a4

a2

a3

a1

a4

a2

a3

a1

Copy (,)=

Fig. 2.8. Examples of copying the model of Fig. 2.4 using selector {a1, a2, a3, a4}

2.3.2 Derived Operators

The derived operators are functional combinations of other operators. For
example, consider the definitions shown below.

operator Range(map)
return Domain(Invert(map));

operator RestrictRange(map, s)
return Invert(RestrictDomain(Invert(map), s));

2.3 Operators 27

operator Traverse(s, map)
return Range(RestrictDomain(map, s));

operator Restrict(map, m1, m2)
return RestrictRange(RestrictDomain(map, All(m1)), All(m2));

The Range of a morphism is obtained as the domain of an inverted mor-
phism, by combining the primitive operators Domain and Invert of Table 2.2.
Similarly, RestrictRange is specified in terms of the operator RestrictDomain
by first inverting the input morphism, then applying RestrictDomain, and
finally inverting the resulting morphism once again.

The third operator, Traverse, was used in our motivating scenario for
locating the d1 images of the elements deleted from the relational schema s1.
To traverse the nodes in the selector over a morphism, the morphism is first
domain-restricted by the selector, and the range of the restricted morphism
is returned as output.

The last operator, Restrict, confines the domain and range of a morphism
to the elements of two models m1 and m2. Notice that the definitions of the
derived operators above are expressed declaratively, allowing the implemen-
tations to be optimized.

2.3.3 Extract and Delete

Extracting and deleting portions of models are operations that are heavily
deployed in metadata applications. To perform these operations, we propose
the generic operators Extract and Delete. The operator Extract is applied as
follows: 〈m′, m m′〉 = Extract(m, s). The inputs are a well-formed model m
and a selector s that identifies the set of nodes to be extracted. The output
model m′ satisfies the following properties:

i. m′ contains all selected nodes,
ii. m′ is a well-formed model,
iii. m′ is an equally or less expressive model than m, i.e., m can represent

all information of m′, and
iv. m′ is a ‘minimal’ model that satisfies (i)-(iii).

Condition (iii) can be characterized formally in terms of dominance and
information capacity as suggested in (Hull 1986; Miller et al. 1994). The
morphism m m′ is an injective function from All(m) to All(m′), i.e., each
model element of m has at most one counterpart in m′.

In general, a model may contain implicit information, such as transitive
relationships between model elements. In such cases, the result of Extract may
need to make such information explicit. For example, consider a class diagram
with three classes A, B, C, and two explicit subclass definitions: A is a sub-
class of B, and B is a subclass of C. Due to condition (iii), Extract(m, {A, C})
should return a class diagram in which A is defined as a subclass of C. This

28 2. Conceptual Structures and Operators

example illustrates that extraction is a rich operation, whose semantics and
implementation may be non-trivial.

Conceptually, the semantics of the operator Extract(m, s) can be realized
using the following algorithm:

1. Create a “closure” of m, i.e., a model m′ in which all implicit information
of m is represented explicitly.

2. Assign s′ = s, where s′ is a temporary selector.
3. For each x in s′, extend s′ with elements needed to satisfy conditions (ii)

and (iii).
4. Apply 3 until a fixpoint is reached, i.e., s′ will not change.
5. Extract subgraph t′ induced by s′ as t′ = Subgraph(m′, s′).
6. Obtain a “cover” of t′, i.e., a minimal model t that is semantically equiv-

alent to t′.
7. Return Copy(t, All(t)) as result of extraction. Notice that the operator

Copy (Sect. 2.3.1) returns a model and a mapping.

Deleting a selected portion of a model can be defined as extraction of the
unselected portion. Thus, we define

operator Delete(m, s)
return Extract(m, All(m)− s);

Note that the nodes of s that do not represent the model elements of m,
i.e., are not members of All(m), have no impact on the result of deletion due
to applying All(m)− s.

2.3.4 Match

The purpose of Match is to uncover how two models “correspond” to each
other. It takes two models as input and returns a morphism between them.
Match is inherently heuristic. So following the previous literature on Match
(Rahm and Bernstein 2001), we do not offer a formal definition of what
constitutes a correct output morphism. In general, matching two schemas
requires information that is not present in the schemas and cannot be fully
automated. Hence, a human engineer needs to review and adjust the sugges-
tions produced by an automatic procedure, either in a post-processing step
or iteratively.

2.3.5 Merge

To combine two models into one, we utilize the operator Merge, applied as
〈m, m m1, m m2〉 = Merge(m1, m2, map). If the input models m1 and m2

are well-formed, Merge should produce a well-formed model m that

i. is at least as expressive as each of the input models, i.e., capable of
representing the information contained in both models, and

2.3 Operators 29

ii. is “minimal”, i.e., the elements shared between the input models are not
replicated unnecessarily.

The third parameter to Merge is a morphism map that describes model
elements of m1 and m2 that are equivalent and should be “merged” into a
single model element in m. The output morphisms m m1 and m m2 identify
the counterparts of the elements of m1 and m2 in the merged model m.

The conceptual definition of Merge given above does not say anything
about the naming and ordering of model elements. For example, it does not
prescribe that the attribute names of m1 take precedence over those of m2,
or the other way around. These details are not considered to be part of the
semantics of Merge because they inherently involve end-user decision making.
They are discussed in Sect. 3.2.7.

In the next chapter, we discuss the implementation of the conceptual
structures and operators presented above.

30 2. Conceptual Structures and Operators

3. Implementation and Applications

“My way is to seize an image that moment it has formed in my
mind, to trap it as a bird and to pin it at once to canvas. Afterward
I start to tame it, to master it. I bring it under control and I develop
it.”

– Joan Miró (1893-1983)

This chapter is devoted to the implementation and deployment aspects of
the first prototype for model management developed as part of the thesis.
The chapter is structured as follows:

– In Sections 3.1 and 3.2, we describe the implementation of the concep-
tual structures and operators, respectively. In particular, we present new
algorithms developed for the operators Extract and Merge.

– In Sect. 3.3, we present our prototype in more detail and demonstrate how
it can be extended to embrace new kinds of models.

– In Sections 3.4 and 3.5, we examine the solutions for two further impor-
tant model-management tasks, view reuse and reintegration, that involve
manipulations of relational schemas, XML schemas, and SQL views.

We conclude the chapter and Part I in Sect. 3.6.

3.1 Conceptual Structures

In this section we discuss our implementation of the conceptual structures.
We have found that the relations that were used in Sect. 2.2 as standard math-
ematical representation of graphs actually are a convenient implementation
structure too. Our graph representation is based on the classical relational
data model, in which node identifiers are constants that can be shared across
models. We chose a relational approach instead of an object-oriented one
(e.g., the one in (Bernstein et al. 2000b)) to simplify the implementation and

32 3. Implementation and Applications

specification of the operators, which can often be done using SQL. Our rela-
tional graph model is based on the W3C’s Resource Description Framework
(RDF) (Lassila and Swick 1998; Powers 2003).

For encoding relational schemas, XML schemas, and SQL views as graphs
we use the following approach. Our meta-model for relational schemas is
based on OIM (Bernstein and Bergstraesser 1999). For example, the model
elements of a relational schema comprise tables, columns, and constraints; a
table contains an ordered list of columns, each of which has a type; tables
and columns carry names; the constraints are specialized into primary key,
unique key, non-null, or referential constraints; a referential constraint refers
to two columns, one of which is a foreign key and the other is a primary key;
etc. Our graph representation of XML schemas builds on XML DOM (DOM
1998). The graph representation of SQL views that we deploy is comparable
to a parse tree produced by an SQL processor (see Fig. 3.8 in Sect. 3.4). All
clauses, statements, alias definitions, functional terms, etc. are represented
as separate nodes. A view graph does not replicate the names of attributes
and relations used in schemas, but refers directly to the respective nodes in
the schema graphs.

3.2 Operators

Now we turn to the implementation of the operators of Sect. 2.3. The out-
put of the primitive operators is defined uniquely in Sect. 2.3.1, except for
the operator All, which is implemented differently for each meta-model. For
example, for relational schemas the implementation of All is specified as fol-
lows:

All(m, s) := SELECT m.S FROM m WHERE m.P=type AND m.O IN
{Table, Column, PrimaryKey, UniqueKey,
NonNull, ReferentialConstraint}

3.2.1 Extract and Delete

To describe our implementation of the Extract and Delete operators we fo-
cus on the relational schemas. Consider the schema m shown on the left of
Fig. 3.1. The primary key constraints on PID and DID are depicted as hori-
zontal bars underlining the respective attributes. The referential constraint is
shown as a line connecting PRODUCTS.PID and O-DETAILS.PID. Assume
that in the graph representation of m the three constraints are denoted by
the nodes c1, c2, and c3, respectively. For brevity, we henceforth refer to the
graph nodes representing the attributes of m simply by using their names.

Fig. 3.1 illustrates six examples of extraction and deletion. The output
morphisms m m1, . . . , m m6 are omitted in the figure for compactness; they
simply connect the respective elements of the input and output schema that

3.2 Operators 33

DID: int

Quantity: int

Price: real

O-DETAILS

PID: int

PName: varchar

PRODUCTS

PID: int

m2 = Extract(m, {PRODUCTS.PID}),

PID: int

PRODUCTS

m1 = Extract(m, {PRODUCTS.PName}):

PName: varchar

PRODUCTS

m4 = Extract(m, {O-DETAILS.PID}),

O-DETAILS

PID: int

PRODUCTS

PID: int

m

m6 = Delete(m, {PRODUCTS.PID, , ,

O-DETAILS.DID, }):

Quantity: int

Price: real

O-DETAILS

PID: int

PRODUCTS

PID: int

c1

c2

c3

c3

c1 c2

m3 = Extract(m, { }):c1

m5 = Extract(m, { }):c2

Fig. 3.1. Examples of extraction and deletion from a relational schema m

carry the same name. The first example demonstrates extraction of the at-
tribute PName, which produces schema m1. Condition (ii) of Sect. 2.3.3 re-
quires that m1 be a well-formed relational schema, i.e., attribute PName be-
longs to a relation and has a type specification. Applied to relational schemas,
condition (iii), which requires the output model to no more expressive as the
input model, makes the extracted schema contain all constraints present in
the original schema that affect the selected model elements. For example,
extracting the attribute PRODUCTS.PID from m causes the primary key
constraint c1 to be extracted as well, yielding the schema m2. Dropping c1
would violate (iii), since it would allow the attribute PID to contain dupli-
cates and thus the original schema m could not represent all information of
m2. Analogously, extracting O-DETAILS.PID from m (as schema m4) needs
to preserve the referential constraint c2, which in turn requires the presence of
PRODUCTS.PID and its primary key constraint c3. Condition (iv) prevents
any other attributes from appearing in m4.

In our prototype, the implementation of operator Extract(m, s) for rela-
tional schemas is based on the conceptual algorithm of Sect. 2.3.3. Steps 1
(“closure”) and 6 (“cover”) are equality assignments. Step 3 of the algorithm
is implemented as follows:

– If s′ contains constraint x, add to s′ all attributes that participate in the
constraint definition.

– If s′ contains attribute x, s′ is extended to include
a. the enclosing relation of x,
b. the type definition of x,
c. the referential constraint or non-null constraint for x,

34 3. Implementation and Applications

d. the primary key or unique key definition for x, but only when all at-
tributes participating in the key definition are contained in x.

In Fig. 3.1, schemas m3 and m5 illustrate the extraction of nodes that
denote constraints. To illustrate case (d), consider a relation P(Name, DOB,
Addr) with a unique key constraint on (Name, DOB). According to the al-
gorithm, Extract(m, P.Name) yields P(Name). The unique key constraint is
not included since P.DOB is not selected.

Notice that condition (iii) of Extract makes it impossible to delete a con-
straint on a relational attribute without deleting the attribute definition, or
to delete the primary key attribute participating in a referential constraint
without deleting its foreign key attribute. For example, consider schema m6 in
Fig. 3.1. Selecting PRODUCTS.PID and the constraints c1 and c2 is not suf-
ficient for deleting this attribute: the attribute O-DETAILS.PID, which is a
foreign key on PRODUCTS.PID, is not selected; therefore, dropping PROD-
UCTS.PID would extend the set of possible values that O-DETAILS.PID
may take beyond those contained in PRODUCTS.PID and hence violate
condition (iii). In Sections 3.2.3 and 3.2.4, we present more flexible opera-
tors ExtractMin, DeleteHard, and DeleteSoft, which allow such deletions by
providing fewer consistency guarantees than Extract and Delete.

Extraction from XML schemas is implemented analogously to the above
algorithm. Type references in XML schemas are treated similarly to the ref-
erential constraints in relational schemas. Currently, derived types are not
supported.

3.2.2 Dependencies

As we observed above, the operators Extract and Delete disallow semanti-
cally questionable transformations on schemas, such as dropping arbitrary
constraints, and are defined for schemas only. In general, deletion on models,
which may on may not be schemas, needs to be done in a careful way to
ensure that the consistency of the resulting model with respect to its meta-
model is not violated. For example, consider the relation ORDERS shown at
the bottom of Fig. 3.2. If we were to delete just the definition of the table
ORDERS, we risk getting an inconsistent model, in which fields like OID do
not belong to any table. Or, if we delete the field ORDERS.OID, we might
get a malformed referential constraint for O-DETAILS.OID, whose target key
definition is now missing. To deal with such consistency issues in a more gen-
eral way, we exploit the concept of existential dependencies between model
elements.

Figures 3.2 and 3.3 show examples of dependencies that hold between
the elements of a relational schema, and between the elements of an XML
schema. Each of the arcs specifies that the source element of the arc is ex-
istentially dependent on the target element. For example, in the relational
schema of Fig. 3.2, the attribute “UnitPrice” cannot exist without its type

3.2 Operators 35

CREATE TABLE O-DETAILS (

DID int PRIMARY KEY,

OID int REFERENCES ORDERS,

UnitPrice double,

. . .)

CREATE TABLE ORDERS (

OID int PRIMARY KEY,

. . .) Fig. 3.2. Example of existential dependen-
cies in a relational schema

definition (arc from “UnitPrice” to “double”). Similarly, the primary key con-
straint in table O-DETAILS is malformed if the constrained field “DID” is
missing. The referential constraint between the fields O-DETAILS.OID and
ORDERS.OID spans two tables, and requires both a foreign key and a pri-
mary key. Analogously, in the XML schema of Fig. 3.3, the definition of the
element “shipTo” depends on the existence of the complex type “Address”
as well as on the enclosing sequence element, etc.

<xsd:complexType name=“PurchaseOrder”>

<sequence>

<xsd:element name=“shipTo” type=“Address”/>

<xsd:element ref=“comment” minOccurs=“0”/>

. . .

</sequence>

</xsd:complexType>

<xsd:element name=“comment” type=“xsd:string”/>

<xsd:complexType name=“Address”>

. . .

Fig. 3.3. Example of existen-
tial dependencies in an XML
schema

As illustrated in Figures 3.2 and 3.3, dependencies are binary relations
over the elements of a single model. Thus, we represent dependencies as intra-
model morphisms, whose left elements are dependent on the right ones. To
obtain the dependencies for a given model, we use the operator Dependen-
cies, which invokes a non-generic implementation to compute the dependency
morphism for the given model. For each supported model type, one such non-
generic implementation is provided (one for relational schemas, another one
for XML schemas, etc.). In our implementation, the operator Dependencies
uses the arc types defined in the meta-model to determine what arcs are de-
pendency arcs. For example, the arcs column and SQLtype of Fig. 2.4 are
marked as dependency arcs in our representation of the meta-model for rela-
tional schemas; the target of an arc of type SQLtype depends on the source,
and the source of arc of type column depends on its target.

3.2.3 ExtractMin

A general intuition behind extraction is that we want to obtain a minimal
model that contains the nodes in the selector and all those nodes and edges

36 3. Implementation and Applications

that are necessary to make the resulting subgraph a “complete”, well-formed
model. Obviously, such model has to contain at least those nodes that are
existentially required for the nodes in the selector. This minimalist subgraph
can be obtained using the operator ExtractMin defined below, which uses an
auxiliary derived operator Reachable.

operator ExtractMin(M , selector, dependencies)
T = Subgraph(M , selector + Reachable(selector, dependencies));

return Copy(T , All(T));

operator Reachable(selector, map)
return Range(RestrictDomain(TransitiveClosure(map), selector));

The operator ExtractMin takes three parameters as input, a source model
M , a selector that identifies the elements to be selected, and the dependency
morphism for M . The operator returns the subgraph of M induced by the
union of the nodes in the selector and all nodes that are required to satisfy
the existential dependencies of the selected nodes. These required nodes are
obtained using the operator Reachable.

To illustrate how Reachable works, imagine that it is called with parame-
ters {a,d} as selector and {(a,b),(b,c)} as the dependency morphism of model
M . We get: Reachable({a,d}, {(a,b), (b,c)}) = Range(RestrictDomain({(a,b),
(b,c), (a,c)}, {a,d})) = Range({(a,b), (a,c)}) = {b,c}. Thus, selecting
{a,d} from model M yields Subgraph(M , {a,d} + {b,c}) = Subgraph(M ,
{a,b,c,d}). The resulting subgraph contains by definition all edges between
{a,b,c,d} and their incident literals. Notice that the operator Reachable can
be executed by the optimizer efficiently, without materializing the transitive
closure. This observation is important, since the dependency closures of even
moderately-sized models may contain hundreds of thousands of entries.

As another example, consider selecting a single node denoting the at-
tribute “UnitPrice” from the model of the relational schema of Fig. 3.2 using
ExtractMin. As shown in the figure, the type definition of “UnitPrice” and
the relation “O-DETAILS” are required for the attribute definition, so that
the operator Extract returns a subgraph of the model that represents the
relational schema

CREATE TABLE O-DETAILS (UnitPrice double)

Similarly, if a single node denoting the primary key of table ORDERS is
selected, we get

CREATE TABLE ORDERS (OID int PRIMARY KEY)

In this case, the node identifying the table ORDERS is pulled out due to
the transitive dependency of the primary key on the table definition via the
attribute definition.

3.2 Operators 37

3.2.4 DeleteHard and DeleteSoft

As noted in Sect. 2.3.3, extracting a selected portion of a model can be
viewed as deletion of the unselected portion. To support a broader range of
model management scenarios, we define additional two variants of deletion,
DeleteHard and DeleteSoft. Both operators remove a portion of a model
referenced by a selector. The intuition behind DeleteHard is that we want
to obtain a maximal consistent submodel without the selected nodes. It is
defined as follows.

operator DeleteHard(M , selector, dep)
toDelete = selector + Reachable(selector, Invert(dep));
toKeep = All(M) − toDelete;

return ExtractMin(M , toKeep, dep);

Essentially, the operator DeleteHard takes All(M) elements of M , sub-
tracts from this set the elements to be deleted, and applies ExtractMin to
extract the unselected portion of the model. To take the existential dependen-
cies into account, DeleteHard extends the selector passed as input to include
all elements of M that would become “dangling”, i.e., elements that are ex-
istentially dependent on the elements to be deleted. Such would-be dangling
elements are obtained by passing the selector and the inverted dependency
morphism to the operator Reachable. That is, the dependencies are traversed
in the reverse direction.

Consider again the example in Fig. 3.2. Imagine that we DeleteHard the
nodes representing the attribute O-DETAILS.UnitPrice and the table OR-
DERS. The set of elements Reachable from these selected elements over
the inverted dependency morphism are the foreign key constraint on O-
DETAILS.UnitPrice and all attributes of ORDERS (to see that, the arcs
in the figure need to be traversed in the reverse direction). That is, the con-
straint and the table ORDERS with all its attributes will be removed, and
we get the schema

CREATE TABLE O-DETAILS (DID int PRIMARY KEY, OID int)

In contrast to DeleteHard, the operator DeleteSoft removes each selected
element only if it has no unselected dependent elements. That is, in the above
example, the table ORDERS would not be deleted since it is referenced by the
unselected foreign key on O-DETAILS.OID. The result of applying DeleteSoft
for the same input parameters is shown below. Only O-DETALS.UnitPrice
has been removed.

CREATE TABLE O-DETAILS (
DID int PRIMARY KEY,
OID int REFERENCES ORDERS)

CREATE TABLE ORDERS (OID int PRIMARY KEY, . . .)

38 3. Implementation and Applications

The operator DeleteSoft is defined below. Instead of extending the selector
to cover the would-be dangling elements, it is restricted to make sure that
no unselected elements are removed. The selector that keeps the elements
that cannot be deleted (cannotBeDeleted) is first obtained by collecting all
elements which the unselected elements depend on. Now, the input selector
is adjusted to eliminate all these undeletable elements. Finally, the operator
ExtractMin is applied, just as in the operator DeleteHard.

operator DeleteSoft(M , selector, dep)
cannotBeDeleted = Reachable(All(M) − selector, dep);
toDelete = selector − cannotBeDeleted;
toKeep = All(M) − toDelete;

return ExtractMin(M , toKeep, dep);

Table 3.1 summarizes the differences between the operators discussed
above and illustrates them using a single characteristic example for rela-
tional schemas. The “hard” version of deletion in schemas is similar to the
cascading delete of existentially dependent data tuples, which is supported
by many relational database systems.

Table 3.1. Comparison of variants of extraction and deletion

Operator Example

Extract Cannot extract a field without the constraints de-
fined for the field.

ExtractMin Can extract a field without the constraints defined
for the field.

Delete Cannot delete a constraint defined on a field with-
out deleting the field.

DeleteSoft Can delete a constraint defined on a field without
deleting the field. Cannot delete fields referenced
by unselected fields.

DeleteHard Can delete fields even if they are referenced by
unselected fields. In this case, dangling references
would be deleted, too.

3.2.5 Diff

The Diff operator computes the difference between a model m and another
model m′ that is connected to m using a mapping m m′. Intuitively, the
difference between two models is a sub-model of m that does not participate
in the mapping m m′. In other words, to obtain the difference we eliminate
from m all elements that do have matching counterparts in the other model.
Thus, we define the operator Diff as shown below:

operator Diff(m, m m′)
return Delete(m, Domain(m m′));

3.2 Operators 39

Similarly to the operators DeleteSoft and DeleteHard, we provide addi-
tional two versions of the Diff operator: DiffSoft and DiffHard.

operator DiffSoft(m, m m′)
return DeleteSoft(m, Domain(m m′));

operator DiffHard(m, m m′)
return DeleteHard(m, Domain(m m′));

Notice that given the the differencing operators, we could define deletion
as derived operations. For example, the operator Delete could be defined
based on Diff as

operator Delete(m, s)
return Diff(m, Id(s));

3.2.6 Match

In our prototype, the Match operator takes as input two models of the same
kind, e.g., two relational schemas, and returns as output a morphism. We
implemented Match using the Similarity Flooding (SF) algorithm, a graph-
matching algorithm presented in Chap. 7. The SF algorithm exploits the
structure of the graphs to be matched and performs especially well for de-
tecting the differences between two versions of a schema, which is the case in
our motivating scenario and many other typical metadata applications.

The SF algorithm takes as input two graphs m1 and m2, and a set of initial
similarity values between the nodes of the graphs, expressed as a weighted
binary relation seed. Each pair 〈l, r〉 of seed carries a similarity value between
zero and one. In a fixpoint computation, the algorithm iteratively propagates
the initial similarity of nodes to the surrounding nodes, using the intuition
that neighbors of similar nodes are similar. The output of the algorithm is
another weighted binary relation.

In Sect. 2.2.2 we defined a morphism as a binary relation. To include
weights in a morphism, we add to it a third attribute Sim that holds a
similarity value for each pair of nodes. The primitive operators in Sect. 2.3.1
ignore this extra information. We implement the operator Match as

operator Match(m1, m2, seed)
multimap = SFJoin(m1, m2, seed);
multimap = Restrict(multimap, m1, m2);
map = FilterBest(multimap);

return 〈map, multimap〉;
The operator SFJoin encapsulates the SF algorithm. As explained in

Chap. 7, the multimap returned by the algorithm may contain a large frac-
tion of the cross product between nodes in m1 and m2, and needs to be

40 3. Implementation and Applications

filtered. The operator FilterBest implements the filter suggested in Chap. 8,
which exploits the stable-marriage property. In addition to filtering, we re-
strict the result of the SFJoin operator to the nodes that represent the model
elements of m1 and m2 using the operator Restrict (Sect. 2.3.2). The in-
put morphism seed is typically obtained using another auxiliary operator
NGramMatch(m1, m2), which computes the similarities of literals in m1 and
m2 based on the number of n-grams that they have in common. Alterna-
tively, seed can be obtained by composition of morphisms. If seed is omitted,
NGramMatch is invoked in SFJoin by default.

The above Match implementation returns both the filtered morphism
map, and the unfiltered multimap. The morphism map can be adjusted by
the engineer using a graphical tool by invoking the operator EditMap on
the outputs of Match, e.g., as map = EditMap(map, multimap). The graph-
ical tool allows the engineer to inspect all candidate matches suggested in
multimap.

The script used above for implementing the Match operator can be easily
adapted to call other external schema matchers, which may deploy thesauri,
analyze schema annotations, mine samples of instance data, reuse previous
match results, etc., to reduce the manual post-processing effort.

3.2.7 Merge

We discuss our implementation of the Merge operator using the example in
Fig. 3.4. On the top, two sample models m1 and m2 get merged into m (the
output morphisms are omitted). The morphism map is depicted using di-
rected arcs. The direction of each arc establishes a preference between two
model elements; when collapsing the two elements, the target element is kept
in the output m, whereas the source element is discarded. For example, the
attribute PO.OrderDate is kept and ORDER.ODate is discarded, as illus-
trated in the figure. Such preferences are not part of the semantics of the
Merge operator (Sect. 2.3.5), but are essential for practical deployment.

The input morphism map contains an extra attribute Dir to hold the di-
rection of the arcs (→ or ←). Before Merge is executed, a human engineer
has a chance to specify the arc direction in a graphical tool by invoking the
operator EditMap. The output morphisms provide the engineer an auditable
trail of how the elements of the input models have been transformed into
the elements of the output model. For example, although ORDER.ODate
is discarded in m, the morphism m m1 would tell the engineer that OR-
DER.ODate from m1 has become ORDER.OrderDate in m.

The bottom of Fig. 3.4 depicts m1 and m2 as graphs. For brevity, the arc
labels, type edges, and literals are omitted (compare to Fig. 2.4). Node x cor-
responds to relation ORDER, x1 denotes ORDER.ODate, etc. The morphism
map is 〈x, y, ←〉, 〈x1, y2, →〉, 〈x2, z1, →〉.

To implement the Merge operator, we developed an algorithm called
GraphMerge, which we describe below. Similar to (Buneman et al. 1992;

3.2 Operators 41

x

x1
x2

x3

z

z1

y

y1
y2

x

y2
z1

x3

z

z1

x

y1
y2

x

y2
z1

x3

y1

z

�

�
�

�
� �

�

��,��

��
�o

o��o

o

o
o

oo
o�
o�
�o
�o
��
��
��
��

priority order

for conflict

resolution

heuristic:

ODate

CName

CAddr

ORDER

Customer

CUST

Amount

OrderDate

PO

OrderDate

CAddr

Amount

ORDER

Customer

CUST

m1 m2 m

Fig. 3.4. Merging two sample
schemas

Pottinger and Bernstein 2003), the algorithm consists of three conceptual
steps: node renaming, graph union, and conflict resolution.

1. In the first step, the graph nodes at the blunt ends of map are renamed
to their targets at sharp ends, in both graphs m1 and m2. The result of
renaming is shown on the bottom left of Fig. 3.4. Nodes y, x1, and x2 of
both graphs have been renamed respectively to x, y2, and z1.

2. In the second step, we do a graph union, i.e., a set union of two sets of
edges, and obtain the graph depicted on the bottom right of the figure.
This graph is not a well-formed model, because the node z1, which used
to represent the attribute CUST.Customer in m2, has now become an
attribute of two different relations, x (ORDER) and z (CUST).

3. Such conflicts are resolved in the third and final step of the GraphMerge
algorithm. The above conflict is eliminated by deleting either the edge
between x and z1, or the edge between z and z1, effectively making Cus-
tomer either an attribute of relation CUST or an attribute of relation
ORDER in the merged schema. The choice between the two options is
made by a human engineer.

Step 3 is the costliest step of the algorithm, since it requires human feed-
back. To partially automate conflict resolution, we developed the following
heuristic. Observe that in Fig. 3.4 it seems more “natural” to keep the at-
tribute Customer in relation CUST than to move it to ORDER. To generalize
this observation, we track the origin of each edge in the merged graph, and
assign to each edge a tag, such as +− or o+, which indicates whether each of
the nodes incident at the edge was a source node of map (−), a target node
(+) of map, or none of the two (o) (these are the only three possible cases
assuming that source and target nodes of map are disjoint). For example, the
edge 〈x, z1〉 obtained by renaming from 〈x, x2〉 is tagged with +−, since x is

42 3. Implementation and Applications

a target node and x2 is a source node of map. Analogously, the edge 〈z, z1〉
is tagged with o+, since z does not appear in map at all.

If we knew that o+ edges are always preferred over +− edges, then,
in a conflict 〈x, z1〉 could be eliminated without asking the engineer. We
examined a variety of merge problems in the context of relational schemas,
XML schemas, and SQL views, and established empirically a total order
among all tag variations, which helps resolve many conflicts automatically
in a way that matches human intuition. This order is shown in the middle
right of Fig. 3.4. Intuitively, edges between unchanged nodes (oo) are least
likely to be rejected in a conflict, and thus have the highest priority. Similarly,
edges incident at + seem more likely to be preferred than those incident at
−. Thus, Steps 2 and 3 are realized as follows. First, all edges in the merged
graph are sorted by decreasing priority. Then, iteratively, each edge is taken
off the top of the sorted list and is appended to an (initially empty) graph G.
If appending the edge violates model consistency, it is rejected. Once all edges
have been appended, the engineer examines the result and the choices made
heuristically, and makes any necessary adjustments. The execution trace of
the algorithm is stored in a log file, which lists the rejected alternatives.

In the above description of the algorithm, we factored out an important
aspect, the ordering of nodes within parent. To illustrate how we reestablish
a correct order in the merged schema, consider Fig. 3.4. Node y denoting
the relation PO is renamed to x. Thus, when merging this node with the
original x in m1, we move attributes y1 (Amount) and y2 (OrderDate) to
the last position in the merged schema m. However, OrderDate “overrides”
ODate, the first attribute in relation ORDER, and should remain at the first
position. Hence, in schema m, the resulting order of attributes is OrderDate,
CAddr, Amount.

The GraphMerge algorithm is summarized below:

Algorithm GraphMerge(m1, m2, map)
M := m1 ∪m2; L := empty list; G := empty graph
for each edge e in M do

rename nodes of e using map; assign tag to e; append e to L;
end for
sort edges in L by decreasing tag priority;
maxN := SELECT max(M .N) FROM M ;
while L not empty do

take edge e = 〈s, p, o, n〉 off top of L;
if tag(e) one of {“−o”, “−+”, “−−”} then

n := n + maxN ;
if o is literal then continue loop end if

end if
if exists e′ = 〈s, p, o, n′〉 in G then

replace e′ in G by 〈s, p, o, min{n, n′}〉;
else if not conflictsWith(〈s, p, o, n〉, G) then

3.2 Operators 43

append 〈s, p, o, n〉 to G; end if
end if

end while
return G

The number maxN is obtained as the highest existing value of the ordinal
property N in m1 and m2 (compare Sect. 2.2.1). It is used to move the nodes
hanging off renamed nodes to the last positions. To test for renamed nodes,
we check whether the corresponding edge tag starts with −, i.e., is one of −o,
−+, or −−. The literals belonging to such renamed nodes are removed, to
ensure that, e.g., the relation corresponding to node x in the merged graph of
Fig. 3.4 will be named “ORDER” and not “PO”. The function conflictsWith()
checks whether appending a new edge to G causes a conflict.

The GraphMerge algorithm can be used for various kinds of models by
implementing the function conflictsWith() appropriately. In our prototype,
we deploy the algorithm for merging relational schemas, XML schemas, and
SQL views. For example, conflict detection for relational schemas checks that
relations cannot contain relations instead of attributes, or that attributes
cannot be shared among relations, etc.

The Merge operator is implemented as follows:

operator Merge(m1, m2, map)
G = GraphMerge(m1, m2, map);
s = SELECT L FROM map WHERE Dir=“→” UNION

SELECT R FROM map WHERE Dir=“←”;
m1 G = RestrictDomain(map, All(m1) ∩ s) + Id(All(m1)− s);
m2 G = RestrictDomain(map, All(m2) ∩ s) + Id(All(m2)− s);
〈m, G m〉 = Copy(G, All(G));

return 〈m, Invert(m1 G ∗G m), Invert(m2 G ∗G m)〉;
Recall that Merge must also return morphisms from each of its input

models to its output model. Thus, after applying GraphMerge to obtain the
merged model G, we compute the morphisms m1 G and m2 G. The selector
s contains all source nodes of map. For the example of Fig. 3.4, we obtain
m1 G as union of domain-restricted map, {〈x1, y2〉, 〈x2, z1〉}, which maps
each renamed m1 node to its new name, and the identity morphism on not
renamed nodes, {〈x, x〉, 〈x3, x3〉}. Finally, G is copied to make the node IDs
of the output model m unique, and the morphisms m1 G and m2 G are
composed with G m, so they range over m instead of G.

The GraphMerge algorithm does not “invent” new model elements or
establish new relationships between the existing elements. Therefore, the op-
erator Merge as implemented above cannot reorganize schemas to resolve
structural conflicts. For example, consider two XML schemas, S1 with ele-
ment FullName and S2 with elements FirstName and LastName. Merging
S1 and S2 should ideally create a new complex type Name with subordi-
nate elements FirstName and LastName. Such structural conflicts can be

44 3. Implementation and Applications

addressed by using n-way merges, in which intermediate schemas Sj are used
for describing the desired structural transformations.

In Sect. 2.3.5 we postulated two “semantic” conditions that Merge should
satisfy. Our implementation does not automatically ensure that condition
(i) holds. For example, the engineer might decide to “override” a non-null
constraint on an attribute in one schema S1 by a primary key constraint of
the other schema S2, in which case the output model would be less expressive
(i.e., more constrained) than S1. This flexibility is sometimes desirable in
practice.

3.3 Prototype “Rondo”

In this section, we describe the architecture and main features of the proto-
type in more detail1. Its architecture is shown in Fig. 3.5. A central compo-
nent of the architecture is an interpreter that executes scripts. Its main task
is to orchestrate the data flow between the operators. The interpreter can be
run either from the command line, or invoked programmatically by external
applications and tools. The operators can be defined either by providing a
native implementation, or by means of scripts. For example, a native operator
like ReadSQLDDL reads a text document containing the definition of a rela-
tional database and creates its graph representation, whereas WriteSQLDDL
exports the graph back as text.

SQL

DBMS

File

system

SQL tables

graphs

files

ReadDb

WriteDb

ReadSQLDDL

WriteSQLDDL

ReadXSD

WriteXSD

ReadSQLView

WriteSQLView

…

Compose

Domain

GraphMerge

SFjoin

EditMap (GUI)

…

Range

Match

Merge

PropagateChanges

…

�

�

Native operators Scripts

Interpreter

Fig. 3.5. Architecture of
the prototype

Schemas and instances in the native format such as XML or SQL DDL
files are stored in the local file system. The models can additionally be loaded
and stored in a (remote) metadata repository. The repository is an SQL-
compatible database. The interpreter communicates with the repository via
1 A demo of the prototype is available for download at
http://www-db.stanford.edu/∼melnik/mm/rondo/

3.3 Prototype “Rondo” 45

JDBC. Two native operators, ReadDb and WriteDb, load and store arbitrary
graphs in the database.

Native operators are defined in scripts using statements like

alias ReadSQLDDL [Java class name];

Every native operator corresponds to a Java class compliant to a certain
interface. Other operators that have been implemented natively include

– all primitive operators of Sect. 3.2,
– operators that launch GUIs for editing morphisms and selectors, such as

EditMap or EditSelector,
– schema translation and conversion operators such as SQL2XSD, and
– the operators that implement the individual algorithms such as Similar-

ity Flooding (SFJoin), GraphMerge, or the string matching operators de-
scribed below.

All other operators, such as Range, Match, or Merge, are implemented by
scripts presented in the previous sections. The specification of the commonly
used native or derived operators can be grouped in a single script and utilized
in other scripts using include statements.

StringMatch provides a hint how literal nodes in one graph match those
in another. This string matcher splits a text string into a set of words and
compares the word in two sets pairwise. In word comparison, we examine only
common prefix and suffix. Optionally, term frequencies are used to reduce the
impact of common terms in large schemas. In Chap. 7, we give an example of
string matching in Table 7.1. NGramMatch is another, more efficient, string
matching operator. It builds an in-memory inverted n-gram index over the
labels used in the models. Then, both indexes are merged producing a list
of pairs of labels. The complexity of NGramMatch is O(n log n) instead of
O(n2) of StringMatch; it is determined by the sorting phase of the index
construction.

The scripting language that we use is quite simple. Every operator takes
a list of models as input and produces a list of models as output. Load/store
and import/export operators are an exception, since they accept additional
parameters that are not models. Recall that mappings are models and there-
fore can be used whenever model is expected as a parameter. For compactness
of scripts, operators can be nested.

The interpreter provides a debugging facility that allows examining the
execution traces of complex scripts, and supports flexible handling of the
input and output parameters of operators. For example, if an operator returns
more than one argument (as does our implementation of the operator Match),
some of which are not used subsequently (as in script PropagateChanges in
Sect. 2.1), they can be tacitly ignored.

For minimizing the amount of GUI programming needed for visualizing
various kinds of models, we used the following technique. We require an op-
erator like WriteSQLDDL to output not only the textual representation of

46 3. Implementation and Applications

the model, but also a data structure that describes how the terms in the text
relate to the model elements, or graph nodes. In this way the schema elements
shown in Fig. 3.7 enclosed in boxes are associated with the graph nodes rep-
resenting those elements, and the GUI operators EditMap and EditSelector
can be used in exactly the same way for relational schemas (Fig. 3.7) or SQL
views (Fig. 3.8).

At the current stage, our prototype supports the basic features of SQL
DDL, XML Schema, RDF Schema, and SQL views, and, in preliminary form,
UML. To introduce a new modeling language in the prototype, two steps
are required. First, the import/export operators need to be provided, which
ensure lossless round-tripping from the native format to graphs and back.
Second, several callbacks need to be implemented for supporting the operators
All, Extract, and GraphMerge.

The code breakdown of the prototype is shown in Fig. 3.6. A large share
of the implementation effort was due to the graph APIs responsible for in-
memory representation and manipulation of graphs and morphisms, and the
database support. The key generic model-management functionality com-
prises less than 7K lines of code. It includes the interpreter (2050), primitive
operators (660), SFJoin (1760) and GraphMerge (700) implementations, as
well as the generic GUI operators (1400). The non-generic part is essentially
divided among the code needed to support SQL DDL, XML schemas, and
SQL views. The smallest portion of code is due to converters: XSD2SQL
(260), SQL2XSD (250), View2Morphism (90), and Morphism2View (200).
The compactness of the converters is mostly due to the fact that they oper-
ate on the internal graph representation using expressive queries. The total
amount of code in the prototype is below 24K lines. The total scripting code
developed so far is measured in hundreds of lines.

The implemented scenarios run in a few seconds on a 600 MHz laptop
with 256 MB of memory for moderately-sized schemas, which contain up to
a few hundred model elements2. However, we found that our graphical user
interface is inadequate for visualizing medium-size and large schemas. For
example, schemas that contain around 40 table definitions stretch over dozens
of computer screens, are hard to navigate, and the mappings between them
clutter the screen. For schemas containing over a thousand table definitions,
the running time performance of our GUI and the matching algorithm is
inadequate. Intelligent GUI design and efficiency require future work.

Further scenarios that we implemented include a reintegration scenario
from the context of version management, iterative merge, a warehousing sce-
nario, in which we extract a subset of the schema that is sufficient to answer
a given set queries, and a view reuse scenario. The view reuse scenario is
in Sect. 3.4. Among other aspects, it illustrates how views can be merged,
presents the GUIs used in our prototype, and demonstrates the use of the

2 The test schemas that we used are available at ifr.sap.com, www.xcbl.org, and
www.microsoft.com/biztalk.

3.4 View-Reuse Scenario 47

11820

6800

1500

1370

1280 600

DB + graph APIs

Generic MM

SQL views

XML Schema

SQL DDL

Converters

Fig. 3.6. Code size breakdown in
prototype (in lines of code)

operators Morphism2View and View2Morphism. The reintegration scenario
is covered in Sect. 3.5.

3.4 View-Reuse Scenario

In this section, we examine another scenario, which illustrates the use of the
operators presented in this chapter for addressing a typical data warehousing
task. Consider adding a new source S2 to a data warehouse D. Assume that
S2 is similar to an existing source S1. The morphism S1 S2 between the
two source schemas is shown in Fig. 3.7. Let an existing SQL view vS1 D
describe how the instances of S1 populate D. The view vS1 D is depicted in
the middle of Fig. 3.8 (the relevant portion of the warehouse schema can be
seen in the CREATE VIEW clause). Our goal is to reuse the view vS1 D for
importing S2 data into D, i.e., creating the view vS2 D. Conventionally, this
problem is solved manually involving a tiresome and error-prone renaming
of the attribute and relation names used in vS1 D based on the similarities
between S1 and S2. In our prototype, we obtain vS2 D using the following
script:

Fig. 3.7. Morphism between sources
S1 and S2

48 3. Implementation and Applications

1. S1 S2 = Match(S1, S2);
2. S1 D = View2Morphism(vS1 D);
3. S2 D = Invert(S1 S2) ∗ S1 D;
4. vS2 D′ = Morphism2View(S2 D);
5. map = Match(vS2 D′, vS1 D, Invert(S1 S2));
6. vS2 D = Merge(vS2 D′, vS1 D, map + S1 S2);

First, we match S1 and S2 to determine the correspondences between the
schemas. As can be seen in Fig. 3.7, some of the elements of S1 and S2 remain
unmatched, whereas others, such as Department.DeptName are matched to
two elements, Companies.name and Companies.legalEntity. In Step 2, we ex-
tract the morphism S1 D from the view definition vS1 D using a non-generic
operator View2Morphism. For example, the morphism S1 D, which is omit-
ted in the figures for brevity, associates the attribute Personnel.Pname with
two attributes, Employee.EmpFName and Employee.EmpLName, etc. Next,
we compute the morphism S2 D by composition. In Step 4, a ‘template’ view
definition vS2 D′ is generated from S2 D using another non-generic operator
Morphism2View. It is shown on the left of Fig. 3.8. Morphism S2 D contains
no information as to how the values of the attribute Personnel.Affiliation
are obtained from Companies.name and Companies.legalEntity. Therefore, a
functional term fct1 is generated in vS2 D′ as a placeholder.

vS2_D� vS1_D
vS2_D

Fig. 3.8. Merging two
SQL views

3.5 Reintegration Scenario 49

In Step 5, the template vS2 D′ and the existing view vS1 D are matched,
using as a seed the morphism between S1 and S2. The resulting morphism,
after some minor manual corrections, is depicted in Fig. 3.8. Finally, in Step
6 both view definitions are merged to obtain vS2 D, shown on the right. No-
tice that the function symbol fct0 has been correctly replaced by the nested
concatenation, whereas fct1 was left as is. The unmatched WHERE clause
was borrowed from vS1 D; the attribute references have however been cor-
rectly replaced by Companies.cid and Consultants.cid. To achieve that, the
morphism map passed to Merge is extended to include S1 S2. The heuristic
deployed in the GraphMerge algorithm produces vS2 D fully automatically,
due to relative simplicity of the input views.

3.5 Reintegration Scenario

In this section, we illustrate another scenario called reintegration, or 3-way
merge. The reintegration problem arises when a model is modified indepen-
dently by several engineers or tools. We focus on the case when there are
two such independent modifications. Assume that model m was changed in-
dependently into m1 by Ann and into m2 by Bob. Our goal is to obtain the
reconciled model m3 that incorporates the changes done by Ann and Bob,
and the mappings m3 m1, m3 m2 and m3 m that describe how the models
m1, m2, and m relate to the reconciled version m3.

Consider the example in Fig. 3.9. The original (relational) schema m is de-
picted on the top of the figure. In table ORDERS in schema m, employees are
represented by an opaque identifier. To store employees’ names, Ann creates
the table EMPLOYEES and makes ORDERS.EID a foreign key into the new
table. Also, she deletes ORDERS.PONum and O-DETAILS.UnitPrice and
adds PRODUCTS.PDesc. Meanwhile, Bob creates the table BRANDS and
replaces the attribute PRODUCTS.Brand by a foreign key pointing to the
new table. In addition, he adds a new attribute PRODUCTS.ISIC that holds
the classification description of products. He deletes DETAILS.UnitPrice,
just as Ann, and in addition he also deletes DETAILS.Discount.

One way of obtaining m3 is to simply merge m1 and m2. That is, in the
script shown below, we first match m1 and m2 (line 1) and apply the Merge
operator (line 2). To compute the mapping m3 m, we need to know how m
corresponds to each of m1 and m2. So, we match them in lines 3-4. Now,
each of the compositions m3 m1 ∗ Invert(m m1) and m3 m2 ∗ Invert(m m2)
describes a part of the mapping from m3 to m. To obtain m3 m, we combine
both compositions in line 5.

operator ReintegrateFirstCut(m, m1, m2)
1. m1 m2 = Match(m1, m2);
2. 〈m3, m3 m1, m3 m2〉 = Merge(m1, m2, m1 m2);
3. m m1 = Match(m, m1); // or given

50 3. Implementation and Applications

OID

OrderDate

EmployeeID

CustomerID

PONum

SalesTaxRate

ORDERS

DID

Quantity

UnitPrice

Discount

O-DETAILS

PID

PName

Brand

PRODUCTS

OID
PID

m

OID

OrderDate

CustomerID

SalesTaxRate

ShipDate

FreightCharge

Rebate

ORDERS

DID

Quantity

Discount

O-DETAILS

PID

PName

Brand

PDesc

PRODUCTS

OID

PID

EID

FName

LName

EMPLOYEES

EID

m1

OID

OrderDate

CustomerID

PONum

SalesTaxRate

Rebate

ORDERS

DID

Quantity

O-DETAILS

PID

PName

ISIC

PRODUCTS

OID

PID

BID

BName

BDesc

BRANDS

EmployeeID

BID

m2

OID

OrderDate

CustomerID

SalesTaxRate

ShipDate

FreightCharge

Rebate

ORDERS

DID

Quantity

O-DETAILS

OID

PID

EID

FName

LName

EMPLOYEES

EID

PID

PName

ISIC

PDesc

PRODUCTS

BID

BName

BDesc

BRANDS

BID

m3

Fig. 3.9. Reintegration scenario (3-way merge)

3.5 Reintegration Scenario 51

4. m m2 = Match(m, m2); // or given
5. m3 m = m3 m1 ∗ Invert(m m1) + m3 m2 ∗ Invert(m m2);
6. return 〈m3, m3 m, m3 m1, m3 m2〉;

The above approach has two major weaknesses. First, we have to apply
the Match operator three times, each potentially requiring expensive human
intervention. In practice, m m1 and m m2 could be tracked automatically
by the schema editing tool used by Ann and Bob. Still, matching m1 and
m2 from scratch can be costly. Second, the above script discards all deletions
done exclusively by either Ann or Bob. That is, ORDERS.PONum and O-
DETAILS.Discount would appear in m3 albeit both have been deleted. O-
DETAILS.UnitPrice would, however, be correctly removed.

To address the first problem, we could modify the above script by
moving lines 3-4 to the top and obtaining m1 m2 as the composition
m1 m2 = Invert(m m1) ∗ m m2. By doing so, however, we duplicate the
equivalent additions done by both Ann and Bob, since the added equiva-
lent elements have no counterparts in m and hence their correspondences
get lost upon composition. That is, after executing such modified script,
ORDERS.Rebate would appear in m3 twice. And yet, we could use m1 m2

computed by composition to drive the match between m1 and m2, as in
m1 m2 = Match(m1, m2, Invert(m m1) ∗ m m2 + NGramMatch(m1, m2)).
Moreover, when m1 and m2 are large, it may be more effective to extract
only the new portions of m1 and m2 and match those.

To address the second problem, which is due to losing deletions done
exclusively by Ann or Bob, we could apply to m1 all deletions done in m2,
and likewise apply to m2 all deletions of m1. We incorporate both ideas in
the script below:

operator Reintegrate(m, m1, m2)
1. m m1 = Match(m, m1); // or given
2. m m2 = Match(m, m2); // or given
3. 〈m′1, m1 m′1〉 = Delete(m1, Traverse(All(m)−Domain(m m2), m m1));
4. 〈m′2, m2 m′2〉 = Delete(m2, Traverse(All(m)−Domain(m m1), m m2));
5. 〈m1x, m′1 m1x〉 = Extract(m′1, Traverse(All(m1)− Range(m m1),

m1 m′1));
6. 〈m2x, m′2 m2x〉 = Extract(m′2, Traverse(All(m2)− Range(m m2),

m2 m′2));
7. m1x m2x core = Invert(m′1 m1x) ∗ Invert(m1 m′1) ∗ Invert(m m1) ∗

m m2 ∗m2 m′2 ∗m′2 m2x;
8. m1x m2x = Match(m1x, m2x, m1x m2x core + NGramMatch(m1x, m2x));
9. m′1 m′2 = m′1 m1x ∗m1x m2x ∗ Invert(m′2 m2x) +

Invert(m1 m′1) ∗ Invert(m m1) ∗m m2 ∗m2 m′2;
10. 〈m3, m3 m′1, m3 m′2〉 = Merge(m′1, m′2, m′1 m′2);
11. m3 m1 = m3 m′1 ∗ Invert(m1 m′1);
12. m3 m2 = m3 m′2 ∗ Invert(m2 m′2);
13. m3 m = m3 m1 ∗ Invert(m m1) + m3 m2 ∗ Invert(m m2);

52 3. Implementation and Applications

14. return 〈m3, m3 m, m3 m1, m3 m2〉;
To illustrate the script, consider the schematic representation in Fig. 3.10.

In line 3, we obtain the model m′1 that contains all of m1, i.e., the model
produced by Ann, without the elements deleted by Bob by way of m2 (DE-
TAILS.Discount). The expression All(m) − Domain(m m2) produces a se-
lector that holds the elements of m that do not appear in m2. The images
of these elements obtained by traversing m m1 into m1 are then deleted.
Analogously, m′2 contains all of m2 without the elements deleted by way of
m1, such as ORDERS.PONum.

m

m1�

m3

m1x

m2�

m2xm1 m2

Fig. 3.10. Schematic representation
of the reintegration scenario

In line 5, we extract a portion m1x of m′1 that comprises only the el-
ements added by Ann (e.g., PRODUCTS.PDesc) and their support ele-
ments (e.g., PRODUCTS). We achieve this by traversing the added ele-
ments All(m1)−Range(m m1) from m1 to m′1. Line 6 does a similar job for
m2x. Notice that line 5 could be realized alternatively as 〈m1x, m′1 m1x〉 =
Diff(m′1, Invert(m1 m′1) ∗ Invert(m m1));

In line 7, we compute the mapping m1x m2x core between m1x and m2x

to establish the correspondences between the support elements of m1x and
m2x. This mapping is then used to drive the Match between the added
portions in line 8. Here, the engineer executing the script has a chance to
decide whether or not ORDERS.Rebate added by Ann is equivalent to OR-
DERS.Rebate added by Bob. Notice that this Match is relatively inexpensive
to perform, since we only have to reconcile the additions introduced by Ann
and Bob.

In line 9, we compute the mapping between m′1 and m′2 to drive the
Merge in line 10. To compose m′1 m′2, we need to consider both “paths”
between the two models. One of them includes the matches between the
added elements, m1x m2x, and the other goes over the original model m.
Similarly, the mapping m3 m is obtained in line 13 by joining two paths, one
going through m1 and the other through m2, portions of which are computed
in lines 11-12. In line 14, the results of the script execution are returned.

3.6 Conclusions 53

3.6 Conclusions

In Chapters 2 and 3 we presented a programming platform for model man-
agement that implements all generic operators suggested so far in the liter-
ature. We explored the use of morphisms and selectors and introduced sev-
eral novel generic operators. We discussed the structural operator semantics
and the algorithms that we developed for implementing them. We showed
that introducing a new model type like SQL DDL schemas in our proto-
type requires a moderate programming effort, but brings a large new class of
model-management tasks within reach.

The main conclusions that we draw at this point are the following:

1. One can solve practical problems using the model management operators.
2. The solutions require a relatively small amount of code.
3. One can get quite far using a relatively weak representation for models

and mappings.

The operator definitions presented in Chap. 2 above are mostly syntac-
tic, just like the conceptual structures, and are expressed as graph trans-
formations. Focusing on syntax allows the operators like Match or Merge
to be implemented in a generic fashion for different kinds of models, as
we demonstrated in Chap. 3. However, a deeper understanding of the se-
mantics of these operators is crucial for assessing the correctness of model-
management scripts. That is, the effect of applying “syntactic” operators to
schemas ultimately needs to be expressed in terms of what these operators do
to the instances of these schemas. Conditions (i)-(iv) for the Extract operator
(Sect. 2.3.3), or (i)-(ii) for Merge (Sect. 2.3.5) reflect the semantics of these
operators to a limited degree.

In Part II, we discuss the instance-level semantics of the model-
management operators. It allows us to characterize the properties of the
operators without assuming a particular meta-meta model representation of
models and mappings.

54 3. Implementation and Applications

Part II

A Semantics for Model Management
Operators

55

4. State-Based Semantics

“He who loves practice without theory is like the sailor who
boards ship without a rudder and compass and never knows where
he may cast.”

– Leonardo da Vinci (1452-1519)

In Part I, we described the first prototype for model management, called
Rondo, which offers a set of high-level operators for solving metadata-related
problems. Using Rondo, we developed scripts for several practically rele-
vant scenarios, such as change propagation, view reuse, and reintegration.
We found that the scripts produce intuitively correct results and that the
structural operator definitions that we give are useful for solving practical
problems.

In Chap. 2, we defined the semantics of the model-management operators
for morphisms, a very simple mapping language. A morphism is represented
as a set of arcs connecting the elements of two schemas. Although the desired
result of the operators seems intuitively clear when morphisms are utilized,
the treatment in Chap. 2 provides little guidance with respect to what results
the operators should return if SQL views, XQuery, Datalog, or other more
expressive languages are deployed in scripts instead of morphisms.

In this chapter, we present a way of defining the semantics of the operators
in a truly generic fashion, without assuming any specific model and mapping
languages. The main idea of our approach is to express the effect of applying
the operators to models in terms of what the operators do to the instances of
these models. For example, the effect of applying the operators to a database
schema is expressed in terms of the valid database states described by the
schema. In this way, we can characterize the semantics of operators without
relying on any particular meta-model or meta-meta model. We call this kind
of semantics state-based, or instance-based, semantics. In contrast, the seman-
tics defined in Chap. 2 is driven by the structural properties of models, i.e.,
by the relationships between the individual models elements. To distinguish
the state-based definitions from the structural definitions, in this chapter we

58 4. State-Based Semantics

use a distinct font face for the operators. Thus, we write Extract instead of
Extract, and denote the composition using ◦ instead of ∗.

This chapter is structured as follows:

– In Sect. 4.1, we introduce the state-based approach and formal nota-
tion used in this chapter. We define the state-based semantics of model-
management scripts and explain what it means to execute a script.

– In Sect. 4.2, we specify the state-based semantics of the operators. We
derive alternative formulations of operator definitions that are substantially
easier to verify for concrete schema and mapping languages. We present
detailed examples of how the operators can be applied to relational schemas
and SQL views.

– In Sect. 4.3, we consider in more detail the problem of computing the
results of a script, which we refer to as materialization.

In Chap. 5, we revisit the change propagation scenario from the state-
based perspective, and address the relationship between the structural and
state-based operator definitions in Chap. 6.

Specifying the state-based semantics of the operators allows us to lay out
a clear extensibility path for supporting more complex mapping languages in
our prototype. Furthermore, it helps us study formally the properties of the
operators and the behavior of model-management systems: the existing ones,
such as Rondo, as well as systems that will be built in the future.

4.1 Basic Concepts

In this section we present the concepts of a model and a mapping and explain
the notation used in the rest of the chapter. For clarity, in the examples that
we give we put schema and mapping definitions in French quotation marks
�. . .�. For example, �R(A,B), S(C)� denotes a relational schema with two
tables, R and S. Furthermore, we distinguish between the set semantics for
relational tables, when the table is not allowed to contain duplicate tuples,
and the multiset semantics used in SQL. For the former we write �R(A,B)�,
for the latter we use square brackets: �R[A,B]�. We abbreviate SELECT
DISTINCT clauses in view definitions as SELECTD.

4.1.1 Models

A model is a formal description of an application artifact, such as a relational
schema, a workflow definition, or an interface specification. Typically, a model
serves as a template for instances. For example, an instance of a relational
schema is a valid database state; an instance of a workflow is a valid transition
graph; an instance of a programming interface is an implementation that
conforms to the interface. Let Inst(m) denote the set of all possible instances

4.1 Basic Concepts 59

of m. If m is a database schema, every instance db ∈ Inst(m) must satisfy the
constraints present in m.

Definition 4.1.1 (State-based semantics of models). The state-based
semantics of model m is defined as the set of all possible instances of m,
denoted as Inst(m). �

We do not specify the nature of instances of models any further.

Example 4.1.1. Let m be the relational schema �R(Name: char(3), Sex:
bool)�. Several instances of this schema are shown in Fig. 4.1. Attributes
Name and Sex can take |char(3)| and |bool| different values, respectively.
Using these we can construct |char(3)| · |bool| different tuples to populate
the table R. Any subset of these tuples describes a valid database state of m.
Thus, schema m has 2|char(3)|·|bool| valid instances. Notice that an instance
of m is not an individual string or Boolean value, but an entire populated
database. �

Inst(m)

(“Ann”, t)�

(“Ed”, t)

(“Bob”, f)

(“Ann”, f)

(“”, t)

(“”, f)

(“Ann”, f)

(“Ed”, f)

(“123”, t)

. . . Fig. 4.1. Some instances of relational schema
R(Name: char(3), Sex: bool)

Example 4.1.2. Consider the schema �R[A: bool]� (multiset semantics).
Each ordered list of Boolean values is a valid instance of the schema. Thus,
the schema has infinitely many instances. �

Definition 4.1.1 intensionally leaves the concept of model unspecified.
Other semantics, e.g., the structural semantics defined in Chap. 2, which es-
tablishes the connection to the representation of m in a concrete meta-meta
model, can be introduced using different function symbols, such as Struct(m).
Model m itself is not identical to Inst(m). Instead, Inst(m) provides a mech-
anism for describing a part of the semantics of m, its state-based semantics.

A model m can itself be an instance of another model. The latter is called
the meta-model of m. For example, a relational schema can be viewed as an in-
stance of a meta-model that describes the concepts Table, Column, Datatype,
ReferentialConstraint, etc. Such a meta-model for relational schemas can be
defined, e.g., using a UML diagram (Bernstein et al. 1999).

60 4. State-Based Semantics

4.1.2 Mappings

A mapping establishes a semantic correspondence between models. A map-
ping between m1 and m2 identifies all mutually consistent states of m1 and
m2, i.e., those states that can exist at the same time in an application that de-
ploys the mapping. For example, consider an application that uses a program
m1 m2 to generate XML reports complying with DTD m2 from a database
with schema m1. The state-based semantics of m1 m2 tells us whether a
given database state x ∈ m1 and a given document y ∈ m2 are mutually
consistent, i.e., whether y could possibly have been generated from x. Thus,
the program defines a binary relation on the instances of m1 and m2.

Definition 4.1.2 (State-based semantics of mappings). The state-
based semantics of a mapping m1 m2 between models m1 and m2 is defined
as the binary relation Inst(m1 m2) ⊆ Inst(m1)× Inst(m2). �

Example 4.1.3. Let

m1 = �R(ID, Age)�,
m2 = �S(SSN)�

be relational schemas. Let the mapping map be defined using a relational
algebra expression as

map = �πID(σAge=20(R)) = S�

Formally, (db1, db2) ∈ Inst(map) if and only if πID(σAge=20(db1.R)) = db2.S.
A portion of map is shown in Fig. 4.2. Let mapping map′ be specified as an
SQL view definition,

map′ = �CREATE VIEW S(SSN) AS
SELECTD ID AS SSN FROM R WHERE Age=20�

1

�

(1, 20)

(1, 20)

(2, 18)

. . .

(1, 18)

(2, 20)

(3, 20)

�
(2, 18)

2

3

. . .

. . .

. . .

Inst(«�
ID

(�
Age=20

(R))=S»)

Inst(«R(ID, Age)») Inst(«S(SSN)»)

. . .

. . .

Fig. 4.2. Portion of a mapping

Mappings map and map′ are equivalent, i.e., Inst(map) = Inst(map′). Al-
though map and map′ are expressed in different languages they both describe
the same correspondence between m1 and m2. Now, let mapping map′′ be
specified by the view definition

4.1 Basic Concepts 61

map′′ = �CREATE VIEW R(ID, Age) AS
SELECTD SSN AS ID, 20 AS Age FROM S�

Mappings map′ and map′′ are not equivalent. To see that, notice that by
applying the view map′ to the database state (1, 1) ∈ m1 we get ∅ ∈ m2,
but we cannot obtain (1, 1) from ∅ using the view map′′. That is, ((1, 1), ∅) ∈
Inst(map′), but ((1, 1), ∅)
∈ Inst(map′′). In fact, Inst(map′′) ⊂ Inst(map′).

�

Example 4.1.4. Let

m1 = �R(ID, Age)�,
m2 = �S(SSN, Tel)�,
map = �πID(R) = πSSN(S)�

That is, (db1, db2) ∈ Inst(map) iff πID(db1 .R) = πSSN(db2 .S). The mapping
establishes a correspondence between two databases db1 ∈ Inst(m1) and db2 ∈
Inst(m2) whenever they agree on the values of ID and SSN. This mapping
cannot be expressed using a SQL view definition because it is non-functional
and not injective; an instance of m1 does not determine uniquely an instance
of m2, nor the other way around. �

A mapping can be thought of as a set of constraints that hold between two
models. If Inst(m1 m2) yields the whole cross-product Inst(m1) × Inst(m2),
the relationship between the models is unconstrained, i.e., each pair of states
x ∈ m1, y ∈ m2 are mutually consistent. For example, think of a map-
ping between a university payroll database schema and an airline reser-
vation database schema. Such mapping is likely to be unconstrained. If
Inst(m1 m2) = ∅, the mapping can be viewed as a contradictory set of
constraints. In general, Inst(m1 m2) is an arbitrary relationship between in-
stances. It may have several properties whose definitions are summarized
below:

Definition 4.1.3. Let X and Y be two sets. A relation r ⊆ X × Y is func-
tional, if (x, y1), (x, y2) ∈ r implies y1 = y2; injective, if (x1, y), (x2, y) ∈ r
implies x1 = x2; total, if {x | ∃y : (x, y) ∈ r} = X; surjective (onto), if
{y | ∃x : (x, y) ∈ r} = Y . A total, functional, injective, surjective relation is
called a bijection. �

If Inst(m1 m2) is bijective (surjective, functional, etc.), we call the respec-
tive mapping a bijection (surjection, function, etc.).

In the examples that we give in the subsequent sections, we refer to cer-
tain kinds of mappings as database transformations, views, and queries. A
database transformation specifies how an instance of one schema is trans-
formed into an instance of another schema. That is, a database transforma-
tion is a functional mapping or simply a function. This function does not
need to be total: there may be certain database states on which the trans-
formation is undefined due to a violation of integrity constraints assumed by

62 4. State-Based Semantics

the transformation but not enforced by the schema. A database query is a
database transformation defined for each initial database state, i.e., a total
functional mapping from some model m. We use the term query and view
synonymously. More precisely, a database view is a named query, whose re-
sult schema, called view schema, can be specified explicitly. This distinction
is unimportant for the purposes of state-based semantics.

In this dissertation, we focus on binary mappings, i.e., those that hold
between exactly two models. We consider n-ary mappings in Chap. 11 when
we discuss future work.

4.1.3 Formal Notation

In this chapter, we consider only the state-based semantics of models and
mappings, as described by the instantiation function Inst. To simplify the
notation, we henceforth interpret the variables used for models, such as m1

or m2, as set variables, or unary predicate variables. That is, instead of writing
db ∈ Inst(m) and Inst(m1) = Inst(m2), we simply write db ∈ m and m1 = m2.
Similarly, we consider mapping variables, such as m1 m2 or map, as binary
predicate variables and write (db1, db2) ∈ m1 m2 instead of the more verbose
(db1, db2) ∈ Inst(m1 m2). We borrow this notation from the second-order
logic, which has variables and quantifiers not only for individuals but also for
subsets of the universe and for n-ary relations. Despite using this simplified
notation, we stress that a model is more than a set of instances – the latter
only characterizes its state-based semantics.

The concrete schema and mapping definitions such as �R(ID, Age)�,
�SELECT A FROM R�, or �πA(R) = S� are interpreted as constant sym-
bols. Notice that a mapping definition is often closely coupled with the models
it relates. For example, a relational algebra expression or a SQL view makes
sense only when we have the definitions of the schemas it applies to. That is,
a more correct notation for the mapping of Example 4.1.3 would be map =
�πID(σAge=20(R)) = S :: R(ID, Age) :: S(SSN)�, which identifies the “left”
and “right” models precisely. We continue to use the shorthand notation
when the participating models are clear from the context, or abbreviate as
�πID(σAge=20(R)) = S :: R :: S� where appropriate.

For mapping variables we often use the underscore notation, such as
m1 m2. By convention, in a constant assignment such as m1 m2 = �CRE-
ATE VIEW R(A) AS SELECT A FROM S :: R(A) :: S(A,B)�, the left
instances of the mapping are assumed to originate from �R(A)� while the
right instances originate from �S(A,B)�. The create view statement suggests
that the instances of �R(A)� are obtained as a function of the instances of
�S(A,B)�. That is, m1 m2 above is non-functional, whereas Invert(m1 m2)
is a function. The underscore notation has no special semantics and in par-
ticular does not ensure that Domain(m1 m2) ⊆ m1. We state the necessary
conditions explicitly where needed.

4.1 Basic Concepts 63

We describe the application of model-management operators using op-
erational notation. For example, we write 〈mx, m mx〉 = Extract(m, map).
Here, the operator Extract takes two variables as input and produces two
variables as output. We use this notation instead of the predicate-centric
one, Extract(mx, m mx, m, map), because the former is more intuitive. In
fact, in all operator definitions that we give, the variables can be clearly
divided into input and output variables; the operator definition places con-
straints on the output variables based on the values of the input variables.
Nevertheless, formally the operator Extract is a quadrary predicate, Invert is
a binary predicate, Merge is a sextary predicate etc.

4.1.4 Semantics of Scripts

In this section we explain what it means to compute the results of a model-
management script. A model-management script is a conjunction of formulas
built of the model-management operators and free variables and constants
for models and mappings. That is, a script is a logical formula. The scripts
have declarative semantics, which is defined as the standard model-theoretic
semantics for logical formulas. Hence, the order of operator “invocations” in
a script is irrelevant. We call two scripts t1 and t2 equivalent, denoted as
t1 ≡ t2, when they are logically equivalent formulas. The fact that it may
be possible to rewrite a script into another equivalent script provides the
foundation for optimizing the script execution.

Since a script is a formula, executing the script amounts to finding a
variable substitution that satisfies it, or makes the script true. Recall that
the variables in a script range over relational schemas, SQL views, and other
kinds of models and mappings. To compute the results of the script effectively,
we construct concrete schema and mapping definitions that make the script
true.

In many cases it is impossible to represent the results of scripts exactly
using existing schema or mapping languages due to the limited expressiveness
of the languages. For example, if we compose a SQL view with an XQuery or
with a set of Datalog rules, it may be impossible to describe the result of the
composition using a closed expression in an existing database transformation
language, so that a special language may need to be invented to hold the result
(Shanmugasundaram et al. 2001a). Even if we compose two transformations
in the same language, the result may not be expressible in that language, or
may produce an infinite set of formulas (Madhavan and Halevy 2003). To use
the result of composition in practical applications, we may have to construct
a transformation that is equivalent to the one we are looking for except that
it covers some irrelevant database states.

The problem of limited expressiveness arises for database schemas, too.
For example, in (Buneman et al. 1992) the schema language had to be ex-
tended to make sure that all schemas obtained by merging two input schemas

64 4. State-Based Semantics

can be represented explicitly. In practical applications, it may often be accept-
able to construct a more expressive schema if some of the schema constraints
are not representable in the target language. Intuitively, we call a schema
more expressive if it allows more valid database states. For example, sup-
pose that schema �R(A,B), S(B,C); πB(R) = πB(S)� is an exact result of a
script. The schema defines two tables with a schema constraint. Assume that
we need to deploy this schema with a SQL DBMS. The set semantics can
be enforced by defining two unique keys over the attributes of each table.
The constraint πB(R) = πB(S) is however not expressible in the standard
SQL DDL. (If B is a unique key of S, then a foreign key constraint can
express that πB(R) ⊆ πB(S). If B is not a key of either table, then neither
πB(R) ⊆ πB(S) nor πB(S) ⊆ πB(R) is expressible.) Still, it may be acceptable
to delegate the enforcement of the constraint to the application and use a
more expressive schema �R[A,B], S[B,C]� that can be defined in SQL DDL.

In many other cases, multiple schema or mapping definitions
may satisfy the script. For example, if the variable assignment
map := �πID(σAge=20(R)) = S� makes a script true, so do map :=
�S = πID(σAge=20(R))� and map := �S = πID(σAge=20(πID,Age(R)))�.
These expressions are equivalent under state-based semantics, but differ with
respect to their syntactic representation. Human input or tuning parameters
are required to specify the desired result in such cases, much like a format
specification is needed to specify whether the floating-point number 1.3 is
to be printed out as “1.3” or “0.13E1”. The script execution environment,
such as Rondo, may provide such format specifications implicitly. We do not
consider them in this chapter.

The problem of computing the results of scripts effectively appears as one
of the most challenging and exciting open issues in model management. As
mentioned above, this problem is very hard even if we consider relatively
simple languages and just a single operator, such as Merge (Buneman et al.
1992; Pottinger and Bernstein 2003) or Compose (Madhavan and Halevy
2003). We address it in more detail in Sect. 4.3 and in Chap. 10.

4.1.5 Preliminaries

From now on, we use the notation introduced in Sect. 4.1.3, without the
instantiation function Inst.

Definition 4.1.4 (Submodel). A model m′ is called a submodel of m if
all instances of m′ are also instances of m, i.e., m′ ⊆ m. �

Definition 4.1.5 (Subordinate model). A model m′ is called a subordi-
nate model of m, denoted as m′ ≤ m, if m′ has at most as many instances
as m, i.e., there exists a surjective function from m onto m′. �

If m′ ≤ m, we say that m′ is equally or less expressive than m, or is
dominated by m (Hull 1986).

4.1 Basic Concepts 65

Definition 4.1.6 (Minimal model). Model mmin is a minimal model of
the class C = {m1, . . . , mk} if mmin ∈ C and mmin ≤ mi for each mi ∈ C.

Example 4.1.5. Schema

m1 = �S(Name: char(3), Sex: bool)�

in which Name is a primary key, is a submodel of

m2 = �R(Name: char(3), Sex: bool)�.

In general, if m is a database schema, adding a constraint to m yields a
submodel of m. Both m1 and m2 are subordinate models of

m3 = �T(Name: char(4))�.

All of m1, m2, and m3 are subordinate models of

m4 = �U(FN: char(2), LN: char(2))�.

m4 is not a subordinate model of m3, i.e., it describes more database states
than m3. Indeed, observe that two strings of size ≤ 2 cannot always be
encoded losslessly in a string of size ≤ 4. For example, concatenations “a” +
“bc” and “ab” + “c” both yield “abc”.

Models m1 and m2 are minimal models of the class {m1, m2, m3, m4}.
�

Definition 4.1.7 (Equivalence). Models m and m′ are equivalent if they
have identical instance sets, denoted as m = m′. �

Definition 4.1.8 (Equipotence). Models m and m′ are equipotent, or
equally expressive, denoted as m ∼= m′, if m has exactly as many instances
as m′, i.e., there exists a bijection between m and m′. �

Example 4.1.6. Schemas

m1 = �S(A: char(3), B: bool)�,
m2 = �R(Name: char(3), Sex: bool)�

are equivalent. They are not identical: in the abbreviated notation introduced
in Sect. 4.1.3, m = m′ is a shortcut for Inst(m) = Inst(m′). However, if the
full notation is used, Inst(m) = Inst(m′) is not equivalent to and does not
imply m = m′. Schema

m3 = �T(Val: int(1..33686018))�

is equipotent with m1 and m2 assuming that the characters are drawn from
an alphabet of size 256; in this case, |char(3)| · |bool| = 33686018 (compare
Example 4.1.1). �

We borrow our definitions of equivalence and equipotence from the stan-
dard set theory. Notice that schema equivalence is defined differently in (Hull
1986; Miller et al. 1994). Their definition corresponds to that of equipotence
(Definition 4.1.8).

66 4. State-Based Semantics

4.2 Operators

In this section we define the state-based semantics of the key model-
management operators. The signatures and informal descriptions of the op-
erators are summarized in Table 4.1. Wherever possible, we illustrate the
results of operators using examples of concrete schema and mapping lan-
guages. We also point out when the results cannot be represented exactly
in the languages that we consider. Some of the examples we give are non-
trivial. In these cases, we provide the proofs for the propositions stated in
the examples.

Table 4.1. Summary of key model-management operators

Signature Description

m1 m3 = Compose(m1 m2, m2 m3)
= m1 m2 ◦ m2 m3

Composes mappings m1 m2 and
m2 m3

〈mx, m mx〉 = Extract(m, m m′) Extracts a subordinate model mx of
m that participates in mapping m m′

〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2)

Merges models m1 and m2 using
mapping m1 m2

〈md, m md〉 = Diff(m, m m′) Returns a subordinate model md of
m that does not participate in map-
ping m m′

map3 = Confluence(map1, map2)
= map1 ⊕ map2

Combines mappings map1 and map2

into mapping map3

m1 m2 = Match(m1, m2) Returns a mapping m1 m2 between
m1 and m2

Auxiliary operators
m1 m2 = m1 × m2 Returns the “unrestricted” cross-

product mapping between models m1

and m2

map = Id(m) Returns the identity mapping map
for model m

m = Domain(map) Returns model m that holds the
instances in the domain of map-
ping map

m = Range(map) Returns model m that holds the in-
stances in the range of mapping map

map2 = Invert(map1) Swaps the “left” and “right” side of
the input mapping map1

We use the following auxiliary operators:

1. m1 ×m2 =df {(x, y) | x ∈ m1 and y ∈ m2} defines the cross-product of
two models.

2. Id(m) =df {(x, x) | x ∈ m} is the identity mapping on m.
3. Domain(map) =df {x | (x, y) ∈ map}.
4. Range(map) =df {y | (x, y) ∈ map}.

4.2 Operators 67

5. Invert(m1 m2) =df {(y, x) | (x, y) ∈ m1 m2}. The operator Invert is
discussed in more detail in Sect. 4.2.2.

4.2.1 Compose Operator

To motivate the definition of the Compose operator, consider the following
example.

Example 4.2.1. Let m1 m2 be a mapping between a relational schema m1

and an XML schema m2 used for data exchange, m1 m2 ⊆ m1 ×m2. For a
given database x ∈ m1 the mapping generates an XML document y ∈ m2.
Assume that the XML schema m2 has been modified into schema m3. Let
m2 m3 ⊆ m2 ×m3 be the mapping between the original and the new XML
schema. To derive the updated export mapping, we compute the composition
of m1 m2 and m2 m3, denoted as Compose(m1 m2, m2 m3) or simply as
m1 m2 ◦m2 m3. �

Definition 4.2.1 (Compose, ◦).
m1 m2 ◦m2 m3 =df {(x, z) | (x, y) ∈ m1 m2 and (y, z) ∈ m2 m3} �

Obviously, m1 m2 ◦m2 m3 ⊆ m1×m3. Next, we consider three examples
of composition of SQL views. In each of the examples, the views have distinct
directionality: m1 → m2 → m3, m1 → m2 ← m3, or m1 ← m2 → m3.

Example 4.2.2 (m1 → m2 → m3). Let

m1 = �R(A,B), S(B,C)�,
m2 = �T(A,C)�,
m3 = �U(A)�,
m1 m2 = �CREATE VIEW T(A, C) AS

SELECTD R.A, S.C FROM R, S WHERE R.B=S.B�,
m2 m3 = �CREATE VIEW U(A) AS

SELECTD T.A FROM T WHERE T.C=5�

Then, the composition m1 m3 = m1 m2 ◦m2 m3 can be specified as

�CREATE VIEW U(A) AS
SELECTD R.A FROM R, S WHERE R.B=S.B AND S.C=5�

Proof: Observe that m1 m2 = �πA,C(R �� S) = T� and m2 m3 =
�πA(σC=5(T)) = U�. That is, (x, y) ∈ m1 m2 iff πA,C(x .R �� x .S) = y.T.
Similarly, (y, z) ∈ m2 m3 iff πA(σC=5(y.T)) = z .U. By Defini-
tion 4.2.1, m1 m3 = {(x, z) | (x, y) ∈ m1 m2 and (y, z) ∈ m2 m3} =
{(x, z) | πA,C(x .R �� x .S) = y.T and πA(σC=5(y.T)) = z .U} = {(x, z) |
πA(σC=5(πA,C(x .R �� x .S))) = z .U} = {(x, z) | πA(σC=5(x .R �� x .S)) = z .U}.
That is, m1 m3 = �πA(σC=5(R �� S)) = U�, which is equivalent to the above
view definition. �

Example 4.2.3 (m1 → m2 ← m3). Let

68 4. State-Based Semantics

m1 = �R(A,B), S(B,C)�,
m2 = �U(A)�,
m3 = �T(A,C)�,
m1 m2 = �CREATE VIEW U(A) AS

SELECTD R.A FROM R, S
WHERE R.B IN (SELECTD S.B FROM S)�,

m2 m3 = �CREATE VIEW U(A) AS
SELECTD T.A FROM T WHERE T.C=5�

(The mapping m2 m3 is described using a view definition that maps m3 to
m2.) Then,

m1 m3 = m1 m2 ◦m2 m3 = �πA(R �� S) = πA(σC=5(T))�.

There is no equivalent view definition for this relational algebra expression
because the mapping m1 m3 is non-functional and not injective.

Proof: Observe that m1 m2 = �πA(R �� S) = U� and m2 m3 =
�πA(σC=5(T)) = U�. We obtain the proposition using the same argu-
ments as in Example 4.2.2. �

Example 4.2.4 (m1 ← m2 → m3). Let

m1 = �T(A,C)�,
m2 = �R(A,B), S(B,C)�,
m3 = �U(A)�.

Let |A|, |B|, |C| be domain sizes of attributes A, B, and C. Assume that
|B| > |A| · |C|. Further, let

m1 m2 = �CREATE VIEW T(A, C) AS
SELECTD R.A, S.C FROM R, S WHERE R.B=S.B�,

m2 m3 = �CREATE VIEW U(A) AS
SELECTD R.A FROM R WHERE R.B=3�.

Then, the composition m1 m3 = m1 m2 ◦ m2 m3 is unrestricted, i.e.,
m1 m3 = m1 ×m3. Obviously, m1 m3 cannot be represented using a SQL
view.

Proof: Observe that m1 m2 = �πA,C(R �� S) = T� and m2 m3 =
�πA(σB=3(R)) = U�. Thus, m1 m3 = {(x, z) | πA,C(y.R �� y.S) = x .T
and πA(σB=3(y.R)) = z .U}. Now we show that for each x ∈ m1 and for each
z ∈ m3 we can find y ∈ m2 so that the above condition holds. Assume that
database instances x and z are given. We construct the database y using the
following view definitions:

CREATE VIEW R(A, B) AS
(SELECTD U.A, 3 AS B FROM U) UNION
(SELECTD T.A, Sk(T.A, T.C) AS B FROM T)

CREATE VIEW S(B, C) AS
SELECTD Sk(T.A, T.C) AS B, T.C FROM T

4.2 Operators 69

where Sk(.,.) is a Skolem function that generates a distinct value b = Sk(a,
c)
= 3 from the domain of B for each pair of A and C values. Such a Skolem
function exists, since |B| > |A| · |C|. When this property is not guaranteed,
we get m1 m3 = {(x, z) | πA,C(y.R �� y.S) = x .T}, i.e., the “right side” of
the mapping is unconstrained. �

Proposition 4.2.1. Operator Compose is associative, i.e., map1 ◦ (map2 ◦
map3) = (map1 ◦map2) ◦map3.

Proof: follows from Definition 4.2.1. �

4.2.2 Invert Operator

The operator Invert swaps the “left” and “right” side of a mapping. For
convenience, its definition is repeated below:

Definition 4.2.2 (Invert). Invert(m1 m2) =df {(y, x) | (x, y) ∈ m1 m2}.
�

By reversing the sides of a mapping we can ensure that its directionality
fits other operations, such as composition or merging. An inverted mapping
still describes the same correspondence between two models. When we use
mapping constants, we have to specify the “left” and “right” schemas ex-
plicitly, as we explained in Sect. 4.1.3, to distinguish the mapping from its
inverted mapping.

Example 4.2.5. Consider the mapping

map = �πID(σAge=20(R)) = S :: R(ID, Age) :: S(SSN)�

from Example 4.1.3. The inverted mapping can be represented as

Invert(map) = �πID(σAge=20(R)) = S :: S(SSN) :: R(ID, Age)�. �

As mentioned earlier, the state-based semantics does not prescribe the
exact syntactic representation for models and mappings. For example, we
cannot state that Invert(map) in the example above should be computed as
a view definition, and not as a relational algebra expression, and that in
this view definition the relation R should be defined as a view on S and not
vice-versa. This constraint is part of the structural semantics. Still, using the
state-based semantics we could tell that such a view on S cannot possibly
exist, since it would require Invert(map) to be a function, but the mapping
map is not injective.

The following propositions summarize some important well-known alge-
braic properties that we use in subsequent sections:

Proposition 4.2.2. Invert(Invert(map)) = map. �

70 4. State-Based Semantics

Proposition 4.2.3. Invert(map1 ◦map2) = Invert(map2) ◦ Invert(map1).
�

Proposition 4.2.4. Mapping map is a surjective function onto m if and
only if Invert(map) ◦map = Id(m). �

4.2.3 Extract Operator

The operator Extract takes a model m and a mapping map between m and
some model m′, and returns a subordinate model mx of m that “participates”
in the mapping. Before we give a formal definition of Extract, we explain the
intuition behind this operator using a motivating example.

Example 4.2.6. Imagine that m is a legacy database schema and q is a query
over m. Our goal is to upgrade the legacy database by producing a new
schema mx that captures only the information that can actually be queried
using q and no other information (see Fig. 4.3). That is, mx is a minimal
schema that still allows us to obtain all query results that we can obtain by
running q against m. In addition to the new schema mx, we need a database
transformation m mx that tells us how the data of m can be migrated to
mx. After migrating all instances of m to mx, we can reformulate our original
query q to run against mx. To do this, we compose the reverse transforma-
tion Invert(m mx) and q. Notice that q may yield the same query result for
multiple different database states of m, because m includes irrelevant legacy
information. Such database states are indistinguishable under q and are “col-
lapsed” into a single database state of mx by way of m mx. �

legacy DB

m�m

query

q
mx

view

m_m
x

query against new schema: Invert(m_m
x
) • q

new schema

Fig. 4.3. Schematic representa-
tion for Example 4.2.6 (Extract)

The definition of Extract that we present below describes formally the
properties of mx and m mx in the above example. The definition covers a
general case in which q is an arbitrary, possibly non-functional mapping.

Definition 4.2.3 (Extract). Let Domain(q) ⊆ m. 〈mx, m mx〉 =
Extract(m, q) holds if and only if

i. mx = Range(m mx).
ii. m mx ◦ Invert(m mx) ◦ q = q.
iii. mx is a minimal model satisfying (i) and (ii). �

4.2 Operators 71

To tie the definition to the motivating example, observe that m mx is the
database transformation from m to the new schema mx, while Invert(m mx)◦
q is the updated query over mx. Hence, condition (ii) requires the updated
query over mx to produce the same results as the original query q over m.
Notice that in general, m mx ◦ Invert(m mx) is not one-to-one, i.e., condition
(ii) is not a tautology.

Definition 4.2.3 specifies a quadrary predicate. Whether it holds or not
for fixed mx, m mx, m, q is hard to verify formally because condition (ii) is
a non-trivial expression and condition (iii) involves a test over all models mx

that satisfy (i) and (ii), as required by Definition 4.1.6. Therefore, before we
give detailed examples of Extract, we prove the following theorem that allows
us to reformulate the Definition 4.2.3 into an equivalent set of conditions
that are substantially easier to verify. In the theorem, we utilize an auxiliary
predicate ind (for “indistinguishable”)

ind(y1, y2, m m′) =df

({z1 | (y1, z1) ∈ m m′} = {z2 | (y2, z2) ∈ m m′})
It holds whenever the “projections” of y1 and y2 are equal. If
ind(y1, y2, m m′), we say that y1 and y2 are indistinguishable under m m′.
ind(., ., m m′) is an equivalence relation, i.e., it is reflexive, symmetric, and
transitive.

Theorem 4.2.1 (Simplification of Extract). Let Domain(m m′) ⊆ m.
〈mx, m mx〉 = Extract(m, m m′) holds if and only if the following condi-
tions are satisfied:

1. mx = Range(m mx).
2. Domain(m mx) = Domain(m m′).
3. For all (y1, x1), (y2, x2) ∈ m mx: x1 = x2 iff ind(y1, y2, m m′). �

Condition (2) makes sure that exactly those instances of m participate
in m mx that are connected in m m′. Condition (3) requires collapsing any
two instances y1 and y2 of m into a single instance of mx if and only if y1

and y2 are indistinguishable under m m′. The proof of the theorem is in
Appendix B.

The following examples illustrate the operator Extract.

Example 4.2.7. Fig. 4.4 shows a valid result of applying the operator Extract
to a model m with seven instances. y2 and y3 are indistinguishable under
m m′ since they are associated with the same z2, i.e., ind(y1, y2, m m′) holds.
Therefore, they are collapsed into a single instance x2 of mx. All other in-
stances of m are pairwise distinguishable. For example, y5 is associated with
{z5, z6} and y6 with {z6} so that y5 and y6 are connected with two distinct
instances of mx. Instance y7 is not connected in m m′ and thus has no coun-
terpart in mx. �

Example 4.2.8. Let

72 4. State-Based Semantics

z1

z2

y1

y3

y2

m�m

y4

z3

x1

x2

mx

y5

x4

m_m�

x3

y6

y7

z4

z5

z6

z7

x5

Invert(m_mx) Fig. 4.4. Illustration of Extract operator

m = �R(A,B), S(C)�,
m′ = �T(A,D)�,
m m′ = �CREATE VIEW T(A,D) AS

SELECTD A, 5 AS D FROM R
:: R(A,B), S(C) :: T(A,D)�.

Then,

mx = �V(A)�,
m mx = �CREATE VIEW V(A) AS

SELECTD A FROM R
:: R(A,B), S(C) :: V(A)�

is a valid result of extraction.

Proof: V(A) is a view schema in m mx so that m mx is a surjective func-
tion and condition (1) is satisfied. Condition (2) is trivially true since all
instances of m participate in m m′ and m mx. To verify condition (3), note
that {z | (y, z) ∈ m m′} describes all instances of �T(A,D)� that can be ob-
tained using the view m m′ on the database y ∈ m. The view selects A values
from R, therefore ind(y1, y2, m m′) holds iff πA(y1.R) = πA(y2.R). On the
other hand, m mx = �πA(R) = V�, i.e., (y, x) ∈ m mx iff πA(y.R) = x .V.
Hence, for all (y1, x1), (y2, x2) ∈ m mx we obtain: ind(y1, y2, m m′) iff
πA(y1.R) = x1.V and πA(y2.R) = x2.V iff x1.V = x2.V iff x1 = x2. Hence,
condition (3) holds. �

Example 4.2.9. Let

m = �R(Name: char(10), Salary: real, Year: int)�,
m m′ = �SELECTD Name, SUM(Salary) AS Income

FROM R GROUP BY Name�.

Then,

mx = �S(Name: char(10), Income: real)�

4.2 Operators 73

is a valid result of extraction. Notice that S.Name is defined as a primary
key. Its uniqueness is guaranteed by the GROUP BY clause in m m′. �

Example 4.2.10. This example illustrates extraction when m m′ contains a
join. Let

m = �R(A,B), S(B,C)�,
m′ = �T(A,B,C)�,
m m′ = �T = R �� S�.

Then,

mx = �P(A, B), Q(B, C); πB(P) = πB(Q)�,
m mx = �P = πA,B(R �� S), Q = πB,C(R �� S)�

is a valid result of Extract.

Proof: The proof consists of two parts. First (→), we show that each result of
the query can be kept by a unique instance of mx. Then (←), we demonstrate
that each instance of mx can be obtained as a result of the query.

(→) Notice that the query �T = σB∈I(R) �� σB∈I(S), I = πB(R) ∩ πB(S)�

produces the identical result as m m′. That is, if we first select from R
and S only the tuples in which B values are shared across R and S, and
join them, we obtain the same result as by joining R and S directly. Thus,
we can “shred” any given instance of the result R �� S into P and Q with
πB(P) = πB(Q) and reconstruct it using a join P �� Q without information
loss.

(←) Observe that πA,B(P �� Q) = P and πB,C(P �� Q) = Q for each P and Q
such that πB(P) = πB(Q). That is, we can join P and Q into a new table,
which represents a valid result of the query m m′, and reconstruct P and
Q again from this new table.

Together, (→) and (←) yield that mx is equipotent with the set of pos-
sible results of the query (condition (3)). Moreover, the construction used in
(←) tells us that m mx is surjective (condition (1)), and all instances of m
participate in m m′ and m mx (condition (2)). �

In the previous examples, m m′ was a total function from m to m′. Next
we illustrate the case when m m′ is not a function, but instead Invert(m m′)
is a function from m′ into m.

Example 4.2.11. Let

m′ = �R(A,B), S(B,C)�,
m = �T(A,B,C,D)�,
m m′ = �CREATE VIEW T(A,B,C,D) AS

SELECTD A, B, C, 5
FROM R, S
WHERE R.B=S.B AND S.C=4�

74 4. State-Based Semantics

Notice that Invert(m m′) transforms deterministically each instance of m′

to an instance of m (instances of m′ in which no tuple of S matches the
WHERE clause are mapped to the same instance of m, the empty relation T).
Therefore, Invert(m m′) is a total functional mapping. Because of that, for all
y1, y2 ∈ m: ind(y1, y2, m m′) iff y1 = y2. Thus, condition (3) of Theorem 4.2.1
becomes: for all (y1, x1), (y2, x2) ∈ m mx: x1 = x2 iff y1 = y2. In other words,
m mx and Invert(m mx) must be injective functions.

Now, observe that Invert(m m′) is not onto: there exist instances of m
that are not computable from any instance of m′, such as {(0, 0, 0, 0)} ∈ m.
Condition (3) states that such instances may not participate in m mx. The
instances computable from instances of m′ are precisely those relations y ∈ m
in which every tuple t ∈ y satisfies the condition (t.C=4 and t.D=5). Thus,
the injective function m mx must assign to each such y ∈ m exactly one
instance of mx. The mapping

m mx = �CREATE VIEW T(A,B,C,D) AS
SELECTD A, B, 4, 5 FROM V
:: T(A,B,C,D) :: V(A,B)�

defines such a function. m mx is a surjective function onto mx = �V(A,B)�,
i.e., for each relation x ∈ �V(A,B)� we can find a source relation y ∈
�T(A,B,C,D)� such that the view transforms y into x. Hence, the condi-
tions of Theorem 4.2.1 are satisfied. In contrast, specifying m mx as

�CREATE VIEW V(A,B) AS
SELECTD A, B FROM T
:: T(A,B,C,D) :: V(A,B)�

violates condition (3). �

Theorem 4.2.2. If 〈mx, m mx〉 = Extract(m, m m′), then m mx is a sur-
jective function.

Proof: Let (y, x1), (y, x2) ∈ m mx. Assume that x1
= x2. Then, by condi-
tion (3) of Theorem 4.2.1, ind(y, y, m m′) is false. This is a contradiction,
since ind(., ., .) is reflexive. So, our assumption is false, and x1 = x2. Hence,
Invert(m mx) is a function. m mx is surjective by condition (1). �

Notice that m mx is in general not total, i.e., it is a database transfor-
mation, but not necessarily a view. For an illustration, see Example 4.2.10.

Proposition 4.2.5. If 〈mx, m mx〉 = Extract(m, m m′) and 〈my, m my〉 =
Extract(m, m m′), then there exists a bijection between mx and my, namely
mx my = Invert(m mx) ◦ m my. That is, model mx in Definition 4.2.3 is
defined uniquely up to isomorphism. �

Proposition 4.2.6. Let 〈mx, m mx〉 = Extract(m, m m′). If Invert(m m′)
is surjective, then m mx is a total surjective function. If Invert(m m′) is
a surjective function, then m mx is a bijection, i.e., the extracted model is
isomorphic to the input model. �

4.2 Operators 75

Proposition 4.2.7. Let 〈mx, m mx〉 = Extract(m, m m′). If m m′ is a
function, then Invert(m m′)◦m mx is an injective function. If m m′ is a sur-
jective function, then Invert(m m′) ◦m mx (and its inverse Invert(m mx) ◦
m m′) are bijections. �

4.2.4 Merge Operator

We explain the intuition behind the Merge operator using the following data
integration scenario.

Example 4.2.12. Consider a company with two departments. Each of the
departments manages its own database. Let m1 and m2 be the respective
database schemas (see Fig. 4.5). Schemas m1 and m2 are not disjoint; for
instance, both databases contain employee data. To simplify the management
of data consistency across the departmental databases, the company decides
to keep all data in a centralized database, while the departments access the
data using view schemas m1 and m2. Thus, the goal is to create a global
schema m for the centralized database such that m is minimal, i.e., it captures
only the information needed by the departments, and no other information.

Let the mapping m1 m2 describe how m1 relates to m2, i.e., m1 m2

identifies all mutually consistent database states x ∈ m1, y ∈ m2. In other
words, each pair (x, y) ∈ m1 m2 represents a single valid state z ∈ m of
the centralized database. The states x and y need to be “glued” into z in
such a way that we can unambiguously reconstruct x and y from z using
two functional mappings, m m1 and m m2. To prevent information loss, the
centralized database must be able to represent each state of m1 and each
state of m2 even if they are not mutually consistent (for example, think of
a temporary inconsistency that may occur when a negative account balance
indicating a debt in x ∈ m1 is disallowed in the billing schema m2). That is,
m m1 and m m2 are not total, they are database transformations, but not
views. �

m

m1 m2

m_m
1

global schema

m_m
2

mapping

m
1
_m

2

Fig. 4.5. Schematic representation for Exam-
ple 4.2.12 (Merge)

We define the operator Merge as follows:

76 4. State-Based Semantics

Definition 4.2.4 (Merge). Let m1 m2 ⊆ m1 × m2. 〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2) holds if and only if

i. m m1 and m m2 are surjective functions onto m1 and m2, respectively.
ii. m1 m2 = Invert(m m1) ◦m m2.
iii. m = Domain(m m1) ∪ Domain(m m2).
iv. m is minimal model satisfying (i)-(iii). �

Condition (i) enables us to reconstruct instances x and y from z in a
unique fashion and ensures that each instance of m1 and each instance of m2

is representable in m. The effect of condition (ii) is that the instances x and
y that we obtain using the database transformations m m1 and m m2 are,
if they both exist, mutually consistent. Condition (iii) requires each instance
z ∈ m to represent a valid state of affairs, which can be attributed either
to m1 or m2, or both. The minimality condition (iv) prevents Merge from
“inventing” instances of m that are not absolutely necessary for representing
all of m1 and m2.

Example 4.2.13. Fig. 4.6 illustrates the Merge operator. The input mapping
m1 m2 is shown using light-gray lines. �

y1
x1

x2

y2

y3
x3

x4 y4

z1

z2

z3

z4

z5

z6

m1 m2m

Fig. 4.6. Illustration of Merge operator

Definition 4.2.4 specifies a sextary predicate. Whether it holds or not for
fixed m, m m1, m m2, m1, m2, m1 m2 is hard to verify formally even for the
simple example of Fig. 4.6, since condition (iv) involves a test over all models
m that satisfy (i)-(iii). Therefore, before we give detailed examples of Merge,
we present the following theorem that allows us to reformulate condition (iv)
into another condition that is easier to check. Its proof is in Appendix B.

Theorem 4.2.3 (Simplification of Merge). Let m1 m2 ⊆ m1 × m2.
〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2) holds if and only if

– the conditions (i)-(iii) of Definition 4.2.4 are satisfied, and
– |m| = mergeCard(m1, m2, m1 m2), where mergeCard(m1, m2, m1 m2) =df

|m1 m2|+ |m1 − Domain(m1 m2)|+ |m2 − Range(m1 m2)|.

4.2 Operators 77

If m1 m2 is total and surjective, or if m m1 and m m2 are total, then
mergeCard(m1, m2, m1 m2) = |m1 m2|.
Example 4.2.14. Let

m1 = �R1(A), S1(B)�,
m2 = �R2(A), T2(C)�,
m1 m2 = �R1 = R2�.

Then,

m = �R(A), S(B), T(C)�,
m m1 = �R1 = R, S1 = S�,
m m2 = �R2 = R, T2 = T�

is a valid result of Merge.

Proof: Mappings m m1 and m m2 are views on m. Hence, conditions (i)
and (iii) hold. By definition of m1 m2, (x, y) ∈ m1 m2 iff x.R1 = y.R2.
By definition of m m1 and m m2: (x, y) ∈ Invert(m m1) ◦ m m2 iff exists
z ∈ m with (z, x) ∈ m m1 and (z, y) ∈ m m2 iff exists z with x.R1 = z.R,
x.S1 = z.S, y.R2 = z.R, y.T2 = z.T iff exists z with z.R = x.R1 = y.R2,
z.S = x.S1, z.T = y.T2. Such z exists if and only if x.R1 = y.R2. Thus,
condition (ii) is satisfied.

We prove (iv) by Theorem 4.2.3. Notice that m m1 and m m2 are to-
tal, so we have to show that |m| = |m1 m2|. Let x ∈ m1. Instance y ∈ m2

participates in m1 m2 iff x.R1 = y.R2 and y.T2 is arbitrary. That is, for
each x ∈ m1, exactly |�T2(C)�| instances of m2 participate in the map-
ping. Thus, |m1 m2| = |m1| · |�T2(C)�| = |�R1(A), S1(B)�| · |�T2(C)�| =
|�R1(A), S1(B), T2(C)�| = |m|. Hence, condition (iv) holds. �

Observe that in the example above, the merged model could also be ex-
pressed as

m′ = �R1(A), R2(A), S1(B), T2(C); R1 = R2�.

This is a union of the schema signatures of m1 and m2, with a constraint con-
tained in m1 m2. Models m′ and m are equipotent, m′ ∼= m. We generalize
this observation in the following theorem.

Theorem 4.2.4. Let L be a schema language, in which a schema consists of
two parts: a schema signature Sig and a constraint expression C. A signature
Sig is a set of entity definitions {e1, . . . , ek}. C is a formula in the constraint
language of L, such as first-order predicate calculus. Let

m1 = �Sig1; C1�,
m2 = �Sig2; C2�

be two schemas in L. Without loss of generality, assume that the entity labels
in Sig1 = {e1

1, . . . , e
1
p} are disjoint from those of Sig2 = {e2

1, . . . , e
2
q}. Let

78 4. State-Based Semantics

m1 m2 be a total surjective mapping expressed as a constraint C over Sig1

and Sig2 in the constraint language of L. Then, we can construct a valid
result for Merge by creating a union of schema signatures of m1 and m2 and
a conjunction of constraints C1, C2, C, as

m = �Sig1 ∪ Sig2; C1 ∧ C2 ∧ C�,
m m1 = �

∧
1≤i≤p(m1.e

1
i = m.e1

i)�,
m m2 = �

∧
1≤i≤q(m2.e

2
i = m.e2

i)�

where m m1 and m m2 are views on m.

Proof: Analogous to that of Example 4.2.14. �

Example 4.2.15. Let

m1 = �R1(A, B)�,
m2 = �S2(A, C)�,
m1 m2 = �πA(R1) = πA(S2)�.

Then,

m = �R(A, B), S(A, C); πA(R) = πA(S)�,
m m1 = �R1 = R�,
m m2 = �S2 = S�

is a valid result of Merge by Theorem 4.2.4. �

Example 4.2.16. Let

m1 = �R[A,B]�,
m2 = �S[A,C]�,
m1 m2 = �SELECT A FROM R = SELECT A FROM S�.

Then,

m = �T[A,B,C]�,
m m1 = �SELECT A, B FROM T�,
m m2 = �SELECT A, C FROM T�

is a valid result of Merge.

Proof: Conditions (i) and (iii) are satisfied trivially. We now show condi-
tion (ii), that m1 m2 = Invert(m m1)◦m m2. Obviously, Domain(m1 m2) =
Domain(Invert(m m1)) = Domain(Invert(m m1) ◦m m2) = m1. Let x ∈ m1,
and let Y1 = {y | (x, y) ∈ m1 m2}, Y2 = {y | (z, x) ∈ m m1 and (z, y) ∈
m m2}. Condition (ii) holds if Y1 = Y2. In fact, Y1 describes all database
states of m2 such that for each y ∈ Y1, the S.A column of y equals the R.A
column of x and the S.C column is unconstrained. In contrast, if we tra-
verse Invert(m m1) ◦m m2 from x, we first obtain all z ∈ m that agree with
x on columns A and B, and then get all y that agree with x on A. Thus,
Y1 = Y2 and condition (ii) holds. Finally, consider the mapping m1 m2.

4.2 Operators 79

(x, y) ∈ m1 m2 implies that x and y have the same number of rows. For each
A-column of length k, we can construct a list of k B-values and a list of k
C-values. Thus, |m1 m2| =

∑
k · |A|k · |B|k · |C|k =

∑
k · (|A| · |B| · |C|)k =

|�T[A, B, C]�|. By Theorem 4.2.3, m, m m1, m m2 is a valid result of Merge.
�

4.2.5 Diff Operator

The operator Diff is complementary to Extract. It takes a model m and a map-
ping m m′ between m and some model m′, and returns a subordinate model
md of m that does not “participate” in the mapping. To explain the intuition
behind Diff, we continue with the scenario presented in Example 4.2.6.

Example 4.2.17. Let m be the legacy database schema from Example 4.2.6.
The legacy database has been migrated to a new operational database with
schema mx (see Fig. 4.7). Assume that due to data protection regulations,
all data in the legacy database has to be preserved indefinitely. For effi-
ciency, the legacy data is split between the new operational database and
an archival database. Our goal is to develop a schema md for the archival
database such that md captures only the information needed to reconstruct
the legacy database from the new operational database and the archive, and
no other information. In addition, we need a database transformation m md

that allows us to populate md with data from m. Together, the transforma-
tions m md and m mx describe how the data in the new operational database
relates to the data in the archive. The correspondence mx md is defined by
composition as mx md = Invert(m mx)◦m md. The legacy database can be
reconstructed by merging mx and md under the mapping mx md. �

legacy DB

m�m

query

q

mx

view
m_m

x

new schema

md

archive schema
view

m_m
d

Fig. 4.7. Schematic representa-
tion for Example 4.2.17 (Diff)

The formal definition of Diff is given below:

Definition 4.2.5 (Diff). Let Domain(m m′) ⊆ m. 〈md, m md〉 =
Diff(m, m m′) holds if and only if the following conditions are satisfied
for some mx, m mx:

i. 〈mx, m mx〉 = Extract(m, m m′).
ii. 〈m, m mx, m md〉 = Merge(mx, md, Invert(m mx) ◦m md).

80 4. State-Based Semantics

iii. md is a minimal model satisfying (i) and (ii). �

Operators Extract and Diff are defined in such a way that for a given pair
of instances x ∈ mx and d ∈ md we can reconstruct uniquely the instance
y ∈ m from which x and d were obtained by means of m mx and m md. If
we use the same inputs for Extract and Diff, we get what we call a split (see
illustration in Fig. 4.8). Mapping m m′, which splits the model m into mx

and md, is called the wedge mapping of a split.

Corollary 4.2.1 (Split). Let 〈mx, m mx〉 = Extract(m, map),
〈md, m md〉 = Diff(m, map) and mx md = Invert(m mx) ◦m md. Then, we
can reconstruct all of m, m mx, and m md up to isomorphism from mx, md,
and mx md. More precisely, 〈m, m mx, m md〉 = Merge(mx, md, mx md)
holds.

Proof: follows from Definition 4.2.5. �
Definition 4.2.5 specifies a quadrary predicate. Whether it holds or not is

hard to verify formally for fixed md, m md, m, m m′, since conditions (i) and
(ii) use three complex operators Extract, Merge, and Compose, while condition
(iii) requires examining all possible models md for which there exist mx,
m mx with (i) and (ii). For instance, consider Fig. 4.8. The figure shows a
valid result of applying the operator Diff to the model m and mapping m m′

of Fig. 4.4. However, the fact that conditions (i)-(iii) are true is not obvious.

z1

z2

y1

y3

y2

m�m

y4

z3

x1

x2

mx

y5

x4

Invert(m_ m�)md_m

x3

y6

y7

z4

z5

z6

z7

x5

d1

d2

d3

md

mx_m

m
x
_
m

d
=

m
x
_
m

�
In

v
er

t(
m

d
_
m

)

Fig. 4.8. Illustration of Diff operator

Therefore, before giving detailed examples of Diff, we present Theo-
rem 4.2.5, which gives an alternative characterization of Diff that can be
verified easier. The theorem shows how we can reformulate the definition
without considering the results of extraction mx, m mx explicitly. We char-
acterize Diff using the definition of ind(., ., .) from Sect. 4.2.3. Among other
things, the theorem states that Diff makes all instances of m that are not
distinguishable under m m′ distinguishable using m md. Its proof is in Ap-
pendix B.

4.2 Operators 81

Theorem 4.2.5 (Simplification of Diff). Let Domain(m m′) ⊆ m.
〈md, m md〉 = Diff(m, m m′) holds if and only if the following conditions
are satisfied:

1. m md is a surjective function from m onto md.
2. For all y1, y2 ∈ Domain(m m′) with y1
= y2 and ind(y1, y2, m m′) there

exist (y1, d1), (y2, d2) ∈ m md with d1
= d2.
3. If y ∈ m − Domain(m m′), then there exists (y, d) ∈ m md and
{y′ | (y′, d) ∈ m md} = {y}.

4. |md| = diffCard(m, m m′), where diffCard(m, m m′) =df max{|c| : c ∈
Π ∪ {∅}, |c|
= 1} + |m − Domain(m m′)| and Π is a partitioning of
Domain(m m′) by ind(., ., m m′). If m m′ is total, diffCard(m, m m′) =
max{|c| : c ∈ Π ∪ {∅}, |c|
= 1}. �

Condition (2) ensures that the instances of m that are indistinguishable in
m m′ become distinguishable in m md. Condition (3) requires each instance
of m that does not participate in m m′ to have a counterpart in md that is
not connected to any other instance of m. It ensures that Diff picks up the
instances of m that get lost upon extraction. Condition (4) makes the result
of Diff minimal.

We illustrate the operator Diff using the following examples.

Example 4.2.18. Consider again the model m and mapping m m′ of Fig. 4.4.
Now, to verify the result, we do not need to construct an auxiliary model
obtained by Extract as we did in Fig. 4.8. We use Theorem 4.2.5 instead
and depict the result of applying the operator Diff directly in Fig. 4.9.
m md is a surjective function so that condition (1) holds. Instances y2

and y3 are indistinguishable under m m′, therefore y2 and y3 are con-
nected to two distinct instances of md to satisfy condition (2). Only one
instance, y7, of m is unconnected in m m′, and according to condition (3)
does have a unique image in md. The partitioning Π of Domain(m m′) is
Π = {{y1}, {y2, y3}, {y4}, {y5}, {y6}, {y7}}. The largest equivalence class of
Π , {y2, y3}, has cardinality 2, while |m−Domain(m m′)| = |{y7}| = 1. Thus,
diffCard(m, m m′) = 2 + 1 = 3 = |md|. �

Example 4.2.19. Fig. 4.10 illustrates that there may be multiple ways of as-
sociating the instances of m with those of md. �

Example 4.2.20. Let

m = �R(A), S(B)�,
m′ = �T(B)�,
m m′ = �S=T�.

Then,

82 4. State-Based Semantics

z1

z2

y1

y3

y2

y4

z3

y5

y6

y7

z4

z5

z6

z7

d1

d2

d3

m�m

md

md_m Invert(m�_m)
Fig. 4.9. Example of Diff result by Theo-
rem 4.2.5

z1
y1

y3

y2

z2

d1

d2

m�m
md

Invert(m�_m)

md�

z1
y1

y3

y2

z2

d1

d2

md�_m

md_m

Fig. 4.10. The output mapping in Diff is
not determined up to isomorphism

md = �U(A)�,
m md = �U=R�

is a valid result of Diff.

Proof: Instances of md are obtained by projection, so m md is a surjective
function and thus condition (1) holds. Notice that ind(y1, y2, m m′) iff y1.S =
y2.S. Assume that y1, y2 ∈ m, y1
= y2, and ind(y1, y2, m m′). That is, y1.S =
y2.S and y1
= y2, so y1, y2 must differ on R, i.e., y1.R
= y2.R. But then, d1 =
y1.R
= y2.R = d2, so that condition (2) holds. All instances of m participate
in m m′, so that condition (3) is satisfied trivially. Finally, notice that m m′

is a total function. By Theorem 4.2.5, diffCard(m, m m′) = max{|c| : c ∈
Π ∪ {∅}, |c|
= 1} = maxz∈m′ |{y : y.S = z.T}|. Since for each z ∈ m′ :
|{y | y.S = z.T}| = |�R(A)�|, so diffCard(m, m m′) = |�R(A)�|. Hence, md

is minimal since |md| = |�R(A)�|, and condition (4) holds.
To reiterate the intuition behind Diff, md = �U(A)� is a minimal schema

that allows us to reconstruct uniquely an instance y ∈ �R(A), S(B)� from
two instances x ∈ �T(B)� and d ∈ �U(A)� that were previously obtained
from y using the mappings m mx and m md produced by the operators
Extract and Diff. �

Example 4.2.21. Let

4.2 Operators 83

m = �R[A,B]�,
m′ = �T[A]�,
m m′ = �SELECT A FROM R�.

Then,

md = �U[B]�,
m md = �SELECT B FROM R�

is a valid result of Diff. (Recall that we use the square brackets to indicate
multiset semantics for relational tables).

Proof: Instances of md are obtained using a SQL query, so m md is a surjec-
tive function and condition (1) is satisfied. Under multiset semantics, SELECT
A FROM R returns the same number of tuples as the number of tuples in R.
Thus, ind(y1, y2, m m′) iff y1 and y2 agree on the ordered list of A values.
Assume that y1, y2 ∈ m, y1
= y2, and ind(y1, y2, m m′). Although y1 and y2

agree on A values, we have y1
= y2, so they must differ on the ordered list
of B values. Hence, d1 obtained using SELECT B FROM y1.R differs from d2

obtained using SELECT B FROM y2.R, and condition (2) holds. All instances
of m participate in m m′, so that condition (3) is satisfied trivially.

m m′ is a total function. Hence, by Theorem 4.2.5, diffCard(m, m m′) =
max′z∈m|{y : (y, z) ∈ m m′}|. We have to show that md is equipotent with
{y : (y, zmax) ∈ m m′}, a maximal equivalence class induced by ind(., ., .).
We get such maximal class when zmax ∈ �T[A]� is an infinite ordered list
of A values. diffCard(m, m m′) is the number of instances of �R[A,B]� that
agree on A with zmax. There are |�R[B]�| such instances (since there are
finitely many finite lists of B values, there is a bijection from the set of
infinite lists to the set of infinite and finite lists). Hence, md is minimal
because |md| = |�R[B]�|, and condition (4) holds. �

Example 4.2.22. Let

m = �R(ID,A,B)�,
m′ = �S(ID,A)�,
m m′ = �S = πID,A(R)�.

Then,

md = �T(ID,B)�,
m md = �T = πID,B(R)�

is an invalid result of Diff. There is a “smaller” schema m′d that satisfies the
definition of Diff. We construct m′d in the proof.

Proof: md and m md satisfy conditions (1), (2), (3), but not (4). m md

is a surjective function onto md since instances of md are obtained by
projection, so condition (1) holds. Notice that ind(y1, y2, m m′) holds iff
πID,A(y1.R) = πID,A(y2.R). Let y1, y2 ∈ m be given with y1
= y2 and

84 4. State-Based Semantics

ind(y1, y2, m m′). That is, y1, y2 agree on the projection of ID and A val-
ues. Since nevertheless y1
= y2, then y1 and y2 must differ on B values. Since
ID is a primary key, πID,B extracts all values of column B, including the ones
that differ. Hence, d1 = πID,B(y1.R)
= πID,B(y2.R) = d2 and condition (2)
holds. Since m m′ is total, condition (3) is satisfied trivially.

However, the minimality condition (4) is not satisfied. Notice that m m′

is a total function. By Theorem 4.2.5, diffCard(m, m m′) = maxz∈m′ |{y :
(y, z) ∈ m m′}|. We obtain the maximal equivalence class cmax of ind(., ., .)
when z = zmax has |ID| tuples, i.e., all ID values are used in zmax. We can
construct all instances y with (y, zmax) ∈ m m′ by adding to zmax a column
with arbitrary B values. There are |B||ID| such columns. That is, md must
have k=|B||ID| instances to satisfy (3). �T(ID,B)� has however 2k instances,
since the length of table T may vary between 0 and |ID|.

To obtain a correct result m′d and m m′d, we add to md

the constraint that the number of tuples in T equals the do-
main size of ID. We get: m′d = �T(ID, B), |T| = |ID|�, m m′d =
�T = πID,B(R) ∪ {(id , bfixed) | id ∈ ID, id
∈ πID(R)}�, i.e., we extend each
πID,B(y.R) to have |ID| tuples by assigning the value bfixed ∈ B to each
unused ID value that is not already contained in πID(y.R). �

Example 4.2.23. Consider the same setting as in Example 4.2.21 but using
set semantics. Let

m = �R(A, B)�,
m′ = �T(A)�,
m m′ = �SELECTD A FROM R�.

Then,

md = �U(B)�,
m md = �SELECTD B FROM R�

is an invalid result of Diff.

Proof: m md violates condition (2). As a counterexample, consider y1 =
{(1, 2), (3, 4)} and y2 = {(1, 4), (3, 2)}. Obviously, y1
= y2. However,
ind(y1, y2, m m′) holds, since πA(y1.R) = πA(y2.R) = {1, 3}. d1 and d2 with
(y1, d1), (y2, d2) ∈ m md are determined as d1 = πB(y1.R) = {2, 4}, d2 =
πB(y2.R) = {2, 4}. That is, d1 = d2 and condition (2) does not hold. In other
words, we cannot reconstruct uniquely an instance y ∈ m from the instances
{1, 3} and {2, 4}.

If �U(B)� is not a valid output, how else can we then describe the re-
sult of Diff in this example? To do this, we find a maximal equivalence class
cmax of the disjoint decomposition Π induced by ind(., ., .), just as in Exam-
ple 4.2.22. cmax is a set of ordered lists of B values whose length lies between
|A| and |A| · |B|. Thus, a schema m′d = �T[B]; |A| ≤ |T| ≤ |A| · |B|� could be
a valid schema produced by Diff. The corresponding mapping m m′d is how-
ever difficult to describe using a closed formula. We know that it exists due

4.2 Operators 85

to Theorem 4.2.5. Note that schema �U(A, B)� with a bijection �U = R�

satisfies (1), (2), and (3), but cannot be a valid result, since �U(A, B)� con-
tains too many instances and violates condition (4). �
Example 4.2.24. This example illustrates Diff when m m′ contains a join. It
uses the setting of Example 4.2.10. Let

m = �R(A, B), S(B, C)�,
m′ = �T(A, B, C)�,
m m′ = �T = R �� S�.

Then,

md = �P(A, B), Q(B, C); πB(P) ∩ πB(Q) = ∅�,
m md = �CREATE VIEW P(A,B) AS

SELECTD * FROM R WHERE
B NOT IN (SELECT B FROM S),

CREATE VIEW Q(B,C) AS
SELECTD * FROM S WHERE

B NOT IN (SELECT B FROM R)�

is a valid result of Diff.

Proof: Mapping m md is defined using a create-view statement, so condition
(1) is satisfied. Two different instances y1, y2 of �R(A, B), S(B, C)� map to
the same instance z of �T(A, B, C)�, only if y1 and y2 agree on the subset
of joining B-values and the tuples of R and S that contain these B-values.
Instances y1 and y2 may differ only on those R and S tuples that contain
non-joining B-values. These tuples are exactly those extracted in the above
create-view statement, so that condition (2) holds. m m′ is a view on m,
so that m = Domain(m m′) and condition (3) is satisfied. m m′ is total.
By Theorem 4.2.5, diffCard(m, m m′) = maxz∈m′ |{y : (y, z) ∈ m m′}|. In
other words, diffCard(m, m m′) is the maximal number of instances y ∈
�R(A, B), S(B, C)� that map to the same fixed instance z of �T(A, B, C)�.
This largest set is the set of all databases y in which the join condition is
not satisfied for any tuple, i.e., πB(R) ∩ πB(S) = ∅. All such databases map
to zmax = {∅}. Thus, md is minimal. �

In the above examples we have seen that the definition of Diff is hard to
satisfy due to the minimality condition (4), which makes seemingly correct
results invalid. We consider this problem in more detail in Sect. 4.3. In the
rest of this section, we prove a few important theorems used in the analysis
of the model-management scenarios that we present.

Theorem 4.2.6. If 〈md, m md〉 = Diff(m, m m′) and Invert(m m′) is a
surjective function, then md = ∅ and m md = ∅. �

The above theorem states that in the case when all of m participates in
m m′ the difference md is “zero”; by Proposition 4.2.6, Extract would have
to pick up all information of m.

86 4. State-Based Semantics

Theorem 4.2.7. Let 〈mx, m mx〉 = Extract(m, m m′), 〈md, m md〉 =
Diff(m, m m′) and mx md = Invert(m mx) ◦m md. Then, Invert(m md) ◦
m m′ = Invert(mx md) ◦ Invert(m mx) ◦m m′.

Proof: By Proposition 4.2.2, Invert(mx md) = Invert(m md) ◦m mx. Thus,
the right expression of the equality to prove becomes Invert(mx md) ◦
Invert(m mx) ◦ m m′ = Invert(m md) ◦ m mx ◦ Invert(m mx) ◦ m m′.
By Definition 4.2.3, m mx ◦ Invert(m mx) ◦ m m′ = m m′. Therefore,
Invert(mx md) ◦ Invert(m mx) ◦m m′ = Invert(m md) ◦m m′. �

4.2.6 Confluence Operator

Let map1 ⊆ m1 × m2 and map2 ⊆ m1 × m2 be two mappings between
models m1 and m2. map1 and map2 could be partial mappings developed
independently by two engineers, or could have been obtained by composition
as e.g. map1 = m1 ma ◦ma m2, map2 = m1 mb ◦mb m2. The Confluence
operator, ⊕, “unifies” the two mappings:

Definition 4.2.6 (Confluence, ⊕).

map1 ⊕map2 =df (map1 ∩map2)⋃ {(x, y) ∈ map1 | x
∈ Domain(map2) ∧ y
∈ Range(map2)}⋃ {(x, y) ∈ map2 | x
∈ Domain(map1) ∧ y
∈ Range(map1)}
The Confluence operator extracts the “submapping” on which map1 and

map2 agree and adds to it the correspondences between all those instances of
m1 and m2 that participate either only in map1 or only in map2. Obviously,
confluence is commutative.

Theorem 4.2.8. If Range(map1) ⊆ Range(map2), then map1 ⊕ map2 =
map1 ∩map2.

Proof: follows from Definition 4.2.6. �

Corollary 4.2.2. If map1 and map2 are both total or both surjective, then
map1 ⊕map2 = map1 ∩map2. �

Example 4.2.25. Let

m1 = �R(A, B), S(B, C)�,
m2 = �T(A, B, C)�,
map1 = �T = R �� S�,
map2 = �πA(R) = πA(T)�.

Mappings map1 and map2 are both total, therefore, by Corollary 4.2.2,
map1 ⊕map2 = map1 ∩map2. Hence,

map1 ⊕map2 = �T = R �� S and πA(R) = πA(T)�.

Notice that map1 ⊕map2 is not total. �

4.2 Operators 87

Theorem 4.2.9. If Domain(map1) ∩ Domain(map2) = Range(map1) ∩
Range(map2) = ∅, or equivalently, map1 ◦ Invert(map2) = Invert(map1) ◦
map2 = ∅, then map1 ⊕map2 = map1 ∪map2.

Proof: follows from Definition 4.2.6. �

Theorem 4.2.10. If Invert(map1) is injective or Invert(map2) ◦map3 = ∅,
then map1 ◦ (map2 ⊕map3) = (map1 ◦map2)⊕ (map1 ◦map3). �

In general, however, the distributive law does not hold. To see that choose
map1 = {(x, y1), (x, y2)}, map2 = {(y1, z1), (y2, z2)}, map3 = {(y2, z2)}.
Then, map1 ◦ (map2 ⊕ map3) = {(x, y1), (x, y2)} ◦ {(y1, z1), (y2, z2)} =
{(x, z1), (x, z2)}. In contrast, (map1 ◦ map2) ⊕ (map1 ◦ map3) =
{(x, z1), (x, z2)} ⊕ {(x, z2)} = {(x, z2)}.

The following theorem illustrates an important use case of the Confluence
operator.

Theorem 4.2.11 (Mirror Merge). Let 〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2), and m1 n1 and m2 n2 be bijective mappings. Then,
〈n, n n1, n n2〉 = Merge(n1, n2, Invert(m1 n1) ◦m1 m2 ◦m2 n2) such that
m n = (m m1 ◦ m1 n1 ◦ Invert(n n1)) ⊕ (m m2 ◦ m2 n2 ◦ Invert(n n2))
is a bijection. Furthermore, n n1 = Invert(m n) ◦ m m1 ◦ m1 n1

n n2 = Invert(m n) ◦m m2 ◦m2 n2.

Proof: Models m and n are equipotent since they are obtained from isomor-
phic pairs of models. The non-trivial part of the theorem is the construction of
the bijection m n using Confluence. We sketch the proof in Fig. 4.11. The key
observation is that either the “upper” path over m m1 ◦m1 n1 ◦ Invert(n n1)
or the “lower” path over m m2 ◦ m2 n2 ◦ Invert(n n2) allows obtaining a
unique image y ∈ n for each instance x ∈ m. For example, although the re-
lationship between the instances x1, x2 and y1, y2 in the figure is ambiguous
in the lower path, we can restore it by following the upper path. �

y1x1

x2 y2

x3 y3

a

b

a�

b�

m1 n1

m

d

c

d�

c�

m2 n2

n

x1

x2

y1

y2
	

x1

x2

y1

y2

x3 y3

x1

x2

y1

y2

x3 y3
Fig. 4.11. Illustration of Theorem 4.2.11 (Mir-
ror Merge)

88 4. State-Based Semantics

4.2.7 Match Operator

Match returns a mapping m1 m2 that describes how the instances of m1

and m2 relate to each other. Often, we can find infinitely many semantically
valid mappings between two models. Each of these mappings makes sense in
a specific application context. Therefore, we do not put any restrictions on
the result of Match other than it is a mapping between m1 and m2:

Definition 4.2.7 (Match). m1 m2 = Match(m1, m2) holds if and only if
m1 m2 ⊆ m1 ×m2. �

Computing the result of Match requires human input, so that it can be
considered a blocking, black-box operator.

4.3 Materialization

To make the formalization presented in this chapter useful for real appli-
cations, the results of model-management scripts need to be computed ef-
fectively. As we explained in Sect. 4.1.4, computing the results of a script
amounts to finding a variable substitution that satisfies the script. We showed
using examples that it is often impossible to find the desired variable sub-
stitution due to the limited expressiveness of concrete schema and mapping
languages. In this section, we explain how we can extend the scripts in a
controlled fashion so that computing the results and deploying them in ap-
plications becomes possible. We refer to this problem as materialization.

The intuition that we exploit is that it is acceptable to generate more ex-
pressive models and mappings as long as we can reconstruct the exact results
if necessary. First, we discuss materialization of models using an example.

Example 4.3.1. Imagine that a model m produced by a script can be exactly
specified as

m = �R(A, B), S(B, C); πB(R) = πB(S)�

using the classical relational model and the constraint expressed as a rela-
tional algebra expression. We argue that models

�R[A, B], S[B, C]�,
�R[A, B], S[B, C]�,
�T[A, B, C]�,

and some other more expressive models can be used as an adequate “ap-
proximation” of m in SQL DDL. Each of these models dominates m, i.e.,
there is a total surjective function from m′ onto m. For example, for m′ =
�T[A, B, C]� the function m′ m can be specified as

4.3 Materialization 89

m′ m = �CREATE VIEW R(A,B) AS
SELECT DISTINCT A,B FROM T

WHERE A NOT NULL AND B NOT NULL
CREATE VIEW S(B,C) AS

SELECT DISTINCT B,C FROM T
WHERE B NOT NULL AND C NOT NULL�

We can round-trip each instance of m to m′ and back without information
loss. For example, we can generate an instance of m′ from an instance of m
using the total injective function

map = �CREATE VIEW T(A,B,C) AS
SELECT A, B, NULL FROM R UNION
SELECT NULL, B, C FROM S�

It is easy to see that map ◦m′ m = Id(m). �
To materialize m as m′ we extend the script that defines m by adding to

it the following conditions:

Invert(m′ m) ◦m′ m = Id(m); // m′ m is surjective onto m
m′ = Domain(m′ m);

The above constraints on m′ are quite weak, i.e., there are substantial degrees
of freedom in computing m′. As we demonstrate below, materializing the
mappings in which m participates places additional constraints on m′.

If a model has been obtained from a relational schema in the script, then
casting it into a relational schema may be a reasonable default assumption
(in fact, in Rondo the result of merge is assumed to be a model of the same
type as the input models). Alternatively, the target meta-model could be
specified explicitly by declaring the “type” of the model variable m′ as say
SQL DDL. We expect that the tuning knobs and implicit policies of the
model-management environment, such as syntactic minimality requirements
on schemas or efficiency (Cosmadakis and Papadimitriou 1984; Spaccapietra
and Parent 1994), can be deployed to drive materialization.

Next, we discuss materialization of mappings. Consider the setting of
Fig. 4.12(a). Assume that model m1 is expressed using a constant, e.g., m1

is a fixed relational schema, while model m2 and mapping map are defined
using a script, say as results of change propagation. Our goal is to materialize
m2 and map. For m2 we can proceed as above: we materialize m2 as a more
expressive model m′2, as witnessed by a total surjective function m′2 m2.
Now, mapping map needs to be materialized as a mapping m1 m′2 between
m1 and m′2. To be able to reconstruct the original mapping map, we require
that map = m1 m′2 ◦ m′2 m2. That is, m and map are materialized as m′

and m1 m′2 such that

Invert(m′2 m2) ◦m′2 m2 = Id(m2);
m′2 = Domain(m′2 m2);
map = m1 m′2 ◦m′2 m2;

90 4. State-Based Semantics

m1 m2

m2�

map

m1_m2�

m2�_m2

m1 m2

m2�

map

m1�_m2�

m2�_m2

m1�

m1�_m1

(a) (b)

Fig. 4.12. Materializa-
tion of models and map-
pings

To illustrate, consider Example 4.2.22. There, we showed that a quite in-
tuitive result of Diff was invalid because it violated the minimality condi-
tion. For convenience, we restate the example: let m = �R(ID, A, B)�, m′ =
�S(ID, A)�, and m′ m = �S = πID,A(R)�. Then, md = �T(ID, B)�, md m
= �T = πID,B(R)� is an invalid result of Diff. However, we can demonstrate
that this result is a valid materialization of the exact result of Diff.

The materialization constraints suggested above offer substantial degrees
of freedom for choosing m1 m′2, but they do not guarantee the existence of
m1 m′2 (nor that of m′2). For example, if map is not a function but our target
mapping language is a view definition language, we cannot materialize map
as a view m1 m′2, since we know that a composition of two functions must
yield a function.

Just as in the case of schemas, various tuning knobs can be used to steer
materialization of mappings. One metric is view minimization (Ullman 1997).
Efficiency is another example: the work in (Shanmugasundaram et al. 2001b;
Bohannon et al. 2002; Fernandez et al. 2002; Fan et al. 2003) presents various
algorithms that make the mappings between relational and XML data more
efficient, while Theodoratos et al. (2001) consider various metrics for selecting
views in data warehousing, such as query evaluation cost, view maintenance
cost, or storage space.

As another example of materialization, consider Fig. 4.12(b). Here, m1 is
not a constant but needs to be computed as well. We materialize m1, m2,
and map respectively as m′1, m′2, and m′1 m′2 such that:

Invert(m′1 m1) ◦m′1 m1 = Id(m1);
m′1 = Domain(m′1 m1);
Invert(m′2 m2) ◦m′2 m2 = Id(m2);
m′2 = Domain(m′2 m2);
map = Invert(m′1 m1) ◦m1 m′2 ◦m′2 m2;

In a general case, we are given a set of model and mapping variables with
constraints established by a script. We suggest that a valid materialization
should allow us to reconstruct the exact variable substitutions using a set
of total surjective functions, one for each model, which can be composed
with the materialized mappings to obtain the exact mappings. It is sufficient
to ensure the existence of such total surjective functions; they may not be
expressible in concrete mapping languages.

4.3 Materialization 91

In an indirect way, materialization lifts constraints on models and map-
pings. Since the presence of such constraints, e.g., of integrity constraints,
may be essential for applications, constraint lifting should be done in scripts
explicitly, as we suggested in the above discussion. The dropped constraints
have to be maintained by applications to ensure that the materialized schemas
keep only those database instances that would be representable in the exact
schemas. That is, in Example 4.3.1, the application would need to maintain
the constraint πB(R) = πB(S) for the materialization �R[A, B], S[B, C]�, or
the constraint: if A is NULL then B and C NOT NULL; if C is NULL then A
and B NOT NULL, for the materialization �T[A, B, C]�. An approach to au-
tomating application-based constraint management is discussed in (Peckham
et al. 1995).

We expect that there may be more than one approach to materializing
schemas and mappings. For instance, in (Fagin et al. 2003) the authors ex-
amine the problem of data exchange, which can be viewed as a problem of
materializing a non-functional mapping between two models as a view, i.e.,
as a function. In this case, the exact mapping could be reconstructed using
a different kind of composition, which allows obtaining the so-called certain
answers for queries. In general, materialization can be stated as a constraint
satisfaction problem, as exemplified in Sect. 10.4.

Materialization of schemas and mappings is associated with information
loss, since the total surjective functions utilized for materialization may them-
selves not be expressible in concrete mapping languages. Therefore, materi-
alization should only be done for models and mappings that need to be de-
ployed by applications, but not for the intermediate results of scripts. As a
matter of fact, in (Buneman et al. 1992) the authors found that materializing
the intermediate merge results leads to information loss due to the limited
expressiveness of the schema language they used, so that merging becomes
a non-associative operation. To fix the problem, they introduce a more ex-
pressive auxiliary language and materialize the schemas only at the very last
step.

In general, it may be beneficial to preserve the original models and map-
pings, and the scripts used to obtain the intermediate materialized result.
In this way, the exact results of scripts are available for later use in other
scripts. In addition, keeping the original inputs and scripts facilitates migra-
tion to new standards and data management systems. For example, should
we at some point of time decide to use a more expressive language for our
schemas, e.g., XML Schema instead of SQL DDL, and migrate our data to
a new DBMS, we may be able to compute “tighter” models for our results,
i.e., the schemas may be materialized more accurately, with extra integrity
constraints that were not expressible earlier.

92 4. State-Based Semantics

5. Change Propagation Scenario

“Nothing endures but change.”

– Heraclitus (540-480 BC)

In this chapter, we revisit the change propagation scenario. We present a solu-
tion for this scenario using the operators of Chap. 4. We argue the correctness
of our solution by examining several special cases and by showing that the
scripts that we developed match the intuition in these special cases. We can-
not formally prove that our solution is correct. To do so, we would need a
formal specification of what change propagation means. Instead, we argue
that the script that we present provides a major part of such specification
in first place. This specification can be used to drive and verify implemen-
tations for concrete schema and mapping languages. In fact, in Chap. 6 we
examine to what extent the implementation presented in Chap. 2 conforms
to the specification of change propagation presented below.

A general outline of the change propagation scenario is the following (see
Sect. 2.1 for a more detailed discussion). Assume that we are given models
s1 and d1, and a mapping s1 d1 between them. Now, s1 changes into s2. The
changes are described by the mapping s1 s2, which may have been obtained
by matching s1 and s2. We want these changes to be propagated to d1, i.e.,
we look for a model d2 and a new mapping s2 d2 that describes how the new
model d2 relates to s2.

We begin with a simple variation of the change propagation scenario and
work our way towards a general case. First, we consider additions only in
Sect. 5.1. Then, we consider deletions in Sect. 5.2, present a general solu-
tion in Sect. 5.3 and examine schema evolution as a special case of change
propagation in Sect. 5.4. We conclude the chapter and discuss several other
possible variations of the change propagation scenario in Sect. 5.5.

Before we dive into the scenario, one note is due. What we call “addition”
corresponds to an abstract model modification that extends the set of possi-
ble instances, i.e., it adds information capacity to the model. Addition may
be caused by adding new elements to the model or by dropping certain exist-
ing constraints. Similarly, “deletion” is another abstract manipulation that

94 5. Change Propagation Scenario

reduces the set of possible instances, i.e., produces a less expressive model.
Deletion may be caused by removing certain model elements or by adding
constraints to the model.

5.1 Propagating Additions

Consider the schematic representation in Fig. 5.1. We continue using the
convention that the names of the mapping variables identify the left and
right models participating in the mappings. Thus, s1 s2 ⊆ s1 × s2.

Assume that s1 is transformed into a more expressive model s2, such that
Invert(s1 s2) is a view on s2. The direction of the arrow labeled s1 s2 in the
figure indicates that the instances of s1 are functionally determined by the
instances of s2. To propagate additions from s1 to d1 means to construct a
model d2 that can express all information of d1 plus all extra information of
s2. The extra information of s2, which is not captured by s1, can be obtained
using the operator Diff. The resulting model is then merged with the model
d1. This approach is described in the following script:

s1

s2

s2�

d1

d2

s1_s2

s1_d1

d2_d1

s2_s2�

(Diff by Invert(s1_s2))

s2_d2

(M
e
rg

e
)

m
m_s2�

s
1 _

m

Fig. 5.1. Propagating additions

1. 〈s′2, s2 s′2〉 = Diff(s2, Invert(s1 s2));
2. d1 s′2 = Invert(s1 d1) ◦ s1 s2 ◦ s2 s′2;
3. 〈d2, d2 d1, d2 s′2〉 = Merge(d1, s

′
2, d1 s′2);

4. s2 d2 = (Invert(s1 s2) ◦ s1 d1 ◦ Invert(d2 d1)) ⊕
(s2 s′2 ◦ Invert(d2 s′2));

To argue the correctness of the above solution, we consider the following
special case:

Proposition 5.1.1. If Invert(s1 s2) is a surjective function and s1 d1 is a
bijection, then s2 d2 is a bijection too. That is, if s1 and d1 are equipotent
and we add a certain amount of information to s1, then our script ensures
that the same amount of information is added to d1 to obtain d2.

Proof: The idea of the proof is to show that merging s′2 and d1 produces a
result equivalent to merging of s′2 and the model m obtained by extraction

5.2 Propagating Deletions 95

from s2. The auxiliary mappings and model m that are used in the proof
are represented using dotted lines and rectangles in Fig. 5.1 and are high-
lighted below in bold; all other variables are defined in the script or are input
variables.

To construct the alternative merge, we proceed as follows. Let
〈m, s2 m〉 = Extract(s2, Invert(s1 s2)) and m s′2 = Invert(s2 m) ◦ s2 s′2. By
Corollary 4.2.1 we get 〈s2, s2 m, s2 s′2〉 = Merge(m, s′2, m s′2).

Let s1 m = s1 s2 ◦ s2 m. By Proposition 4.2.7, s1 m is a bijection.
Therefore, m d1 = Invert(s1 m) ◦ s1 d1 is also a bijection. Thus, we have a
Merge of m and s′2 and a Merge of d1 and s′2, where m and d1 are equipotent.
By Definition 4.2.3, Invert(s1 s2) = s2 m ◦ Invert(s2 m) ◦ Invert(s1 s2) =
s2 m◦Invert(s1 m). Hence, by Proposition 4.2.2, s1 s2 = s1 m◦Invert(s2 m).
Notice that (s1 m ◦ Invert(s2 m)) ◦ s2 s′2 = s1 m ◦m s′2. Therefore, s1 s2 ◦
s2 s′2 = s1 m ◦m s′2, and we obtain that d1 s′2 = Invert(m d1) ◦m s′2.

Now, we are ready to apply Theorem 4.2.11, which entails that d2 is
isomorphic to s2 with a bijection (s2 m◦m d1◦d1 d2)⊕(s2 s′2◦Invert(d2 s′2))
between them.

The second part of the above expression is equivalent to that of the last
line of the script, line 4, which defines s2 d2. To obtain the proposition,
all we need to show is that s2 m ◦ m d1 = Invert(s1 s2) ◦ s1 d1. We have
demonstrated above that Invert(s1 s2) = s2 m◦ Invert(s1 m). By composing
both parts of the expression with s1 d1, we obtain Invert(s1 s2) ◦ s1 d1 =
s2 m ◦ Invert(s1 m) ◦ s1 d1 = s2 m ◦m d1. �

Analogously, we could show that if s1 d1 is a view on s1, then s2 d2 is a
view on s2. For that, we would need an extension of Theorem 4.2.11, which
uses surjective functions instead of bijections.

5.2 Propagating Deletions

Consider the scenario of Fig. 5.2. Assume that s1 is transformed into a less
expressive model s2, such that s1 s2 is a view on s1. Propagating deletion
from s1 to d1 means that we discard all instances of d1 that are not relevant
for representing the information in s2. In other words, we keep the instances
of d1 that are relevant for s2 and those that do not participate in s1 d1 in
the first place, since the latter are not affected by the change. This effect can
be achieved using the following script:

1. d1 s2 = Invert(s1 d1) ◦ s1 s2;
2. 〈m, d1 m〉 = Extract(d1, d1 s2); // still in s2

3. 〈n, d1 n〉 = Diff(d1, Invert(s1 d1)); // to keep in d1

4. 〈d2, d2 m, d2 n〉 = Merge(m, n, Invert(d1 m) ◦ d1 n);
5. d1 d2 = (d1 m ◦ Invert(d2 m))⊕ (d1 n ◦ Invert(d2 n));
6. s2 d2 = Invert(d1 s2) ◦ d1 d2;

96 5. Change Propagation Scenario

s1

s2

d1

d2

s1_s2

s1_d1

d1_s2

n

m

(to keep in d1)

(still in s2)

(Extract by d1_s2)

(Diff by Invert(s1_d1))

(M
er

ge
)

s2_d2 Fig. 5.2. Propagating dele-
tions

In line 2, we extract the model m, which captures all information of s2 “vis-
ible” through s1. In line 3, we determine the portion n of d1 that does not
participate in s1 d1, using the operator Diff. Model n represents the infor-
mation that needs to be preserved in d2 no matter what the mapping s1 s2

looks like.
To substantiate the correctness claim for the above solution, we examine

the following two special cases.

Proposition 5.2.1. If s1 s2 is a bijection, then d1 d2 is a bijection and
s2 d2 is isomorphic to s1 d1. That is, if the information capacity of s1 re-
mains unchanged, so does that of d1.

Proof: Since s1 s2 is a bijection, so d1 s2 is isomorphic to Invert(s1 d1).
Hence, Extract and Diff in lines 2-3 form a split (see Corollary 4.2.1). By
Theorem 4.2.11, d1 d2 is a bijection. Therefore, by composition in line 6,
s2 d2 is isomorphic to s1 d1. �

Proposition 5.2.2. If s1 s2 is a surjective function and s1 d1 is a bijection,
then s2 d2 is a bijection. That is, if s1 and d1 are equipotent and we delete a
certain amount of information from s1, then our script ensures that the same
amount of information is deleted from d1 to obtain d2.

Proof: Since s1 d1 is a bijection, it is also a surjective function, and by
Theorem 4.2.6, n = ∅ and d1 n = ∅. Followingly, m ∼= d2 and the above
script is equivalent to the following script (with respect to d2, s2 d2):

d1 s2 = Invert(s1 d1) ◦ s1 s2;
〈d2, d1 d2〉 = Extract(d1, d1 s2);
s2 d2 = Invert(d1 s2) ◦ d1 d2;

This script is shown schematically in Fig. 5.3.

s1

s2

d1

d2

s1_s2

s1_d1

s2_d2

d2_d1
d1_s2

Fig. 5.3. Propagating deletions over bijection

5.3 A General Solution 97

By construction, d1 s2 is a surjective function. By Proposition 4.2.6, s2 d2

is a bijection. �
Notice however that if s1 d1 is a view on s1 then the resulting mapping

s2 d2 need not be a view on s2. At first glance, this result does not seem to
match our intuition. As we illustrate in the following example, the reason is
that deletion is not limited to removing attributes from s1, but could have a
variety of other causes, such as restricting the domain of an attribute using
an arithmetic function.

Example 5.2.1. Let

s1 = �R[val : byte]�,
d1 = �S[val : byte(0..128)]�,
s1 d1 = �SELECT val / 2 FROM R�

Assume integer division and multiset semantics for schemas. Let the deletion
be specified by the mapping

s1 s2 = �SELECT val / 3 FROM R�.

s1 d1 is a surjective function, so the propagation of deletion is equivalent to
the 3-line script used in the proof above. The mapping d1 s2 obtained by
composition can be specified as follows: (y, x) ∈ d1 s2 iff x and y have the
same number of tuples and for each i-th tuple tx of x and ty of y the following
condition holds: (ty .val = tx.val · 2/3 or ty.val = (tx.val · 2 + 1)/3). The
extracted schema d2 is obtained as d2 = �T(val : byte[0..128])�, where d1 d2

is a bijection. Thus, the mapping s2 d2 is isomorphic to Invert(d1 s2), i.e.,
can be expressed using a similar condition as above. s2 d2 is not a function.
In fact, the instance x = {4} ∈ s2 maps by way of s2 d2 to two instances of
d2, y1 = {2} and y2 = {3}, since 4 · 2/3 = 2 and (4 · 2 + 1)/3 = 3. �

Observe that the “deletion” done in the example is somewhat unorthodox.
One can show that in simpler cases, in which s2 is obtained by removing one
or more attributes from s1, the result s2 d2 remains a view.

The example illustrates that certain changes of the source schema may
break the view in such a way that it cannot be “repaired” fully automatically.
Intervention of a human designer may be necessary to define an updated view,
which otherwise becomes a non-functional transformation.

5.3 A General Solution

In a general solution for change propagation, which is depicted schematically
in Fig. 5.4, we propagate the additions and deletions simultaneously. We
combine the scripts of Sections 5.1 and 5.2 and obtain the following solution:

1. d1 s2 = Invert(s1 d1) ◦ s1 s2;
2. 〈m, d1 m〉 = Extract(d1, d1 s2); // still in s2

98 5. Change Propagation Scenario

s2�

s1

s2

d1

D
s1_s2

s1_d1

s2_d2

s2_s2�

d1_s2

n

m

(to keep in d1)

(still in s2)

(to add)

(Extract by d1_s2)

(Diff by Invert(s1_d1))

(Diff by Invert(s1_s2))

(M
er

ge
)

d2

(M
e
rg

e
)

Fig. 5.4. Change propaga-
tion: a general solution

3. 〈n, d1 n〉 = Diff(d1, Invert(s1 d1)); // to keep in d1

4. 〈D, D m, D n〉 = Merge(m, n, Invert(d1 m) ◦ d1 n);
5. d1 D = (d1 m ◦ Invert(D m))⊕ (d1 n ◦ Invert(D n));
6. s2 D = Invert(d1 s2) ◦ d1 D;
7. 〈s′2, s2 s′2〉 = Diff(s2, Invert(s1 s2));
8. D s′2 = Invert(d1 D) ◦ d1 s2 ◦ s2 s′2;
9. 〈d2, d2 D, d2 s′2〉 = Merge(D, s′2, D s′2);
10. s2 d2 = (Invert(d1 s2) ◦ d1 D ◦ Invert(d2 D)) ⊕

(s2 s′2 ◦ Invert(d2 s′2));

The lines 1-6 correspond to the deletion script of Sect. 5.2, with the only
difference that d2 is replaced by D. The remaining lines 7-10 deal with prop-
agating additions. Line 8 can be simplified as D s′2 = Invert(s2 D) ◦ s2 s′2
by exploiting the result computed in line 6.

By construction, the above script is equivalent to either the deletion or
addition script if s1 s2 or Invert(s1 s2) is surjective function, respectively.
In fact, if s1 s2 is a surjective function, then s′2 = ∅ and the script can
be rewritten as the deletion script of Sect. 5.2. If Invert(s1 s2) is a surjec-
tive function, then Extract(d1, Invert(s1 d1) ◦ s1 s2) yields the same result as
Extract(d1, Invert(s1 d1)). Hence, m and n form a split over the wedge mor-
phism Invert(s1 d1), and d1

∼= D by Corollary 4.2.1. Thus, in this case the
script can be rewritten as the addition script of Sect. 5.1.

We suggest that the above script describes the intended state-based se-
mantics of change propagation. To support this claim, we have shown that
its semantics matches the intuition in the special cases discussed above.

5.4 Schema Evolution Scenario

The schema evolution problem arises when a change to a database schema
breaks a view that is defined on it. The schema evolution scenario is a special
case of the change propagation scenario of Sect. 5.3, when s1 d1 is a to-
tal surjective function. In this case, by Theorem 4.2.6, Diff(d1, Invert(s1 d1))

5.4 Schema Evolution Scenario 99

yields an empty model n, and the model D in Fig. 5.4 is equipotent with m.
Thus, the solution of Sect. 5.3 can be simplified as illustrated in Fig. 5.5. The
respective script is shown below:

s2�

s1

s2

d1

d2

s1_s2

s1_d1

s2_d2

d1_s2

�

m

(to keep in d1)

(still in s2)

(to add)

(Extract by d1_s2)

(Diff by Invert(s1_d1))

(Diff by Invert(s1_s2))

(
M

e
rg

e
)

Fig. 5.5. Schema evolution: a
special case of change propa-
gation

d1 s2 = Invert(s1 d1) ◦ s1 s2;
〈m, d1 m〉 = Extract(d1, d1 s2);
〈s′2, s2 s′2〉 = Diff(s2, Invert(s1 s2));
s′2 m = Invert(s2 s′2) ◦ Invert(d1 s2) ◦ d1 m;
〈d2, d2 s′2, d2 m〉 = Merge(s′2, m, s′2 m);
s2 d2 = (Invert(d1 s2) ◦ d1 m ◦ Invert(d2 m))⊕ (s2 s′2 ◦ Invert(d2 s′2));

The resulting mapping s2 d2 corresponds to the updated view definition,
whereas d2 is the updated schema. As we demonstrated in Sect. 5.2, s2 d2

may not be a function, i.e., certain changes to the database schema may make
it impossible to define an updated view on the new schema without human
decision-making.

In many schema evolution scenarios involving SQL views, it may be desir-
able to use the above script even if s1 d1 is a total function, but not surjective.
In this case, model n is not empty, but can be safely ignored. This approach
is justified by the fact that the SQL view definition language allows the view
schema to have instances that are impossible to obtain by executing the view
query over the source database. For example, consider the view defined as
CREATE VIEW V(age: int) AS SELECT S.age ≤ 20 FROM S. This view is not
surjective onto the view schema �V(age : int)�, since the view schema fails
to capture the constraint that age values never exceed the value 20. However,
due to this constraint the difference schema n = �V(age : int, age > 20)�
has no instances that can be obtained by executing the view definition and
can be safely ignored in the result.

100 5. Change Propagation Scenario

5.5 Variants of Change Propagation

Change propagation is a very rich scenario. In this section, we highlight sev-
eral aspects of it that need to be considered in future work, such as conversion,
splitting, batching, chaining, etc.

The state-based approach and the solution for change propagation that
we presented above abstracts out the fact that models s1, s2 and d1, d2

may be expressed in different schema languages. For example, line 9 of the
script of Sect. 5.3 may describe a merge of a relational and an XML schema.
In Chap. 2, we assumed that all operators return their results expressed
in the same schema language as the input schemas. Therefore, an explicit
conversion step is required in Rondo before we can merge a relational schema
with an XML schema. In (Bernstein 2003), a special operator called ModelGen
was introduced to implement conversion. Ideally, conversion should return an
equipotent model and a bijection between the input and the output model.
In this case, conversion is a “transparent” operation in terms of state-based
semantics and can be introduced at any step of a model-management script
without changing its semantics. However, in many cases conversion is bound
to yield a strictly more expressive model due to the limited expressiveness of
the target schema language. In such cases, the state-based semantics of the
script may differ depending on where the conversion step is introduced into
the script. To illustrate, consider the following example.

Example 5.5.1. Consider propagation of additions illustrated in Fig. 5.1. If
we assume that conversion yields equipotent models, then the solutions in
Fig. 5.6 and in Fig. 5.7 are equivalent to that shown in Fig. 5.1. In Fig. 5.6, we
convert s2 to c before applying the Diff operators, just as we did in Sect. 2.1
(see Figures 2.2 and 2.3), using the expression 〈c, s2 c〉 = ModelGen(s2).
In Fig. 5.7, we first apply the Diff operator and then convert, 〈c′, s′2 c′〉 =
ModelGen(s′2). If the mappings s2 c and s′2 c′ are not bijections, the semantics
of all three solutions may differ from each other. �

c�

s1

s2

c

d1

d2

s1_s2

s1_d1

s2_d2

d2_d1

d2_c�
s2_c

d
1 _

c
�

s1_c

(Diff by Invert(s1_c))

Fig. 5.6. Addition only, convert first
then Diff

5.5 Variants of Change Propagation 101

s2�

s1

s2

c�

d1

d2

s
1 _

s
2

s1_d1

s2_d2

d2_d1

d2_c�

s2�_c�

d
1 _

c
�

(Diff by Invert(s1_s2))

Fig. 5.7. Addition only, Diff first, then con-
vert

The script of Sect. 5.3 presents one possible solution for change propaga-
tion. No doubt, many other scripts may achieve the same effect as the one
that we developed. However, due to the script complexity, it may be quite
hard to determine whether two or more alternative solutions are equivalent.
For example, in Fig. 5.4 we effectively specify a 3-way Merge between the
models m, n, and s′2. We do so by first merging m and n, and then merging
the result with s′2. What if we first merge s′2 and m?

In the script of Sect. 5.3 we assumed that all information added to s1

by means of s2 is new and is not covered by d1. Thus, we simply merge
D and s′2 using the mapping D s′2 obtained by composition. However, in a
most general case, D and s′2 may have a greater overlap than that suggested
by D s′2. This can happen when the information added to s1 by way of s2

is already contained in d1. To determine that, we would need to match the
portions of D and s′2 that do not participate in D s′2. These portions can be
obtained using the operator Diff.

Another question of great practical importance is whether we can propa-
gate the changes in small fragments rather than all at once, and still obtain
an equivalent solution. In fact, some change management tools face the choice
of either propagating each atomic modification one by one or as a set of batch
operations of larger granularity. Splitting or batching the modifications may
be necessary for efficiency reasons, for example, if d1 is a model of a code
base of several million lines that needs to be updated. A related question
is whether chaining of change propagation operations can be simplified. The
chaining takes place when the changes propagated from one model to another
trigger change propagation to a third, fourth, etc. model.

We conclude this chapter by making the following remarks:

– Change propagation is a complex scenario that we are only starting to
understand.

– Conversion needs to be modeled explicitly if it produces more expressive
models.

– An automated theorem prover could be instrumental in analyzing the
equivalence or subsumption of alternative solutions, or more elaborate
change propagation scenarios.

102 5. Change Propagation Scenario

6. State-Based Semantics in Rondo

“Although nature commences with reason and ends in experience
it is necessary for us to do the opposite, that is to commence with
experience and from this to proceed to investigate the reason.”

– Leonardo da Vinci (1452-1519)

In this chapter, we discuss the relationship between the structural opera-
tor definitions given in Chap. 2 and the state-based definitions presented
in Chap. 4. To avoid ambiguity, we refer to the operators and scripts used
in Rondo (Chap. 2) as structural and to those of Chap. 4 as state-based.
The discussion that we present illustrates how the behavior of Rondo and
other complex metadata management systems can be analyzed in terms of
state-based semantics.

In Rondo, we use subsets of the standard schema languages such as SQL
DDL or XML Schema. The state-based semantics for these languages is well-
known. The definitions in Chap. 2 give a precise specification of the output
schemas and morphisms returned by the structural operators. Hence, to de-
fine the state-based semantics of the structural operators, we merely have to
provide a formal specification of the state-based semantics for morphisms and
selectors. Once we have the state-based semantics for models, morphisms, and
selectors, we effectively obtain a precise state-based semantics for the struc-
tural operators. Consequently, the state-based semantics of scripts containing
a mix of state-based and structural operators becomes well-defined. We will
use this observation in Sect. 6.3 to relate the structural operators to the
state-based ones.

6.1 Semantics of Morphisms

Morphisms are a graphical language. The arcs that connect individual schema
elements constitute the elementary expressions of this language. Although
this language has been used in various tools, to our knowledge no previous

104 6. State-Based Semantics in Rondo

work defined its semantics precisely. Moreover, it is likely that the semantics
differs from tool to tool, i.e., there is no best definition that suits each use case.
In this section, we discuss several alternatives for the meaning of morphisms
and select one of them as our working interpretation. We focus on morphisms
connecting the attributes of simple relational schemas under multiset (i.e.,
SQL) semantics without integrity or key constraints. In the case of complex
schemas, such as relational schemas with constraints or XML Schema with
nested types, the behavior of Rondo scripts is hard to characterize using the
state-based operators. The reason is that the structural operators have been
developed prior to the state-based semantics of morphisms that is presented
in this section. Hence, the properties of the structural operators do not match
exactly the requirements stated in Chap. 4. We illustrate this point in more
detail in Sect. 6.3.

Consider Fig. 6.1. It shows a simple morphism that connects the schemas
m1 and m2 using three arcs. Observe that the schema m2 appears to be a nor-
malized representation of m1. The foreign key dependency between the tables
S and T in m2 is intentionally omitted, i.e., we do not know whether S.ID is
a foreign key for T.ID or the other way around, or whether S.ID and T.ID
are keys at all. We examine three interpretations of this morphism, denoted
as map1, map2, and map3. To give them names, we call these interpretations
the tuple-list, tuple-set, and value-set interpretation, respectively.

Name: char

City: char

Zip: int

Name: char

ID: int

R

S

ID: int

City: char

Zip: int

T

�Name[R] = �Name[S]

�City,Zip[R] = �City,Zip[T]

map1:

�Name[R] = �Name[S]

�City,Zip[R] = �City,Zip[T]

map1:

�Name(R) = �Name(S)

�City,Zip(R) = �City,Zip(T)

map2:

�Name(R) = �Name(S)

�City,Zip(R) = �City,Zip(T)

map2:

�Name(R) = �Name(S)

�City(R) = �City(T)

�Zip(R) = �Zip(T)

map3:

�Name(R) = �Name(S)

�City(R) = �City(T)

�Zip(R) = �Zip(T)

map3:

map1 � map2 � map3

m1

m2

tuple-list tuple-set value-set
Fig. 6.1. Three alternative
semantics for a morphism

The tuple-list interpretation map1 is motivated by version manage-
ment. Assume that one of the schemas is a new version of the other
schema. In this case, an instance of the new version of the schema can
be obtained by copying the values from the instance of the old schema.
Each arc indicates what attribute values are copied. For example, the
arc connecting R.Name and S.Name indicates that the attribute values
of R.Name are selected and inserted into S.Name, or vice versa. This
relationship can be expressed as a constraint SELECT Name FROM R =
SELECT Name FROM S, which we abbreviate as πName[R] = πName[S].
Similarly, for the attributes City and Zip we obtain the constraints

6.1 Semantics of Morphisms 105

πCity[R] = πCity[T] and πCity[R] = πCity[T], respectively. Thus, our first
interpretation of the morphism yields a mapping that can be described as
map1 = �πName[R] = πName[S], πCity[R] = πCity[T], πZip[R] = πZip[T]�.
Notice that due to multiset semantics map1 is equivalent to
�πName[R] = πName[S], πCity,Zip[R] = πCity,Zip[T]�.

Should m2 indeed represent a normal form for m1, then map1 does not
characterize the mapping adequately. Copying all R.City and R.Zip tuples
into T including the duplicate ones is not what we want; we are interested
in distinct tuples only. That is, the tuple-list interpretation is too restrictive:
it is consistent with the semantics of normalization only when (R.Name)
and (R.City, R.Zip) are keys in m1. To embrace the more general case, we
examine another possible interpretation for morphisms, the tuple-set inter-
pretation. For the morphism of Fig. 6.1, the tuple-set interpretation is map2

= �πName(R) = πName(S), πCity,Zip(R) = πCity,Zip(T)�. An expression such
as πCity,Zip(R), with parentheses instead of brackets, refers to the set of tu-
ples City, Zip selected from R. Observe that map2 holds even if (R.Name),
(R.City, R.Zip) are not keys in R.

In the tuple-set interpretation, we assume that whenever two
or more lines connect the attributes of two tables, the relation-
ship between the respective attribute values remains preserved, as in
πCity,Zip(R) = πCity,Zip(T). This assumption turns out to be too strong
for the morphisms used in Rondo. To illustrate, consider Fig. 6.2. The
figure depicts the composition of two simple morphisms, whose seman-
tics is m1 m2 = �πCity(R) = πCity(S), πZip(R) = πZip(T)� and m2 m3 =
�πCity(S) = πCity(U), πZip(T) = πZip(U)�. Observe that the relationship
between cities and zip codes in m2 is vacuous. That is, if we associate
the instances of m1 and m3 by way of mappings m1 m2 and m2 m3, we
cannot expect the relationship between cities and zip codes to be pre-
served in the composed mapping m1 m2 ◦ m2 m3. In other words, the
constraint πCity,Zip(R) = πCity,Zip(U) is not guaranteed to be satisfied given
the constraints imposed by the mappings m1 m2 and m2 m3. For ex-
ample, consider the instances i1 = �{(Seattle, 001), (Berlin, 002)}�, i2 =
�{Seattle, Berlin}, {001, 002}�, i3 = �{(Seattle, 002), (Berlin, 001)}�.
Although (i1, i2) ∈ m1 m2 and (i2, i3) ∈ m2 m3, the constraint
πCity,Zip(R) = πCity,Zip(U) does not hold for the instances (i1, i3). In con-
trast, the constraint πCity(R) = πCity(U), πZip(R) = πZip(U) does hold. It
corresponds to our third interpretation, the value-set interpretation map3 of
Fig. 6.1.

The interpretations that we considered relate to each other as follows:
map1 ⊆ map2 ⊆ map3. We argued that map1 and map2 do not char-
acterize the semantics of Rondo morphisms correctly. A weaker interpre-
tation map3 is a compromise and we will use it as our working assump-
tion for morphism semantics. A number of alternative interpretations of
morphisms could be constructed by e.g. combining the set-based and list-

106 6. State-Based Semantics in Rondo

City

Zip

CityR
S

Zip

T

City

Zip

U

City

Zip

R

City

Zip

U

m2_m3

m1_m2 � m2_m3

m1_m2

Fig. 6.2. Relationship between cites and zip codes
is not preserved on composition

based projection or using the subset operator instead of equality, as in
�πName[R] ⊆ πName[S], πCity,Zip(R) = πCity,Zip(T)�, etc. However, since the
morphisms in Rondo are plain sets of arcs, such variants cannot be dis-
tinguished in the syntax, i.e., in the graphical representation; among other
things, the interpretation of morphisms needs to be symmetric with respect
to m1 and m2. These variants could be used as another useful mapping lan-
guage in future work.

The value-set semantics is broad enough to subsume a number of useful
transformations. Some of them are listed below (referring to the schemas of
Fig. 6.1).

S �� T→ R:
R = SELECT [DISTINCT] Name, City, Zip

FROM S,T WHERE S.ID=T.ID

R→ S, T:
S = SELECT DISTINCT Name, Sk(Name) FROM R;
T = SELECT DISTINCT Sk(City, Zip), City, Zip FROM R

R→ S �� T:
S = SELECT DISTINCT Name, Sk(Name) FROM R;
T = SELECT [DISTINCT] Sk(Name), City, Zip FROM R

R→ T �� S:
S = SELECT [DISTINCT] Name, Sk(City, Zip) FROM R;
T = SELECT DISTINCT Sk(City, Zip), City, Zip FROM R

For example, the first SELECT clause, labeled with S �� T→ R, represents
two transformations obtained by including or omitting the DISTINCT sub-
clause; they define m1 as a view on m2. The remaining five transformations
define S and T in terms of R. Sk() denotes a Skolem function. For instance, in
R→ S �� T, S.ID is intended to be the primary key in S, whereas T.ID is the
foreign key. In fact, since S contains distinct tuples only and the attribute
Name is in the domain of the Skolem function used to compute S.ID, so
the functional dependency S.ID→ S.Name holds. The inclusion dependency

6.2 Semantics of Selectors 107

T.ID ⊆ S.ID is satisfied because T is generated from the same relation R us-
ing the same Skolem function. In R→ T �� S, T.ID is the primary key in T
while S.ID is its foreign key, i.e., T.ID→ {T.City, T.Zip} and S.ID ⊆ T.ID.
In R→ S, T the relations S and T are obtained as independent collections
of names and addresses. All of the above view definitions are contained in
map3, i.e., for each view v we have v ⊆ map3.

In the subsequent sections we assume the value-set semantics for mor-
phisms: each arc in a morphism establishes equality of the value sets of the
connected schema elements and is independent of other arcs. Thus, mor-
phisms do not describe structural or value transformations of schemas. They
contain no joins and no WHERE clause. Although the subset of morphisms
that we discuss is a fairly weak mapping language, it is instrumental for de-
scribing the relationships between schemas when the exact transformation is
not known. For example, in Clio (Popa et al. 2002), the set of initial corre-
spondences between the elements of two schemas is represented graphically
similarly to the morphism of Fig. 6.1. These correspondences are subsequently
refined into precise view definitions using an elaborate user interface. Hence,
a morphism could be seen as a “rough” mapping that covers a variety of
possible view definitions.

We define the semantics of the empty morphism between m1 and m2 as
m1 × m2. That is, the empty morphism does not place any constraints on
the mapping between m1 and m2. An empty relational schema contains ex-
actly one database instance, the empty set. Finally, we assume that relational
schemas may contain NULL values, which are treated as absent values. In
particular, πA(R) is guaranteed to contain only non-NULL values and is the
empty set when all R.A values are NULLs. We explain why this assumption
is important when we discuss composition in Sect. 6.3.

6.2 Semantics of Selectors

A selector identifies a set of model elements. We define the state-based se-
mantics of selector s as that of the corresponding identity morphism Id(s). If
s contains a set of relation attributes, so Id(s) is a one-to-one correspondence
between the attributes s of two identical relational schemas. The state-based
semantics of such correspondence has been defined in the previous section.

To illustrate, consider the model m2 of Fig. 6.1. Let s = {S.Name, T.City,
T.Zip} and let m′2 be a model identical to m2. The state-based semantics of
the selector s is that of the mapping smap = �πName(m2.S) = πName(m ′2.S),
πCity(m2.T) = πCity(m ′2.T), πZip(m2.T) = πZip(m ′2.T) :: m2 :: m′2�. Notice
that Invert(smap) = smap.

108 6. State-Based Semantics in Rondo

6.3 Structural vs. State-Based Operators

In this section, we compare the state-based semantics of the structural op-
erators used in Rondo with that of the operators of Chap. 4. As we will
see, the state-based semantics of some structural operators, such as Compose
and Invert, is identical to that of the respective state-based operators. Other
structural operators, such as Extract and Merge, return materializations of
the exact results (compare Sect. 4.3), i.e., have a weaker state-based seman-
tics. This fact is not surprising given that the definitions of the state-based
operators Extract and Merge contain minimality requirements that are very
hard to meet in concrete schema and mapping languages. We also show that
one of the operators, Diff, produces results that violate the desired conditions
that we postulated in Chap. 4; specifically, under the value-set interpretation
for morphisms, Diff loses information.

We summarized the signatures of the structural and state-based operators
in Table 2.1 on page 23 and Table 4.1 on page 66, respectively. The structural
operators are defined for models represented as directed labeled graphs and
for a simple concrete mapping language, the morphisms. Selectors can be
viewed as syntactic sugar; they can be replaced in all operator signatures by
(identity) morphisms. In contrast, the state-based operator definitions apply
to mappings expressed in arbitrary languages and do not rely on a particular
representation of models and mappings. Although the signatures of the state-
based operators such as Id, Domain, or Invert, are very similar to those of the
respective structural operators, a key difference to keep in mind is that the
mappings taken as parameters identify binary relations on instances rather
than binary relations on model elements.

We assume that in accordance with the operator signatures, the free vari-
ables used below range over simple relational schemas, value-set morphisms,
and selectors (i.e., identity morphisms) rather than over arbitrary models and
mappings, so that we do not have to quantify the variables in each expression.
We start with the structural operator Compose and the state-based operator
Compose, denoted as ◦. The state-based semantics of Compose is exactly the
one specified in Definition 4.2.1:

Compose(map1, map2) = map1 ◦map2;

Fig. 6.3 shows three representative examples of composition, in the rows. The
leftmost column contains the source schemas and mappings. The second col-
umn depicts the result of composition produced by the structural operator
Compose. The third column presents the result that satisfies the conditions
of the state-based operator Compose under the assumption that NULL values
are allowed in relations (our working assumption). In the rightmost column,
NULLs are disallowed. Observe that the morphisms shown in column 2 have
exactly the semantics of the mappings in column 3. For instance, in the sec-
ond example structural composition yields an empty morphism. And indeed,
for any two given instances i1 ∈ m1 and i3 ∈ m3 it is always possible to find

6.3 Structural vs. State-Based Operators 109

an instance i2 ∈ m2 such that πA(i1.R) = πA(i2.S) and πB(i3.T) = πA(i2.S)
by constructing a relation S whose A values are drawn from πA(i1.R) and B
values are drawn from πB(i3.T). Should either πA(i1.R) = ∅ or πB(i3.T) = ∅
hold, the respective attribute values can be simply filled with NULLs. How-
ever, if NULL values are disallowed, which is the case in the classical relational
model, then such an instance i2 can only be found if either both R and T
are empty, or both are non-empty. Hence, in this case composition yields the
mapping �R = ∅ ↔ T = ∅� shown in column 4. The example illustrates that
it is critical to specify the state-based semantics of schemas precisely, down
to such details as whether NULLs are supported or not. The third example
of Fig. 6.3 is analogous.

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B
A B

m1_m2 m2_m3

R1

R2

T1

T2

S

T

R1

R2

T1

T2

R T

�A(R1)
�A(T1),

�B(R2)
�B(T2)

empty

constraint

m1_m2 � m2_m3

(with NULLs)

m1_m2 � m2_m3

(in Rondo)

R S

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

R
S1

S2

T R T
�A(R)
�A(T),

�B(R)
�B(T)

�A(R1)
�A(T1),

�B(R2)
�B(T2),

(R1
�

R2
�

T1
�

T2
�)

R
�

T
�

�A(R)
�A(T),

�B(R)
�B(T)

m1_m2 � m2_m3

(no NULLs)

Result of compositionInput morphisms

Fig. 6.3. Structural
composition vs. state-
based composition (the
latter with and with-
out NULLs; predicate
↔ denotes if-and-only-
if)

For the operator Invert we obtain:

Invert(map) = Invert(map);

Invert simply swaps the left and right sides of the morphism; this is exactly
what Invert does to arbitrary mappings.

The relationship between Extract and Extract is more subtle. We can show
that the result of Extract is a valid materialization of the result of Extract,
as we discussed in Sect. 4.3. Formally:

〈mc, m mc〉 = Extract(m, s)→
∃mx, m mx, mc mx :(〈mx, m mx〉 = Extract(m, s);

m mx = m mc ◦mc mx;
mc = Range(m mc) = Domain(mc mx);
Invert(mc mx) ◦mc mx = Id(mx);

)
The predicate→ above denotes the logical implication. For clarity, we quan-
tify the free variables mx, m mx, mc mx occurring in the implied part of the

110 6. State-Based Semantics in Rondo

statement explicitly. The above formula says that we can get the (exact)
output of Extract by defining a view on the (materialized) result produced
by Extract. This view is mc mx. The condition Invert(mc mx) ◦mc mx =
Id(mx) requires mc mx to be a surjective function onto mx (see Proposi-
tion 4.2.4).

To illustrate the relationship between mx and mc, consider Fig. 6.4. Let
s be the identity morphism on the attributes Name, City, and Zip in m. The
schemas extracted from m by the structural operator and by Definition 4.2.3
are depicted in Fig. 6.4 as mc and mx, respectively. Schema mx contains three
tables with a single key attribute each. The mapping mc mx is depicted using
arrows to distinguish it from morphisms; both mc mx and m mx can be
defined as views as follows (m mc is shown for convenience):

mc mx = �mx.U1 = SELECT DISTINCT Name FROM mc.S,
mx.U2 = SELECT DISTINCT City FROM mc.T,
mx.U3 = SELECT DISTINCT Zip FROM mc.T�

m mx = �mx.U1 = SELECT DISTINCT Name FROM m.S,
mx.U2 = SELECT DISTINCT City FROM m.T,
mx.U3 = SELECT DISTINCT Zip FROM m.T�

m mc = �mc.S = πName(m.S),
πCity(mc .T) = πCity(m.T),
πZip(mc .T) = πZip(m.T)�

It is straightforward to verify that m mx = m mc ◦mc mx.

Name: char Name: char

ID: int

U1
S

ID: int

City: char

Zip: int

T

mx m

City: char

U2

Zip: int

U3

Name: char

S

City: char

Zip: int

T

mc

Fig. 6.4. Structural extraction
yields materialization of the state-
based operator

This example illustrates that extraction implemented in Rondo does not
produce a minimal schema, but nevertheless contains all information nec-
essary to derive the result required by Definition 4.2.3. The example also
shows a tradeoff in using weak mappings such as morphisms: on extraction
they yield schemas that are not very expressive (mx).

Using similar considerations we can verify that the following relationship
holds for merging:

〈mc, mc m1, mc m2〉 = Merge(m1, m2, m1 m2)→
∃m, m m1, m m2, mc m :(〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2);

6.4 Revisiting Change Propagation 111

mc m1 = mc m ◦m m1;
mc m2 = mc m ◦m m2;
mc = Domain(mc m);
Invert(mc m) ◦mc m = Id(m);

)
That is, the schema and morphisms produced by Merge are materializations
of the exact results of Merge.

Unfortunately, we cannot characterize the operator Delete as easily in
terms of Diff. Delete is defined as a derived operator, Delete(m, s) :=
Extract(m, All(m)−s), and does not guarantee that we can reconstruct each
instance of m given an instance of the schema obtained by extraction and
an instance obtained by deletion. For a counterexample, see Example 4.2.23.
That is, as we explain in Sect. 10.5, the operator Delete is not suitable for
computing the view complement in data warehousing scenarios.

Interestingly, if we assume a different semantics for morphisms, the tuple-
list semantics discussed in Sect. 6.1, we find that the results of Delete are
in fact materializations of the results of Diff. This fact reiterates the impor-
tance of formal specification of semantics: the operators in Rondo may have
been developed with different morphism semantics in mind. Under value-set
semantics of morphisms, Delete can be viewed as a variant of the Extract
operator.

Other structural operators used in Rondo can be characterized as follows:

Range(map) = Invert(map) ◦map;
Domain(map) = map ◦ Invert(map);
RestrictDomain(map, s) = s ◦map;
RestrictRange(map, s) = map ◦ s;
Union(s1, s2) = s1 ⊕ s2;
All(m) ⊇ Id(m);

6.4 Revisiting Change Propagation

The script that implements change propagation, which we presented in
Chap. 2, differs from the script developed in Chap. 5. The principal difference
lies in the way that deletion is propagated. In this section we demonstrate
that the state-based solution of Chap. 5 can be used to obtain a different
solution for propagating deletion in Rondo, which turns out to be equivalent
to the original structural script of Chap. 2. Note that in general, a structural
script is not equivalent to a state-based script created simply by replacing
the structural operators by the corresponding state-based operators.

In Chap. 2, propagation of deletion is implemented using the script

operator PropagateDeletionsA(s1, d1, s1 d1, s1 s2)
〈d′1, d1 d′1〉 = Delete(d1, Traverse(All(s1)−Domain(s1 s2), s1 d1));
return 〈d′1, d1 d′1〉;

112 6. State-Based Semantics in Rondo

In Chap. 5 we argued that the following state-based specification of propa-
gating deletions is correct:

operator PropagateDeletionsB(s1, d1, s1 d1, s1 s2)
1. d1 s2 = Invert(s1 d1) ◦ s1 s2;
2. 〈d1d, d1 d1d〉 = Diff(d1, Invert(s1 d1)); // added in d1

3. 〈d1x, d1 d1x〉 = Extract(d1, d1 s2); // kept in d1

4. 〈d′1, d′1 d1x, d′1 d1d〉 = Merge(d1x, d1d, Invert(d1 d1x) ◦ d1 d1d));
5. d1 d′1 = d1 d1d ◦ Invert(d′1 d1d)⊕ d1 d1x ◦ Invert(d′1 d1x);
6. return 〈d′1, d1 d′1〉;

Now we show that the implementation of PropagateDeletionsB using a
one-to-one operator translation into structural operators is equivalent to
PropagateDeletionA. Whenever a morphism is passed as a parameter to
a structural operator that expects a selector, we simply take the Domain
of the morphism. For example, Extract(d1, d1 s2) of line 3 becomes
Extract(d1, Domain(d1 s2)). If we replace Diff by Delete and expand the def-
inition of Delete as Delete(m, s) = Extract(All(m) − s) according to the
definition of Sect. 2.3.3, then lines 2-3 translate to:

〈d1d, d1 d1d〉 = Extract(d1, All(d1)−Domain(Invert(s1 d1)));
〈d1x, d1 d1x〉 = Extract(d1, Domain(d1 s2));

The expression Domain(Invert(s1 d1)) can be simplified as Range(s1 d1) (see
Sect. 2.3.2). The algorithm used in Chap. 2 to implement the Merge operator
computes the union of models with renaming. In line 4, no conflicts arise
from using the operator Merge, since the schemas to be merged have been
extracted from the same model. Therefore, the above two extractions followed
by a Merge are equivalent to a single extraction over the union of mappings.
Thus, lines 1-5 translate to:

〈d′1, d1 d′1〉 = Extract(d1, (All(d1)− Range(s1 d1)) +
Range(Invert(s1 s2) ∗ s1 d1));

It remains to show that the above expression is equivalent to:

〈d′1, d1 d′1〉 = Delete(d1, Traverse(All(s1)−Domain(s1 s2), s1 d1));

which can be expanded into

〈d′1, d1 d′1〉 = Extract(d1, All(d1)−
Traverse(All(s1)−Domain(s1 s2), s1 d1));

It is sufficient to show the equality:

(All(d1)− Range(s1 d1)) + Range(Invert(s1 s2) ∗ s1 d1) =
All(d1)− Traverse(All(s1)−Domain(s1 s2), s1 d1)

We prove the equality using the schematic representation of Fig. 6.5, which
uses the following definitions:

6.4 Revisiting Change Propagation 113

s1

A1

A4

A3

A2
B1

B3

B2

d1

s2

Fig. 6.5. Schematic representation for structural
change propagation script

A1 = Domain(s1 s2) ∩Domain(s1 d1)
A2 = Domain(s1 d1)−Domain(s1 s2)
A3 = Domain(s1 s2)−Domain(s1 d1)
A4 = All(s1)−A1 −A2 −A3

B1 = Traverse(A1, s1 d1)
B2 = Traverse(A2, s1 d1)
B3 = All(d1)−B1 −B2

The selectors A1, A2, A3, A4 and B1, B2, B3 yield disjoint decompositions
of All(s1) and All(d1), respectively. The following properties hold:

All(s1) = A1 + A2 + A3 + A4

All(d1) = B1 + B2 + B3

Domain(s1 d1) = A1 + A2

Range(s1 d1) = B1 + B2

Domain(s1 s2) = A1 + A3

Thus, we obtain

(All(d1)− Range(s1 d1)) + Range(Invert(s1 s2) ∗ s1 d1) =
B1 + B2 + B3 − (B1 + B2) + Traverse(A1, s1 d1) =
B1 + B3

and

All(d1)− Traverse(All(s1)−Domain(s1 s2), s1 d1) =
B1 + B2 + B3 − Traverse(A2 + A4, s1 d1) =
B1 + B2 + B3 − (Traverse(A2, s1 d1) + Traverse(A4, s1 d1)) =
B1 + B2 + B3 − (B2 + ∅) =
B1 + B3

Hence, both realizations of propagating deletions are equivalent.
Although strictly speaking the structural scripts do not implement the

state-based scripts, the above example backs the intuition for the following
conclusions that we expect to hold in general.

On the one hand, the example illustrates that it may be possible to find
alternative realizations, or “physical plans”, for a given state-based script.
Here, a different equivalent realization allows us to use a single complex op-
erator Extract instead of three invocations of complex operators Extract, Diff,
and Merge. Propagating deletions using selectors does not require computing

114 6. State-Based Semantics in Rondo

the results of Diff and Merge. The rest of the selector-oriented realization
PropagateDeletionsA uses the primitive operators, which can be optimized
by the SQL engine of the underlying DBMS. In other scripts, further poten-
tial optimization can be obtained by storing precomputed results that are
used at several places in a script.

On the other hand, the example shows that it may be possible to optimize
the execution of a given state-based script even if the script itself cannot be
further simplified into an equivalent state-based script. This is similar to
database query processing: we first optimize the logical query plan, then the
physical query plan. We expect the above observations to hold for proper
implementations of state-based scripts as well.

6.5 Conclusions

In Part II, we explored a state-based semantics for the set of operators put
forth in model management. We derived the properties of the operators from
established metadata management scenarios and verified their applicability
using numerous examples. We obtained a simplified characterization of the
operators and presented an initial study of their properties.

The state-based semantics proved instrumental for clarifying the meaning
of the conceptual structures used in the prototype Rondo. Moreover, the anal-
ysis that we presented helped us realize a deficiency in the implementation
of the operator Diff.

A noticeable feature of the operators Extract, Merge, and Diff are the
minimality conditions on the output models. These conditions are critical
for expressing the intended semantics of the operators. For example, if we
remove the minimality condition (iii) from the definition of Extract, then the
operator becomes vacuous: for any input model m we could easily find a triv-
ial output model, the model m itself. Analogously, removing the minimality
condition (iv) from Merge would allow the operator to produce a virtually
arbitrary very expressive model as output. Finally, eliminating condition (ii)
from the definition of Diff would make Diff a derived operator that could
be specified in terms of the operators Extract, Merge, Invert, and Compose.
The minimality conditions help us make the operators non-redundant, but
necessarily contribute to the complexity of computing their results. The com-
pleteness and non-redundancy of the suggested set of operators is an open
problem, which we discuss in more detail in Sect. 11.3.3.

A major strength of the state-based characterization is its ability to spec-
ify model-management operations in an abstract fashion, without appealing
to any idiosyncratic schema, constraint, or transformation languages. How-
ever, applying such an abstract characterization to concrete languages and
developing practical algorithms for computing the results of operators effec-
tively can be extremely hard. For example, as we demonstrate in Sect. 10.1.2,

6.5 Conclusions 115

the problem of answering queries using views can be defined quite easily us-
ing a state-based characterization, whereas developing rewriting algorithms
for specific query languages proved to be very challenging. We expect that
computing the results of model-management scripts for concrete languages,
the problem which we called materialization, will prove at least as hard.
Extensive future research is required for solving this problem.

By following a state-based approach we recognize that a model is more
than just syntax: it is a template for instances. On the other hand, a model is
more than just a template for instances: its syntax is important for developers
and applications. For example, although many relational schemas might be
able to express identical information, applications rely on the fact that they
contain tables with certain names and certain attributes, whose order in
the table definition may be important. Therefore, considering both state-
based and structural semantics is critical for specifying the effects of model-
management scripts.

We believe that the state-based semantics should apply not only to Rondo,
but also to other systems that will be built in the future. In particular, it
provides guidelines for implementing the operators for much more powerful
schema and mapping languages as compared to those that we utilized in our
programming platform. We expand the discussion of future work on state-
based semantics in Chap. 11.

116 6. State-Based Semantics in Rondo

Part III

Schema Matching

117

7. Similarity Flooding Algorithm

“Mr. Martin: . . . You know, in my bedroom there is a bed, and it
is covered with a green eiderdown. This room, with the bed and the
green eiderdown, is at the end of the corridor between the w.c. and
the bookcase, dear lady!

Mrs. Martin: What a coincidence, good Lord, what a coincidence!
My bedroom, too, has a bed with a green eiderdown and is at the
end of the corridor, between the w.c., dear sir, and the bookcase!

Mr. Martin: How bizarre, curious, strange! Then, madam, we live
in the same room and we sleep in the same bed, dear lady.”

– Eugene Ionesco (1958), “The Bald Soprano”

Finding correspondences between models is required in many application sce-
narios. This task is often referred to as matching. In generic model manage-
ment, matching is embodied in the operator Match, which plays a critical role
in many model-management scripts. The operator Match takes two models
as input and returns a mapping between the models as output. Of all opera-
tors that we examined in the previous chapters, Match is the only one that
lacks a formal definition and, in a way, enjoys a special status. The reason
for its specialty is that matching typically involves information that is not
contained in the input models. Uncovering how two models relate to each
other requires reading documentation, examining instances of models, and
talking to the engineers who designed or deploy the models.

Matching is a complex and time-consuming design task. Techniques used
to automate this task often differ substantially. For example, for matching
relational schemas one could use SQL data types to determine which columns
are possibly related. On the other hand, in XML schema matching, hierar-
chical relationships between schema elements can be exploited. Because of
this diversity, applications that rely on matching are often built from scratch
and require significant amount of thought and programming. We address this
problem by proposing a matching algorithm that allows quick development
of matchers for a broad spectrum of different scenarios. We are not trying to

120 7. Similarity Flooding Algorithm

outperform custom matchers that use highly tuned, domain-specific heuris-
tics.

In this chapter we suggest a simple structural algorithm that can be used
for matching of diverse data structures including schemas, instances, and
other kinds of models. The algorithm that we suggest is based on the fol-
lowing idea. The models to be matched, which are represented as directed
labeled graphs, are used in an iterative fixpoint computation whose results
tell us what nodes in one graph are similar to nodes in the second graph. For
computing the similarities, we rely on the intuition that elements of two dis-
tinct models are similar when they occur in similar contexts, i.e., when their
adjacent elements are similar. In other words, a part of the similarity of two
elements propagates to their respective neighbors. The spreading of similari-
ties in the matched models is reminiscent to the way how IP packets flood the
network in broadcast communication. For this reason, we call our algorithm
the Similarity Flooding algorithm. The result produced by the algorithm is a
morphism, a simple kind of mapping that we presented in Chap. 2. Depend-
ing on the particular matching goal, we then choose a subset of the resulting
mapping using adequate filters.

After our algorithm runs, we expect a human to check and if necessary
adjust the results. As a matter of fact, we evaluate the “accuracy” of the
algorithm by counting the number of needed adjustments. We designed a
graphical tool which helps human developers to inspect and post-process
the suggestions delivered by the algorithm. In this tool, the user adjusts the
proposed match result by removing or adding lines connecting the elements
of two schemas. As we stressed above, the correct match often depends on the
information only available or understandable by humans. For example, even
matches as plausible as ZipCode to zip code can be doomed as incorrect by
a data warehouse designer who knows that zip codes from a given relational
source should not be collected due to poor data quality. In such cases, the
suggested mappings may be incorrect or incomplete.

This chapter is structured as follows:

– In Sect. 7.1, we give an overview of the approach. The Similarity Flooding
algorithm is introduced in Sect. 7.2.

– In Sect. 7.3, we present a generalized formula for the algorithm and discuss
its convergence and complexity in Sect. 7.4.

– In Sect. 7.5, we demonstrate the applicability of the algorithm for diverse
matching tasks.

In subsequent chapters, we address the filtering of the results delivered
by the SF algorithm (Chap. 8) and its evaluation and tuning (Chap. 9). We
conclude Part III in Sect. 9.6.

7.1 Overview of the Approach 121

7.1 Overview of the Approach

Before we go into details of our matching algorithm, let us briefly walk
through an example that illustrates matching of two relational database
schemas. Please keep in mind that the technique we describe is not limited
to relational schemas. Consider schemas S1 and S2 depicted in Fig. 7.1. The
elements of S1 and S2 are tables and columns. Assume for now that our goal
is to obtain exactly one matching element for every element in S1. A part
of the matching result could be, for example, the correspondence of column
Personnel/Pname to column Employee/EmpName. A sequence of steps that
allows us to determine the correspondences between tables and columns in
S1 and S2 can be expressed as the following script:

CREATE TABLE Personnel (
Pno int,
Pname string,
Dept string,
Born date,
UNIQUE perskey(Pno)

)
(S1)

CREATE TABLE Employee (
EmpNo int PRIMARY KEY,
EmpName varchar(50),
DeptNo int REFERENCES Department,
Salary dec(15,2),
Birthdate date

)
CREATE TABLE Department (

DeptNo int PRIMARY KEY,
DeptName varchar(70)

)
(S2)

Fig. 7.1. Matching two relational schemas: Personnel and Employee-Department

1. G1 = ReadSQLDDL(S1); G2 = ReadSQLDDL(S2);
2. initialMap = StringMatch(G1, G2);
3. product = SFJoin(G1, G2, initialMap);
4. result = SelectThreshold(product);

As a first step, we translate the schemas from their native format into
graphs G1 and G2. In our example, the native format of the schemas are
ASCII files containing table definitions in SQL DDL. A portion of the graph
G1 is depicted in Fig. 7.2. The translation into graphs is done using an import
filter ReadSQLDDL that understands the definitions of relational schemas.
We do not insist on choosing a particular graph representation for relational
schemas. The representation used in Fig. 7.2 is based on the Open Information
Model specification (Bernstein et al. 1999). The nodes in the graph are shown
as ovals and rectangles. The labels inside the ovals denote the identifiers of
the nodes, whereas rectangles represent literals, or string values. For example,
node &1 represents the table Personnel in graph G1, whereas nodes &2, &4,
and &6 denote columns Pno, Pname, and Dept, respectively. Column Born and
unique key perskey are omitted from the figure for clarity. Tables Employee

122 7. Similarity Flooding Algorithm

and Department from schema S2 are represented in a similar manner in graph
G2. In our example, G1 has a total of 31 nodes while G2 has 55 nodes.

Table

Column ColumnType

Personnel

Pno

Pname

Dept

int

string

type

type

type

type

type

type

name

name

name

name

name

name
&1

&2

&4

&6

&3

&5

SQLtype

SQLtype

SQLtype

column

column

column

. . .
Fig. 7.2. A portion of graph
representation G1 for rela-
tional schema S1

As a second step, we obtain an initial mapping initialMap between G1

and G2 using operator StringMatch. The mapping initialMap is obtained
using a simple string matcher that compares common prefixes and suffixes
of literals. A portion of the initial mapping is shown in Table 7.1. Literal
nodes are highlighted using apostrophes. The second column of the table
lists similarity values between nodes in G1 and G2 computed on the basis
of their textual content. The similarity values range between 0 and 1 and
indicate how well the corresponding nodes in G1 match their counterparts in
G2. Notice that the initial mapping is still quite imprecise. For instance, it
suggests mapping column names onto table names (e.g. column Dept in S1

onto table Department in S2, line 9), or names of data types onto column
names (e.g., SQL type date in S1 onto column Birthdate in S2, line 8).

Table 7.1. A portion of initialMap obtained by string matching (10 of total 26
entries are shown)

Line# Similarity Node in G1 Node in G2

1. 1.0 Column Column
2. 0.66 ColumnType Column
3. 0.66 “Dept” “DeptNo”
4. 0.66 “Dept” “DeptName”
5. 0.5 UniqueKey PrimaryKey
6. 0.26 “Pname” “DeptName”
7. 0.26 “Pname” “EmpName”
8. 0.22 “date” “Birthdate”
9. 0.11 “Dept” “Department”

10. 0.06 “int” “Department”

As a third step, operator SFJoin is applied to produce a refined mapping
called product between G1 and G2. In this chapter we propose an iterative
“similarity flooding” (SF) algorithm based on a fixpoint computation that is
used for implementing operator SFJoin. The SF algorithm has no knowledge
of node and edge semantics. As a starting point for the fixpoint computation

7.1 Overview of the Approach 123

the algorithm uses an initial mapping like initialMap. Our algorithm is based
on the assumption that whenever any two elements in models G1 and G2 are
found to be similar, the similarity of their adjacent elements increases. Thus,
over a number of iterations, the initial similarity of any two nodes propagates
through the graphs. For example, in the first iteration the initial textual sim-
ilarity of strings “Pname” and “EmpName” adds to the similarity of columns
Personnel/Pname and Employee/EmpName. In the next iteration, the similar-
ity of Personnel/Pname to Employee/EmpName propagates to the SQL types
string and varchar(50). This subsequently causes increase in similarity
between literals “string” and “varchar”, leading to a higher resemblance
of Personnel/Dept to Department/DeptName than that of Personnel/Dept
to Department/DeptNo. The algorithm terminates after a fixpoint has been
reached, i.e. the similarities of all model elements stabilize. In our example,
the refined mapping product returned by SFJoin contains 211 node pairs
with positive similarities (out of a total of 31 ·55 = 1705 entries in the G1, G2

cross-product).
As a last operation in the script, operator SelectThreshold selects a sub-

set of node pairs in product that corresponds to the “most plausible” match-
ing entries. We discuss this operator in Chap. 8. The complete mapping
returned by SelectThreshold contains 12 entries and is listed in Table 7.2.
For readability, we substituted numeric node identifiers by the descriptions
of the objects they represent. For example, we replaced node identifier &2 by
[Column:Personnel/Pno].

Table 7.2. The mapping after applying SelectThreshold on result of SFJoin

Sim. Node in G1 Node in G2

1.0 Column Column
0.81 [Table: Personnel] [Table: Employee]
0.66 ColumnType ColumnType
0.44 [ColumnType: int] [ColumnType: int]
0.43 Table Table
0.35 [ColumnType: date] [ColumnType: date]
0.29 [UniqueKey: perskey] [PrimaryKey: on EmpNo]
0.28 [Column: Personnel/Dept] [Column: Department/DeptName]
0.25 [Column: Personnel/Pno] [Column: Employee/EmpNo]
0.19 UniqueKey PrimaryKey
0.18 [Column: Personnel/Pname] [Column: Employee/EmpName]
0.17 [Column: Personnel/Born] [Column: Employee/Birthdate]

As we see in Table 7.2, the SF algorithm was able to produce a good
mapping between S1 and S2 without any built-in knowledge about SQL DDL
by merely using graph structures. For example, table Personnelwas matched
to table Employee despite the lack of textual similarity. Notice that the table
still contains correspondences like the one between node Column in G1 to node
Column in G2, which are hardly of use given our goal of matching the specific

124 7. Similarity Flooding Algorithm

tables and columns. We discuss the filtering of match results in more detail
in Chap. 8. The similarity values shown in the table may appear relatively
low. As we will explain, in presence of multiple match candidates for a given
model element, relative similarities are often more important than absolute
values.

7.2 Similarity Flooding Algorithm

The internal data model that we use for models and mappings is based on
directed labeled graphs. Every edge in a graph is represented as a triple
(s, p, o), where s and o are the source and target nodes of the edge, and the
middle element p is the label of the edge. For a more formal definition of our
internal data model please refer to Sect. 2.2.1. In this section, we explain our
algorithm using a simple example presented in Fig. 7.3. The top left part of
the figure shows two models A and B that we want to match.

a1,b1

a1,b

a1,b2

a2,b2
a2,b1

a,b

l1 l1 l2

l2b1 b2

b

Model B

l2

l1 l2

Pairwise connectivity graph

a1,b1

a1,b

a1,b2

a2,b2
a2,b1

a,b

0.66
1.0

1.0 0.66
1.01.0

1.0
1.0

Induced propagation graph

a,b1.0

a1,b10.47

a2,b10.93

a1,b20.66

Fixpoint values
for mapping

between andA B

0.26 a2,b2

0.26 a1,ba1,b

a1

l1

a2

Model A

l1

a

l2

Fig. 7.3. Example illustrating the Similarity Flooding algorithm

7.2.1 Similarity Propagation Graph

A similarity propagation graph is an auxiliary data structure derived from
models A and B that is used in the fixpoint computation of our algorithm.
To illustrate how the propagation graph is computed from A and B, we first
define a pairwise connectivity graph (PCG) as follows:

7.2 Similarity Flooding Algorithm 125

((x, y), p, (x′, y′)) ∈ PCG(A, B) ⇐⇒ (x, p, x′) ∈ A and (y, p, y′) ∈ B

Each node in the connectivity graph is an element from A × B. We call
such nodes map pairs. The connectivity graph for our example is enclosed in
a dashed frame in Fig. 7.3. The intuition behind arcs that connect map pairs
is the following. Consider for example map pairs (a, b) and (a1, b1). If a is
similar to b, then probably a1 is somewhat similar to b1. The evidence for this
conclusion is provided by the l1-edges that connect a to a1 in graph A and b
to b1 in graph B. This evidence is captured in the connectivity graph as an
l1-edge leading from (a, b) to (a1, b1). We call (a1, b1) and (a, b) neighbors.

The induced propagation graph for A and B is shown next to the con-
nectivity graph in Fig. 7.3. For every edge in the connectivity graph, the
propagation graph contains an additional edge going in the opposite direc-
tion. The weights placed on the edges of the propagation graph indicate how
well the similarity of a given map pair propagates to its neighbors and back.
These so-called propagation coefficients range from 0 to 1 inclusively and can
be computed in many different ways. The approach illustrated in Fig. 7.3 is
based on the intuition that each edge type makes an equal contribution of
1.0 to spreading of similarities from a given map pair. For example, there is
exactly one l2-edge out of (a1, b) in the connectivity graph. In such case we set
the coefficient w((a1, b), (a2, b2)) in the propagation graph to 1.0. The value
1.0 indicates that the similarity of a1 to b contributes fully to that of a2 and
b2. Analogously, the propagation coefficient w((a2, b2), (a1, b)) on the reverse
edge is also set to 1.0, since there is exactly one incoming l2-edge for (a2, b2).
In contrast, two l1-edges are leaving map pair (a, b) in the connectivity graph.
Thus, the weight of 1.0 is distributed equally among w((a, b), (a1, b1)) = 0.5
and w((a, b), (a2, b1)) = 0.5. In Sect. 7.3 we analyze several alternative ways
of computing the propagation coefficients.

7.2.2 Fixpoint Computation

Let σ(x, y) ≥ 0 be the similarity measure of nodes x ∈ A and y ∈ B defined
as a total function over A × B. We refer to σ as a mapping. The similarity
flooding algorithm is based on an iterative computation of σ-values. Let σi

denote the mapping between A and B after ith iteration. Mapping σ0 rep-
resents the initial similarity between nodes of A and B, which is typically
obtained using string comparisons of node labels. In our example we assume
that no initial mapping between A and B is available, i.e. σ0(x, y) = 1.0 for
all (x, y) ∈ A×B.

In every iteration, the σ-values for a map pair (x, y) are incremented by
the σ-values of its neighbor pairs in the propagation graph multiplied by the
propagation coefficients on the edges going from the neighbor pairs to (x, y).
For example, after the first iteration σ1(a1, b1) = σ0(a1, b1) + σ0(a, b) · 0.5 =
1.5. Analogously, σ1(a, b) = σ0(a, b) + σ0(a1, b1) · 1.0 + σ0(a2, b1) · 1.0 = 3.0.
Then, all values are normalized, i.e., divided by the maximal σ-value (of

126 7. Similarity Flooding Algorithm

current iteration) σ1(a, b) = 3.0. Thus, after normalization we get σ1(a, b) =
1.0, σ1(a1, b1) = 1.5

3.0 = 0.5, etc. In general, mapping σi+1 is computed from
mapping σi as follows (normalization is omitted for clarity):

σi+1(x, y) = σi(x, y)+
∑

(au,p,x)∈A, (bu,p,y)∈B

σi(au, bu) · w((au, bu), (x, y)) +∑
(x,p,av)∈A, (y,p,bv)∈B

σi(av, bv) · w((av , bv), (x, y))

The above computation is performed iteratively until the Euclidean length
of the residual vector ∆(σn, σn−1) becomes less than ε for some n > 0.
If the computation does not converge, we terminate it after some maximal
number of iterations. In Chap. 9, we study the convergence properties of the
algorithm. The right part of Fig. 7.3 displays the similarity values for the
map pairs in the propagation graph. These values have been obtained after
five iterations using the above equation. In the figure, the top three matches
with the highest ranks are highlighted in bold. These map pairs indicate how
the nodes in A should be mapped onto nodes in B.

Taking normalization into account, we can rewrite the above equation to
obtain the “basic” fixpoint formula shown in Table 7.3. The function ϕ incre-
ments the similarities of each map pair based on similarities of their neighbors
in the propagation graph. The variations A, B, and C of the fixpoint formula
are studied in Chap. 9. Our experiments suggest that formula C performs
best with respect to quality of match results and convergence speed. In the
next section we explain how the fixpoint formulas are derived and present a
more general formulation of the flooding algorithm.

Table 7.3. Variations of the fixpoint formula

Identifier Fixpoint formula
Basic σi+1 = normalize(σi + ϕ(σi))

A σi+1 = normalize(σ0 + ϕ(σi))
B σi+1 = normalize(ϕ(σ0 + σi))
C σi+1 = normalize(σ0 + σi + ϕ(σ0 + σi))

7.3 Generalized Version of the Algorithm

The core of the formal definition of the algorithm is based on the function
ϕ that takes a mapping σ as input parameter and produces mapping θ as
output. For any two given models A and B, ϕ is defined as follows:

ϕ(σ) = θ ⇐⇒ ∀(a, b) ∈ A×B : θ(a, b) =∑
(a,p,x)∈A,(b,q,y)∈B

σ(x, y) · πr(〈x, p, A〉, 〈y, q, B〉) +∑
(x,p,a)∈A,(y,q,b)∈B

σ(x, y) · πl(〈x, p, A〉, 〈y, q, B〉)

7.3 Generalized Version of the Algorithm 127

Function ϕ describes how the similarity of the neighbor pairs of (a, b)
“flows” into the similarity of (a, b). Function π defines the propagation coeffi-
cients for a map pair (x, y) with respect to p-labeled edges in A and q-labeled
edges in B. The π-function that corresponds to the example described in
Sect. 7.2 is based on inverse-product number of equilabeled edges in A and
B computed for each map pair:

π{l,r}(〈x, p, A〉, 〈y, q, B〉) =

{
1

card{l,r}(x,p,A)·card{l,r}(y,q,B) , if p = q

0, if p
= q

where card(x, p, M) delivers the number of outgoing or incoming edges of
node x that carry label p in model M :

cardl(x, p, M) = |{(x, p, t) | ∃t : (x, p, t) ∈M}|
cardr(x, p, M) = |{(t, p, x) | ∃t : (t, p, x) ∈M}|

The definitions of functions ϕ and π use A and B directly without relying
on the pairwise connectivity graph. This is a more general approach, since the
propagation graph typically contains more information than the connectivity
graph. For example, the propagation coefficients obtained using a π-function
based on inverse average (described below) cannot be computed using just
the connectivity graph. Finally, in the definition of our algorithm we rely on
summation and normalization of mappings. These two operations are defined
as follows. The sum of mappings σ and ν is a mapping θ such as:

∀(x, y) ∈ A×B : θ(x, y) = σ(x, y) + ν(x, y)

The function normalize projects all similarity values of a mapping into
the range [0, 1]. That is, normalization corresponds to dividing vector σ by a
scalar value that represents the highest similarity value in σ:

θ = normalize(σ) ⇐⇒ ∀(a, b) ∈ A×B :

θ(a, b) =
σ(a, b)

max{s | ∃x, y : σ(x, y) = s}
Now we can define the main iteration step of our algorithm. In the version

of the algorithm illustrated in Sect. 7.2, on every iteration, a set of new
similarity values is computed as follows:

σi+1 = normalize(σi + ϕ(σi))

The above computation is performed iteratively until ∆(σn, σn−1) sat-
isfies a chosen precision goal for some n > 0. To ensure convergence and
efficiency (compare Table 9.3), we use a variation of the algorithm shown
below:

σi+1 = normalize(σ0 + σi + ϕ(σ0 + σi))

The rationale behind this modification is discussed in Sect. 7.4. Our user
study suggests that the faster converging version of the algorithm does not
negatively impact the quality of the results.

128 7. Similarity Flooding Algorithm

7.4 Convergence and Complexity of the Algorithm

The fixpoint computation of the similarity flooding algorithm can be ex-
pressed as the following eigenvector computation. Let T be the square matrix
corresponding to the similarity propagation graph G obtained from models A
and B. If there is an edge going from map pair j = (x, y) to i = (x′, y′) with
propagation coefficient c, then let the matrix entry tij have the value c. Let
all other entries have the value 0. Notice that the propagation coefficients in
G correspond to transition probabilities if T is a transition matrix.

The fixpoint computation converges when T is an aperiodic, irreducible
matrix (Ergodic theorem). Matrix T is irreducible if and only if the as-
sociated graph G is strongly connected (every node is reachable from ev-
ery other node). To ensure these properties, we can introduce self-loops in
G by including the summand σ0 in the fixpoint equation, for example as
σi+1 = normalize(σ0 +ϕ(σi)). This approach is also referred to in the litera-
ture as dampening. If σ0 assigns a non-zero value to each map pair in A×B,
then adding σ0 is equivalent to modifying G into G′ in which all nodes are
interconnected with certain propagation coefficients. Let T ′ be the matrix
associated with G′.

Now the eigenvector computation can be expressed as follows. Let S be
a map pair vector that at every position contains a similarity value from
σ for a fixed order of map pairs. One iteration of the fixpoint computation
corresponds to the matrix-vector multiplication T ′ × S. Repeatedly multi-
plying S by T ′ yields the dominant eigenvector S∗ of the matrix T ′ such as
T ′ × S∗ = λS∗, where λ is the dominant eigenvalue of T ′. In the fixpoint
equation, normalization corresponds to dividing T ′ × S∗ by λ.

The fixpoint computation corresponds to computing Markov chains over
T . This fact provides an interesting insight into the algorithm. Because T
corresponds to the transition matrix over the graph G, the obtained simi-
larity measure can be viewed as the stationary probability distribution over
map pairs induced by a random walk from pair to pair. This random walk
corresponds to a manual matching process performed by a human designer
on models A and B. Suppose that only structural information is available to
the designer. Starting with a given map pair, the designer infers the similarity
of another map pair based on the structural properties of A and B. Consider
that A and B are models of relational schemas. If the designer concludes that
table t1 in A matches table t2 in B, then there is a certain probability that
his or her next step will be matching the columns of t1 to those of t2.

The conversion rate of the fixpoint computation depends on the ratio
between the dominant and the second eigenvalue of T , which are determined
by the structural properties1 of G′. Higher dampening values contribute to
a faster conversion rate of the matrix. For a given precision, using both σ0

1 Asymptotic rate of convergence coincides with the so-called spectral radius of
the matrix T ′

7.5 Features of the Algorithm by Example 129

and σi in the variation σi+1 = normalize(σ0 + σi + ϕ(σ0 + σi)) of the
fixpoint formula improves the convergence speed by up to a factor of 5 without
impeding the quality of the result.

The convergence of the iterations can be measured using the residual vec-

tor Ri =
T ′ × Si

λi
− Si. We can treat |Ri| as an indicator for how well Si

approximates S∗. For many practical purposes we are only interested in the
resulting order of map pairs and not in the absolute values of the similarity
coefficients. In such cases, the iterations can be interrupted when the order
in a certain subset of a mapping with the highest similarity values has stabi-
lized, i.e. does not change from σn−1 to σn. In many practical scenarios, this
criterion is already satisfied when |Ri| < 0.05.

Let us now turn to the complexity of the algorithm. The number of op-
erations in every iteration of the fixpoint computation is proportional to the
number of edges in the propagation graph G. This number is in turn propor-
tional to the product of edge numbers in models A and B. Let NA and NB

be the number of nodes in A and B, respectively. If nodes in A and B are
fully interconnected (every node is directly connected to every other node),
the edge numbers in A and B are O(N2

A) and O(N2
B). If all these edges are

equilabeled, the number of edges in G is O(N2
A ·N2

B). That means, the worst
case complexity of every iteration is O(N2

A ·N2
B), or O(|A| · |B|), where |A|

and |B| are the numbers of edges in A and B. However, in many common
scenarios, the average complexity of every iteration is O(NA ·NB). For typical
relational or XML schemas the fixpoint computation converges within 5-30
iterations. That means that the running time of the flooding algorithm is
comparable to that of a nested loop join in relational databases (multiplied
with a small factor).

A straight-forward implementation of the fixpoint computation requires
two occurrences of σ-vectors in memory besides σ0. The memory usage is
important for very large models that may contain parts of dictionaries or
classification schemas.

7.5 Features of the Algorithm by Example

In this section we discuss the features and limitations of the similarity flood-
ing algorithm using four matching problems. In Sect. 7.1 we demonstrated
how the algorithm performs on two sample relational schemas encoded as
directed labeled graphs. Our next example deals with matching of semistruc-
tured data instances. After that, we illustrate matching of XML schemas.
The third example addresses matching XML schemas using XML instance
data. The last example deals with the task of finding related data elements in
a database. The goal of our discussion in this section is to illustrate the use-
fulness of the algorithm and the threshold-based filter defined in the previous
section for different application scenarios.

130 7. Similarity Flooding Algorithm

7.5.1 Semistructured Data

Detecting changes by comparing data snapshots in an important task in
difference queries, version and configuration management. Fig. 7.4 shows an
example borrowed from (Chawathe and Garćıa-Molina 1997) that illustrates
change detection in two labeled trees. The numbers inside the circles are
node identifiers. The tree T2 on the right has been obtained from the tree
T1 on the left by applying a series of transformation operations. First, all
node identifiers have been replaced. In addition, some subtrees have been
copied and moved, and a new node (60) has been inserted. In this example,
we are interested in finding a best match candidate for every node of T2

(i.e. a mapping between T2 and T1 that satisfies the cardinality constraint
[0, n] − [1, 1]). We can express the matching procedure using the following
script:

1. product = SFJoin(T2, T1);
2. result = SelectLeft(product);

1

8

2 4 9

3 5 6 7 10

b e cd

adccfad

ac

51

6060

62

52

58

55

6353

59

56 57 61

64

cc e

cd

ad

ccfaac

d

ac

g

b

copied

inserted

moved Fig. 7.4. Matching of
semistructured data

Since no initial mapping is passed to SFJoin, the initial similarities be-
tween all nodes are set to 1.0. We are using operator SelectLeft instead of
SelectThreshold to ensure that all nodes of T2 are present in the resulting
mapping (we discuss filtering in detail in Chap. 8). For every “left” node of
the mapping, SelectLeft returns the match candidate with the highest ab-
solute similarity. The result of matching is shown in Table 7.4. The fourth
column in the table describes the transformation operations performed on
the nodes (this information it is not part of the resulting mapping and is
provided for illustration only). As the table suggests, the algorithm could
correctly map every node in the modified tree T2 to its previous version in
T1. Notice a heavy drop in similarity for copied, moved and inserted nodes.
This result supports the intuition that exact structural matches should yield
higher similarity values.

The right-most columns of the table show the relative similarities of the
nodes in T1 and T2. For instance, node 62 is the top candidate for node 8, so
←
σ rel (62, 8) = 1. For node 53, i.e. the second best candidate,

←
σ rel (53, 8) =

σ(53,8)
σ(62,8) = 0.05

0.30 = 0.16. If instead of SelectLeft we applied SelectThreshold
with any trel ∈ (0.16, 1] to the result of SFJoin, we would get all map pairs

7.5 Features of the Algorithm by Example 131

Table 7.4. The mapping after applying SFJoin ◦ SelectLeft to semistructured data
in Fig. 7.4

S
im

il
a
ri
ty

N
o
d
e

t 2
∈

T
2

N
o
d
e

t 1
∈

T
1

O
p
er

a
ti
o
n

→ σ
r
e
l
(t

2
,t

1
)

← σ
r
e
l
(t

2
,t

1
)

1
.0

5
5

4
1

1
0
.6

3
6
1

7
1

1
0
.5

8
5
1

1
1

1
0
.4

8
5
6

5
1

1
0
.4

8
5
7

6
1

1
0
.3

0
6
2

8
1

1
0
.0

7
5
2

7
co

p
ie

d
1

0
.1

1
0
.0

7
5
8

2
m

ov
ed

1
1

0
.0

7
6
3

9
m

ov
ed

1
1

0
.0

5
5
3

8
co

p
ie

d
1

0
.1

6
0
.0

5
5
9

3
m

ov
ed

1
1

0
.0

5
6
0

1
in

se
rt

ed
1

0
.0

9
0
.0

5
6
4

1
0

m
ov

ed
1

1

132 7. Similarity Flooding Algorithm

for T1-nodes that have been either just renamed or moved. Lowering trel

to 0.10 causes all copied nodes to appear additionally in the result. Finally,
setting trel to a value like 0.05 includes the inserted node (but still filters out
the rest of total 130 map pairs returned by SFJoin). This example illustrates
that in certain scenarios undesired results can be pruned quickly by modifying
threshold values interactively.

7.5.2 XML Schemas

The next example that we discuss illustrates how our algorithm copes with
different choices of graph-based representation for the models to be matched.
Consider two XML schemas in Fig. 7.5. The schemas are specified using the
XML schema language deployed on the website biztalk.org designed for
electronic documents used in e-business.

<Schema name="Schema 1"
xmlns="urn:schemas-microsoft-com:xml-data">

<ElementType name="AccountOwner">
<element type="Name"/>
<element type="Address"/>
<element type="Birthdate"/>
<element type="TaxExempt"/>

</ElementType>
<ElementType name="Address">

<element type="Street"/>
<element type="City"/>
<element type="State"/>
<element type="ZIP"/>

</ElementType>
</Schema>

<Schema name="Schema 2"
xmlns="urn:schemas-microsoft-com:xml-data">

<ElementType name="Customer">
<element type="Cname"/>
<element type="CAddress"/>

</ElementType>
<ElementType name="CustomerAddress">

<element type="Street"/>
<element type="City"/>
<element type="USState"/>
<element type="PostalCode"/>

</ElementType>
</Schema>

Fig. 7.5. Matching of two XML schemas: AccountOwner (S1) vs. Customer (S2)

As in the example of matching relational schemas (Sect. 7.1), both XML
data structures are first converted algorithmically into graphs. Fig. 7.6 shows

7.5 Features of the Algorithm by Example 133

portions of two different graph-based representations that are frequently used
for manipulating XML data structures. The XML graph representation on
the left corresponds to that of OEM/Lore (Papakonstantinou et al. 1995),
while the representation on the right is based on the XML/DOM standard. In
the OEM representation, element tags are treated as edge labels, whereas in
DOM representation hierarchical relationships between elements are captured
using a uniform edge labels child.

Schema

Schema

Schema 1 Schema 1

AccountOwner AccountOwner

Name Name
Address

&0

tname name

name

name

name

name

type type

type
type

t

t

t

t

ElementType
ElementType

ElementTypeelement
element

element

&1 &11

&3&2

&12

&13

&5 &15&4 &14

child

childchild

child

.Address

Fig. 7.6. Two different representations of XML data: OEM/Lore-like vs.
XML/DOM-like

The result of matching AccountOwner and Customer schemas is depicted
in Table 7.6. Two left-most columns show the similarity values for computed
map pairs. Omitted values indicate that the corresponding map pair does
not appear in the match result. For readability, we substituted numeric node
identifiers by the descriptions of the objects they represent (in square brack-
ets). The mapping for the OEM representation was obtained by executing
the script

1. G1 = XML2OEMGraph(S1); G2 = XML2OEMGraph(S2);
2. initialMap = StringMatch(G1, G2);
3. product = SFJoin(G1, G2, initialMap);
4. result = SelectThreshold(product);

For exploiting the DOM representation, the first line is replaced by

1. G1 = XML2DOMGraph(S1); G2 = XML2DOMGraph(S2);

This example illustrates two features of the algorithm. First, the algorithm
produces similar results for different choices of graph-based representation.
Second, the example shows that graph-based representations for models that
use a wider spectrum of edge labels contributes to a faster iterative com-
putation. The sizes of the graphs in both representations are presented in
Table 7.5. Notice that although the graphs for S1 and S2 have similar sizes
in both representations, the propagation graph in the OEM representation
is 50% smaller than that of the DOM-like representation. Thus, every fix-
point iteration takes less time (we discuss the complexity of the algorithm in

134 7. Similarity Flooding Algorithm

detail in Sect. 7.4). Also note that the only extra code required for adapt-
ing the algorithm for matching XML schemas is the implementation of the
XML2OEMGraph or XML2DOMGraph operator.

Table 7.5. Parameters of the fixpoint computation for S1 and S2

Nodes in S1 Nodes in S2 Nodes in propagation graph Iterations

37 39 128 7
40 38 267 6

7.5.3 Matching XML Schemas Using Instance Data

Two previous examples illustrated matching of instance data and matching
of schema data. The third example that we discuss in this section deals with
yet another matching problem, matching XML schemas using instance data.
Consider two XML instances depicted in Fig. 7.7. Suppose that the XML
tags used in the instances are defined in some schemas (not shown in the
figure) and our goal is to establish the correspondences between the tags.
The data on the left contains information about a Sony camcorder on the
amazon.com website. The data on the right shows similar information from
the yahoo.com website. XML tag names for both schemas were derived from
the actual vocabulary terms used on both sites. For example, Amazon site
uses term review, whereas Yahoo site talks about rating. Notice that many
text pieces in both XML files are different.

Table 7.7 shows how XML tags used in amazon and yahoo match. This
result was determined by running our algorithm on XML/DOM graphs cor-
responding to both data instances. After that, the match candidates that
do not correspond to XML tags were filtered out using a custom operator
XMLMapFilter:

1. G1 = XML2DOMGraph(db1); G2 = XML2DOMGraph(db2);
2. initialMap = StringMatch(G1, G2);
3. product = SFJoin(G1, G2, initialMap);
4. result = XMLMapFilter(product, G1, G2);

Setting the minimal similarity tabs to 0.05 returns a set of correspondences
shown above the horizontal bar in the table. Notice that the only additional
code required for using the algorithm for matching XML schemas on the basis
of instance data was the implementation of operator XMLMapFilter.

7.5.4 Finding Related Data

One last application that we illustrate in this section deals with finding re-
lated data instances. The relatedness information can be computed using the

7.5 Features of the Algorithm by Example 135

Table 7.6. Match results for XML schemas in Fig. 7.5 using two different graph
representations

σ
u
si
n
g

O
E

M
σ

u
si
n
g

D
O

M
N

o
d
e

in
S

1
N

o
d
e

in
S

2

1
.0

X
M

L
A

R
C

X
M

L
A

R
C

0
.8

2
1
.0

[S
ch

em
a
:
S
ch

em
a

M
1
]

[S
ch

em
a
:
S
ch

em
a

M
2
]

0
.8

1
0
.5

5
[E

le
m

en
tT

y
p
e:

A
d
d
re

ss
]

[E
le

m
en

tT
y
p
e:

C
u
st

o
m

er
A

d
d
re

ss
]

0
.4

0
0
.2

5
[e

le
m

en
t:

S
tr

ee
t]

[e
le

m
en

t:
S
tr

ee
t]

0
.4

0
0
.2

5
[e

le
m

en
t:

C
it
y
]

[e
le

m
en

t:
C

it
y
]

0
.2

4
0
.3

3
[E

le
m

en
tT

y
p
e:

A
cc

o
u
n
tO

w
n
er

]
[E

le
m

en
tT

y
p
e:

C
u
st

o
m

er
]

0
.1

5
0
.1

3
[e

le
m

en
t:

N
a
m

e]
[e

le
m

en
t:

C
n
a
m

e]
0
.1

4
0
.1

1
[e

le
m

en
t:

S
ta

te
]

[e
le

m
en

t:
U

S
S
ta

te
]

0
.1

1
0
.1

0
[e

le
m

en
t:

A
d
d
re

ss
]

[e
le

m
en

t:
C

A
d
d
re

ss
]

0
.0

5
0
.0

6
[e

le
m

en
t:

Z
IP

]
[e

le
m

en
t:

P
o
st

a
lC

o
d
e]

0
.7

5
el

em
en

t
el

em
en

t
0
.4

0
E

le
m

en
tT

y
p
e

E
le

m
en

tT
y
p
e

0
.3

2
X

M
L
D

O
M

X
M

L
D

O
M

0
.3

2
u
rn

:s
ch

em
a
s-

m
ic

ro
so

ft
-c

o
m

:x
m

l-
d
a
ta

u
rn

:s
ch

em
a
s-

m
ic

ro
so

ft
-c

o
m

:x
m

l-
d
a
ta

0
.3

2
S
ch

em
a

S
ch

em
a

136 7. Similarity Flooding Algorithm

<amazon>
<item>

<title>Sony DCR-PC100 Digital HandyCam
Camcorder</title>

<listPrice>1899.99</listPrice>
<ourPrice>1699.00</ourPrice>
<youSave>200.00</youSave>
<review>

<avgReview>4.5</avgReview>
<numOfReviews>20</numOfReviews>

</review>
<availability>On Order; usually ships

within 1-2 weeks</availability>
<features>

<zoom>10x optical zoom</zoom>
<zoom>120x digital zoom</zoom>
<lcd>2.5 inch LCD</lcd>
<other>4 MB Memory Stick included</other>

</features>
</item>

</amazon>

<yahoo>
<productInfo>

<id>Sony DCR-PC100</id>
<merchantPrice>1799.94</merchantPrice>
<rating>

<userRating>3.5</userRating>
<userReviews>7</userReviews>

</rating>
<description>

<LCDScreenSize>2.5in</LCDScreenSize>
<opticalZoom>10 X</opticalZoom>
<special>4MB Memory Stick</special>

</description>
</productInfo>

</yahoo>

Fig. 7.7. Matching of two XML schemas using instance data in DOM graph rep-
resentation

7.5 Features of the Algorithm by Example 137

Table 7.7. Match results for XML element tags in Fig. 7.7 using similarity thresh-
old 0.05

Similarity Tag in db1 Tag in db2

0.27 item productInfo
0.20 amazon yahoo
0.18 zoom opticalZoom
0.12 features description
0.11 ourPrice merchantPrice
0.11 listPrice merchantPrice
0.09 title id
0.08 numOfReviews userReviews
0.07 other special
0.06 lcd LCDScreenSize
0.05 review userReviews
0.04 avgReview userReviews
0.04 review rating
0.03 youSave id
0.03 avgReview userRating
· · · · · · · · ·

same instance graph for both inputs of the algorithm. Consider the instance
graph in Fig. 7.8. This graph captures a piece of information about four fac-
ulty members of the Stanford Database Group. The data says that Jennifer
works with Hector on the project WHIPS and that she wrote a textbook to-
gether with Jeff. Table 7.8 shows the relative similarities between the faculty
members. The match result was obtained using the trivial script result =
SFJoin(G, G). “Perfect” match candidates with

→
σ rel= 1 like (Gio, Gio) are

omitted in the table for brevity. Also, we substituted the identifiers of the
faculty members by their names, e.g. &5 by Jennifer. Since relative similarity
is not symmetric, Jeff is related to Jennifer closer than Jennifer to Jeff.

Jennifer Widom

A First Course in DBS

WHIPS

Jeffrey Ullman

Hector Garcia-Molina

Gio Wiederhold

name
title

title

name

name

name

&3
&1

&2

&4

&5

&6

Faculty

Book

Project

t

t

t

t
tt

author

p.i.
p.i.

author

Fig. 7.8. Excerpt of re-
lationships in the Stan-
ford DB Group

Other applications that we used in our experiments include matching
of ER, UML and RDFS schemas, comparing product catalogs, approximate
queries, matching of service invocations, and matching of mappings. To sum-
marize, notice that the examples that we discussed in this section differ quite
a lot from each other. They illustrate diverse application scenarios, the se-
mantics of the nodes in the respective graph representations is different, even
the matching goals vary. Common to all these examples is, however, that

138 7. Similarity Flooding Algorithm

Table 7.8. Relatedness of faculty members in the DB group based on data in
Fig. 7.8

Faculty Relative similarity (
→
σ rel) Faculty

Hector 0.40 Jennifer
0.14 Jeff, Gio

Jeff 0.40 Jennifer
0.14 Hector, Gio

Jennifer 0.32 Jeff, Hector
0.11 Gio

Gio 0.19 Hector, Jennifer, Jeff

different matching tasks could be addressed in a uniform fashion using a very
limited amount of custom code. In all scenarios, the similarity flooding algo-
rithm could be deployed by providing converters into graph representation
for native formats and selecting the desired subsets from the result of SFJoin.
These selection techniques, or filtering, is the subject of the next chapter.

The purpose of the examples presented above is to illustrate that the
algorithm is applicable to a broad range of matching problems. Of course,
the examples do not substitute a comprehensive evaluation. In this thesis, we
focus on schema matching and evaluate our algorithm using several schema
matching problems in Chap. 9. The effectiveness of the algorithm for instance
matching or finding related data remains to be investigated in future work.

8. Filters

“The more alternatives, the more difficult the choice.”

– Abbé d’Allainval (1695-1753)

In this chapter we examine several filters that can be used for choosing the
best match candidates from the list of ranked map pairs returned by the Sim-
ilarity Flooding algorithm. Usually, for every element in the matched models,
the algorithm delivers a large set of match candidates. Hence, the immedi-
ate result of the fixpoint computation may still be too voluminous for many
matching tasks. For instance, in a schema matching application the choice
presented to a human user for every schema element may be overwhelming,
even when the presented match candidates are ordered by rank. We refer to
the immediate result of the iterative computation as multimapping, since it
contains many potentially useful mappings as subsets.

It is not evident which criteria could be useful for selecting a desirable
subset from a multimapping. An additional complication is that as many as
2n different subsets can be formed from a set of n map pairs. To illustrate the
selection problem, consider the match result obtained for two tiny models A
and B that is shown on the left in Fig. 8.1 (the models themselves are are
omitted in the figure for clarity). The multimapping M contains four map
pairs with similarities σ(a1, b1) = 1.0, σ(a2, b1) = 0.54, etc. From the set of 4
pairs, 24 = 16 distinct subsets can be selected. Every one of these 16 subsets
may be a plausible alternative for the final match result presented to the
user.

� =1.27� < � =1.35�

a1

a2

(a1 b)1

(a2 b)2

(a1 b)2

(a2 b)1

b1

b2

1.0

0.540.81

0.27

[1,1]-[1,1]

cardinality
constraint

Possible selections:

M1=

M1 M2

M2=

but M is stable marriage!1

Multimapping M

Fig. 8.1. Cumulative similar-
ity vs. “stable marriage”

140 8. Filters

a1

a2

b1

b2

1.0

1.0 1.0

1.0

0.540.81

0.50 0.33 Fig. 8.2. Relative similarities for the example in Fig. 8.1

We address the selection problem using a three-step approach.

– First, as discussed in Sect. 8.1, we use the available application-specific
constraints to reduce the size of the multimapping. As exemplified below,
typing and cardinality constraints may help to eliminate many map pairs
from the multimapping.

– As a second step, presented in Sect. 8.2, we use selection techniques devel-
oped in context of matching in bipartite graphs to pick out the subset that
is finally delivered to the user.

– At last, we evaluate the usefulness of particular selection techniques for
a given class of matching tasks (e.g. schema matching) and choose the
technique with empirically best results.

In this chapter, we discuss the first two steps in more detail. In Sect. 8.3,
we present an efficient algorithm for computing one of the best-performing
filters and discuss its SQL implementation in Sect. 8.4. The evaluation of the
selection techniques is presented in Chap. 9.

8.1 Constraints

Frequently, matching tasks include application-specific constraints that can
be used for pruning of a large portion of possible selections. Recall our rela-
tional schemas S1 (Personnel) and S2 (Employee) from Sect. 7.1. At least
two useful constraints are conceivable for this matching scenario. First, we
could use a typing constraint to restrict the result to only those matches
that hold between columns or tables, i.e., we can ignore matches of keys,
data types etc. Second, if our goal were to populate the Personnel table
with data from the Employee table, we could deploy a cardinality constraint
that requires exactly one match candidate for every element of schema S1.
In this case, the cardinality of the resulting mapping would have to satisfy
the restriction [0, n]− [1, 1] (using the UML notation). The right expression
[1, 1] limits the number of S2-elements that may match each element of S1 to
exactly one (between a lower limit of 1 and an upper limit of 1). Conversely,
the left expression [0, n] specifies the valid number of S1-match candidates
(between 0 and n) for each element of S2, i.e., elements of S2 may remain
unmatched or may have one or more match candidates.

Unfortunately, in many matching tasks typing or cardinality constraints
do not narrow down the match result sufficiently. To illustrate, consider the

8.2 Selection Metrics 141

multimapping in Fig. 8.1. If the definition of the matching task implies a
cardinality constraint [0, n] − [1, 1] (i.e., the mapping is required to contain
exactly one match candidate for every element in A), 4 of 16 selections re-
main possible. A stricter cardinality constraint [1, 1] − [1, 1] (i.e. one-to-one
mapping) limits our choice to two sets of map pairs M1 and M2 shown on the
right in Fig. 8.1. Even after applying tight constraints in this simple matching
task we are still left with more than one choice. Below we examine several
strategies for making the decision between the remaining alternatives Mi.

8.2 Selection Metrics

To make an educated choice between Mi’s we need an intuition of what
constitutes a “better” mapping. Fortunately, our selection dilemma is closely
related to well-known matching problems in bipartite graphs, so that we
can build on intuitions and algorithms developed for solving this class of
problems (see e.g. (Lovàsz and Plummer 1986; Gusfield and Irving 1989)).
In the graph matching literature, a matching is defined as a mapping with
cardinality [0, 1] − [0, 1], i.e., a set of edges no two of which are incident on
the same node. A bipartite graph is one whose nodes form two disjoint parts
such that no edge connects any two nodes in the same part. Thus, a mapping
can be viewed as an undirected weighted bipartite graph.

A helpful intuition that we will predominantly use for explaining alterna-
tive selection strategies for multimappings is provided by the so-called stable
marriage problem. To remind, in an instance of the stable marriage problem,
each of n women and n men lists the members of the opposite sex in order of
preference. The goal is to find the best match between men and women. A
stable marriage is defined as a complete matching of men and women with
the property that there are no two couples (x, y) and (x′, y′) such that x
prefers y′ to y and y′ prefers x to x′. For obvious reasons, such a situation
would be regarded as unstable. Imagine that in Fig. 8.1 elements a1 and a2

correspond to women. Then, men b1 and b2 would be the primary and the
secondary choice for woman a1. Obviously, mapping M1 satisfies the stable
marriage condition, whereas M2 does not. In M2, woman a1 and man b1 favor
each other over their actual partners, which puts their marriages in jeopardy.

The stable-marriage property provides a plausible criterion for select-
ing a desired mapping from a multimapping. Further candidates for desired
mappings can be drawn from the following selection criteria and well-known
matching problems:

– The assignment problem consists in finding a matching Mi in a weighted
bipartite graph M that maximizes the total weight (cumulative similarity)∑

(x,y)∈Mi
σ(x, y). Viewed as a marriage, such matching maximizes the

total satisfaction of all men and women. In Fig. 8.1,
∑

M2
σ = 0.81+0.54 =

142 8. Filters

1.35, whereas
∑

M1
σ = 1.0 + 0.27 = 1.27. Thus, M2 maximizes the total

satisfaction of all men and women even though M2 is not a stable marriage.
– Another group of selection candidates are maximal, maximum and per-

fect matchings. A maximal matching is a matching that is not properly
contained in any other matching. A maximum matching is a matching of
maximum cardinality, i.e., with the most number of married couples. A
perfect (or complete) matching is one containing an edge incident of every
node, i.e., the one in which every man and woman is married. Obviously,
a perfect matching is achievable only if both parts of a mapping contain
the same number of elements. M1 and M2 in Fig. 8.1 are maximal, max-
imum and perfect matchings. All of the above-mentioned matching prob-
lems produce [0, 1]− [0, 1] mappings, i.e., monogamous marriages, and can
be solved using polynomial-time algorithms (Lovàsz and Plummer 1986;
Motwani and Raghavan 1995).

– Under polygamy, multiple matching counterparts for every element are al-
lowed. Polygamy is useful for matching tasks in which many-to-many map-
pings are desirable. In schema matching, for instance, an element of one
schema may have multiple counterparts in another schema. A polygamous
variant of perfect matching corresponds to an outer match, i.e., a minimal
mapping in which every element in both models has at least one counter-
part. When multiple partners are allowed, the number of candidates for
every element can be used as an additional factor for selecting the desired
subset. For example, we may favor a subset Mi of the multimapping that
maximizes function

∑
Mi

σ(x,y)
|(x,?)|·|(?,y)| , analogously to the optimum func-

tion used in the assignment problem. Terms |(x, ?)| and |(?, y)| denote the
number of partners for woman x and man y in Mi.

– The flooding algorithm produces at most one similarity value for any map
pair (x, y). We call this value absolute similarity. Absolute similarity is
symmetric, i.e., x is similar to y exactly as y to x. Under the marriage in-
terpretation, this means that any two prospective partners like each other
to the same extent. Considering relative similarities suggests a more diver-
sified interpretation. Relative similarities are asymmetric and are computed
as fractions of the absolute similarities of the best match candidates for
any given element. In the example in Fig. 8.1, b1 is the best match can-
didate for a2, so we set

→
σ rel (a2, b1) := 1.0. The relative similarity for

all other match candidates of a2 is computed as a fraction of σ(a2, b1).
Thus,

→
σ rel (a2, b2) := σ(a2,b2)

σ(a2,b1) = 0.27
0.54 = 0.5. All relative similarities for this

example are summarized in Fig. 8.2. A multimapping based on relative
similarities corresponds to a directed weighted bipartite graph. The previ-
ously mentioned selection strategies can be adapted to relative similarities
in a straightforward way.

– Some matching tasks require finding a connected subgraph in the target
model that matches best the one in the source model. In such case, the

8.2 Selection Metrics 143

number of edit operations needed to transform one subgraph to another
may be included in the selection metric.

– Similarity thresholds are the last criteria that we discuss. For a given
absolute-similarity threshold tabs we select a subset of a multimapping,
in which all map pairs carry an absolute similarity value of at least tabs.
For example, for tabs = 0.5, Fig. 8.1 suggests that woman a2 finds man b1

acceptable (0.54), and would rather not go out with man b2 at all (0.27).
The relative-similarity threshold trel is used analogously. In the same ex-
ample, for a relative-similarity threshold trel = 0.5 woman a2 would still
accept man b2 as a partner, but man b2 would reject woman a2 since
←
σ rel (a2, b2) = 0.33 < 0.5.

To summarize, the filtering problem can be characterized by providing a
set of constraints and a selection function that picks out the “best” subset of
the multimapping under a given selection metric. Conceptually, the selection
function assigns a value to every subset of the multimapping. The subset
for which the function takes the largest/smallest value is selected as the
final result. For example, using the assignment problem as selection metric,
we can construct a filter that applies a cardinality constraint [0, 1] − [0, 1]
and utilizes a selection function

∑
(x,y)∈Mi

σ(x, y) to choose the best subset.
Some selection metrics (e.g., threshold-based ones) can be described in terms
of a boolean selection function that assigns the value 1 for one subset of the
multimapping, and 0 to all others. In concrete implementations of selection
functions, we can often find algorithms that avoid enumerating all subsets of
the multimapping and determine the desired subset directly.

In the remainder of this section we describe a filter that produced empir-
ically best results in a variety of schema matching tasks, as we show later in
Chap. 9. This approach is implemented in our testbed as the SelectThreshold
operator. The intuition behind this approach is based on a perfectionist egali-
tarian polygamy, which means that no male or female is willing to accept any
partner(s) but the best. This criterion corresponds to using relative-similarity
threshold trel = 1.0.

SelectThreshold operator selects a subset of the multimapping which is
guaranteed to satisfy the stable-marriage property. However, this selection
strategy sacrifices the happiness of those individuals who are not number
one on the list of at least one person of the opposite sex. Such individu-
als are left unmarried, i.e., excluded from the mapping. Most of the time,
SelectThreshold with trel = 1.0 yields matchings, or monogamous societies.
In a less picky version of the operator with trel < 1.0, more persons have a
chance to find a partner, and polygamy is more likely. In the examples pre-
sented in the following section we demonstrate the impact of threshold value
trel in several practical scenarios.

144 8. Filters

8.3 FilterBest Algorithm

For large graphs, the immediate result produced by the flooding algorithm
can be very large. For example, given two graphs with 5,000 equilabeled edges
each, the resulting similarity vector contains 25,000,000 elements. Therefore,
filtering needs to be done efficiently. In this section, we discuss the efficient
implementation of the SelectThreshold filter.

A straightforward approach is to sort all pairs in the order of decreasing
similarity and extract the best matching candidates in a single pass over the
sorted list of pairs. However, sorting has O(n log n) complexity. Fortunately,
there is a simple algorithm that we call FilterBest, which extracts the desired
subset of the mapping in O(n) time.

The algorithm FilterBest is presented below. It takes as input morphism
map represented as a list of triples 〈l, r, σ〉 where l and r denote the nodes
in the matched graphs and σ is the computed absolute similarity value. The
algorithm returns as output a morphism that satisfies the stable-marriage
property, i.e., no candidate match is included for a given node if a better
candidate is available. Notice that the algorithm FilterBest does not produce
a matching in the sense used in (Lovàsz and Plummer 1986), since some
nodes may remain unmatched or have multiple top match candidates.

Algorithm FilterBest(map)
// map is represented as array of pairs
cmap := empty hash table;
// cmap maps each node to a linked list
// of candidate nodes of equal similarity
rejected := boolean array of size length(map)
for i := 1 to length(map) do

ProbeCandidate(map[i].left, map[i].right, i);
end for
clear cmap hash table;
for i := 1 to length(map) do

ProbeCandidate(map[i].right, map[i].left, i);
end for
result := empty list of pairs;
for i := 1 to length(map) do

if not rejected[i] then add pair map[i] to result;
end for

return result;

Procedure ProbeCandidate(node, candidate, i)
// uses hash table cmap and array rejected from above
clist := retrieve linked list of candidates for node from cmap;
if clist is empty then

append position i to clist;

8.3 FilterBest Algorithm 145

else if candidate is more similar to node than those in clist
for each j in clist do rejected[j] := true; end for

else if candidate is less similar
rejected[i] := true;

else // candidate is equally similar
append position i to clist;

endif
return;

FilterBest computes the result using two passes over the input morphism
map, and two auxiliary data structures: a hash table (cmap) and a boolean
array (rejected). The first pass makes sure that the stable-marriage property
is satisfied for the left nodes of map, while the second pass verifies the right
nodes of map. During each pass, the top seen candidates are stored in the
hash table cmap, which associates each left/right node with a linked list of top
right/left candidate nodes. All candidates contained in each linked list have
identical (absolute) similarity. Once a better candidate has been spotted, the
currently best candidates are marked as rejected. The rejected candidates
will not appear in the final result.

To maintain the rejected candidates efficiently, a single boolean array
rejected is used in both passes. Instead of keeping track of lists of rejected
candidates, we can simply mark the pairs of the input morphism map as
rejected, since whenever a is not a top match candidate for b, b cannot be a
match candidate for a due to the perfectionist egalitarian polygamy principle
explained above. Since all pairs are passed as a list, they can be marked using
a boolean array of the same length as map. A given pair may be rejected in
either pass, or in both passes.

After both passes have been done, the resulting morphism can be obtained
as a list of non-rejected pairs. The left and right nodes of each pair are guar-
anteed to be mutually best candidates, otherwise the pair would have been
rejected. It is easy to see that the algorithm has the asymptotic complexity
of O(n) in the number of pairs of the input morphism. To see that, notice
that the procedure ProbeCandidate is called 2n times. Appending of the
candidates in ProbeCandidate corresponds to pushing elements on a stack,
whereas the internal for-loop can be seen as a series of pop operations. Since
each pair can be “pushed” and “popped” at most once, the total number of
these operations is bound by n+n = 2n in each pass. The last for-loop of Fil-
terBest does another n operations. That is, in the worst case, the algorithm
performs 2n + 2n + 2n + n = 7n steps.

If the set of left elements of map is disjoint with the set of right elements,
both probing for-loops of the FilterBest algorithm can be merged into one as
follows:

for i := 1 to length(map) do
ProbeCandidate(map[i].left, map[i].right, i);
ProbeCandidate(map[i].right, map[i].left, i);

146 8. Filters

end for

This modification allows saving one iteration over the map pairs (yielding
6n steps in worst case), but increases the amount of memory used temporarily,
since the auxiliary hash table cmap has to keep both the candidates for the
left nodes and the candidates for the right nodes.

8.4 Expressing FilterBest in SQL

If the input morphism map is stored as a single relational table with the
attributes left, right, and sim, the filtering can be expressed using a nested
SQL query shown below:

SELECT map.left, map.right
FROM map,

(SELECT left AS L, max(sim) AS M
FROM map
GROUP BY left) AS T1,

(SELECT right AS R, max(sim) AS M
FROM map
GROUP BY right) AS T2

WHERE map.left = T1.L AND map.right = T2.R AND
map.sim = T1.M AND map.sim = T2.M

To understand why this query works, consider a small example depicted in
Fig. 8.3. The example shows the input morphism map and two intermediate
tables, T 1 and T 2, which correspond to the nested SELECT clauses shown
above. The table T 1 defined in the first clause uses a group-by statement to
extract the maximal similarity values for each left element of the morphism
map. The second nested SELECT clause yields the table T 2 which associates
each right element of map with its maximal similarity value. In the example,
T 1 and T 2 have 2 and 3 rows each, according to the domain and range sizes
of map.

0.3b2a2

0.3b3a2

0.2b2a1

0.1

sim
b1

rightleft
a1

0.3b2a2

0.3b3a2

0.2b2a1

0.1

sim
b1

rightleft
a1

map

0.3a2

0.2a1

ML

0.3a2

0.2a1

ML

T1

0.3b2

0.3b3

0.1

M
b1

R

0.3b2

0.3b3

0.1

M
b1

R

T2

Fig. 8.3. Example illustrating execution of
FilterBest in SQL

8.4 Expressing FilterBest in SQL 147

In the top SELECT statement, the tables map, T 1, and T 2 are joined to
obtain the final result. The important portion is the WHERE clause, which
ensures that each pair in map appears in the result only if its similarity
value is the maximal similarity value for both the left and right element. In
Fig. 8.3, the first row of map does not join with the first row of T 1, because
the similarity value map.sim is unequal to the value of T 1.M (0.1 < 0.2).
Therefore, the pair (a1, b1) does not appear in the result, because there must
be a better candidate for a1 than b1, namely b2. Tuples (a2, b2), (a2, b3) are
produced as the result of the query.

The declarative specification of the SQL query shown above can be exe-
cuted very efficiently by the query optimizer. In fact, it suggests an alternative
linear-time filtering algorithm, which yields the result identical to that of the
FilterBest algorithm of Sect. 8.3. First, the maximal similarity values are
computed in a single pass over map using two hash tables, which play the
role of tables T 1 and T 2. After that, a single pass over map is done, during
which a lookup in T 1 and T 2 is performed for each pair of map. This alter-
native in-memory algorithm has similar performance characteristics as the
FilterBest algorithm.

The SQL specification presented in this section supports filtering the
match results backed by the secondary storage. Thus, even very large match
results can be filtered efficiently using a database system. The SQL approach
could be particularly useful if the Similarity Flooding algorithm is imple-
mented using a set of SQL statements and the results already reside in a
database.

148 8. Filters

9. Evaluation and Tuning

“Evaluation is creation: hear it, you creators! Evaluating is itself
the most valuable treasure of all that we value. It is only through
evaluation that value exists: and without evaluation the nut of exis-
tence would be hollow. Hear it, you creators!”

– Friedrich Nietzsche (1844-1900)

In this chapter, we suggest an accuracy metric for evaluating automatic
schema matching algorithms and evaluate the effectiveness of the SF algo-
rithm on the basis of a user study that we conducted.

A crucial issue in evaluating matching algorithms is that a precise defi-
nition of the desired match result is often impossible. In many applications
the goals of matching depend heavily on the intention of the users, much like
the users of an information retrieval system have varying intentions when
doing a search. Typically, a user of an information retrieval system is looking
for a good, but not necessarily perfect search result, which is generally not
known. In contrast, a user performing say schema matching is often able to
determine the perfect match result for a given match problem. Moreover, the
user is willing to adjust the result manually until the intended match has
been established. Thus, we feel that the quality metrics for matching tasks
that require tight human quality assessment need to have a slightly different
focus than those developed in information retrieval.

The quality metric that we suggest below is based upon user effort needed
to transform a match result obtained automatically into the intended result.
We assume a strict notion of matching quality i.e., being close is not good
enough. For example, imagine that a matching algorithm comes up with five
equally plausible match candidates for a given element, then decides to return
only two of them, and misses the intended candidate(s). In such case, we give
the algorithm zero points despite the fact that the two returned candidates
might be very similar to what we are looking for. Moreover, our metric does
not address iterative matching, in which the user repeatedly adjusts the result
and invokes the matching procedure. Thus, the accuracy results we obtain

150 9. Evaluation and Tuning

here can be considered “pessimistic”, i.e., our matching algorithm may be
“more useful” that what our metric predicts.

This chapter is structured as follows:

– In Sect. 9.1, we define the metric that we use for evaluating the matching
quality, called matching accuracy.

– In Sect. 9.2, we argue that the intended match result needs to be known
precisely to evaluate the matching quality.

– The user study in which we gathered indented match results for several
tasks is presented in Sect. 9.3.

– The evaluation of the SF algorithm and filters is described in Sect. 9.4.
– In Sect. 9.5, we study the impact of different ways of computing propaga-

tion coefficients on overall matching accuracy in the user study.

We conclude the chapter, and Part III, in Sect. 9.6.

9.1 Matching Accuracy

Our goal is to estimate how much effort it costs the user to modify the
proposed match result P = {(x1, y1), . . . , (xn, yn)} into the intended result
I = {(a1, b1), . . . , (am, bm)}. The user effort can be measured in terms of ad-
ditions and deletions of map pairs performed on the proposed match result P .
One simplified metric that can be used for this purpose is what we call match
accuracy. Let c = |P ∩ I| be the number of correct suggestions. The differ-
ence (n− c) denotes the number of false positives to be removed from P , and
(m − c) is the number of false negatives, i.e., missing matches that need to
be added. For simplicity, let us assume that deletions and additions of match
pairs require the same amount of effort, and that the verification of a correct
match pair is free. If the user performs the whole matching procedure manu-
ally (and does not make mistakes), m add operations are required. Thus, the
portion of the manual clean-up needed after applying the automatic matcher
amounts to (n−c)+(m−c)

m of the fully manual matching.
We approximate the labor savings obtained by using an automatic

matcher as accuracy of match result, defined as 1− (n−c)+(m−c)
m . In a perfect

match, n = m = c, resulting in accuracy 1. Notice that c
m and c

n correspond
to recall and precision of matching (Li and Clifton 2000). Hence, we can
express match accuracy as a function of recall and precision as follows:

Accuracy = 1− (n−c)+(m−c)
m = c

m (2− n
c) = Recall

(
2− 1

Precision

)

In the above definition, the notion of accuracy only makes sense if preci-
sion is not less than 0.5, i.e at least half of the returned matches are correct.
Otherwise, the accuracy is negative. Indeed, if more than a half of the matches
are wrong, it would take the user more effort to remove the false positives and

9.2 Intended Match Result 151

add the missing matches than to do the matching manually from scratch. As
expected, the best accuracy 1.0 is achieved when both precision and recall
are equal to 1.0. Notice that accuracy is biased towards precision. For ex-
ample, recall/precision measure (0.7, 0.9) corresponds to accuracy 0.62. This
accuracy value is higher than that for (0.9, 0.7), which amounts to 0.51.

9.2 Intended Match Result

Accuracy, as well as recall and precision, are relative measures that depend on
the intended match result. For a meaningful assessment of match quality, the
intended match result must be specified precisely. Recall our example dealing
with relational schemas that we examined in Sect. 7.1. Three plausible match
results for this example (that we call Sparse, Expected, and Verbose) are pre-
sented in Table 9.1. A plus sign (+) indicates that the map pair shown on
the right is contained in the corresponding desired match result. For exam-
ple, map pair ([Table: Personnel], [Table: Employee]) belongs to both
Expected and Verbose intended results. The Expected result is the one that
we consider the most natural one. The Verbose result illustrates a scenario
where matches are included due to additional information available to the
human designer. For example, the data in table Personnel is obtained from
both Employee and Department, although this is not apparent just by looking
at the schemas. Similarly, the Sparse result is a matching where some cor-
respondences have been eliminated due to application-dependent semantics.
Keep in mind that in the Sparse and Verbose scenarios, the human selecting
the “perfect” matchings has more information available than our matcher.
Thus, clearly we cannot expect our matching algorithm to do as well as in
the Expected case.

Accuracy, precision, and recall obtained for all three intended results using
version C of the flooding algorithm (see Table 7.3) are summarized in Fig. 9.1.
For each diagram, we executed a script like the one presented in Sect. 7.1.
The SelectThreshold operator was parameterized using trel-threshold values
ranging from 0.6 to 1.0. As an additional last step in the script, we applied
operator SQLDDLMapFilter that eliminates all matches except those be-
tween tables, columns, and keys. As shown in the figure, match accuracy 1.0
is achieved for 0.95 ≤ trel ≤ 1.0 in the Expected match, i.e., no manual ad-
justment of the result is required from the user. In contrast, if the intended
result is Sparse, the user can save only 50% of work at best. Notice that the
accuracy quickly becomes negative (precision goes below 0.5) with decreasing
threshold values. Using no threshold filter at all, i.e. trel = 0, yields recall
of 100% but only 4% precision, and results in a disastrous accuracy value of
–2144% (not shown in the figure). Increasing threshold values corresponds
to the attempt of the user to quickly prune undesired results by adjusting a
threshold slider in a graphical tool.

152 9. Evaluation and Tuning

Table 9.1. Three plausible intended match results for matching problem in Fig. 7.1

S
p
a
rs

e
E

x
p
ec

te
d

V
er

b
o
se

N
o
d
e

in
G

1
N

o
d
e

in
G

2

+
+

[T
a
b
le

:
P
er

so
n
n
el

]
[T

a
b
le

:
E

m
p
lo

y
ee

]
+

[T
a
b
le

:
P
er

so
n
n
el

]
[T

a
b
le

:
D

ep
a
rt

m
en

t]
+

+
[U

n
iq

u
eK

ey
:
p
er

sk
ey

]
[P

ri
m

a
ry

K
ey

:
o
n

E
m

p
N

o
]

+
+

+
[C

o
lu

m
n
:
P
er

so
n
n
el

/
D

ep
t]

[C
o
lu

m
n
:
D

ep
a
rt

m
en

t/
D

ep
tN

a
m

e]
+

[C
o
lu

m
n
:
P
er

so
n
n
el

/
D

ep
t]

[C
o
lu

m
n
:
D

ep
a
rt

m
en

t/
D

ep
tN

o
]

+
[C

o
lu

m
n
:
P
er

so
n
n
el

/
D

ep
t]

[C
o
lu

m
n
:
E

m
p
lo

y
ee

/
D

ep
tN

o
]

+
+

+
[C

o
lu

m
n
:
P
er

so
n
n
el

/
P

n
o
]

[C
o
lu

m
n
:
E

m
p
lo

y
ee

/
E

m
p
N

o
]

+
+

+
[C

o
lu

m
n
:
P
er

so
n
n
el

/
P

n
a
m

e]
[C

o
lu

m
n
:
E

m
p
lo

y
ee

/
E

m
p
N

a
m

e]
+

+
+

[C
o
lu

m
n
:
P
er

so
n
n
el

/
B

o
rn

]
[C

o
lu

m
n
:
E

m
p
lo

y
ee

/
B

ir
th

d
a
te

]

9.3 User Study 153

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

1.0 .95 .9 .85 .8 .75 .7 .65 .6

trel-threshold

Recall

Precision

Accuracy

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

1.0 .95 .9 .85 .8 .75 .7 .65 .6

trel-threshold

Recall

Precision

Accuracy

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

1.0 .95 .9 .85 .8 .75 .7 .65 .6

trel-threshold

Recall

Precision

Accuracy

“sparse” “expected” “verbose”

Fig. 9.1. Matching accuracy as a function of trel-threshold for intended match
results Sparse, Expected, and Verbose from Table 9.1

Fig. 9.1 indicates that the quality of matching algorithms may vary sig-
nificantly in presence of different matching goals. As mentioned earlier, our
definition of accuracy is pessimistic, i.e., the user may save more work as
indicated by the accuracy values. The reason for that is twofold. On the one
hand, if accuracy goes far below zero, the user will probably scrap the pro-
posed result altogether and start from scratch. In this case, no additional work
(in contrast to that implied by negative accuracy) is required. On the other
hand, removing false positives is typically less labor-intensive than finding the
missing match candidates. For example, consider the data point trel = 0.75
in the Expected diagram. The matcher found all 6 intended map pairs (100%
recall), and additionally returned 6 false positives (50% precision) resulting
in an accuracy of 0.0. Arguably, removing these false positives requires less
work than starting with a blank screen.

9.3 User Study

To evaluate the performance of the algorithm for schema matching tasks,
we conducted a user study with help of eight volunteers in the Stanford
Database Group. The study also helped us to examine how different filters
and parameters of the algorithm affect the match results. For our study we
used nine relatively simple match problems. The complete specification of
the match tasks handed out to the users is in Appendix A. Some of the
problems were borrowed from research papers (Miller et al. 2000; Doan et al.
2001; Rahm and Bernstein 2001). Others were derived from data used on the
websites like Amazon.com or Yahoo.com. Every user was required to solve
tasks of three different kinds (shown along the x-axis of Fig. 9.2):

1. matching of XML schemas (Tasks 1,2,3)
2. matching of XML schemas using XML data instances (Tasks 4,5,6)
3. matching of relational schemas (Tasks 7,8,9)

154 9. Evaluation and Tuning

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9

match problem

a
c

c
u

ra
c

y
/

la
b

o
r

s
a

v
in

g
s User 1

User 2

User 3

User 4

User 5

User 6

User 7

Avg user

Total average

Fig. 9.2. Average matching accuracy for 7 users and 9 matching problems

The information provided about the source and target schemas was inten-
tionally vague. The users were asked to imagine a plausible scenario and to
map elements in both schemas according to the scenario they had in mind. No
cardinality constraints were given (any [0, n]− [0, n] mapping was accepted).
Noteworthy is that almost no two users could agree on the intended match
result for a given matching task, even when examples of data instances were
provided (tasks 4,5,6). Therefore, we could hardly expect any automatic pro-
cedure to produce excellent results. From eight users, one outlier (i.e., the
user with highly deviating results) was eliminated. The accuracy in percent
achieved by our algorithm (using fixpoint formula C) for each of the seven
users and every task is summarized in Fig. 9.2. The accuracy metric was used
to estimate the amount of work that a given user could save by using our
algorithm. The accuracy data was obtained after applying SelectThreshold
operator with trel = 1. Negative accuracy of –14% in Task 3 indicates that
User 1 would have spent 14% more work adjusting the automatic match result
than doing the match manually.

Note that in Task 1 the algorithm performed very well, while in Task 2
the results were poor. It turned out that the models used in Task 2 had
very simple structure, so that the algorithm was mainly driven by the initial
textual match. We did not use any dictionaries for string matching in any of
the experiments reported in this chapter. Hence, the synonyms used in Task 2
were considered as plausible matches by humans but were not recognized by
the algorithm. The matching accuracy over 7 users and 9 problems averaged
to 52%. Hence, our study suggests that for many matching tasks, as much as
a half of manual work can be saved using very little application-specific code.
This figure is typically even higher in simpler tasks, e.g., when matching
two XML documents conforming to the same DTD. Using synonyms may
further improve the results of matching. For completeness, the sizes of graphs
obtained from schemas used in the study are summarized in Table 9.2.

9.4 Evaluation of Algorithm and Filters 155

Table 9.2. Sizes of graphs in the user study

Task
Edges in propaga-
tion graph

Edges/arcs in left
model

Edges/arcs in right
model

T1 128 35/39 32/37
T2 313 37/43 40/46
T3 376 46/46 49/52
T4 383 55/62 39/44
T5 309 36/41 48/48
T6 571 66/55 54/45
T7 339 33/31 69/55
T8 1222 113/78 66/51
T9 594 113/78 32/30

9.4 Evaluation of Algorithm and Filters

Using matching accuracy as the quality measure, we utilized the data col-
lected in the user study to drive our evaluation and tuning of the algorithm
for schema matching. As a result of this evaluation, we determined the pa-
rameters of the algorithm and the filter that performed best on average for
all users and matching problems in our study. The variations of the fixpoint
formula that we used are depicted in Table 7.3 (compare Sect. 7.3). Using
distinct fixpoint formulas results in different multimappings produced by the
algorithm as well as different convergence speed. We then applied different
filters to choose the best subsets of multimappings. Fig. 9.3 summarizes the
accuracy (averaged over all tasks) obtained for every version of the algorithm
and filter that we used. The filters were defined as follows:

-30

-20

-10

0

10

20

30

40

50

60

70

Threshold Exact Best Right Left Outer

filter

a
c

c
u

ra
c

y
(%

)

A

B

C

Basic

(-58.5) (-94.8)

Fig. 9.3. Matching ac-
curacy for different fil-
ters and four versions of
the algorithm

– Threshold filter corresponds to the SelectThreshold operator described in
Chap. 8. It produces mappings of cardinality [0, n]− [0, n] using relative-
similarity threshold trel = 1.0.

– Exact is a [0, 1] − [0, 1] version of Threshold, which yields monogamous
societies.

– Best returns a [0, 1] − [0, 1] mapping using a selection metric that corre-
sponds to the assignment problem. The implementation of the filter uses

156 9. Evaluation and Tuning

a greedy heuristic. For the next unmatched element, a best available can-
didate is chosen that maximizes the cumulative similarity.

– Left yields a [0, 1] − [1, 1] mapping, in which every node on the left is
assigned a match candidate that maximizes the cumulative similarity. Right
is a [1, 1]− [0, 1] counterpart of Left.

– Outer filter delivers a [1, n] − [1, n] mapping, in which every node on the
left and on the right is guaranteed to have at least one match candidate.

As suggested by Fig. 9.3, the best overall accuracy of 57.9% was achieved
using Threshold filter with the fixpoint formula B. The accuracy of Thresh-
old and Exact filters lie very close to each other. This is not surprising,
since Threshold with trel = 1.0 typically produces [0, 1]− [0, 1] mappings. In
our study, Right consistently outperforms Left, since in most matching tasks
the right schemas were smaller; nodes in right schemas were therefore more
likely to appear in the intended match results supplied by the users. Outer
performed worst, since in many tasks only small portions of schemas were
intended to have matching counterparts.

We tried to estimate the usefulness of other filters, which are either hard to
implement or require extensive computation, by using sampling. For example,
a filter that returns a maximal matching (a [0, 1] − [0, 1] mapping with the
most map pairs) is apparently not an optimal one for schema matching.
Under formula B, the total number of map pairs in all tasks after applying
the Best filter is 101, with associated accuracy of 40%. This accuracy value is
lower than 54% obtained using the Exact filter that yields only 73 map pairs.
Overall, our study suggests that preserving the stable-marriage property is
desirable for selecting subsets of multimappings.

Notice that the fixpoint formulae A, B, and C yield comparable match-
ing accuracy for each filter. However, formula C has much better conver-
gence properties, as suggested by Table 9.3. The table shows the number n
of iterations that were required in every task to obtain a residual vector
|∆(σn, σn−1)| < 0.05. For every fixpoint formula, we executed the algorithm
in two versions, “as is” and “strongly connected”. Strongly connected ver-
sions guarantee convergence. This effect is achieved by making σ0 contain
positive similarity values (e.g., at least 0.001) for each map pair in the cross-
product of nodes of left and right schemas. We found experimentally that
the strongly connected versions of the algorithm yielded approximately the
same overall accuracy for the filters that preserve the stable-marriage prop-
erty (Threshold, Exact, and Best). In contrast, enforcing convergence had a
substantial negative impact on accuracy for the filters Left, Right, and Outer.
For a detailed discussion of convergence criteria please refer to Sect. 7.4.

The formula for computing the propagation coefficients in the induced
propagation graph is another important configuration parameter of the flood-
ing algorithm. We experimented with seven distinct formulae and determined
the one that performed best in our user study. For the details of this exper-
iment please refer to Sect. 7.3. The best-performing formula is based on the

9.4 Evaluation of Algorithm and Filters 157

Table 9.3. Illustration of convergence properties of variations of fixpoint formula
for tasks T1, . . . , T9 in the user study. Shows iterations needed until length of residual
vector got below 0.05.

Fixpoint formula T1 T2 T3 T4 T5 T6 T7 T8 T9 Total

A (as is) 18 48 122 78 ∞ 12 37 25 25 ∞
A (strongly conn’d) 15 56 89 81 1488 18 48 25 31 1851
B (as is) 8 428 17 39 8 13 10 24 21 568
B (strongly conn’d) 7 268 21 32 13 15 14 21 53 444
C (as is) 7 9 9 11 7 7 9 10 9 78
C (strongly conn’d) 7 9 8 11 7 5 9 7 9 72

inverse average of equilabeled edges in the graphs to be matched. This ap-
proach is similar to the one illustrated in Sect. 7.2, which corresponds to
inverse product, and performs only slightly better.

As a last experiment in this section, we study the impact of the initial
similarity values (σ0) on the performance of the algorithm. For this purpose,
we randomly distorted the initial values computed by the string matcher. The
initial similarities were computed using two versions of a string matcher, one
of which took term frequencies into account. Fig. 9.4 depicts the influence of
randomization on matching accuracy across all users and matching tasks. For
example, randomization of 50% means that every initial similarity value was
randomly increased or decreased by x percent, x ∈ [−50%, 50%]. Negative
similarity was adjusted to zero. It is noteworthy that a randomization factor
of 100% introduced accuracy penalty of just about 15%. This result indicates
that the similarity flooding algorithm is relatively robust against variations
in seed similarities. The dotted lines show another radical modification of
initial similarities, in which each non-zero value in σ0 was set to the same
number computed as the average of all positive similarity values. In this case,
the accuracy dropped to 30%, which still saves the users on average one third
of the manual work.

0

10

20

30

40

50

60

0 25 50 100 200 400

randomization (%)

a
c
c
u

ra
c
y

(%
)

w/ freq

w/o freq

avg w/ freq

avg w/o freq

Fig. 9.4. Impact of ran-
domizing initial similar-
ities on matching accu-
racy

158 9. Evaluation and Tuning

9.5 Propagation Coefficients

The similarity flooding algorithm offers several tuning parameters. One such
parameter is the definition of the function π that computes the propagation
coefficients in the propagation graph. Above we presented a product-based
definition of π that we used to illustrate the algorithm in Sect. 7.2. In our
user study we found empirically that an average-based definition of π slightly
outperformed the product-based one. The average-based π-formula as well as
another six approaches to computing the propagation coefficients that we
examined are summarized in Table 9.4.

For example, the stochastic formula ensures that the sum of propagation
coefficients on all edges originating from each map pair in the propagation
graph is 1.0. Hence, the transition matrix that corresponds to the propagation
graph (see Sect. 7.4) becomes a stochastic matrix, i.e., the entries in each
column sum to 1. We evaluated the performance of each π-function listed
in the table using the data obtained in the user study. Fig. 9.5 summarizes
the accuracy values obtained using different π-functions. In this experiment,
we used the fixpoint formula B of Table 7.3 and filters Threshold and Best
to determine the overall average accuracy. We found that the constant π-
function, which places weights of 1.0 on each edge of the propagation graph,
performs surprisingly well as compared to more sophisticated approaches.
We did not extensively examine other π-functions that take into account
edge-label similarities, i.e., those that return a non-zero value when p
= q.

0

10

20

30

40

50

60

inv avg inv prod inv total

avg

inv total

prod

combined stochastic constant

a
c
c
u

ra
c
y

(%
)

Threshold

Best

Fig. 9.5. Impact of dif-
ferent ways of comput-
ing propagation coeffi-
cients on overall match-
ing accuracy in the user
study

9.6 Conclusions and Open Issues

In Part III, we presented a simple structural algorithm based on fixpoint com-
putation that is usable for matching of diverse data structures. We illustrated
the applicability of the algorithm to a variety of scenarios. We defined several
filtering strategies for pruning the immediate result of the fixpoint computa-
tion. We suggested a novel quality metric for evaluating the performance of

9.6 Conclusions and Open Issues 159

Table 9.4. Different approaches to computing the propagation coefficients
π{l,r}(〈x, p, A〉, 〈y, q, B〉)

A
p
p
ro

a
ch

p
=

q
p

=

q

in
v
er

se
av

er
a
g
e

2

ca
rd
{l

,r
}(

x
,p

,A
)
+

ca
rd
{l

,r
}(

y
,q

,B
)

0

in
v
er

se
p
ro

d
u
ct

1

ca
rd
{l

,r
}(

x
,p

,A
)
·c

a
rd
{l

,r
}(

y
,q

,B
)

0

in
v
er

se
to

ta
l
av

er
a
g
e

2

ca
rd
{l

,r
}(

p
,A

)
+

ca
rd
{l

,r
}(

q,
B

)
0

in
v
er

se
to

ta
l
p
ro

d
u
ct

1

ca
rd
{l

,r
}(

p
,A

)
·c

a
rd
{l

,r
}(

q,
B

)
0

co
m

b
in

ed
in

v
er

se
av

er
a
g
e

4

(c
a
rd
{l

,r
}(

p
,A

)
+

ca
rd
{l

,r
}(

q,
B

))
·(

ca
rd
{l

,r
}(

x
,p

,A
)
+

ca
rd
{l

,r
}(

y
,q

,B
))

0

st
o
ch

a
st

ic
1

∑ ∀
p
′(

ca
rd
{l

,r
}(

x
,p
′ ,

A
)
·c

a
rd
{l

,r
}(

y
,p
′ ,

B
))

0

co
n
st

a
n
t

1
.0

0

160 9. Evaluation and Tuning

matching algorithms, and conducted a user study to determine which config-
uration of the algorithm and filters performs best in chosen schema matching
scenarios. We discussed the convergence and complexity of the algorithm.

The main results of our study were the following:

– For an average user, overall labor savings across all tasks were above 50%.
Recall from Chap. 9 that our accuracy metric gives a pessimistic estimate,
i.e., actual savings may be even higher.

– A quickly converging version of the fixpoint formula (C) did not introduce
accuracy penalties.

– Threshold filter performed best.
– The best formula for computing the propagation coefficients was the one

based on inverse average (Sect. 7.3).
– The flooding algorithm is relatively insensitive to “errors” in initial simi-

larity values.

By studying various model-management scenarios, we found that the SF
algorithm performs particularly well if the input schemas are two versions of
the same schema, with minor variations. In such cases, the algorithm often
produces an output that does not need any manual post-processing.

Below we summarize the limitations of the algorithm and several open
issues that need to be investigated. This list is by no means exhaustive:

1. The algorithm works for directed labeled graphs only. It degrades when
labeling is uniform or undirected, or when nodes are less distinguishable.
For example, the algorithm does not perform well for solving the graph
isomorphism problem on undirected graphs having no edge labels.

2. Applicability of the algorithm is limited to equityped models. While
matching of an XML schema against another XML schema delivers us-
able results, matching of a relational schema against an XML schema
fails.

3. An important assumption behind the algorithm is that adjacency con-
tributes to similarity propagation. Thus, the algorithm will perform un-
expectedly in cases when adjacency information is not preserved. For
example, in HTML pages nodes that are structurally far away from each
other may be displayed visually close. Thus, two cells in an HTML table
that are vertically adjacent may be far apart in the document and won’t
contribute to similarity propagation.

4. The algorithm tends to favor superstructures. Consider graph A contain-
ing subgraph A1. Let graph B contain a superstructure B1 such that
A ⊂ B1 and a substructure B2 such that B2 ⊂ A. The algorithm would
favor B1 as a match candidate for A, i.e., similarity values between nodes
in A and B1 will be higher that those between A and B2.

5. Currently, we do not consider order and aggregation in the algorithm.
It is possible that matching of XML schemas could benefit from taking
XML features into account.

9.6 Conclusions and Open Issues 161

6. The distribution of the similarity values produced by the fixpoint compu-
tation is non-uniform. It may be difficult to combine the algorithm with
the matching techniques that rely on absolute similarity values such as
those presented in (Do and Rahm 2002).

7. It is unlikely that a standalone version of the algorithm could outperform
custom matchers developed for a particular domain. Custom matchers
may deploy domain-specific heuristics that are not available to the simi-
larity flooding algorithm (e.g., value ranges, cardinalities, classifiers etc.).
However, the algorithm can make use of custom import and export filters,
such as XMLMapFilter mentioned in Sect. 7.5, to prototype a first-cut
version of a specialized matcher quickly.

A detailed examination of the related work on matching algorithms and
evaluation of matching techniques in presented in Sect. 10.2.

162 9. Evaluation and Tuning

Part IV

Model Management in Perspective

163

10. Related Work

“The secret to creativity is knowing how to hide your sources.”

– Albert Einstein (1879-1955)

The work on metadata management looks back onto over three decades
of prolific research efforts ranging from the invention of database schemas
(McGee 1959) to database design (Wiederhold 1977), from storing schemas
and queries as first-class objects (Stonebraker et al. 1984; den Bussche et al.
1993; Lakshmanan et al. 2001), to transforming them using complex algo-
rithms (Abiteboul et al. 1995; Halevy 2001). Generic model management is,
however, a quite recent approach to metadata management. Its goal is to
factor out the similarities of the metadata problems studied in the literature
and develop a set of high-level operators that can be utilized in various sce-
narios. The set of operators that we examined was inspired by the vision and
model management scenarios presented in (Bernstein et al. 2000b; Bernstein
and Rahm 2000; Bernstein 2003) and can be traced back to the early work
(Wiederhold 1994).

In this chapter, we survey the literature that motivated the operator def-
initions, algorithms, and scenarios presented in the dissertation:

– In Sections 10.1-10.5 we examine the major metadata problems that under-
pin the operators Merge, Match, Compose, Extract, and Diff. These prob-
lems are data integration, schema matching, mapping composition, view
selection, and view complement, respectively.

– In Sect. 10.6, we discuss the work that exploited state-based semantics and
show how our approach can be viewed in category-theoretic terms.

– In Sect. 10.7, we discuss the metadata management capabilities of today’s
repository systems.

– In Sect. 10.8, we review two metadata-intensive applications, declarative
mediation and change propagation.

– In Sect. 10.9, we briefly cover other related work such as data translation,
mapping tables, and the Z method.

166 10. Related Work

10.1 Data Integration and Merge

Data integration is probably the most widely known metadata-centric area
of database research. Data integration comprises a whole range of problems
that arise when heterogeneous data needs to be stored or manipulated in a
uniform fashion. A characteristic property of data integration scenarios is the
presence of a number of heterogeneous schemas, called local schemas, and a
unified, integrated schema, called global schema (Lenzerini 2002). The data
itself can be stored either in local databases, in a global database, or at both
places. Either the local schemas or the global schema can be used to query
or update the data. Depending on where the data actually resides, query
and update rewriting may be necessary. When the data is stored in the local
databases, the latter are often called (data) sources.

At least three major data integration scenarios can be distinguished in
the literature depending on the integration goals, location of data, target of
queries, etc. (Wiederhold 1977; Batini et al. 1986; Davidson et al. 1995a):

– In view integration, a global schema is produced for a number of local
schemas. The local schemas capture the individual requirements of differ-
ent user groups. The global schema must be capable of representing the
complete information of each local schema to satisfy the requirements of
each user group. In other words, each local schema must be definable as a
view on the global schema. The users do not adopt the global schema for
their applications but run queries and updates through the local schemas
defined as views over the global schema, i.e., query rewriting is required.
Moreover, in some cases the local databases already contain data before
the integration takes place. This data needs to be physically migrated to
the global database.

– The aim of database integration is to provide a uniform view on a set of
local databases, or sources. That is, the data remains at the sources but is
queried and updated via the global schema. The global schema may cover
all information of the local schemas or, more typically, only a fragment
relevant for a particular application.

– In data warehousing, data is stored both at the sources, which are called
operational databases, and in the global database, or data warehouse. The
content of the data warehouse typically contains a portion of the opera-
tional data but may also store historical information that is not present
in the sources any more. Online analytical processing (OLAP) queries are
run against the global database and need not be rewritten. The updates on
sources are either propagated to the warehouse in batches or are rewritten
and executed directly on the warehouse if the warehouse is incrementally
updatable.

The properties of the aforementioned scenarios are summarized in Ta-
ble 10.1. Letters L and G stand for “local” and “global”, respectively. The

10.1 Data Integration and Merge 167

Table 10.1. Data integration scenarios

Scenario Location
of data

Target of
queries or
updates

Direction
of map-
pings

Coverage
of global
schema

View integration (L →) G L LAV complete
Database integration L G and L GLAV partial
Data warehousing L and G G and L GAV partial

terms LAV, GAV, and GLAV abbreviate local-as-view, global-as-view, and
global-local-as-view, respectively. They are discussed in Sect. 10.1.2.

Across all these scenarios, several common tasks can be identified:

1. Constructing a global schema for a given set of local schemas, known as
schema integration.

2. Constructing mappings between the given global schema and local
schemas or among the local schemas, studied in the context of schema
matching.

3. Answering queries and performing updates on the local databases via
the global view or on the global database via the local views. This task
has been studied in the context of answering queries using views and the
view update problem.

In this section, we focus on schema integration and answering queries using
views. We review the schema matching problem in Sect. 10.2. In Sect. 10.8.1,
we consider another aspect closely related to data integration, namely inte-
gration of information processing services.

10.1.1 Schema Integration

The operator Merge is designed to be used as a principal schema integration
operator. We derived the signature and the definition of the semantics of
the operator from various approaches to schema integration suggested in the
literature.

Inputs and Outputs of Schema Integration. One of the key observations that
surfaced in most of approaches is that schema integration is driven by a formal
description of the relationship between the local schemas (input schemas).
This relationship is called “interrelational dependencies” in (Casanova and
Vidal 1983), “integration constraints” in (Biskup and Convent 1986), and
“inter-schema correspondences” in (Spaccapietra and Parent 1994). Davidson
et al. (1995a) argued that the relationship between the input schemas needs
to be specified using a complex mapping language. Thus, our operator Merge
takes as input the schemas and a mapping between the schemas. The output
of the operator includes the mappings between the integrated schema and
the input schemas, just as in (Spaccapietra and Parent 1994).

168 10. Related Work

Some approaches to schema integration, such as (Buneman et al. 1992),
make a simplifying assumption that the input mapping is given implicitly
through syntactic equality of the elements (classes, attributes, etc.) that oc-
cur in the input models. Yet other techniques, e.g., (Gotthard et al. 1992; Noy
and Musen 2000), allow the engineer to construct the input mapping during
the merging process, i.e., include a built-in matching step. Taking a mapping
as an input parameter to Merge offers a more general approach, which facil-
itates the development of independent algorithms for Match and Merge and
helps formalizing implicit assumptions. Still, as we point out below, the two
operations may sometimes be hard to separate from each other.

Complete vs. Partial Global Schema. Batini et al. (1986) observe that the
process of constructing the global schema is often performed in two phases,
by first obtaining a union of the source schemas and then performing re-
structuring operations on the result. The idea behind “unioning” the source
schemas is to ensure that the global schema preserves all information of the
source schemas. As we explained above, this is precisely the objective in the
view integration scenarios. We followed this intuition in defining the seman-
tics of the operator Merge.

In contrast, in database integration the goal is to provide access to several
existing, autonomous databases. In this setting, the global schema may pro-
vide any conceivable (partial) view on the local schemas, i.e., its construction
is driven by the application requirements and cannot be fully automated.
The trend to focus on importing and integrating selected portions of source
databases, as in the mediation and federated architectures, has been ob-
served in (Hull 1997). Notice that the selected portions of local schemas can
be characterized by defining a view vi on each local schema si such that vi

exposes all information of si relevant for the given application. Then, the
extracted view schemas can be taken as inputs of the Merge operator. Hence,
it seems that the objective of capturing all information is fundamental to
schema integration and can be exploited even in mediation and federated
architectures. In several other schema integration tasks the objective is to
construct a global schema that exposes only the “overlapping” information
of the source databases. This case corresponds to the operator Intersect that
we define in Sect. 11.3.3. The distinction between integrating all vs. over-
lapping information was emphasized and studied in (Buneman et al. 1992;
Wiederhold 1994).

Minimality of Global Schema. The purpose of restructuring of the global
schema that is done in various methodologies is to eliminate the redundancy
caused by the fact that the local schemas are not disjoint and to obtain
a “minimal” global schema that still captures the complete content of the
local schemas. We formalized this idea in condition (iv) of Definition 4.2.4.
A variety of transformation heuristics, rules, or restructuring primitives have
been suggested to obtain “smaller” or “better” schemas (Casanova and Vidal
1983; Buneman et al. 1992) . A common requirement on such transformation

10.1 Data Integration and Merge 169

rules is information preservation. For example, in (Spaccapietra and Parent
1994) the rule definitions are based on the principle that whenever there is a
conflict between two structures of the schemas, the integrated schema holds
the more unconstrained structure.

Casanova and Vidal (1983) describe a heuristic optimization procedure
that tries to reduce redundancy and the size of the output schema produced
by merging. They consider a schema language with a rich set of constraints
such as inclusion, exclusion and functional dependencies and observe that
constructing minimization procedures for such a language is very hard due
to the interaction of the dependencies and the complexity of the inference
problem for inclusion dependencies.

Uniqueness of Merge Result. Ideally, the outcome of the Merge operation
should not depend on the particular merge algorithms, on the choice of
schema restructuring primitives, or on the order in which the local schemas
are merged. In other words, the input schemas and mapping should uniquely
determine the merged schema and the mappings from the merged schema
to the input schemas. Indeed, the definition of Merge given in Sect. 4.2.4
suggests that Merge could be a fully automatic operation, provided that all
potential conflicts are resolved in the input mapping. And yet, as observed
in (Rosenthal and Reiner 1994), much of the research literature on schema
integration consists of careful case-by-case heuristics for resolving particu-
lar types of mismatches between schemas, such as conditionally mergeable
relationships. That is, the result of Merge may vary substantially from one
methodology to another.

The reason for this discrepancy becomes clearer if we examine the work
such as (Casanova and Vidal 1983; Biskup and Convent 1986; Buneman et al.
1992; Rosenthal and Reiner 1994), which give a rigorous theoretical treat-
ment of schema integration. Assuming that the mapping between the input
schemas has been agreed upon, a primary source of difficulties seems to
be due to the limitations of the schema language used for representing the
merged schema.

For example, Biskup and Convent (1986) suggested a notation quite sim-
ilar to our Merge operator to denote the immediate result of schema integra-
tion: Comb(v1, . . . , vn, I), where vi are view schemas and I is a set of integra-
tion constraints (input mapping). Essentially, Comb() describes a trivial way
of merging the schemas by simply including the integration constraints spec-
ified in the input mapping into the definition of the merged schema, just as
suggested in Theorem 4.2.4. The authors observed that Comb() is in general
not a valid database schema because it may contain constraints that cannot
be represented in the schema language. The goal of the subsequent manip-
ulation of Comb() is to find a valid schema G that contains no integration
constraints and is equally expressive as Comb(). They present a pseudocode
algorithm for eliminating integration constraints step by step. Since it may
not be possible to rewrite all integration constraints into integrity constraints

170 10. Related Work

in G, the authors acknowledge that G may have to be more expressive than
Comb(). Obviously, there is substantial flexibility in choosing G, which in
part explains various heuristics and restructuring primitives that have been
examined in the literature.

As another example, consider commutativity and associativity of Merge,
highly desirable properties (see e.g., (ElMasri 1980)) that are hardly ever sat-
isfied in existing schema integration techniques. Associativity of Merge was
discussed in (Buneman et al. 1992) for a simple object-oriented schema lan-
guage with generalization. The authors argued that the merged schemas may
contain so-called implicit classes in addition to the classes of the schemas
being merged. If these implicit classes are made explicit in the result (sim-
ilar to replacing an existential formula by a constant), Merge becomes non-
associative. To overcome this problem, the authors extended their schema
language to accommodate the implicit classes. In this example, the limited
expressiveness of the schema language was a major obstacle in making merge
associative.

Across many techniques, the variability of results of schema integration
is often due to the need to materialize the merged schema in some target
schema language. The evaluation of the merge algorithms and heuristics
proposed in the literature is an open problem, which is largely due to the
lack of established quality metrics and formal requirements.

Schema and Mapping Languages. A variety of schema and mapping lan-
guages have been used for schema integration. Relational schemas are con-
sidered in (Casanova and Vidal 1983; Biskup and Convent 1986). Buneman
et al. (1992) use a simple object-oriented schema language. The work in
(Miller et al. 1994; Spaccapietra and Parent 1994; Pottinger and Bernstein
2003) uses other quite different schema languages that are reminiscent to the
Entity-Relationship (ER) schema language. Noy and Musen (2000) focus on
merging of ontologies.

The spectrum of utilized mapping languages is also quite broad. In
(Casanova and Vidal 1983; Biskup and Convent 1986; Spaccapietra and Par-
ent 1994), the mapping language consists of a set of element correspondence
assertions on entities or relational attributes. The assertions include equality
of value set, containment (inclusion dependencies), non-empty intersection,
disjointness, or functional dependencies. The morphisms, our mapping lan-
guage discussed in Sections 2.2.2 and 6.1, can be seen as a simple variant of
the languages suggested in these approaches, in which only equality of value
sets is utilized.

The mapping language of Pottinger and Bernstein (2003) allows describ-
ing the structural relationships between the elements of the input schemas
and can be utilized for specifying a priori how the structural conflicts are
to be resolved. Davidson et al. (1995a) suggested a very powerful mapping
language WOL (Well-founded Object Language). They motivate the need for

10.1 Data Integration and Merge 171

such a language using schema integration scenarios but do not address the
computation of the merge result.

Separability of Match and Merge. The order of the unioning and restructur-
ing phases used in schema integration approaches varies between integration
methods. For example, in (Motro 1987) the union is carried out first to ob-
tain a “superview” of the sources, which is then restructured into a final
shape. On the other hand, in (Buneman et al. 1992; Spaccapietra and Par-
ent 1994) the information on how the schemas are to be reshaped is part of
the input, i.e., in a way restructuring happens before unioning of schemas.
In (Gotthard et al. 1992; Noy and Musen 2000), the user is asked questions
such as whether two given structures are similar and whether they conflict
during the merging process. In (Pottinger and Bernstein 2003) and in our
GraphMerge algorithm of Sect. 3.2.7 restructuring information comes in part
from the input mapping and in part from the information obtained during
semiautomatic conflict resolution.

The input mapping used for schema integration is obtained by match-
ing the input schemas using the operator Match. The benefit of separating
matching and merging is that these two operators can be studied indepen-
dently, and the algorithms developed for matching or merging can be used
across different approaches to schema integration. However, this separation
is not always possible. As we argue in Sect. 11.3.4, in some cases two schemas
can be only related by way of a third schema and two mappings. That is, the
problem of constructing the global schema may be very closely intertwined
with that of matching the local schemas. Moreover, binary mappings may
be insufficient to describe the relationships between more than two input
schemas. Furthermore, in practice it may be easier to merge schemas step by
step, resolving conflicts on demand, as compared to specifying the complete
conflict resolution information a priori in a matching step. It may however
be possible to specify such a stepwise schema integration approach using a
model-management script that uses the elementary operators Extract, Match
and Merge.

Merging Algorithms. Much of the work on schema integration focused on the
design of algorithms that satisfy certain desirable properties, such as infor-
mation preservation (see e.g. (Spaccapietra and Parent 1994)). In contrast,
the approach exploited in Rondo and in (Pottinger and Bernstein 2003) aims
at simplifying the implementation of the Merge operator for various kinds of
models. In the GraphMerge algorithm of Sect. 3.2.7 and the algorithm pre-
sented in (Pottinger and Bernstein 2003), the input schemas are represented
and manipulated as graphs. The attractiveness of this approach is that the al-
gorithms can be easily adapted for new kinds of models, either by tuning the
conflict resolution rules (function conflictsWith in Sect. 3.2.7) or by encoding
the conflict-resolution strategy in the input mapping (e.g., using direction of
morphism arcs in Rondo or structure of input mappings in (Pottinger and
Bernstein 2003)).

172 10. Related Work

The generic merging algorithm proposed by Pottinger and Bernstein
(2003) is similar in spirit to the GraphMerge algorithm. Instead of simple
morphisms, their algorithm takes as input a mapping with a complex in-
ternal structure, which can be exploited for describing how the structural
conflicts of the input models are to be resolved. The authors demonstrate
that the algorithms developed in (Spaccapietra and Parent 1994; Noy and
Musen 2000) and the GraphMerge algorithm can be implemented by adapt-
ing their generic merging algorithm. They observe that an approach based on
a common meta-meta model is very flexible and can accommodate virtually
all merging techniques proposed in the literature.

Indeed, as long as the schemas and merging rules are relatively simple it
is easy to see how a structured mapping and simple conflict resolution rules
can drive the transformation of the input schemas represented as graphs into
an output schema. However, in presence of non-trivial schema constraints or
an expressive mapping language the conflict resolution rules may become ar-
bitrarily complex and the benefit of a generic merging algorithm diminishes.
For example, it is unlikely that the algorithm and the axiom system presented
in (Casanova and Vidal 1983) can be expressed using simple structural prim-
itives.

10.1.2 Answering Queries Using Views

When the global schema, the local schemas, and the mappings between them
are given, the major remaining task is to rewrite the queries stated in terms
of the global schema into queries on local schemas, or the other way around.
The problem of answering queries using views can be stated in a relatively
straightforward fashion in terms of state-based semantics. However, com-
puting the rewritten queries can be extremely hard for concrete mapping
languages. The purpose of this section is to illustrate that materializing the
mappings that are produced in model-management scripts can be very chal-
lenging, yet there has been substantial research that we can build upon. A
recent survey of approaches to answering queries using views is presented in
(Halevy 2001).

Equivalent and Maximally-Contained Rewritings. In its simplest setting, the
problem of answering queries using views can be formulated as follows. Given
a view m mx on m, rewrite query q on m into a query q′ on mx such that
the result of q′ is identical to the result of q or, if this is not possible, the
result of q′ is a maximal result that is contained in the result of q. Thus, the
two major problems studied in the context of answering queries using views
are the equivalent rewriting problem and the maximally-contained rewriting
problem. Equivalent rewriting is a prerequisite of query optimization (see
e.g. (Goldstein and Larson 2001)), whereas in a data integration setting,
equivalent rewriting is rarely achievable and one frequently has to settle for
maximally-contained rewritings.

10.1 Data Integration and Merge 173

An equivalent rewriting exists only when the condition q = m mx ◦
Invert(m mx) ◦ q holds. In this case, the rewritten query q′ on mx is
q′ = Invert(m mx) ◦ q. However, in general q′ may be non-functional and
only a weaker condition q ⊆ m mx ◦ Invert(m mx) ◦ q is satisfied (assuming
that m mx is total). That is, for a fixed x ∈ mx there are multiple possible
results r1, . . . , rk of q′ such that (x, ri) ∈ q′. Each possible result ri corre-
sponds to executing q on some source state yi ∈ m with (yi, x) ∈ m mx. The
intersection r = r1 ∩ . . . ∩ rk of all possible results of q′ yields the certain
result for x. The certain result is the maximal result that is contained in each
result q[yi]. The query qc that returns the certain result for each x ∈ mx is a
maximally-contained rewriting of q.

The concept of a certain answer was originally introduced in (Abiteboul
and Duschka 1998) for a relational setting. A certain answer is a tuple that
occurs in each possible result ri. What we call a certain result above corre-
sponds to the set of all certain answers in the relational case. A certain result
r1 ∩ . . .∩ rk may not be equal to one of the possible results ri, i.e., in general
qc
⊆ Invert(m mx) ◦ q = q′.

Notice that the notion of a certain result depends on a concrete schema
language, whereas the notion of a maximally-contained rewriting depends, in
addition, on a concrete mapping language. For example, Halevy (2001) ob-
serves that a rewriting is maximally-contained only with respect to a specific
query language; there can sometimes be a maximally-contained query in a
more expressive language that provides more answers. Thus, for certain query
languages a maximally-contained rewriting may not yield all certain answers.
Similarly, the notion of a certain result depends on the instance-containment
relationship which varies among schema languages, as we stress below when
we discuss query containment. Thus, just as with other model-management
scenarios that we considered, the hardness of the problem of answering queries
using views is due to materialization of rewritten queries in concrete mapping
languages. For many important schema and mapping languages, the problem
is NP-hard or even undecidable (see complexity summary in (Abiteboul and
Duschka 1998; Lenzerini 2002)).

In practice, many factors need to be considered for choosing an “opti-
mal” rewriting (if it is computable). For example, instead of a certain result
we may be more interested in computing a maximal partial result that can
be obtained from a set of distributed sources under given time constraints.
Or, if the goal is equivalent rewriting, we may want to find the “cheapest”
equivalent rewriting, especially in the context of query optimization.

Query Containment. The problem of finding a maximally-contained query
rewriting qc is closely related to the query containment problem (Ullman
1997). A maximally-contained query qc is defined as a query on mx that is
“contained” in q, denoted as qc ⊆c q, and is maximal with respect to ⊆c,
i.e., qc ⊆c t ⊆c q implies t = qc for each query t. The algorithms for query

174 10. Related Work

containment do not provide a means for computing qc but help verify whether
a given qc is a candidate rewriting.

Strictly speaking, the query containment problem deals with the contain-
ment of query results, rather than queries. Formally, q1 ⊆c q2 iff ∀x ∈ m :
q1[x] ⊆i q2[x]. The result-containment relationship ⊆c is defined in terms
of the instance-containment relationship ⊆i. The relationship ⊆i is a transi-
tively closed reflexive relation on m×m and can be defined in various ways
for concrete schema languages. For instances of relational schemas, x1 ⊆i x2

typically indicates that the set of tuples of x1 is contained in the set of tuples
of x2. However, ⊆i has to be defined differently for relations with multiset se-
mantics, instances of object-oriented database schemas, or XML documents.
In these cases, ⊆i may be based on a sublist, subtree, or graph embedding
relationship on instances.

Several approaches in the literature use alternative, more general notions
of query containment. For example, Li et al. (2001) suggest the notion of
“p-containment” meaning that the result of a query q1 p-contained in q2 can
be computed from the result of q2 using a third query f , i.e., q1 = q2 ◦ f .
In a simplest case, which is often assumed for relational schemas, f is a
selection query. A similar idea is presented in (Bancilhon and Spyratos 1981).
There, the authors use the condition ∀x, y ∈ m : q2[x] = q2[y] ⇒ q1[x] =
q1[y]. Whenever it holds, they say that q2 “determines” q1. Their definition
is subsumed by the condition q1 = q2 ◦ f . The advantage of using these
more general notions of query containment is that they can be characterized
in state-based semantics without appealing to a containment relationship
on instances that needs to be defined separately for each concrete schema
language.

The complexity of the query containment problem for different query
languages, such as conjunctive queries, queries with negation, Datalog, etc.
is summarized in (Ullman 1997). For example, containment for conjunctive
queries is NP-complete, whereas containment for Datalog programs is unde-
cidable.

GAV, LAV, and GLAV Mappings. In a data integration setting, the rela-
tionship between the local schemas and the global schema may be expressed
using the so-called LAV, GAV, and GLAV mappings, which are distinguished
based on the functional properties of the mappings (compare Table 10.1 on
page 167):

– Global-as-view (GAV): there is a view that defines the content of the global
schema based on the content of the sources, as in data warehousing.

– Local-as-view (LAV): for each local schema L, there is a view on the global
schema that defines the content of L, as in view integration.

– Global-local-as-view (GLAV): the relationship between the local schemas
and the global schema is established using a combination of GAV and LAV
assertions, i.e., the mappings between the local schemas and the global

10.2 Schema Matching and Match 175

schema and their inverse mappings may be non-functional. This is a general
case in database integration.

Distinguishing between GAV, LAV, and GLAV mappings led to different
query rewriting algorithms with varying computational properties.

Sound, Complete, and Exact Views. Another distinction often made in the
literature is that between sound, complete, and exact views (Lenzerini 2002).
Strictly speaking, this terminology finesses the fact that different, non-
functional mapping languages are used to characterize the relationship be-
tween the global schema and the local schemas. To illustrate, let v be a view
on m, i.e., v is a total functional mapping from m to m′. Assume that we
are given a valid “snapshot” of the application state, i.e., we have an in-
stance x ∈ m of the source schema and an instance y ∈ m′ of the view.
The view v is said to be exact when for all such snapshots v[x] = y, sound
when v[x] ⊇i y and complete when v[x] ⊆i y. The relationship ⊆i describes
containment of instances, as explained above. (The case v[x] ⊇i y is referred
to as “open-world assumption” in (Abiteboul and Duschka 1998).)

Technically, each of the above “views” can be represented as a mapping
map defined as map = v for exact views, (x, y) ∈ map ⇐⇒ v[x] ⊇i y
for sound views, and (x, y) ∈ map ⇐⇒ v[x] ⊆i y for complete views. For
example, let v = �πA(R) = S�. A mapping that describes v as a sound view
is map = �πA(R) ⊇ S�, i.e., the mapping holds if and only if all tuples of S
are contained in πA(R). This mapping is non-functional.

In this section, we have shown that several well-known hard problems can
be characterized relatively easily using the state-based approach. What makes
these problems hard is the need to express the mappings and models whose
properties are specified in an abstract fashion using concrete languages. This
is the objective of materialization (see Sect. 4.3). Materialization seems to be
one of the major upcoming challenges for model management. Fortunately,
there is excellent prior work to build on.

10.2 Schema Matching and Match

Similarity Flooding. In the model-management prototype that we presented
in this dissertation, the operator Match is implemented using the Similarity
Flooding (SF) algorithm of Chap. 7. In designing the SF algorithm and the
filters, we borrowed ideas from three research areas. The fixpoint computation
corresponds to random walks over graphs (Motwani and Raghavan 1995), as
explained in Sect. 7.4. A well-known example of using fixpoint computation
for ranking nodes in graphs is the PageRank algorithm used in the Google
search engine (Brin and Page 1998). Unlike PageRank, our algorithm has two
source graphs and extensively uses and depends on edge labeling. The filters
that we proposed for choosing subsets of multimappings are based on the

176 10. Related Work

intuition behind the class of stable marriage problems (Gusfield and Irving
1989). General matching theory and algorithms are comprehensively covered
in (Lovàsz and Plummer 1986).

Since the SF algorithm was published (Melnik et al. 2002), a number
of other research efforts that exploit a similar idea have emerged in the lit-
erature. For example, Jeh and Widom (2002) examine the case where all
arcs bear the same label and represent document citations links. Anyanwu
and Sheth (2002) use the intuition of contextual similarity to discover asso-
ciations on the Semantic Web. Noy and Musen (2002) present an algorithm
for comparing ontology versions, which uses fixpoint computation. Goldstone
and Rogosky (2002) exploit unlabeled relations in graphs to translate across
conceptual systems using the intuition of contextual similarity that underlies
the SF algorithm. They draw very intriguing conclusions regarding cognitive
processes that take place in establishing relationships between different con-
ceptual models. In particular, their work supports the claim made by some
philosophers and cognition scientists that it is often possible to translate be-
tween the concepts of two conceptual systems by exploiting only intrinsic,
within-system relations and no or little extrinsic grounding.

We investigated the application of the SF algorithm for schema match-
ing. However, SF is a general-purpose graph matching algorithm and graph
matching has many other applications. As we observed in Chap. 7, the algo-
rithm may be utilized for computing schema correspondences using instance
data, and for finding related elements in data instances. In fact, matching
of data instances is a promising application area. For example, consider two
CAD files or program scripts that have been independently modified by sev-
eral developers. In this scenario, matching helps to identify moved or modi-
fied elements in these complex data structures. In bioinformatics, matching
has been used for network analysis of molecular interactions (Ogata et al.
2000; Kanehisa 2000). In this domain, data instances represent e.g. metabolic
networks of chemical compounds, or molecular assembly maps. Matching of
molecular networks and biochemical pathways may help predict metabolism
of an organism given its genome sequence. We are aware of ongoing work by
other researchers who are applying a variation of the SF algorithm to data
structures used in computer graphics, semantic integration of spatial data,
and bioinformatics.

Related Approaches. The SF algorithm is only one possible implementation
for the Match operator. Various systems and approaches have recently been
developed to determine mappings between schemas (semi-)automatically,
e.g., Autoplex (Berlin and Motro 2001), Automatch (Berlin and Motro 2002),
Clio (Yan et al. 2001; Miller et al. 2001), COMA (Do and Rahm 2002), Cu-
pid (Madhavan et al. 2001), Delta (Clifton et al. 1997), DIKE (Palopoli et al.
2003), EJX (Embley et al. 2001), GLUE (Doan et al. 2002), LSD (Doan et al.
2001), MOMIS (and ARTEMIS) (Bergamaschi et al. 2001; Castano and An-
tonellis 1999), SemInt (Li and Clifton 2000), SKAT (Mitra et al. 1999), and

10.2 Schema Matching and Match 177

TranScm (Milo and Zohar 1998). While most of them have emerged from the
context of a specific application, a few approaches (Clio, COMA, Cupid) try,
just as SF, to address the schema matching problem in a generic way that is
suitable for different applications and schema languages. A taxonomy of auto-
matic match techniques and a comparison of the match approaches followed
by the various systems is provided in (Rahm and Bernstein 2001). Accord-
ing to their taxonomy, Similarity Flooding can be classified as a structural,
1:1-local, m:n-global matching algorithm.

To identify a solution for a particular match problem, it is important to
understand which of the proposed techniques performs best, i.e., can reduce
the manual work required for the match task at hand most effectively. To
show the effectiveness of their system, the authors have usually demonstrated
its application to some real-world scenarios or conducted a study using a
range of schema matching tasks. Unfortunately, the system evaluations were
done using diverse methodologies, metrics, and data making it difficult to
assess the effectiveness of each single system, not to mention to compare
their effectiveness. Furthermore, the systems are usually not publicly available
making it virtually impossible to apply them to a common test problem or
benchmark in order to obtain a direct quantitative comparison.

To obtain a better overview of the current state of the art in evaluating
schema matching approaches, we reviewed the recently published evaluations
of the schema matching systems in (Do et al. 2002). There, we introduced
and discussed the major criteria influencing the effectiveness of a schema
matching approach, e.g., the chosen test problems, the design of the exper-
iments, the metrics used to quantify the match quality and the amount of
saved manual effort. Apart from the Cupid evaluation, which represents the
first ever effort to evaluate multiple systems on uniform test problems, the
problems used in other approaches originate from very different domains of
varying complexity. While some evaluations used simple match tasks with
small schemas and few correspondences to be identified, several systems also
showed high match quality for somewhat more complex real-world schemas
(COMA, LSD, GLUE, SemInt). Some evaluations, such as Autoplex, Au-
tomatch, completely lack the description of their test schemas. Unlike other
systems, Autoplex, Automatch and LSD perform matching against a previ-
ously constructed global schema. All systems return correspondences at the
element level with similarity values in the range of [0,1]. Except for SemInt,
correspondences are of 1:1-local cardinality (using the taxonomy of (Rahm
and Bernstein 2001)), providing a common basis for determining match qual-
ity.

As we have discussed in Chap. 9, matching is a subjective operation and
there is not always a unique result. The evaluation that we presented in
this dissertation is the only matching evaluation we are aware of that took
into account the subjectivity of the user perception about required match
correspondences. The schemas utilized in the user study are in Appendix A.

178 10. Related Work

Previously proposed metrics for measuring the matching accuracy (Li
and Clifton 2000; Doan et al. 2001) did not consider the extra work caused
by wrong match proposals. Our quality metric, matching accuracy, which
we used for evaluating the SF algorithm is related to the precision/recall
metrics developed in the context of information retrieval. It has been used in
subsequent work by (Do and Rahm 2002) under the name “Overall” metric.
Our metric is similar in spirit to measuring the length of edit scripts as
suggested in (Chawathe and Garćıa-Molina 1997). However, we are counting
the edit operations on mappings, rather than those performed on models
to be matched. Another source of extra work is additional preparing and
training effort. SF and SemInt do not require any such pre-match effort,
unlike other approaches such as the use of neural networks (Li and Clifton
2000) or machine learning techniques (Doan et al. 2001).

Open Issues and Promising Techniques. Schema matching is an AI-complete
problem, i.e., it is as hard as simulating human intelligence. Thus, there is
little hope that we will be able to automate it fully anytime soon. Although
semiautomatic techniques can be quite useful in many scenarios, in many
other applications automated schema matching is less effective and matching
can rather be compared to a complex design task. Development of powerful
GUI tools is essential to support such design tasks.

One of the hardest open problems in schema matching is the computa-
tion of mapping expressions that describe value transformations and struc-
tural manipulations of data, such as aggregation or transposition. Mapping
expressions are needed to make the mappings operational, i.e., to map in-
stances of schemas from one representation into another. They can be used
to generate SQL views, XSL transformations, or Java programs that can be
directly executed. Specifying mapping expressions is typically a much more
expensive step as compared to finding schema correspondences. In addition,
it is very hard to automate. With the exception of Clio (Miller et al. 2000;
Miller et al. 2001), an overwhelming majority of schema matching approaches
focus on determining schema correspondences. In Clio, after the element cor-
resondences have been uncovered, the engineer is presented an exhaustive
list of possibilities of computing the joins over the source schema and can
select the desired ones by examining the data samples that are judiciously
chosen by the system. The formulas describing value transformations have to
be entered manually by the engineer. The recent work by Brown and Haas
(2003) may be helpful for identifying such formulas.

One of the most promising techniques in schema matching is reuse of ex-
isting mappings by composition. The effectiveness of this approach for finding
schema correspondences was first studied in (Do and Rahm 2002). A major
benefit of reuse is that the technique could also be deployed to compute map-
ping expressions. To our best knowledge, reuse of mapping expressions has
not been addressed in the literature yet. We illustrate and define the prob-
lem of reuse by composition at the end of this section. Mapping adaptation,

10.2 Schema Matching and Match 179

which can be seen as a variant of reuse, is considered in (Velegrakis et al.
2003). We disscuss that approach in Sect. 10.8.2. The problem of how the
schema element labels, which are reused across different websites, can be uti-
lized to drive the schema matching task between n schemas is examined in
(He and Chang 2003). Their work considers the schema matching problem in
the context of integrating the so-called Hidden Web databases.

Exploiting instance data offers another range of promising schema match-
ing techniques. In addition to Bayesian learners (LSD/GLUE) or neural net-
works (SemInt), schema induction can be utilized to derive a more detailed
description of the underlying data. This approach is especially valuable if the
schemas are generic, such as entity-attribute-value tables that store hetero-
geneous information using just a few tables (Agrawal et al. 2001b), or when
schemas are missing entirely, e.g., in semistructured databases. Data mining
techniques such as those presented in (Nestorov et al. 1998) can help derive
schemas from instance data. A recent work exploiting statistical correlation
of instance data is presented in (Kang and Naughton 2003).
Reuse in Schema Matching. We illustrate and formalize the problem of map-
ping reuse. The key ideas that we exploit were presented in (Rahm and Bern-
stein 2001; Do and Rahm 2002; Halevy et al. 2003; Kementsietsidis et al.
2003). Informally, the problem of mapping reuse can be stated as follows:
given a repository of schemas and mappings, derive the mapping between
two given schemas using the mappings contained in the repository. Below,
we specify the problem using two operators, composition and confluence.

Do and Rahm (2002) observed that given two mappings m1 m2 and
m2 m3, we can compute the mapping between m1 and m3 by composing
the two mappings. They suggested the use of composition as a heuristic
and argued that composition may yield incorrect results when the transitiv-
ity assumption of element correspondences does not hold. Their conclusion,
however, describes a property of the mapping language they used, and not a
property of the composition operation.

The result of composition m1 m2 ◦m2 m3 defines a correct mapping be-
tween m1 and m3, although this mapping is typically incomplete. In general,
any k-way composition “path” that connects mp and mq describes a partial
mapping between mp and mq. A more precise mapping between mp and mq

can be obtained by aggregating several partial mappings using the Confluence
operator. To illustrate, consider the following example.

Example 10.2.1. Assume that the following schemas and mappings are con-
tained in the repository:

m1 = �R1, S1, T1�

m2 = �R2, S2�

m3 = �T3�

m4 = �R4, S4, T4�

m1 m2 = �R1 = R2, S1 ⊆ S2�

180 10. Related Work

m2 m4 = �R2 = R4, S4 ⊆ S2�

m1 m3 = �T1 ⊆ T3�

m3 m4 = �T3 ⊆ T4�

For example, mapping m1 m2 states that relations R1 and R2 have the same
extensions, while the tuples of S1 are a subset of tuples of S2. The goal is to
infer the “best” mapping between m1 and m4 based on the information in
the repository. Observe that one path between m1 and m4 can be obtained
via m2 as

m1 m2 ◦m2 m4 = �R1 = R4�

The composition over m3 yields another partial mapping

m1 m3 ◦m3 m4 = �T1 ⊆ T4�

The confluence of both composition paths yields a “maximal” mapping be-
tween m1 and m4 derivable from the repository

map =(m1 m2 ◦m2 m4)⊕ (m1 m3 ◦m3 m4)
= �R1 = R4, T1 ⊆ T4� �

Formally, we state the reuse problem as follows: given a repository of
schemas and mappings, infer a maximal mapping between two given schemas
mp and mq, defined as

mp mq = ⊕
i
(mapi1 ◦ · · · ◦mapik

)

where Domain(mapi1) ⊆ mp and Range(mapik
) ⊆ mq.

Notice that mp mq is in general still a partial mapping. For instance, in
Example 10.2.1 it may well be the case that the exact mapping between m1

and m4 is �R1 = R4, T1 = T4�. The equality T1 = T4 may not be derivable
from the repository, but only a weaker condition T1 ⊆ T4. The maximal
inferable mapping may still require post-processing by a human engineer,
since it is guaranteed to be correct albeit not complete.

The reuse scenario presents a number of computational challenges. Exam-
ples are avoiding the computation of redundant composition paths or finding
the best order of executing the composition, similar to finding an optimal
query plan for multiple joins. Also, some mappings stored in the repository
may have been obtained using model management scripts, in which case it
may be possible to optimize the computation of the maximal inferable map-
ping even further.

10.3 Mapping Composition and Compose

Composition is a fundamental algebraic operation. It plays a key role in many
different areas of mathematics and theoretical computer science and is consid-
ered a basic axiomatic abstraction in category theory (compare Sect. 10.6.3).

10.3 Mapping Composition and Compose 181

In database research, mapping composition has been primarily considered
for queries, i.e., functional mappings. For example, answering a query stated
against a virtual, non-materialized view amounts to composing the query
with the view definition. In relational algebra, each relational operator such
as projection or selection describes a database transformation. Thus, a for-
mula expressed in relational algebra, such as πA(σB=5(R �� S)), can be viewed
as a composition of several elementary transformations. Composition of data
transformations was considered as early as in (Shu et al. 1977; Paolini and
Pelagatti 1977; Borkin 1978; Bancilhon and Spyratos 1981). Commutativity
of elementary transformations provides a foundation for query optimization.
Abiteboul et al. (1995) note that relational algebra queries are closed under
composition, i.e., the result of composing two relational algebra queries can
always be expressed as another relational algebra query.

Composition is likely to be the most frequently used operation in model-
management scripts. Composition implemented in Rondo respects the state-
based semantics of the operator suggested in Sect. 4.2.1. Although our imple-
mentation focuses on morphisms, composition is a truly generic operation,
which has been utilized in many scenarios and for various kinds of mapping
languages. For example, in GUI tools composition of the operations recorded
in the undo history can be viewed as a compensating transformation for user
editing operations. In database recovery, the effects of multiple updates are
composed to speed up and ensure the correctness of recovery. In (Spaccapi-
etra and Parent 1994; Rosenthal and Reiner 1994; Atzeni and Torlone 1996)
composition is performed on schema transformations rather than on instance
transformations and is exploited to study soundness and completeness of
rewriting rules. Bernstein and Rahm (2000) illustrate how composition can
be exploited in data warehousing scenarios.

A significant application of composition, which has gained importance
with the advent of XML, XQuery, and XSLT, consists in composing XQuery
or XSLT queries over XML views on relational data with the views and push-
ing it down for query optimization in the relational engine. As reported in
(Fernandez et al. 2002), three commercial XML publishing systems, Oracle
XML SQL Utility, IBM DB2 XML Extender, and Microsoft SQL Server,
support such query composition. Although querying XML publishing views
can be considered a query optimization problem, the work on this applica-
tion produced algorithms that could be utilized for implementing composi-
tion (and decomposition) of expressions in different mapping languages in a
model-management system.

We explain the general principles behind the aforementioned application
using the work (Shanmugasundaram et al. 2001a) as an example. Their ap-
proach is illustrated in Fig. 10.1 (presentation in the figure differs from that
used in the paper). There, a publishing view (vdef ◦vuser) over relational data
is defined using a composition of a so-called default XML view vdef and a
user-defined view vuser expressed in XQuery. The queries q are run against

182 10. Related Work

such publishing views. To push down the queries, the following approach is
used. First, a query is composed with the publishing view. That is, a 3-way
composition of the query with a user view and a default view is computed
as vdef ◦ vuser ◦ q. The result of this 3-way composition is represented inter-
nally as a so-called XML Query Graph Model, qXQGM. Then, this internal
mapping is decomposed into two transformations: a SQL query qSQL and a
so-called tagger graph vtag (expression in yet another language that gener-
ates an XML document from the query results delivered by the relational
engine). The purpose of this decomposition is to push down data and mem-
ory intensive computation to the underlying relational engine. Thus, a user
query is processed by creating an intermediate mapping using a 3-way com-
position and then translating it into an equivalent mapping expressed as a
2-way composition. The examined subset of the XQuery language supports
nested expressions and nested order, while the presented view composition
technique is shown to be complete and produce minimal SQL queries. Fer-
nandez et al. (2002) present a very similar approach (there, default views are
called canonical views).

user query

(XQuery)

user view

(XQuery)

default

view
RDB schema

default view (XML)

user view (XML)

result (XML)

vdef

vuser

q tagger

graph

SQL query

result (relational)

qSQL

vtag
tagger

graph

SQL query

result (relational)

qSQL

vtag

XML Query

Graph Model

qXQGM

XML Query

Graph Model

qXQGM

XML Query

Graph Model

qXQGMvdef • vuser • q

qXQGM

qSQL • vtag

Fig. 10.1. Use of composi-
tion in (Shanmugasundaram
et al. 2001a)

More recently, Li et al. (2003) investigated composition of XSL trans-
formations, instead of XQuery transformations, with XML publishing views.
Composition of transformations on semistructured data was explored in (Pa-
pakonstantinou and Vassalos 1999).

Madhavan and Halevy (2003) depart from composing purely functional
mappings and study composition for a GLAV language, which combines the
global-as-view (GAV) and local-as-view (LAV) formalisms. In the mapping
language they consider, a mapping is expressed as a set of formulas of the kind
QA ⊆ QB, where QA and QB are conjunctive queries over two schemas. They
show that in this setting the mapping produced as result of composition may
not be representable using a finite expression. However, the composition turns
out to be finite for a useful subset of the considered language. The authors
present an algorithm for obtaining a minimal composition and establish its
complexity bounds.

10.4 View Selection and Extract 183

The works (Bernstein and Rahm 2000; Bernstein 2003) give a structural
definition of composition, which assumes that mappings are represented as di-
rected acyclic graphs. They distinguish several variants of composition, such
as left/right and outer composition. It is difficult to assess how their defini-
tions relate to the state-based composition (Definition 4.2.1), since the focus
of their work is on structural semantics and no instance-level characterization
of the mapping language that they deploy is presented.

10.4 View Selection and Extract

The intuition that we exploit in defining the operator Extract is closely related
to the problem of view selection in data warehouse design. The view selection
problem can be stated as follows (Theodoratos et al. 2001; Chirkova et al.
2001): given a set of workload queries over a database schema, select a view
to materialize in the data warehouse such that:

1. All queries can be answered using the materialized view,
2. The warehouse design is optimal with respect to a certain cost metric

(e.g., combination of query evaluation and maintenance cost),
3. All operational constraints are satisfied (e.g., the warehouse fits into the

available storage space).

If the set of queries to be supported is limited to one query, condition (1)
can be stated using the operator Extract. More precisely, it corresponds to the
materialization of Extract (compare Sect. 4.3), since it lacks the minimality
constraint. Conditions (2)-(3) can be seen as tuning knobs that drive the
materialization. In fact, condition (1) has been considered in more depth in
the context of answering queries using views (see Sect. 10.1.2), while the
warehouse design literature focused primarily on practicability of the design,
i.e., conditions (2)-(3).

Various kinds of algorithms and query rewriting techniques have been sug-
gested for view selection, including randomized algorithms and heuristic ap-
proaches. In (Theodoratos et al. 2001), queries are combined into a so-called
multiquery graph. Multiquery graphs are rewritten using a set of transfor-
mation rules, such that each rule preserves condition (1), i.e., is sound. The
authors also prove completeness of the presented rules. Chen et al. (2002)
introduce another data structure, a so-called merging tree that is used to
combine the candidate views derived from the workload. The algorithms for
obtaining minimal views were presented in (Li et al. 2001).

Important theoretical results were presented by (Chirkova et al. 2001).
In particular, they study the cardinality of resulting view configurations and
establish lower and upper complexity bounds for the problem. Many, if not
most, approaches to view selection focus on select-project-join queries for rela-
tional schemas under set semantics. Multiset semantics and group-by queries

184 10. Related Work

are considered in (Agrawal et al. 2001a; Chen et al. 2002). In a more recent
work, Gupta et al. (2003) addressed the view selection problem for XML
schemas in content-based routing.

Although using materialized views for query optimization is a relatively
old idea, it has only recently been adopted in commercial database systems.
Agrawal et al. (2001a) developed a tool that recommends materialized views
and indexes and examines tradeoffs between using indexes and materialized
views for a given query workload. The tool ships with Microsoft SQL Server
2000.

A major source of complexity of the view selection problem originates
from the fact that workload queries can interact in various ways. The operator
Extract that we presented takes only one mapping as input. Although it would
be easy to extend the definition of the operator for n input mappings, we
conjecture that the n-ary case can be expressed by a combination of existing
operators. We consider this aspect in more detail in Sect. 11.3.3.

10.5 View Complement and Diff

The operator Diff generalizes the notion of a view complement studied exten-
sively in the context of data warehousing. The notion of view complement
was introduced in the groundbreaking work by Bancilhon and Spyratos (1981)
who used it as a vehicle for a formal treatment of the view update problem
(Dayal and Bernstein 1978). Two views are complementary if given the state
of each view, there is a unique corresponding state of the source database.
That is, the two views are sufficient to reconstruct the database. Recently, it
has been shown (Laurent et al. 2001) that view complements can be exploited
to guarantee desirable data warehouse properties such as independence and
self-maintainability (a data warehouse view is called self-maintainable if the
updated warehouse can be computed directly given the reported changes in
the sources without additional maintenance queries). The theoretical prop-
erties of view complements were studied in (Keller and Ullman 1984; Heg-
ner 1994). The computability of view complements was examined in (Cos-
madakis and Papadimitriou 1984; Laurent et al. 2001; Lechtenbörger and
Vossen 2003). In the remainder of this section we expand the summary given
in this paragraph.

The view update problem consists in finding a correct translation of an
update on the view into an update on the source database. One of the
main correctness criteria suggested in (Dayal and Bernstein 1978) requires
that a view update translation have no side effects on the view. Since a
view typically does not preserve all information in the source database, such
translation is in general non-unique. Bancilhon and Spyratos (1981) suggested
that the desired update policy could be characterized by choosing a certain
view complement and making sure that it remains invariant under updates.

10.5 View Complement and Diff 185

Bancilhon and Spyratos (1981) used a state-based formal framework. In
the definition of the view complement g of f they require the set of pairs
of instances of the respective view schemas, {(f(x), g(x) | x ∈ m}, to be
equipotent with the source schema m. Notice that this set is equipotent
with the mapping f ◦ Invert(g). Essentially, their requirement corresponds
to condition (ii) of Definition 4.2.5. They also reformulate their definition of
view complement similarly to what we did in Theorem 4.2.5 by requiring the
instances of the source schema that were indistinguishable to become distin-
guishable in the view complement (their Theorem 4.2, p. 564). The authors
note that a view can have many different complements and that the iden-
tity view Id(m) is a trivial complement for each view. This fact suggests that
without some sort of minimality conditions the definition of the view comple-
ment can always be satisfied trivially. Thus, (Cosmadakis and Papadimitriou
1984; Laurent et al. 2001) focus on “small” or “minimal” complements.

Our definition of Diff (Definition 4.2.5) corresponds to that of a minimal
view complement. As we noticed in Sect. 4.3, the minimality condition can be
relaxed by looking for a materialization of the mapping, or view complement,
of interest. That is, we can obtain any view complement vc from the minimal
view complement vmin by composing vc with some function h such that
vc◦h = vmin. Also, note that our definition of Diff and the results with respect
to the alternative formulation are more general than those in (Bancilhon and
Spyratos 1981) in that they apply to arbitrary mappings and not only total
surjective functions.

Our definition and the formalization of Bancilhon and Spyratos (1981) are
decoupled from concrete schema and view languages. The materialization of
view complements for database schemas has been first addressed by Keller
and Ullman (1984). In particular, they considered the classical relational
schemas whose instances are subsets of finite powersets. They showed that a
so-called monotonic view has at most one complement that is independent
and monotonic. They also presented an illuminating way of visualizing view
complements in a tabular form. Hegner (1994) considered a less restrictive
setting and showed that under certain conditions the complemented views
form a Boolean algebra.

The algorithms for computing view complements were first studied by
Cosmadakis and Papadimitriou (1984) for the views expressed in relational
algebra using projection, selection, and join. They showed that for relational
schemas with arbitrary functional dependencies computing a minimal com-
plement is NP-complete, but did so using a peculiar notion of minimality that
differs from the one used in our work and other approaches cited above. More
recently, Lechtenbörger and Vossen (2003) argued that it may not even be
necessary to look for the minimal complements; instead, reasonably small yet
non-minimal complements may be more useful in practice. The authors study
the problem for a large class of relational views that include the relational
difference operator.

186 10. Related Work

Most approaches dealing with view complements focused on relational
databases and relational views under set semantics. As we demonstrated using
examples in Sect. 4.2.5, the results of Diff may look quite differently in the
case of multiset semantics. The work (de Amo and Halfeld Ferrari Alves 2000)
presents algorithms for computing minimal view complements for temporal
databases by translating views that are expressed in temporal algebra to first
order expressions over non-temporal relations.

Stated as a view complement problem, computing the results of Diff has al-
ways been considered as a standalone operation. The problem becomes much
harder if Diff is combined in scripts with other operators. As we demonstrated
using the change propagation scenario in Chap. 5, studying the properties of
such complex scripts can be non-trivial.

10.6 Approaches to Specifying Semantics

10.6.1 Semantics of Models and Mappings

The approach presented in Chap. 4 follows a standard way of specifying se-
mantics used in databases and formal logic. For example, in model theory,
which provides standard semantics for mathematical logic, the semantics of
logical expressions is explained in terms of all possible worlds or interpre-
tations that are consistent with these expressions. Similarly, semantics of
database schemas is traditionally expressed in terms of all possible database
states or instances that are consistent with the schema (Borkin 1978; Bancil-
hon and Spyratos 1981; Atzeni et al. 1982; Abiteboul et al. 1995). In (Mad-
havan et al. 2002), the semantics of models and mappings is characterized
directly in terms of model-theoretic interpretations. In all these approaches,
the semantics of a formal artifact is described by a set (or family) of other
formal artifacts. We call this universal concept instantiation and use it as
a foundation for defining the state-based semantics of model-management
operators.

In contrast to many other techniques, the notion of state-based semantics
exploited in this dissertation is not tied to a specific data model, such as
the relational model, or language, such as the first-order logic or SQL. By
raising the level of abstraction, we characterize the semantics of operators
in a generic fashion. That is, we consider the instances of models as opaque
entities and characterize the operators that manipulate models and mappings
without considering the internal structure of the instances. In principle, the
instances of models can be treated as models themselves, i.e., can have their
own sets of instances. This flexibility is required in the approaches such as
(Atzeni and Torlone 1996; Cluet et al. 1998) which exploit multiple levels
of instantiation. (The fact that instances can be treated as models might
have contributed to the apparent overloading of the term “model” used in

10.6 Approaches to Specifying Semantics 187

the literature on databases, AI, and formal logic, which was observed in
(Madhavan et al. 2002).)

We illustrated the operators using relational algebra and SQL views, and
examined in more detail a very simple mapping language, morphisms. A
multitude of other mapping languages have been utilized in the literature for
addressing various metadata management scenarios (Bergamaschi et al. 1999;
Bernstein 2003; Claypool 2002; Cluet et al. 1998; Davidson et al. 1995a; Fan
et al. 2003; Halevy 2001; Kementsietsidis et al. 2003; Li et al. 2003; Madhavan
and Halevy 2003; Melnik et al. 2003b; Mitra et al. 2000; Popa et al. 2002;
Pottinger and Bernstein 2003; Velegrakis et al. 2003) – their number can
probably compete only with the number of data models, or schema languages,
developed for the same purpose. The state-based approach characterizes the
semantics of these mapping languages in a uniform fashion as a relationship
on instance sets. One of the earliest manifestations of this approach can be
found in (Paolini and Pelagatti 1977), where databases were represented by
many-sorted algebras and mappings were treated as homomorphisms. The
authors demonstrated how update operations on databases can be treated as
mappings. A similar technique was developed in (Maibaum 1977). Treating
mappings as relationships between instances allows us to specify and study
mapping containment, mapping composition, and mapping confluence for
heterogeneous mapping languages. This capability is especially important
in scenarios that deploy more than one mapping language (Li et al. 2003;
Shanmugasundaram et al. 2001a).

Lenzerini (2002) suggested a very general way of specifying mappings as
Q1 ∼ Q2, where ∼ is some predicate that holds between the results of queries
Q1 and Q2. We notice however that this mapping specification makes use of
a third common model in which the results of Q1 and Q2 are represented.
Thus, effectively Q1 ∼ Q2 describes a ternary mapping that holds between
three models (compare Sect. 11.3.4).

An interesting observation is that many schema languages such as XML
Schema or almost every semantic database model, e.g., Schema Intention
Graphs (Miller et al. 1994), support quite expressive constraints and, in fact,
can be used as mapping languages: if we assume that the entities used in
schema m are defined in several other schemas m1, . . . , mn, then effectively
m describes an n-ary mapping between the schemas m1, . . . , mn.

The mapping languages vary substantially in their expressive power and
some are better suited for a given purpose than others. For example, the map-
ping tables of (Kementsietsidis et al. 2003), which we discuss in Sect. 10.9,
is a mapping language that addresses the needs of quite different applica-
tions than does SQL or XQuery. Hence, there may not be a best language for
each model management scenario. If the mapping map between two models
is expressed using several partial mappings mapi, each potentially in a dif-
ferent mapping language, the confluence operator can be used to specify the
semantics of map as map = ⊕imapi.

188 10. Related Work

10.6.2 Information Capacity

State-based semantics is closely related to the work on information capacity
(Hull 1986; Miller et al. 1994). The information capacity of schema m is the
cardinal number of its instance set, |Inst(m)| or simply |m| in our simplified
notation. The relative information capacity of two schemas m1 and m2 refers
to the relationship that holds between |m1| and |m2|, such as ≤ or =. The
relationship ≤ is called dominance and is characterized by the existence of a
surjective function map from m2 onto m1.

A key question in the work on information capacity has been whether
a given database schema is more, less, or equally expressive than another
database schema, i.e., whether there exists a surjective or bijective function
between m1 and m2. In contrast, the model-management approach focuses
on obtaining the actual mappings between m1 and m2 that can be deployed
by applications. Such mappings are specified by means of model-management
scripts and may be non-functional (for example, morphisms and GLAV map-
pings are typically non-functional).

In (Hull 1986), four progressively more restrictive notions of dominance
are studied (absolute, internal, generic, and query dominance). For exam-
ple, query dominance means that the function map can be specified using a
first-order predicate calculus expression. Still, even this restrictive notion of
dominance turns out too liberal to accurately measure whether an underlying
semantic connection exists between database schemas. The underlying line
of argument is to present a transformation between two schemas that estab-
lishes query dominance but appears semantically vacuous. In (Miller et al.
1994), it is suggested that more restrictive notions of dominance need to be
developed. That is, more constraints should be placed on the mappings. And
yet, the mappings deployed in real applications can be arbitrarily complex.
For example, some wrappers of legacy systems squeeze multiple attributes of
structured XML messages into a single general-purpose ASCII field.

We argue that dominance and equivalence are inadequate measures of
semantic connection between schemas. In fact, we intensionally use the
term equipotence rather than equivalence to avoid implying such seman-
tic connection. The fact that dominance or equipotence holds provides
no guarantees as to whether and how the schemas are semantically re-
lated. For example, schema m1 = �R(Name : char, Age : int)� is equipo-
tent with m2 = �S(ID : int, Name : char)�, i.e., |m1| = |m2|. However,
m1 and m2 are semantically incommensurate; the mapping m1 m2 =
�πName(R) = πName(S)�, which may reflect the relationship between the
schemas in a particular application context, is not even a function.

In fact, it seems that most schemas used in practice are related in an in-
herently non-functional way. Frequently, it is simply irrelevant whether domi-
nance or equipotence holds. Part of the reason for that is that schemas rarely
specify all valid application constraints because they were not known at the
time of schema design or are not expressible in the schema constraint lan-

10.6 Approaches to Specifying Semantics 189

guage. That is, the schemas often allow “irrelevant” instances, i.e., states
that can never be reached due to application constraints. The presence of
such instances makes the transformations on schemas non-functional. From
this perspective, the undecidability results of (Miller et al. 1994) concerning
equipotence may look less discouraging. Still, they provide an illuminating
insight in the nature of difficulties that may have to be addressed in the state-
based approach to model management. Another instructive result, presented
in (Hull 1986), is that equipotence of relational schemas without constraints
implies that the schemas must be structurally identical (up to renaming and
isomorphism). This result may generalize to other schema and mapping lan-
guages.

Considering the information capacity of schemas alone is insufficient for
defining the state-based semantics of model-management operators precisely.
For example, in Sect. 2.3.5 we require that the schema produced by the
Merge operator be at least as expressive as each of the input schemas. In
Sect. 2.3.3 we argue that the schema delivered by Extract must be at most as
expressive as the input schema. However, these requirements do not specify
what the operators do to the instances of schemas: the relationship between
the instances of the output schemas and the instances of the input schemas
remains unspecified. In Chap. 4, we define this relationship precisely for all
key operators. Further limitations of the information capacity approach are
studied in (Davidson et al. 1995a).

Our viewpoint is that the semantic relationship between two schemas
is determined by the mappings that hold between them (as we argue in
Sect. 11.3.4, the mappings may be n-ary and may involve other schemas).
Such mappings may or may not be functions and may be arbitrarily complex.
In Chap. 4, for all key operators we state the conditions on the mappings
between the output schemas and the input schemas. Combining the operators
into scripts helps us establish precise criteria on mappings produced in various
model-management scenarios.

10.6.3 Category Theory

A principle underlying our work is that the essence of formal artifacts, such
as models and instances, is to be sought primarily in the nature of their re-
lationships with other artifacts of the same kind rather than in their internal
constitution. This idea has achieved its fullest expression in category theory
(Mac Lane 1998), an axiomatic framework within which the notions of trans-
formation (as morphism or arrow), composition, and structure (as object)
are fundamental, i.e., are not defined in terms of anything else. Note that the
notion of morphism in category theory, which we consider in this section, is
not to be confused with a concrete mapping language discussed in Sect. 6.1.

One of the first applications of category theory to data management was
studied by Maibaum (1977). The author considered database states of a spe-
cific database schema as a category, in which the updates transforming one

190 10. Related Work

state into another are treated as morphisms between the objects in the cat-
egory.

The first category-theoretic approach to semantics in model management
has been investigated in (Alagic and Bernstein 2001). There, signatures of
database schemas form a category Sig, while mappings between schemas
correspond to morphisms. The relationship between schemas and instances
is captured by a functor Db (a functor is a morphism between categories),
which corresponds to our instantiation function Inst. A minor terminolog-
ical difference is that Db maps each database signature Sig to a category
of instances of Sig, whereas Inst maps a model to a set of instances. Just
as all signatures form the category Sig, all categories of instances form an-
other category, which we henceforth denote as Inst. In contrast to (Alagic
and Bernstein 2001), the formalization presented in Chap. 4 unfolds in the
category Inst rather that in Sig.

The approach in (Alagic and Bernstein 2001) distinguishes between
schemas and schema signatures. Schemas are schema signatures with as-
sociated integrity constraints. The authors define the category of schemas
Sch, which differs from Sig by adding integrity constraints, with the under-
standing that all instances of schemas are guaranteed to satisfy the integrity
constraints defined on the schemas. Explicit treatment of constraints makes
their discussion somewhat verbose, since the constraints surface in all defi-
nitions and theorems. In their case, this was necessary because their main
results concerned the mapping of constraints across morphisms. In our ap-
proach, constraints are an integral part of the schema language, i.e., each set
of instances of a model (i.e., each category in Inst) is guaranteed to satisfy
all integrity constraints.

In the definition of a category, objects are “just things” for which no
internal structure is observable by categorical means (composition, identities,
morphisms, and typing). A key challenge in working with a category of objects
is to develop a set of axioms that characterize the relationships between the
objects of the category as precisely as possible. In (Alagic and Bernstein
2001), the authors characterize two operations, called schema integration and
schema join, using commutative diagrams. However, they rely on the notion
of a “matching part” defined intuitively which makes it hard to study their
operations formally and relate them to the operator Merge.

The playground of state-based semantics is the category Inst. Working
with Inst, rather than Sch or Sig, enables us to deal with non-atomic ob-
jects, i.e., models as sets of instances, and to understand the semantics of the
key model-management operators more deeply. Well-known scenarios help
us analyze the properties of the operators and may enable us to derive
their axiomatic characterization in Sch. For example, the operator Merge,
〈M, f, g〉 = Merge(A, B, h), could be characterized in Sch as: f ◦ f−1 = 1A,
g ◦ g−1 = 1B, M = dom(h), h = f ◦ g−1. The minimality condition of
Definition 4.2.4 cannot be stated in Sch directly. However, it may be possi-

10.7 Metadata Repositories 191

ble to find a set of theorems in Inst involving the operator Merge, such as
Theorem 4.2.11, Corollary 4.2.1, or Conjecture 11.3.1, that provide further re-
strictions on the operator and can be stated as axioms in Sch. Alternatively,
the operators Extract, Merge, and Diff could be viewed as new fundamental
operators, equal peers of the operators Compose and Id. Notice that the min-
imality conditions in our definitions are essential. Without them, we could
always extract m from m, or get arbitrarily expressive models as a result of
Merge.

Another relevant category-theoretic notion is that of a topos (Bell 1988).
Topos is a Cartesian closed category in which for each object there exists an
object of its “subobjects”, which can be regarded as instances. In a topos,
as in set theory, every object and every arrow can be considered as the ex-
tension {x | P (x)} of some predicate P . This view corresponds closely to our
treatment of models and mappings as predicate variables. The category Inst
seems to be closely related to toposes.

10.7 Metadata Repositories

Over the years, a number of research prototypes and commercial products
have been developed to support metadata management, including Rational
Rose tools1 and Microsoft Repository2 (Bernstein et al. 1999). Such tools
do an excellent job in providing a design environment or persistent storage
for metadata artifacts. However, the existing tools do not go far enough to
support the developers of metadata applications, which may be one of the
reasons that limited their broad adoption and commercial success.

Do and Rahm (2000) reviewed several commercial metadata repository
systems that are specifically targeted at metadata management for data ware-
housing. Typically, repository systems use a relational database for storing
metadata. The metadata can be accessed and manipulated using SQL, assum-
ing that the database schema of the repository is known. Some tools provide
query templates to speed up the construction of frequently used queries, such
as data lineage and impact analysis queries.

A SQL or SQL-like query interface to metadata artifacts offers substantial
help to the developers of metadata applications. However, such approach still
has significant limitations:

– A thorough understanding of the relational representation chosen for par-
ticular metadata artifacts is required in order to write the queries. In other
words, the developers need to be proficient in the meta-meta model and
the meta-models of the artifacts that they deploy.

1 www.rational.com
2 Currently shipped with Microsoft SQL Server 2000 under the name Meta Data

Services

192 10. Related Work

– The queries are often quite complex, since they operate on the individual
model elements.

– It is hard to migrate the applications between different repository systems
because the applications are tied to particular meta-models and meta-meta
models.

In contrast, the model-management operators offer a much higher-level,
generic interface for application developers. Still, as we pointed out in
Sect. 3.3, a SQL-like querying capability has proved instrumental for imple-
menting the model-management operators in Rondo. Such capability may be
exposed to the developers of metadata applications to complement the model-
management operators in dealing with special-purpose metadata transfor-
mations such as schema normalization. Furthermore, low-level, performance-
sensitive metadata management functionality, such as versioning at the level
of individual model elements (Bernstein et al. 1999), will likely to continue
relying on SQL-like APIs.

The model-management approach has a great potential to boost the ca-
pabilities of today’s repository systems and simplify their use. However, even
the vendors of repository systems themselves might benefit from the avail-
ability of model-management operators. In fact, many repository systems
include pre-packaged metadata applications, such as configuration manage-
ment or impact analysis applications, whose development and maintenance
using low-level APIs is costly.

The books (Marco 2000; Tannenbaum 2001) offer a survey of commercial
repository systems and discuss implementation options for several metadata
management tasks.

10.8 Metadata-Intensive Applications

As we illustrated in Sect. 1.1, metadata problems arise in a variety of applica-
tions and scenarios. In this section we discuss in more detail the work related
to two such scenarios, integration of heterogeneous information processing
services and change propagation.

10.8.1 Declarative Mediation

In the late 90’s, a multitude of information processing services started to
become available online and supersede the static Web content. Such services
accept data, process it, and return results. A variety of services went on air,
such as search engines, digital libraries, flight/hotel/car reservation systems,
e-shops, tax filing services, or calendar managers. As more such components
were deployed, the diversity of program-level interfaces had emerged as an
important stumbling block providing a challenging research opportunity.

10.8 Metadata-Intensive Applications 193

In the work (Melnik et al. 2000; Melnik 2000; Melnik and Decker 2000;
Decker et al. 2000a; Decker et al. 2000b) we focused on interoperation of het-
erogeneous information processing services. Management of metadata turned
out to be a heavy component of this work and motivated in part the subject
of this dissertation. In fact, the systems and frameworks that we developed
provided us a hands-on case study for metadata management. The code de-
veloped in these projects served as a seed and inspiration for the programming
platform that has been prototyped as part of this dissertation. The remainder
of this section gives a brief overview of this work and summarizes the key
conclusions.

The mediation architecture has been used in numerous information inte-
gration projects (Wiederhold 1992). It introduces two key elements, wrappers
and mediators. The wrappers hide a significant portion of the heterogeneity
of services, whereas the mediators perform a dynamic brokering function in
a relatively homogeneous environment created by the wrappers. A mediator
typically receives a request (e.g., a query), submits a translated version of the
request to several services, collects and merges the responses, and presents
them to the user. Mediators that were developed in previous research efforts
had some important shortcomings, which are in fact still present in most of
today’s systems:

– Mediators are often hard to extend beyond the initial set of services they
were designed for.

– It is difficult to incorporate into a mediator components that were devel-
oped elsewhere. For example, once a particular query translation algorithm
has been implemented in a mediator, it is very hard to replace it by some
other query translation package.

– Most often mediators do not tackle protocol differences. For instance, many
mediators assume that all their targets communicate via HTTP.

– Usually it is not easy to extend a mediator to non-search tasks. For exam-
ple, if a mediator is designed to query multiple search engines, it is hard to
make it mediate among different payment mechanisms or among different
document summarization services.

In (Melnik 2000), we proposed a mediation framework that addressed
these shortcomings. In (Melnik et al. 2000), we studied an application of this
framework to the domain of digital libraries. The framework presents a very
flexible environment where different components, which we call “blades”, can
be combined to address a specific mediation task. One of the components, in
particular, is responsible for translating protocols. For example, this compo-
nent may receive a single synchronous message from a user, and in turn issue
a sequence of asynchronous messages to perform the requested task.

In our approach, all data conversion and protocol translation logic is em-
bodied in mediators, whereas wrappers are as simple as possible and thus can
be developed with moderate effort. Such wrappers, which we call canonical,

194 10. Related Work

capture information contained in the messages of the component by means
of logical descriptions and are not required to do any processing beyond triv-
ial syntactic transformation of the messages of the wrapped component. A
logical description of the request makes it possible to abstract out factors
irrelevant to the purpose of the service, e.g., whether it is implemented as a
distributed object or a CGI script. The logical descriptions of the messages
are encoded as directed labeled graphs and can be manipulated using alge-
braic operations, transformation rules etc. The interface descriptions of the
canonical wrappers are represented as finite-state automata that accept and
send messages of different kinds.

Even though mediators are shielded from the native components by the
wrappers, they still have to deal with the semantic heterogeneity of infor-
mation exposed by the wrappers. The major integration problems include
data, query, and protocol translation. Thus, in general, a number of different
formalisms are required to describe the mediator logic. For example, manip-
ulations of the content of the messages can be expressed using Datalog rules,
XSLT, or other data manipulation languages such as YATL (Cluet et al.
1998). Transformations of message sequences can be described using finite-
state machines, Petri nets etc. For query rewriting, powerful approaches have
been developed in the database literature (Halevy 2001). In (Melnik et al.
2000) we describe in detail which formal techniques we picked for implement-
ing a declarative mediation system for digital libraries.

To facilitate mixing and reuse of different formalisms, the declarative lan-
guages used by our mediators are represented using a meta-meta-model that
is capable of capturing and linking expressions in different languages. Our
meta-meta-model is based on directed labeled graphs, similarly to how the
messages themselves are encoded (in Rondo, we use an extended version
of this meta-meta-model that supports ordered relationships). To execute
mediators that deploy different formalisms and languages, we developed a
comprehensive runtime environment, which makes sure that the appropriate
interpreters, or blades, are invoked for the declarative languages used in the
specifications.

Lessons Learned. One of the key lessons that we learned from our work on
declarative mediation is that developing and maintaining an environment
which uses a variety of complex metadata artifacts is really hard. A first
step that we took to address the metadata management issues was to store
mediator specifications and interface descriptions as first-class objects in a
database system. In this way, we had a reliable persistence mechanism which
also allowed us to query mediator and wrapper specifications. However, the
key challenge turned out to be the implementation of operations on these
complex structures. Examples of such operations are tracing the changes
of evolving interface descriptions and updating the mediators accordingly,
generating wrapper skeletons from interface specifications, or determining
algorithmically the compatibility of wrappers and mediators. We realized that

10.8 Metadata-Intensive Applications 195

to handle the complexity of descriptions, support for mediator composition
is required (Melnik 2000). Supporting composition is hard, since multiple
formalisms may be used throughout the mediator. For example, a complex
mediator may be specified as a finite-state machine and may invoke Petri nets
for executing subtasks that require concurrency control. Service composition
is an open problem that recently has attracted significant attention (Hull
et al. 2003).

We also learned that to be able to deal with a variety of metadata artifacts
and formal languages, we needed some way of abstracting out the key proper-
ties of their representation and manipulation. We grew even more convinced
of the importance of a generic approach for metadata management in our
subsequent work (Melnik and Decker 2000). In (Melnik and Decker 2000), we
presented a layered approach to information modeling and interoperability
on the Web. The key idea of the approach is to automate the translation of
messages exchanged between heterogeneous components by attaching meta-
data to the messages that describes the features of the meta-model utilized
for representing the message content. The message metadata is split into
“layers”, each of which describes a certain set of modeling features, such as
object identity, ordered relationships, aggregation, etc. Our work on declar-
ative mediation and layering indicated that there was a great potential in
approaching metadata management in a generic fashion.

10.8.2 Change Propagation

Change propagation is a pervasive problem that has attracted substantial
attention in the database research literature. For example, Roddick (1992)
lists an impressive annotated bibliography of work done in the 1970-80’s.
(Roddick et al. 2000) classify manifestations of change by subject, causes,
effects, temporal and spatial issues, etc. The economical factors of software
evolution and maintenance have been considered in (Wiederhold 2003).

Various aspects of the change propagation problem have been studied in
the database literature including view adaptation, view synchronization, view
maintenance, and, most recently, mapping adaptation. The general theme is
to examine the effect of changes of some source metadata artifacts or data on
target metadata artifacts or data. The subjects of change, i.e., sources and
targets, can differ substantially. We distinguish some of them below:

– Changes to a schema affect an existing schema instance. Banerjee et al.
(1987) study close to two dozen kinds of changes that can occur in object-
oriented databases, such as adding/dropping instance variables to a class,
changing default values of variables, changing the order of superclasses of
a class, etc. They suggest a set of rules of how instance data should be
adapted to schema changes, and address the soundness and completeness
of elementary changes. Essentially, soundness and completeness guarantee
that all operations produce valid object lattices and any object lattice

196 10. Related Work

can be obtained using a sequence of operations. The work in (Peters and
Özsu 1997) provides an axiomatization of schema evolution in a similar
perspective. In (Lerner 2000), complex changes spanning multiple classes
are considered.

– Changes to a source schema affect a view defined on the schema. This
change propagation problem is referred to as view synchronization and has
been studied, e.g., in (Lee et al. 2002).

– Changes to the instance of a source schema affect the target instance. This
issue was studied in the context of maintenance of materialized views (see
e.g. (Mumick et al. 1997)). Claypool et al. (1998) considers schema evolu-
tion using primitives expressed in OQL, while Claypool and Rundensteiner
(2003) define a cross-algebra that helps propagating changes on instances
between two different data models, such as XML and relational.

– Changes to the mapping (and the target schema) affect the instance of the
target schema. This kind of change has also been termed as view adaptation
in (Gupta et al. 1995)): once the view definition changes, the materialized
view needs to be updated, ideally, without recomputing the view from
the base relations. This problem is closely related to answering queries
using views (Halevy 2001), where the query corresponds to the new view
definition, and the view is the original materialized view. In general, the
new materialized view can be computed using a portions of data from the
old view and another portion recomputed from old relations.

– Changes to instance data yield changes to the schema. This way of propa-
gating changes takes a reverse path compared to the first item and is im-
portant for cases when instances are decoupled from schemas (Parsons and
Wand 2000), description logics (Borgida 1995), or for incremental main-
tenance of schemas extracted from semi-structured data (Nestorov et al.
1998).

– Changes to the source or target schema affect the mapping between the
source and the target (Velegrakis et al. 2003) and the target schema (Bern-
stein 2003).

When schemas are the source of changes, the way that changes are spec-
ified is another dimension in which approaches to change propagation differ.
A typical assumption is that the changes are characterized using a finite set
of primitive operations on schemas, often accompanied by a corresponding
set of primitive instance transformations. This approach was used, e.g., in
(Banerjee et al. 1987; Peters and Özsu 1997; Lerner 2000; Velegrakis et al.
2003). The advantage of using a fixed set of elementary schema changes is
that we can specify precisely how to handle each individual change. The
disadvantage is that the way in which the schema can evolve is restricted.

Alternatively, the changes can be described using a mapping between
the old and new source schema, the approach presented in (Bernstein 2003),
which we also followed in our work on change propagation (see Sect. 2.1
and Chap. 5). A mapping is capable of accommodating virtually all kinds of

10.9 Other Related Work 197

conceivable changes such as schema normalization, changing attribute type,
applying a user defined function, transposing the schema, etc. In fact, in the
general case such a mapping need not even be functional. To our knowledge,
propagation of changes described by an arbitrary mapping has not been ex-
amined previously.

The mapping that describes the changes can be obtained in various ways.
One way is to allow schemas to evolve and then find the changes that took
place by comparing the modified schema to the original version using schema
matching. Another way is to compose a number of elementary changes and
thereby leverage the specification of changes developed and studied in pre-
vious approaches. A history of changes can be produced, e.g., by schema
manipulation tools.

In Sect. 5.4, we discussed schema evolution as a special case of change
propagation. A formal specification of schema evolution offers precise guide-
lines for computing the effects of changes, in contrast to heuristic rules that
are deployed in some of the approaches in the literature. For example, Vele-
grakis et al. (2003) consider the problem of adapting the mapping upon a
schema change and suggest to “make the minimum changes necessary to
achieve a mapping that is consistent with the new schema”. However, the
lack of formalization of what constitutes a minimal change makes the adap-
tation techniques that they propose debatable: specifically, we argue that
neither removal of schema constraints nor addition of new schema elements
should impact the existing mappings. By modifying the mappings in such
cases, new ways of relating data instances are “invented” whereas the old
mapping still holds – a minimal change should arguably leave the mapping
intact.

An important aspect of change propagation is efficiency (see e.g. (Banerjee
et al. 1987; Gupta et al. 1995; Mumick et al. 1997)). In approaches that focus
on instance data, a primary concern has been batching and delaying the
updates, and minimizing their impact on the DBMS performance. Batching
updates can be expressed as a composition of several individual updates. For
applications that access old versions of data that has been reorganized in the
course of schema evolution, reverse transformations need to be computed.

10.9 Other Related Work

Data Translation. Data translation was one of first hot topics in the database
research field (Bernstein 1999). In fact, before ACM SIGMOD gained its
name in 1975 (“Management Of Data”), it was previously called SIGFIDET,
for “FIle DEscription and Translation”. Data translation is the problem of
transforming data when moving it from one application to another. The EX-
PRESS project at IBM Research was one of the foremost data translation
projects of its day (Shu et al. 1977).

198 10. Related Work

A number of rigorous formal techniques for data translation have been de-
veloped. For example, Kalinichenko (1990) presents a formal definition of data
models and manipulates them as formal objects in the process of development
of mappings between data models. The author also explores a methodology
for synthesizing a “unifying generalized data model” for a given set of data
models. Markowitz and Shoshani (1992) discuss a formal technique for trans-
lating Entity-Relationship structures into a relational representation. Rosen-
thal and Reiner (1994) examine equipotence-preserving transformations of
schemas and give formal proofs of correctness of schema rearrangements.
They argue for a combination of heuristics and rigorous transformations.

Generic approaches to data translation across different schema languages
have been explored, e.g., in (Atzeni and Torlone 1996; Cluet et al. 1998).
The techniques presented there could be used for implementing a generic
operator for generating one model from another. Such an operator, called
ModelGen, was suggested in (Bernstein 2003). In our prototype, we are using
a less general approach, in which each converter is implemented as a custom,
non-generic operator. In Sect. 5.5, we discussed the impact of data translation
on model-management scripts and their state-based semantics.

More recently, the problem of data translation has undergone a resurgence
of interest in the context of data warehousing (ETL tools) and integration of
heterogeneous Web sources, in particular, translating relational data to XML
(Shanmugasundaram et al. 2001b; Fan et al. 2003).

Mapping Tables. The recently proposed mapping language of (Kementsiet-
sidis et al. 2003) generalizes the notion of value transformations. It allows
specifying the dependencies between the entities of two schemas using a so-
called mapping table, an extensionally defined table of value correspondences.
Value transformations between entities in schemas can be quite intricate. A
trivial example is concatenation of first name and last name to obtain full
name. A more involved example is the transformation of a planar circle rep-
resented by three points into a circle represented by a center and a radius.
Sometimes, however, value correspondences cannot be represented using a
formula and need to be defined extensionally. For example, the correspon-
dences between gene and protein identifiers in biochemical databases, or the
mapping from Zip and City to State are specified as lists of value tuples. In
(Kementsietsidis et al. 2003), the authors use a state-based approach to de-
fine the semantics of mapping tables. They also consider operations on them,
such as AND (∧), OR (∨), and negation (¬). Operation ∧ generalizes to ∩
in our formalization, ∨ corresponds to ∪, and negation can be expressed as
¬m1 m2 = m1 ×m2 −m1 m2.

Confluence. Kementsietsidis et al. (2003) also considered an operation that
corresponds to our Confluence operator (personal communication). They note
that sometimes a small part of two mapping tables is inconsistent. In this
case, ANDing the information of two tables yields a contradiction and renders
the whole result unusable. An equivalent of the Confluence operator can be

10.9 Other Related Work 199

used to AND a mutually consistent part of two mapping tables and OR
the non-overlapping parts. The advantage of defining confluence in a generic
fashion is that it can also be used to combine a mapping that consists in part
of say an SQL view and a mapping table. Another interesting observation is
that a mapping table is actually an instance of a relational schema. That is,
we have an example of a mapping that is itself an instance of some model.

As noted above, the Confluence operator can be used to deal with incon-
sistent mappings and thus may be useful integration of mutually inconsistent
data sources (Lenzerini 2002). By Definition 4.2.6, combination of queries
using the Confluence operator ensures that only mutually consistent answers
appear in the result. That is, information loss is possible when the input
queries or views are inconsistent with each other (Agarwal et al. 1995).

In database literature, the notion of confluence has been used in the con-
text of active rules and triggers (see e.g., (Aiken et al. 1992)). There, conflu-
ence is a property of a set of active rules or triggers that holds if the effect of
rule execution is invariant with the order of their execution. We use the term
confluence differently, to denote an operator on mappings. See Sect. 10.1 for
further discussion.

Z, B-Method, AMN. Z (pronounced: “zed”), B-Method and AMN (Abstract
Machine Notation) are languages designed for specification and verification
of computer systems. These languages have formal semantics that is based on
the set theory and predicate calculus. The schemas in Z describe the possible
states of a system, its operators, and relationships between its parts (Davies
and Woodcock 1996). Basically, a schema defines a number of n-ary relations
with pre-conditions and post-conditions. The language Z is an ISO standard
(ISO 2002).

The so-called schema calculus used in Z shows an interesting parallel to
model management. The schema calculus introduces several operators, such
as And, Or, Iff, Compose, Implies, Pipe, and Project, for building bigger
schemas out of smaller ones. The operators represent set operations with
special signature translations. For example, And and Or are similar to AND-
ing and ORing of logical formulae.

The schema calculus in Z is bound to a specific schema language and its
operators are more low-level than in generic model management. However, it
would be interesting to see whether the operators in Z can be generalized for
other kinds of models.

200 10. Related Work

11. Conclusions and Outlook

“The significant problems we face cannot be solved at the same
level of thinking we were at when we created them.”

– Albert Einstein (1879-1955)

11.1 Summary of Contributions

Many problems facing data management and other areas of computer-aided
engineering involve the manipulation of models. Yet applications that manip-
ulate models are complicated and hard to build. The goal of generic model
management is to reduce the cost of developing such applications by raising
the level of abstraction of model manipulation operations.

This dissertation presents an initial study of the concepts and algorithms
for generic model management. To demonstrate that model management op-
erators are implementable and useful, we developed a prototype of a pro-
gramming platform, called Rondo, in which high-level algebraic operators
are deployed for manipulating models and mappings. The prototype helped
us experiment with various representations of models, alternative definitions
of operators, and different algorithms used for implementing the operators.
Using Rondo, we developed scripts for several practically relevant scenarios,
such as change propagation and reintegration. We have shown that one can
solve practical problems using the model management operators, and that
these solutions require a relatively small amount of code.

To implement one of the most challenging model-management operators,
the operator Match, we devised a general-purpose matching algorithm called
Similarity Flooding. The algorithm can be applied for matching various kinds
of models in metadata management scenarios as well as for other data struc-
tures and applications. We examined the computational properties of the
algorithm and evaluated its quality using a novel accuracy metric and a user
study that we conducted.

202 11. Conclusions and Outlook

We presented a detailed survey of the related work that helped us factor
out the common aspects of metadata applications and specify the structural
and state-based semantics of the operators. Specifically, we considered data
integration, schema matching, mapping composition, view selection, and view
complement problems. The state-based semantics describes the effect of the
operators on instances of models. It provides guidelines for implementing the
operators for complex schema and mapping languages and is independent of
a particular meta-meta-model. Both structural and state-based semantics is
critical for specifying the effects of model-management scripts.

Our implementation experience, backed by the in-depth investigation of
the individual operations in the research literature, suggests that the question
raised in the panel discussion (Bernstein et al. 2000a) is likely to have a
positive answer, i.e., generic metadata management is in fact feasible. Even
if we cannot handle subtle and complex cases, if we can solve a large class
of non-trivial problems then we are offering a useful programming platform.
Still, resolving this debate to the full extent can be done only by writing
scripts for a substantial number of real applications, which use practically
relevant schema and mapping languages, and demonstrating that they work.

In this first dissertation on generic model management we only scratched
the surface of this emerging field of research. In Sect. 11.2, we attempt to
give an assessment of the current state of the field and provide a roadmap
for developing the next generation of model-management systems. Our work
uncovered many hard technical challenges and exciting new research oppor-
tunities, which are reviewed in Sect. 11.3. A salient non-technical challenge
is acceptance by the developer community. As with each new programming
paradigm, the willingness of engineers to learn a new way of approaching old
problems is a critical ingredient for success of generic model management.

11.2 Concluding Discussion

In this section, we examine the achieved state of the art in model management
and the gaps that need to be filled in order to build the next generation of
more powerful and versatile model-management systems.

In the core of the model-management approach is a set of generic oper-
ators on models and mappings that simplify application programming. To
what extent can the techniques developed in the literature and in this dis-
sertation be called generic? How far can we push the model-management ap-
proach while claiming genericity? These questions are critical for laying out
a roadmap for future work and understanding how far we are from achieving
our goals.

Generic model management techniques address the following three as-
pects:

11.2 Concluding Discussion 203

– Generic applicability: The operators can be applied to various kinds of
models and mappings.

– Generic use: The operators are useful for a broad range of model-
management tasks.

– Generic implementation: A single implementation of the operators is ap-
plicable for various kinds of models and mappings.

Generic Applicability. This aspect refers to the ability of engineers to write
scripts without worrying about the nature of metadata artifacts they work
with. To ensure generic applicability, the operators need to provide guaran-
tees to the engineers that hold for all relevant kinds of models and mappings,
including database schemas, workflow definitions, interface specifications, etc.
Obviously, the less is known about the metadata artifacts under considera-
tion, the fewer guarantees can be provided to the engineers with respect to
the properties of the operators. In other words, the semantics of the operators
can be stated only in very general terms or otherwise sacrifice genericity.

Three distinct ways of achieving generic applicability of model-
management operators have been suggested. One way is to consider models
and mappings as syntactic objects represented in a common meta-meta-
model, for example, as graphs. This approach has been pursued in almost all
prior work on generic model management, including the prototype developed
as part of this thesis (Bernstein et al. 2000b; Bernstein and Rahm 2000;
Bernstein 2003; Melnik et al. 2003b; Pottinger and Bernstein 2003). In
essence, the operators are specified by means of graph transformations. As
long as the graph transformations do not exploit any knowledge of what
the graphs actually represent, the operators can be considered truly generic.
Unfortunately, there are very few useful operations that can be defined in
such an agnostic fashion. Largely, they are limited to Subgraph, Copy, and
the set operations on graphs. In our experience, specification of most if not
all other operations needs to be adapted to the individual meta-models for
the operators to produce meaningful results. For example, most operators in
Rondo (see Table 2.1 on page 23) are defined assuming a concrete mapping
language, the morphisms. Analogously, the operators presented in (Bernstein
2003; Pottinger and Bernstein 2003) exploit the properties of a specific
mapping language, though a more general one.

A second way to achieve generic applicability is by using state-based se-
mantics. In this approach, the properties of the operators are characterized
in terms of instances of models and mappings that are taken as input and
produced as output. Under the assumption that models possess well-defined
sets of instances, all key operators can be characterized in a truly generic
fashion, as we demonstrated in Chap. 4. Such characterization is applicable
to very complex kinds of models and mappings that are used in real appli-
cations, including XML Schemas, XQuery, and SQL. Although state-based
characterization does not provide a detailed implementation blueprint, it is
sufficiently specific so that the effect of the operators can be worked out for

204 11. Conclusions and Outlook

concrete languages. A weakness of the state-based approach is that it says
nothing about the syntax of models and mappings. Yet, the syntax of models
(e.g., their structure and naming of model elements) is important for ap-
plications. Moreover, for certain kinds of models, such as make scripts and
other program-like models, specifying the sets of instances formally can be
non-trivial.

A third way of addressing generic applicability is an axiomatic one, e.g.,
using a category-theoretic approach (compare Sect. 10.6.3). The idea of the
approach is to define the operators using axioms that are expressed in terms
of the operators to be defined. Commutativity of Compose or associativity
of Merge are examples of such axioms. This approach seems to be the most
challenging, both in terms of determining a useful set of axioms and imple-
menting the operators in such a way that the axioms hold when the operators
are applied to concrete languages.

From the current perspective, it seems that our best bet for achieving
generic applicability of operators is to combine state-based semantics with a
syntax-oriented specification based on a common meta-meta-model. Such a
combined specification of operator semantics may provide enough guarantees
to the engineers to deploy the operators for manipulating various kinds of
models and mappings without having a detailed knowledge of the operator
implementation. Working out the details of such a combined specification is
one of the gaps to be filled. It is possible that its syntax-oriented part turns
out relatively simple: for example, one condition could be that the element
names of the output models have to be drawn from the corresponding element
names of the input models.

Of course, it is conceivable that we face hard limits to the generic appli-
cability of operators. Most model-management scenarios examined so far in
the literature focus on schema-like models, e.g., database schemas, ER/UML
diagrams, or ontologies. To stand to the claim of generic applicability, the
model-management operators should be applicable to workflow definitions,
interface specifications, computational models, and other artifacts. Never-
theless, manipulation of schema-like models makes up a lion share of today’s
metadata management applications. Even if we limit the scope of a model-
management system to schema-like models, the ability of manipulating such
artifacts in a generic fashion could yield a dramatic increase in programmer
productivity.

Generic Use. The usefulness of the model-management operators for imple-
menting real applications is probably the most challenging claim in model-
management research. There seem to be two complementary ways of justify-
ing this claim: an empirical and a theoretical one.

The previous work on model management and this dissertation followed
the empirical path. That work started with a solid intuitive understanding
of the operator semantics and substantiated the generic use of the operators
by examining detailed walkthroughs of various model-management problems

11.2 Concluding Discussion 205

(Bernstein and Rahm 2000; Bernstein 2003). The prototype Rondo developed
as part of this thesis helped prove that such abstract programs are indeed
executable. To address the requirements of industry-strength applications,
future model-management systems need to support complex mapping lan-
guages such as SQL, XQuery, or transformation languages used in software
engineering applications. The ultimate empirical proof of generic use could be
provided by turning a model-management system into a successful product.

A complementary way of justifying generic use is a theoretical one. The
idea is to show that the proposed set of operators is complete with respect
to the chosen operator semantics. For example, if the operators are speci-
fied in terms of graph transformations, completeness would ensure that all
meaningful graph transformations can be realized using a combination of the
operators. If state-based semantics is assumed, one could attempt to verify
whether the operators can be used to define output models and mappings that
describe any chosen set of instances and relations on instances. We consider
the completeness question in more detail in Sect. 11.3.3. Currently, there is no
good understanding of what completeness of model management operators
could mean. This is a important gap to be filled.

Generic Implementation. Using a single implementation for various kinds
of models and mappings has been considered a primary objective in most
existing literature on generic model management (Bernstein et al. 2000b;
Bernstein and Rahm 2000; Bernstein 2003; Melnik et al. 2003b; Pottinger and
Bernstein 2003). Generic implementation helps extend a model-management
system quickly for new kinds of models and mappings. For example, Extract
and Merge are implemented in Rondo using a single algorithm for each of the
operators, and a simple callback function to encapsulate meta-model specific
behavior. Match has a truly generic implementation that does not exploit any
properties of the underlying meta-models.

In Rondo, a largely generic implementation was possible due the simplic-
ity of morphisms, the utilized mapping language. For more complex mapping
languages generic implementation is unlikely. For example, it is hard to see
how the Compose algorithm of Madhavan and Halevy (2003) or the Merge
algorithm of Casanova and Vidal (1983) can be embedded into generic op-
erators without actually implementing the algorithms. Moreover, these and
many other algorithms are specialized to concrete schema and mapping lan-
guages. It seems unlikely that the algorithm of Madhavan and Halevy (2003)
can be used with little changes to compose mapping tables (Kementsietsidis
et al. 2003) or expressions in other mapping languages.

Although generic implementation is a desirable feature, it does not seem
critical for the success of generic model management. The greatest benefit
of the model-management approach is expected from using the operators
for effective application development. Ideally, the developers of metadata
applications should not be concerned with operator implementation, as long
as each implementation satisfies the desired operator semantics.

206 11. Conclusions and Outlook

Even if generic implementation cannot be achieved, it is still possible
and desirable to utilize a generic representation of models and mappings to
simplify the implementation of model-management operators. Generic rep-
resentation amounts to rendering all features of individual meta-models in a
common “data structure”, the meta-meta-model. Earlier in this section we
discussed the use of a common meta-meta-model for specifying the seman-
tics of the operators in a generic fashion. While we think that using a com-
mon meta-meta-model alone for specifying semantics is problematic, it may
certainly facilitate the implementation. Low-level transformations of meta-
data artifacts that are necessary to support operator execution can be car-
ried out using a SQL-like declarative language that operates on the common
meta-meta-model. This approach worked very well in Rondo. Moreover, many
commercial metadata repository systems offer a SQL interface to metadata
artifacts stored in a relational representation (compare Sect. 10.7). Hence,
future model-management systems may leverage the low-level capabilities of
existing metadata repositories. Finding a convenient generic representation
for complex mappings is another gap to be bridged.
A Research Agenda for Model Management. To summarize the above discus-
sion, we outline a high-level research agenda for developing the next gener-
ation of model-management systems. We believe that the following research
directions are among the most promising and challenging ones:

1. Developing a formal semantics for the operators that combines the state-
based and structural approach while preserving generic applicability of
operators.

2. Developing practical materialization algorithms, i.e., algorithms that
compute the results of operators effectively, for model and mapping lan-
guages used in real applications. Existing algorithms suggested in the
literature for the individual operations should be exploited to implement
and optimize the execution of complex scripts.

3. Finding appropriate architectures and techniques for coupling model-
management systems with applications, tools, and conventional program-
ming languages. The capabilities of existing metadata repositories should
be exploited for implementing the operators and algorithms.

4. Developing powerful user interfaces for building model-management so-
lutions and supporting user feedback during script execution. Ultimately,
we envision a tool for building model-management solutions graphically
using Venn-like diagrams like the ones that we used throughout the dis-
sertation. In this way, the engineer can simply “draw” a script using a
graphical development environment and materialize the desired models
and mappings using a single click.

Bringing the model-management capability to novel and promising do-
mains, such as design and management of business processes or network
management, may have a great impact on the way applications are devel-
oped and maintained today and in the future.

11.3 Open Technical Challenges 207

11.3 Open Technical Challenges

The work presented in this dissertation raised many hard technical issues. In
this section, we review some of them. We believe that resolving these issues
is instrumental for advancing the state of the art in model management.

11.3.1 Decidability and Complexity

The state-based operator definitions are decoupled from any concrete schema
or mapping languages. However, to make the scripts executable we have to
consider the operators in the context of specific languages. For example, Mad-
havan and Halevy (2003) study decidability and complexity of a single oper-
ation, composition. They consider a GLAV mapping language which consists
of expressions of the form QA ⊆ QB, where QA and QB are conjunctive
queries. A similar in-depth investigation may be necessary to obtain decid-
ability and complexity results for each operator and each concrete language
of interest.

It might be possible to state certain general conditions under which the
operators are guaranteed to be computable, but it is unlikely. Even very
simple conditions expressed using a state-based characterization are known
to be undecidable for particular schema and mapping languages. Examples
are the query containment problem for Datalog programs (Ullman 1997), or
the question whether there exists a bijection between m1 and m2 for the
SIG schema language (Miller et al. 1994). However, for simpler languages
such questions may become decidable. Thus, query containment has an NP-
complete decision procedure for conjunctive queries.

One way of implementing the state-based semantics is by developing what
we call a closed language system, i.e., a set of sufficiently expressive schema
and mapping languages that is closed under all model-management operators.
That is, the result of each operator can be represented explicitly within the
language system. It is relatively easy to find very simple languages that form
a closed language system. The problem seems much harder for more expres-
sive languages. For example, it would be interesting to investigate whether
relational schemas with relational algebra (or WOL language (Davidson et al.
1995a)) used as a constraint and mapping language yields a closed language
system.

If the results of each operator are computable and finite, then we can
obtain the exact results for each script. However, even if certain intermediate
results of scripts are not representable in finite form, it may still be possible
to compute the final results or their materializations by script rewriting.

11.3.2 Equivalence and Entailment of Scripts

Studying equivalence and entailment of scripts provides the foundation for
script rewriting and optimization. For example, it may be desirable to rewrite

208 11. Conclusions and Outlook

a script into an equivalent script which uses fewer operators or favors opera-
tors of one kind over another and can therefore be executed more efficiently.
Script optimization may be critical for practical deployment given that com-
puting the results of a single operator may be NP-hard (Kementsietsidis et al.
2003; Madhavan and Halevy 2003) and some models can be very large, such
as models of executable code. Moreover, since the results of certain operators
may not be computable or representable in finite form, script rewriting may
help us translate an infeasible script into a feasible one.

Testing entailment and equivalence may however be quite hard. For ex-
ample, we hypothesize that the following conjecture holds (see illustration in
Fig. 11.1):

m1

m2

m3

m12

m23

ma mb

Fig. 11.1. Schematic representation for
Conjecture 11.3.1 (Associative Merge)

Conjecture 11.3.1 (Associative Merge). The Merge operator is associative up
to isomorphism. Formally, the following entailment holds:

〈m12, m12 m1, m12 m2〉 = Merge(m1, m2, m1 m2);
〈m23, m23 m2, m23 m3〉 = Merge(m2, m3, m2 m3);
m12 m3 = m12 m2 ◦m2 m3;
m23 m1 = m23 m2 ◦ Invert(m1 m2);
〈ma, ma m12, ma m3〉 = Merge(m12, m3, m12 m3);
〈mb, mb m23, mb m1〉 = Merge(m23, m1, m23 m1);
ma mb = (ma m12 ◦m12 m1 ◦ Invert(mb m1)) ⊕

(ma m12 ◦m12 m2 ◦ Invert(m23 m2) ◦ Invert(mb m23)) ⊕
(ma m3 ◦ Invert(m23 m3) ◦ Invert(mb m23));

→
Invert(ma mb) ◦ma mb = Id(mb);
ma mb ◦ Invert(ma mb) = Id(ma); // i.e., ma mb is a bijection �

We made some initial progress on a simple theorem prover that uses
a technique similar to “freezing” of (Ullman 1997) to test equivalence and
entailment of scripts. Our prover was not able to find a contradiction to the
above conjecture, but it is currently unable to provide a complete proof.

11.3.3 Completeness and Redundancy

Another vital question is that of completeness and redundancy: do we have
a “complete” algebra with the operators Invert, Compose, Extract, Merge,

11.3 Open Technical Challenges 209

Diff, and Confluence? What could be suitable completeness criteria? Are the
operators that we suggest non-redundant, i.e., is it true that none of the
operators can be expressed using a combination of others? Are our operators
the best? What other operators are conceivable?

We think that it may not be possible to characterize completeness other
than by definition, similarly to the completeness of relational algebra. We do
not know yet whether we succeeded to identify all key operators, whether the
auxiliary operators such as Domain and Id should be considered part of the
algebra, or whether more operators are needed.

It may be desirable to introduce other fundamental operators into the
algebra. For example, operator Hom(m) could return a mapping that estab-
lishes a homomorphism relationship on instances of m. Such an operator
could be used to characterize the data exchange scenarios (Fagin et al. 2003).
Another useful operator could be an instance inclusion operator Incl(m). It
returns a mapping in which, say, right instances are entirely included in the
associated right instances. This operator could be used for characterizing the
certain answers for queries (compare Sect. 10.1.2). The operators such as
Hom and Incl cannot be defined in a language-independent fashion, but there
seems to be a good understanding of how to specify them precisely for each
schema language of interest so that these operators may be of generic value.

To illustrate some other possible operators, consider the operator Merge.
We defined the semantics of this operator based on a data integration scenario
in which a unified database needs to be constructed. Another important data
integration scenario is the one where we construct a virtual view of several
databases to give them the appearance of a single database. This scenario
could lead to a different operator definition, which figuratively speaking inte-
grates only the overlapping part of two databases, whereas Merge integrates
all information. It seems possible to define this operator as a derived operator
Intersect (see illustration in Fig. 11.2):

p

px

q

qx

m

(Extract)
(Extract)

(Merge)

Fig. 11.2. Illustration of Intersect operator

Definition 11.3.1 (Intersect). 〈m, m p, m q〉 = Intersect(p, q, p q) if and
only if the following script holds:

〈px, p px〉 = Extract(p, p q);
〈qx, q qx〉 = Extract(q, Invert(p q));

210 11. Conclusions and Outlook

〈m, m px, m qx〉 = Merge(px, qx, Invert(p px) ◦ p q ◦ q qx);
m p = m px ◦ Invert(p px);
m q = m qx ◦ Invert(q qx); �

Whether the above definition describes the intended semantics correctly
or not is however an open question.

As another example, consider the operator Extract. In Definition 4.2.3,
the operator takes a single mapping as input. In a more general setting,
we may be interested in extracting a view that allows us to answer a set
of given queries q1, . . . , qn rather than a single query (compare Sect. 10.4).
That is, it must be possible to reformulate each of the input queries against
the view schema. In other words, condition (ii) of Definition 4.2.3 has to be
stated for each of the input queries. The question is though, whether the
definition of Extract needs to be extended or whether it is possible to express
the desired semantics using a script. Again, we do not have an answer to this
question. However, we think that we do not need to extend the operator and
we postulate the following hypothesis to be verified:

Conjecture 11.3.2 (Extract for two queries). Let q1 and q2 be two queries
over m, i.e., qi ⊆ m× si. Further, let Definition 4.2.3 of Extract be extended
for two mappings,

〈mx, m mx〉 = Extract(m, q1, q2);

such that

m mx ◦ Invert(m mx) ◦ q1 = q1;
m mx ◦ Invert(m mx) ◦ q2 = q2;

and minimality of mx is guaranteed. Then, the script

〈s, s s1, s s2〉 = Merge(s1, s2, Invert(q1) ◦ q2);
〈mx, m mx〉 = Extract

(
m, (q1 ◦ Invert(s s1)) ⊕ (q2 ◦ Invert(s s2))

)
;

has the same effect on mx and m mx as the application of the extended
operator Extract(m, q1, q2). �

In the conjecture we exploit the intuition from the view selection problem
in data warehousing that the view mx can be computed using a so-called
multiquery (Theodoratos et al. 2001), which corresponds to the expression
(q1 ◦ Invert(s s1)) ⊕ (q2 ◦ Invert(s s2)). Speaking informally, a multiquery
combines several queries into one. In fact, if queries are represented as graphs,
a multiquery can be obtained by “merging” the individual query graphs. In
this process, the view schema induced by the queries changes. The schema
induced by the multigraph corresponds to the schema s in the script.

We verified the conjecture in a preliminary form using our simple auto-
mated prover. The prover could not find a contradiction for the implication

11.3 Open Technical Challenges 211

〈s, s s1, s s2〉 = Merge(s1, s2, Invert(q1) ◦ q2);
〈mx, m mx〉 = Extract

(
m, (q1 ◦ Invert(s s1)) ⊕ (q2 ◦ Invert(s s2))

)
;

→
m mx ◦ Invert(m mx) ◦ q1 = q1;
m mx ◦ Invert(m mx) ◦ q2 = q2;

for arbitrary mappings q1 and q2, not only functions. Moreover, replacing
Invert(q1) ◦ q2 by s1 × s2 in the premise did not cause the prover to find a
contradiction either, so that the conjecture may hold even if we simply take
a union of signatures of s1 and s2: 〈s, s s1, s s2〉 = Merge(s1, s2, s1 × s2)
(compare Theorem 4.2.4).

No matter whether or not the conjectures that we presented hold, there
may be other fundamental model management scenarios that cannot be ex-
pressed using a combination of the operators that we defined in this disser-
tation.

Notice that we stated Conjecture 11.3.2 for two queries and not for n
queries. In fact, it turns out that generalizing the conjecture for n > 2 using
binary mappings is not that easy. That leads us to a more general question,
whether binary mappings are sufficient to address all model management
scenarios of interest.

11.3.4 N-ary Mappings

An elegant and intriguing extension of the formalization that we presented is
obtained by considering n-ary mappings, such as map ⊆ m1×m2× . . .×mn.
(For n = 1, we call a mapping a model.) To motivate n-ary mappings, consider
the following example. Imagine that we are given three models m1, m2, m3

each with a single class definition, class A in m1, B in m2, C in m3. Now
we want to establish the fact that C = A ∪ B (e.g., to subsequently merge
all three models). This is impossible to do if the mappings are limited to
two models at a time: we can state that A is a subclass of C, and B is
a subclass of C, but not the condition we want. The desired relationship
can be specified using a ternary mapping map ⊆ m1 × m2 × m3, map =
�C = A ∪ B�. Analogously, we can argue for the need of mappings of higher
arity by examining the condition An = A1 ∪A2 ∪ . . . ∪An−1 such that each
of Ai is defined in a different model mi.

The fact that the relationship between two models can only be speci-
fied using a third model, so-called “helper” model, has been recognized in
(Madhavan et al. 2002). The definition of mappings that the authors sug-
gest can be viewed as a ternary relationship on model instances. A similar
argument for ternary mappings was presented in (Pottinger and Bernstein
2003) in the context of the Merge operator. The database transformation lan-
guage WOL can be used to express constraints that span multiple databases
(Davidson et al. 1995a), just as the languages utilized for answering queries
using views (Halevy 2001). In (Kementsietsidis et al. 2003), n-ary mappings

212 11. Conclusions and Outlook

between peer-to-peer sources were considered. Therefore, we think that n-ary
mappings provide a practically important generalization of the theory that
we presented.

All operators that we discussed can be generalized for n-ary mappings.
For example, the operator Compose becomes very similar to the relational
equijoin operator, except that the join is performed on entire database states
rather than attribute values. For example, for map1 ⊆ m1×m2×m3, map2 ⊆
m1×m3×m4, we write map1◦m1,m3 map2 ⊆ m2×m4. Operators Domain and
Range can be generalized as the operator Π , which is similar to the relational
projection operator: Πm1,m3(map1) ⊆ m1 ×m3.

Each n-ary mapping map can be viewed as a binary mapping between a k-
ary and a (n−k)-ary mapping, i.e., map ⊆ (m1×. . .×mk)×(mk+1×. . .×mn),
1 ≤ k ≤ n. In this way, we can adapt the definitions of the operators Extract
and Diff of Sect. 4.2 with very little change. Both operators yield mappings
of a smaller dimensionality for a given mapping, e.g., allow us to get m1 m2

from m1 m2 m3. The grouping of an n-ary mapping into such quasi-binary
mappings can be done in various ways. The operator Invert becomes obsolete,
since the mapping positions that participate in composition, extraction, etc.
need to be specified explicitly in each operator anyway.

The operator Match in general returns an n-ary mapping to reflect the
fact that we may need one or more helper models to relate k given input
models, k ≤ n. For example, for k = 2, n = 3 we can write m1 m2 H =
Match(m1, m2). Model H and mappings m1 H , m2 H , and m1 m2 are im-
plicitly contained in m1 m2 H and can be obtained using the operator Π . To
merge n models, we write Merge(m1, m2, . . . , mn, map), where map is an n-
ary mapping. Extending the Merge operator for n-ary mappings and studying
its properties may help analyze the associativity of Merge for binary mappings
(see Conjecture 11.3.1).

n-ary mappings can be used to characterize dynamic scenarios, such as
mediation between distributed services. For example, consider that answering
a query q requires first consulting a data source m1, then formulating a
query against m2 using the data obtained from m1, and finally combining
the results for the final answer. This mediation scenario can be characterized
by a ternary mapping q ⊆ m1 × m2 × r, where r is the result schema for
q. Specific execution strategies, such as caching subsets of results from m1

and using them for later query processing are abstracted out in the ternary
mapping.

11.3.5 Formalization of Model-Management Problems

A set of high-level operators with well-understood state-based semantics may
be instrumental for finding agreement on a number of long-standing model-
management problems and scenarios that have traditionally been addressed
using heuristic or intuitive approaches. Data integration and schema evolu-
tion are two prominent examples of such problems. We suggested that the

11.3 Open Technical Challenges 213

two predominant kinds of data integration, database and view integration
(Davidson et al. 1995a), can be described formally using the operator Merge
(Sect. 4.2.4) and the operator Intersect (Sect. 11.3.3). We proposed a formal
specification of schema evolution in Sect. 5.4. However, our work makes only
a first step in understanding these scenarios precisely.

Many more important scenarios are outstanding. Examples include data
exchange, mediation, or answering queries in a data integration setting. Char-
acterizing these scenarios using model-management scripts is a promising di-
rection for future research. Such scripts provide implementation guidelines for
system developers and do so independently of the concrete schema and map-
ping languages deployed by the developers. The scripts can be used as formal
specifications for driving customized solutions, i.e., they can be valuable even
without a generic model-management system that executes them.

214 11. Conclusions and Outlook

A. User Study: Gathering Intended Match
Results

The user study was handed out to nine members of Stanford Database Group
in February 2001. The task specifications have been reformatted to fit the page
size used in the dissertation. The tables for entering the answers are omitted
for brevity.

This user study attempts to collect various intended match results for a set
of schema matching problems. General remarks:

1. The information provided about the source and target schemas is inten-
tionally vague. Imagine a plausible scenario and try to map elements in
both schemas according to the scenario you have in mind.

2. You don’t have to match every element on the left and every one on the
right, partial mappings are fine (if consistent with the scenario you have
in mind).

3. m : n correspondences between schema elements are welcome.
4. No mapping expressions are required.
5. The elements in the left and right schemas are numbered. Please fill out

the table following every problem as shown in the example below.

When you are finished, please return your results to my office (438).
Thanks a lot!

Example

This example shows schematically two XML schemas.

1 Cust
2 C#
3 CName
4 FirstName
5 LastName

a Customer
b CustID
c Company
d Contact
e Phone

Many possible match results are conceivable for the schemas. Two of them
are depicted below:

216 A. User Study

Left element(s) Right element(s)
1 a
2 b
3 c

4,5 d

Left element(s) Right element(s)
2 b
3 c,d

A.1 BizTalk schemas (XML)

Left schema.

1 <Schema name="Schema 1"
xmlns="urn:microsoft-com:xml-data">

2 <ElementType name="AccountOwner">
3 <element type="Name"/>
4 <element type="Address"/>
5 <element type="Birthdate"/>
6 <element type="TaxExempt"/>

</ElementType>
7 <ElementType name="Address">
8 <element type="Street"/>
9 <element type="City"/>
10 <element type="State"/>
11 <element type="ZIP"/>

</ElementType>
</Schema>

Right schema.

a <Schema name="Schema 2"
xmlns="urn:microsoft-com:xml-data">

b <ElementType name="Customer">
c <element type="Cname"/>
d <element type="CAddress"/>
e <element type="CPhone"/>

</ElementType>
f <ElementType name="CustomerAddress">
g <element type="Street"/>
h <element type="City"/>
i <element type="USState"/>
j <element type="PostalCode"/>

</ElementType>
</Schema>

A.2 Property listing schemas (XML) 217

A.2 Property listing schemas (XML)

1 HOUSE
2 ADDRESS
3 COUNTY
4 PRICE
5 DESCRIPTION
6 CONTACT-INFO
7 OFFICE-INFO
8 OFFICE-NAME
9 OFFICE-PHONE
10 AGENT-INFO
11 AGENT-NAME
12 AGENT-PHONE

a listing
b location
c area
d price
e comments
f contact
g agent
h name
i office
j brokerage
k name
l phone
m house-style

A.3 Library schemas (XML)

1 <E n="Library">
2 <E n="Item">
3 <e n="ISBN"/>
4 <e n="Author"/>
5 <e n="Title"/>
6 <e n="Year"/>

</E>
7 <E n="Author">
8 <e n="FirstName"/>
9 <e n="LastName"/>

</E>
10 <E n="BorrowedItems">
11 <e n="Item"/>
12 <e n="Borrower"/>

</E>
13 <E n="Borrower">
14 <e n="FirstName"/>
15 <e n="LastName"/>

</E>
</E>

a <E n="Collection">
b <E n="Document">
c <e n="Identifier"/>
d <e n="Creator"/>
e <e n="Contributor"/>
f <e n="Publisher"/>
g <e n="Title"/>
h <e n="Year"/>

</E>
i <E n="Creator">
j <e n="Name"/>

</E>
k <E n="Name">
l <e n="first"/>
m <e n="last"/>

</E>
n <E n="Publisher">
o <e n="Address"/>
p <e n="Name"/>

</E>
</E>

A.4 Product schemas with data instances (XML)

In this problem, XML tags in both schemas need to be matched given two
instances of schemas. The numbering enumerates all different tags on the left
and on the right. Remember, you are matching the tag names, the particular
instance values provide the hints for the matching process.

218 A. User Study

Left schema.

1 <amazon>
2 <item>
3 <title>Sony DCR-PC100

Digital HandyCam Camcorder</title>
5 <listPrice>1899.99</listPrice>
6 <ourPrice>1699.00</ourPrice>
7 <youSave>200.00</youSave>
8 <review>
9 <avgReview>4.5</avgReview>
10 <numOfReviews>20</numOfReviews>

</review>
11 <availability>On Order;

usually ships within 1-2
weeks</availability>

12 <features>
13 <zoom>10x optical zoom</zoom>

<zoom>120x digital zoom</zoom>
14 <lcd>2.5inch LCD</lcd>
15 <other>4 MB Memory Stick included</other>

</features>
</item>

</amazon>

Right schema.

a <yahoo>
b <productInfo>
c <id>Sony DCR-PC100</id>
d <merchantPrice>1799.94</merchantPrice>
e <rating>
f <userRating>3.5</userRating>
g <userReviews>7</userReviews>

</rating>
h <description>
i <LCDScreenSize>2.5in</LCDScreenSize>
j <opticalZoom>10x</opticalZoom>
k <special>4MB Memory Stick</special>

</description>
</productInfo>

</yahoo>

A.5 University schemas with data instances (XML)

Same problem as the previous one: XML tags in both schemas need to be
matched given two instances of schemas. The numbering enumerates all dif-
ferent tags on the left and on the right. Remember, you are matching the
tag names, the particular instance values provide the hints for the matching
process.

A.6 Catalogs with data instances (XML) 219

Left schema.

1 <db1>
2 <Faculty>
3 <SSN>234-56-7890</SSN>
4 <Facu_Name>Richie Solomon</Facu_Name>
5 <Salary>170000</Salary>

</Faculty>
6 <Student>
7 <Stud_ID>7206362</Stud_ID>
8 <Stud_Name>Teresa Lista</Stud_Name>
9 <Stipend>23000</Stipend>
10 <Tel>408-973 0110</Tel>

</Student>
</db1>

Right schema.

a <db2>
b <Personnel>
c <ID>234-56-7890</ID>
d <Name>Solomon, Richie</Name>
e <Address>Sand Hill Road, Menlo Park, CA</Address>
f <W_phone>(408) 495 8423</W_phone>
g <H_phone>(650) 923 4193</H_phone>

</Personnel>
<Personnel>
<ID>7206362</ID>
<Name>Lista, Teresa</Name>
<Address>Cotton St, Palo Alto, CA</Address>
<W_phone>(408) 973 0110</W_phone>
<H_phone>(650) 198 2424</H_phone>

</Personnel>
</db2>

A.6 Catalogs with data instances (XML)

In this problem, catalog entries in both schemas need to be matched given
two instances of schemas. The numbering enumerates all different catalog
categories on the left and on the right.

Left schema.

<yahoo>
1 <cat id="Home">
2 <cat id="Electronics and Photography">
3 <cat id="Television and Video">
4 <cat id="Camcorders">
5 <cat id="By Format - DV">

<product name="SONY DCR-PC100"/>
</cat>

</cat>
</cat>

220 A. User Study

6 <cat id="Photography">
7 <cat id="Brands - Polaroid">

<product name="POLAROID PDC 3000"/>
</cat>

</cat>
</cat>

8 <cat id="Movies">
9 <cat id="Comedy">
10 <cat id="Parody">
11 <cat id="Science Fiction">

<product name="Mars Attacks!"/>
</cat>

</cat>
12 <cat id="Satire">

<product name="The Graduate"/>
</cat>

</cat>
</cat>

</cat>
</yahoo>

Right schema.

<epinions>
a <cat id="Home">
b <cat id="Electronics">
c <cat id="Video">
d <cat id="Camcorders">

<product name="Sony DCR-PC100"/>
</cat>

</cat>
e <cat id="Photo">
f <cat id="Cameras">

<product name="Minolta Maxxum 9"/>
</cat>

</cat>
</cat>

g <cat id="Arts and Entertainment">
h <cat id="Movies">
i <cat id="Video">

<product name="The Graduate"/>
<product name="Mars Attacks!"/>

</cat>
</cat>

</cat>
</cat>

</epinions>

A.7 Personnel schemas (relational)

The numbering enumerates tables and columns in both schemas.

A.8 University schemas (relational) 221

1 CREATE TABLE Personnel (
2 Pno int,
3 Pname string,
4 Dept string,
5 Born date,

UNIQUE perskey (Pno)
);

a CREATE TABLE Employee (
b EmpNo int PRIMARY KEY,
c EmpName varchar(50),
d DeptNo int REFERENCES

Department,
e Salary dec(15,2),
f Birthdate date

);

g CREATE TABLE Department (
h DeptNo int PRIMARY KEY,
i DeptName varchar(70)

);

A.8 University schemas (relational)

Table on the right presents a previous version of the schema shown on the
left. The left schema is the evolved schema. Match the new version of the
schema onto the old one!
Left schema.
1 CREATE TABLE Address (
2 Id int PRIMARY KEY,
3 Street string,
4 City string,
5 PostalCode int

);

6 CREATE TABLE Professor (
7 Id int PRIMARY KEY,
8 Name string, # name
9 Sal double, # salary
10 addr int # address

);

11 CREATE TABLE Student (
12 Name string, # name
13 GPA double, # grade point avg
14 Yr int # year of studies

);

15 CREATE TABLE PayRate (
16 Rank int PRIMARY KEY, # project rank
17 HrRate double # hourly pay rate

);

18 CREATE TABLE WorksOn (
19 Name string, # name of student
20 Proj string, # project name
21 Hrs int, # hours spent
22 ProjRank int # project rank

222 A. User Study

);

Right schema.

a CREATE TABLE Professor (
b Id int PRIMARY KEY,
c Name string,
d Salary double,
e Address string

);

f CREATE TABLE Student (
g Name string,
h GradePointAverage double,
i Year int

);

j CREATE TABLE WorksOn (
k StudentName string,
l Project string,
m Expenses double

);

A.9 Personnel/university schemas (relational)

Left schema. is the same as in the previous example. It deals with professors,
students, and provides the information about who worked on which project
for how long. Moreover, the schema contains information about payment of
professors and students.

Right schema. captures general personnel information:

a CREATE TABLE Personnel (
b Id int PRIMARY KEY,
c Name string,
d Sal double, # salary
e Addr string # address

);

Hints. for interpretation of schemas:

– WorksOn(ProjRank) may or may not be foreign key for PayRate(Rank)
– WorksOn(Name) may or may not be foreign key for Professor(Name) or
Student(Name)

– Student(Yr) may or may not be foreign key of PayRate(Rank)
– Pay rate of a student may or may not depend on the year and/or his/hers

grades

B. Proofs of Simplification Theorems

In this appendix, we prove the Theorems 4.2.1, 4.2.3, and 4.2.5, which pro-
vide simplified characterization of operators Extract, Merge, and Diff, respec-
tively. For convenience, we repeat the definition of the equivalence relation
ind(., ., m m′):

ind(y1, y2, m m′) =df

({z1 | (y1, z1) ∈ m m′} = {z2 | (y2, z2) ∈ m m′})
If ind(y1, y2, m m′), we say that y1 and y2 are indistinguishable under m m′.

B.1 Extract operator

Theorem 4.2.1 (from page 71)
Let Domain(m m′) ⊆ m. 〈mx, m mx〉 = Extract(m, m m′) holds if and

only if the following conditions are satisfied:

1. mx = Range(m mx).
2. Domain(m mx) = Domain(m m′).
3. For all (y1, x1), (y2, x2) ∈ m mx: x1 = x2 iff ind(y1, y2, m m′).

Condition (2) makes sure that exactly those instances of m participate
in m mx that are connected in m m′. Condition (3) requires collapsing any
two instances y1 and y2 of m into a single instance of mx if and only if y1

and y2 are indistinguishable under m m′.

Proof: First, we simplify condition (ii), i.e., the equality of mappings m mx◦
Invert(m mx)◦m m′ and m m′. Notice that for any two mappings map1 and
map2, map1 = map2 holds if and only if: Domain(map1) = Domain(map2)
and for each x ∈ Domain(map1): {y | (x, y) ∈ map1} = {y | (x, y) ∈ map2}.

In the composition m mx ◦ Invert(m mx), the range of m mx is
identical with the domain of opInvert(m mx). Thus, the composition
does not drop instances from the domain of m mx ◦ Invert(m mx).
Therefore, Domain(m mx ◦ Invert(m mx) ◦ m m′) = Domain(m m′) iff
Domain(m mx) = Domain(m m′).

Let y ∈ Domain(m mx). If we traverse y over m mx to mx and
back, we obtain the set of round-tripped images Rt(y) = {y′ | (y, x) ∈

224 B. Proofs of Simplification Theorems

m mx and (y′, x) ∈ m mx}, with y ∈ Rt(y). Traversing from y over m m′

directly must give us the identical set of m′-images as by first round-
tripping y to Rt(y) and traversing each y′ ∈ Rt(y) over m m′. That
is, for each y ∈ Domain(m mx) and each y′ ∈ Rt(y): {z | (y, z) ∈
m m′} = {z | (y′, z) ∈ m m′}. In other words: for all y ∈ Domain(m mx),
y′ ∈ Rt(y) : ind(y, y′, m m′). Now we expand the definition of Rt again
and get an equivalent expression: for all y1, y2 ∈ Domain(m mx) with
(y1, x), (y2, x) ∈ m mx : ind(y1, y2, m m′). This expression can be further
simplified as: if (y1, x), (y2, x) ∈ m mx, then ind(y1, y2, m m′).

That is, condition (ii) is equivalent to the conjunction: Domain(m mx) =
Domain(m m′) and for all (y1, x), (y2, x) ∈ m mx : ind(y1, y2, m m′).

Now we turn to the actual proof. First we show that the conditions (1)-(3)
stated in Theorem 4.2.1 are necessary, i.e., they follow from Definition 4.2.3.
Then, we demonstrate that they are also sufficient.

(→) Let conditions (i)-(iii) hold. Conditions (1) and (2) are satisfied trivially.
To prove condition (3), let (y1, x), (y2, x) ∈ m mx with y1
= y2. Then,
ind(y1, y2, m m′) follows immediately from (ii). Now, let (y1, x1), (y2, x2) ∈
m mx with y1
= y2 and x1
= x2. Assume that ind(y1, y2, m m′) holds.
Since ind(., ., .) is transitive, then for all y1, y2 with (y1, x1), (y2, x2) ∈
m mx : ind(y1, y2, m m′). Observe that condition (ii) remains true when
we set x1 = x2. We can construct a smaller model m′x = mx − {x2} and
a mapping m m′x, in which x2 is substituted by x1. m′x and m m′x satisfy
(i)-(ii), but mx ≤ m′x does not hold. This yields a contradiction to (iii),
so that our assumption is false and ind(y1, y2, m m′) does not hold. We
have shown that all conditions (1)-(3) stated in Theorem 4.2.1 follow from
Definition 4.2.3.

(←) Now we prove the reverse. Let conditions (1)-(3) hold. Trivially, if (1)
then (i). Conjunction of (2) and (3) is obviously more restrictive than
condition (ii), so (ii) holds. We show the minimality condition (iii) using
the following approach. First, we establish a lower bound on the number of
instances that mx must have as |mx| ≥ k using conditions (i) and (ii). Then,
we show that if (1)-(3) are satisfied, then mx necessarily has k instances,
so it is a minimal model with (i)-(ii).
The lower bound is established by condition (ii). Recall that ind(., ., m m′)
is an equivalence relation. It yields a disjoint decomposition Π of instances
in Domain(m m′), i.e., of all instances of m that are connected in m m′.
By condition (ii), each equivalence class c ∈ Π must be associated with a
distinct instance in mx. The proof is by contradiction: let c1, c2 ∈ Π , y1 ∈
c1, y2 ∈ c2, and (y1, x), (y2, x) ∈ m mx, i.e., instance x is shared among
c1 and c2. Then, by condition (ii), ind(y1, y2, m m′) holds and thus c1, c2

are not disjoint – we obtained a contradiction. That is, |mx| ≥ k = |Π |.
Now, we demonstrate that conditions (1)-(3) imply |mx| = |Π |. By
condition (3), if (y1, x1), (y2, x2) ∈ m mx and ind(y1, y2, m m′), then
x1 = x2. That is, all instances from the same equivalence class c ∈ Π

B.2 Merge operator 225

must be associated with an identical instance x ∈ mx. By condition (2),
Domain(m mx) = Domain(m m′), i.e., each instance of mx is associated
with some y ∈ c, c ∈ Π . Hence, |mx| ≤ |Π |. We already have |mx| ≥ |Π |,
since (i)-(iii) imply (1)-(3). Therefore, |mx| = |Π |, and (i)-(iii) from Defi-
nition 4.2.3 follow from (1)-(3) of Theorem 4.2.1.

�

B.2 Merge operator

Lemma B.2.1. Let m1 m2 ⊆ m1 × m2. 〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2) holds if and only if the conditions (i)-(iii) of Defini-
tion 4.2.4 are satisfied and

– S1 = m− Domain(m m2) ∼= m1 − Domain(m1 m2),
– S2 = m− Domain(m m1) ∼= m2 − Range(m1 m2),
– S3 = Domain(m m1) ∩ Domain(m m2) ∼= m1 m2

for disjoint partitions S1, S2, S3 of m, S1 ∪ S2 ∪ S3 = m. �

Proof: We show that each model with (i)-(iv) can be partitioned as sug-
gested in the proposition. The partitioning determines m uniquely up to
isomorphism for fixed m1, m2, and m1 m2. This implies that each model m′

with (i)-(iii) that is isomorphic to m is minimal and so satisfies (iv).
Let conditions (i)-(iv) hold. We partition m into four sets, S0, S1, S2, S3:

– S0 = {z | z ∈ m and z
∈ Domain(m m1) and z
∈ Domain(m m2)}.
– S1 = {z | z ∈ m and z ∈ Domain(m m1) and z
∈ Domain(m m2)}.
– S2 = {z | z ∈ m and z
∈ Domain(m m1) and z ∈ Domain(m m2)}.
– S3 = {z | z ∈ m and z ∈ Domain(m m1) and z ∈ Domain(m m2)}.

By construction, S0, S1, S2, S3 are pairwise disjoint with S0∪S1∪S2∪S3 =
m. First, we show that S0 = ∅. Let z ∈ m and z
∈ Domain(m m1) and
z
∈ Domain(m m2). Then, obviously the model m′ = m−{z} with the same
m1 m, m2 m satisfies (i)-(iii) and thus (iv) is violated. By contradiction,
there is no z with these properties, and S0 = ∅.

Due to condition (iii), Domain(m m1) ⊆ m and Domain(m m2) ⊆ m.
Therefore, we can simplify the definitions of S1, S2 and S3 as follows:

– S1 = m− Domain(m m2)
– S2 = m− Domain(m m1)
– S3 = Domain(m m1) ∩ Domain(m m2).

Let x ∈ m1 − Domain(m1 m2). Then, x ∈ Range(m m1) and there ex-
ists z with (z, x) ∈ m m1. Since Domain(m m1) is fully contained in m by
condition (iii), so z ∈ m. Assume that there exists y with (z, y) ∈ m m2.
Then, by (ii), (x, y) ∈ m1 m2 and x ∈ Domain(m1 m2). We arrived at a

226 B. Proofs of Simplification Theorems

contradiction. Hence, our assumption was false and z
∈ Domain(m m2).
Now, assume that there exists z′
= z with (z′, x) ∈ m m1. We construct
m′ = m−{z′} and m′ m1 = m m1−{(z′, x)}. Since z′
∈ Domain(m m2) and
x
∈ Domain(m1 m2), removing (z′, x) from m m1 preserves condition (ii).
Conditions (i) and (iii) are satisfied trivially. Hence, we obtained a smaller
model m′. By contradiction to (iv), we conclude that z is determined uniquely.
That is, there is a function from m1 − Domain(m1 m2) into m. But since
m m1 is a surjective function, then there is a bijection f1 ⊆ m1 m between
m1 − Domain(m1 m2) and S1 = m− Domain(m m2).

Analogously, we show that there is a bijection f2 ⊆ m2 m between m2 −
Range(m1 m2) and S2 = m− Domain(m m1).

Finally, we demonstrate that S3
∼= m1 m2. Let (x, y) ∈ m1 m2. By

condition (ii) there exists z ∈ Domain(m m1) with (z, x) ∈ m m1 and
(z, y) ∈ m m2. By (iii), z ∈ m. Now, let (z1, x), (z2, x) ∈ m m1, and
(z1, y), (z2, y) ∈ m m2. Assume that z1
= z2. We construct m′ = m − {z2},
m′ m1 = m m1−{(z2, x)}, and m′ m2 = m m2−{(z2, y)}. By condition (i),
there is no x′
= x with (z1, x

′) ∈ m′ m1 or (z2, x
′) ∈ m′ m1, and there is no

y′
= y with (z1, y
′) ∈ m′ m2 or (z2, y

′) ∈ m′ m2. Thus, m′, m′ m1, m
′ m2

satisfy (i)-(iii). Hence, we found a smaller model m′ that satisfies (i)-(iii). This
is a contradiction to (iv). Therefore, our assumption is false and z1 = z2, i.e.,
(x, y) determine z ∈ m uniquely. Now, let z ∈ S3. By condition (iii), there
exists (x, y) ∈ m1 m2 with (z, x) ∈ m m1 and (z, y) ∈ m m2. x and y are
determined uniquely by condition (i). That is, there is a bijection g between
m1 m2 and S3. Hence, S3

∼= m1 m2. �
Lemma B.2.1 implies that the output model m in Merge is determined

up to isomorphism. Thus, we can further simplify the definition of Merge as
follows.

Theorem 4.2.3 (from page 76) Let m1 m2 ⊆ m1×m2. 〈m, m m1, m m2〉
= Merge(m1, m2, m1 m2) holds if and only if

– the conditions (i)-(iii) of Definition 4.2.4 are satisfied, and
– |m| = mergeCard(m1, m2, m1 m2), where mergeCard(m1, m2, m1 m2) =df

|m1 m2|+ |m1 − Domain(m1 m2)|+ |m2 − Range(m1 m2)|.
If m1 m2 is total and surjective, or if m m1 and m m2 are total, then

mergeCard(m1, m2, m1 m2) = |m1 m2|.
Proof: The sets S1, S2, S3 of Lemma B.2.1 constitute a disjoint decom-
position of m. Thus, each model m with (i)-(iv) has exactly k = |S1| +
|S2| + |S3| instances. This implies that any other model with (i)-(iii) has
at least k instances. Thus, given a model m′ with (i)-(iii) that has k
instances we can conclude that it is minimal and so satisfies (iv). By
Lemma B.2.1, k = |S1| + |S2| + |S3| = |m1 m2| + |m − Domain(m m1)| +
|m − Domain(m m2)| = |m1 m2| + |m1 − Domain(m1 m2)| + |m2 −
Range(m1 m2)| = mergeCard(m1, m2, m1 m2). If m1 m2 is total and sur-

B.3 Diff operator 227

jective, or if m m1 and m m2 are total, then S1 = S2 = ∅ and hence
k = |m1 m2|. �

B.3 Diff operator

Lemma B.3.1. Let Domain(m m′) ⊆ m. 〈md, m md〉 = Diff(m, m m′)
holds if and only if the following conditions are satisfied:

1. m md is a surjective function from m onto md.
2. For all y1, y2 ∈ Domain(m m′) with y1
= y2 and ind(y1, y2, m m′) there

exist (y1, d1), (y2, d2) ∈ m md with d1
= d2.
3. If y ∈ m − Domain(m m′), then there exists (y, d) ∈ m md and
{y′ | (y′, d) ∈ m md} = {y}.

4. md is a minimal model with (1)-(3). �

Condition (2) ensures that the instances of m that are indistinguishable in
m m′ become distinguishable in m md. Condition (3) requires each instance
of m that does not participate in m m′ to have a counterpart in md that is
not connected to any other instance of m. It ensures that Diff picks up the
instances of m that get lost upon extraction. Condition (4) makes the result
of Diff minimal.

Proof: Conditions (iii) and (4) are identical. We show that conditions (i)-(ii)
of Definition 4.2.5 are equivalent with (1)-(3). First, we rewrite the conditions
(i)-(iii) by expanding the alternative definitions of Extract and Merge from
Theorem 4.2.1 and Theorem 4.2.3 and removing tautologies. We obtain the
following:

a. m mx and m md are surjective functions onto mx and md, respectively.

b. Domain(m mx) = Domain(m m′).
c. For all (y1, x1), (y2, x2) ∈ m mx : x1 = x2 iff ind(y1, y2, m m′).
d. m = Domain(m mx) ∪ Domain(m md).
e. mx md = Invert(m mx) ◦m md.
f. The statements below hold for pairwise disjoint partitions S1, S2, S3 of

m, S1 ∪ S2 ∪ S3 = m:
– S1 = m− Domain(m md) ∼= mx − Domain(mx md),
– S2 = m− Domain(m mx) ∼= md − Range(mx md),
– S3 = Domain(m mx) ∩ Domain(m md) ∼= mx md.

(→) We show that conditions (1)-(3) of Lemma B.3.1 follow from (a)-(f).
Let (a)-(f) hold. Condition (1) follows immediately from (a). Now, let
y2, y1 ∈ Domain(m m′) with y1
= y2 and ind(y1, y2, m m′). By condition
(b), y1, y2 ∈ Domain(m mx). Therefore, there exist (y1, x1), (y2, x2) ∈
m mx. Since ind(y1, y2, m m′), then due to condition (c), x1 = x2. That

228 B. Proofs of Simplification Theorems

is, there exist (y1, x), (y2, x) ∈ m mx. Assume that y1
∈ Domain(m md),
i.e., y1 ∈ m−Domain(m md). Then, by Theorem 4.2.3, y1 is determined
uniquely by x, a contradiction to y1
= y2. Thus, y1 ∈ Domain(m md).
Analogously, y2 ∈ Domain(m md). Let (y1, d1), (y2, d2) ∈ m md. Assume
that d1 = d2 = d. Then, by Theorem 4.2.3, (x, d) determine y uniquely,
a contradiction to y1
= y2. Hence, d1
= d2 and condition (2) holds.
To show condition (3), let y ∈ m − Domain(m m′). Then, by condition
(b), y ∈ m − Domain(m mx). By Theorem 4.2.3, there exist uniquely
determined d ∈ md − Range(mx md) such that y is the only instance of
m with (y, d) ∈ m md.

(←) We prove that conditions (1)-(3) of Lemma B.3.1 imply (a)-(f). Let
(1)-(3) hold. Conditions (a)-(c), which come from Extract, determine mx

and m mx uniquely up to isomorphism. Let mx and m mx be fixed with
(a)-(c). Condition (1) also states that m md is a surjective function onto
md, thus (a) is satisfied.
We show condition (d): m = Domain(m mx) ∪ Domain(m md) =
Domain(m m′) ∪ Domain(m md). Let y ∈ m. If y ∈ Domain(m m′),
then trivially m ⊆ Domain(m m′) ∪ Domain(m md). Let y
∈
Domain(m m′). By condition (3), there exists (y, d) ∈ m md,
therefore y ∈ Domain(m md). By the assumption of Lemma B.3.1,
Domain(m m′) ⊆ m. By condition (1), Domain(m md) ⊆ m. Therefore,
Domain(m md) ∪ Domain(m m′) ⊆ m, and the equality (d) follows.
Finally, we show condition (f), which can be stated as
– S1 = m− Domain(m md) ∼= mx − Domain(Invert(m mx) ◦m md),
– S2 = m− Domain(m mx) ∼= md − Range(Invert(m mx) ◦m md),
– S3 = Domain(m mx) ∩ Domain(m md) ∼= Invert(m mx) ◦m md.
S1: Let y ∈ m−Domain(m md). Then, there are two possibilities: either

y ∈ m − Domain(m mx) or y
∈ m − Domain(m mx). In the former
case, we obtain y ∈ m−Domain(m mx) = S2. This is a contradiction,
since S1 and S2 are disjoint. Thus, y
∈ m− Domain(m mx). In other
words, y ∈ Domain(m mx). Hence, there exists (y, x) ∈ m mx. Since
m mx is a function, x is determined uniquely by y. By (1), x ∈ mx.
Assume that x ∈ Domain(Invert(m mx) ◦m md). That is, there must
exist (y, d) ∈ m md for the composition not to drop x. Consequently,
y ∈ Domain(m md). This is a contradiction to our assumption y ∈ m−
Domain(m md). Therefore, x ∈ mx − Domain(Invert(m mx) ◦m md).
Now, let x ∈ mx − Domain(Invert(m mx) ◦ m md). That is, x
∈
Domain(Invert(m mx)◦m md). By (1), x ∈ Range(m mx). Let (z, x) ∈
m mx. By (d), z ∈ m. For the composition to fail, z
∈ Domain(m md).
Thus, z ∈ m−Domain(m md). Assume that we have two such instances
z1
= z2 with (z1, x), (z2, x) ∈ m mx. By (b), z ∈ Domain(m mx) =
Domain(m m′). Hence, by condition (c), ind(z1, z2, m m′) holds. But
then, condition (2) applies and there exist (z1, d1), (z2, d2) ∈ m md

B.3 Diff operator 229

with d1
= d2. However, z1, z2
∈ Domain(m md). Thus, we obtained a
contradiction and z is determined uniquely.

S2: Let y ∈ m−Domain(m mx). By (b), y ∈ m−Domain(m m′). Then,
by condition (3) there exists a unique d ∈ Range(m md) with (y, d) ∈
m md. Assume that d ∈ Range(Invert(m mx)◦m md). Since m md is a
function, d ∈ Domain(m md) is determined uniquely by y. Therefore,
there must exist (y, x) ∈ m mx for the composition to produce d.
Thus, y ∈ Domain(m mx). This contradicts our assumption, therefore,
d ∈ md − Range(Invert(m mx) ◦m md).
Now, let d ∈ md − Range(Invert(m mx) ◦m md). Since m md is sur-
jective, d ∈ Range(m md). Thus, there exists (z, d) ∈ m md with
z
∈ Domain(m mx). By (b), z ∈ m − Domain(m m′). Assume that
we have two such instances, z1
= z2. Since m md is a function, they
both map to d. This is a contradiction to (3). Thus, z is determined
uniquely.

S3: Let y ∈ Domain(m mx) ∩ Domain(m md). Then, trivially, there
exist (z, x) ∈ m mx and (z, d) ∈ m md. By (a), m mx and m md

are functions. Therefore, (x, d) ∈ Invert(m mx) ◦m md is determined
uniquely. Now, let (x, d) ∈ Invert(m mx) ◦ m md. Thus, there ex-
ists z ∈ Domain(m mx) ∩ Domain(m md) with (z, x) ∈ m mx and
(z, d) ∈ m md. Assume that (z′, x) ∈ m mx and (z′, d) ∈ m md.
Then, we obtain a contradiction to (1). Hence, instance z is deter-
mined uniquely. �

Although Lemma B.3.1 simplifies Definition 4.2.5 substantially, the pres-
ence of the minimality condition is still unsatisfactory. The following theorem
substitutes the minimality condition by a precise lower bound and helps us
to argue the correctness of the subsequent examples. The construction used
in the proof of the theorem can be exploited to find a valid solution for Diff
for concrete schema and mapping languages.

Theorem 4.2.5 (from page 81) Let Domain(m m′) ⊆ m. 〈md, m md〉 =
Diff(m, m m′) holds if and only if conditions (1)-(3) of Lemma B.3.1 are satis-
fied and |md| = diffCard(m, m m′), where diffCard(m, m m′) =df max{|c| :
c ∈ Π ∪ ∅, |c|
= 1} + |m − Domain(m m′)| and Π is a partitioning of
Domain(m m′) by ind(., ., m m′). If m m′ is total, diffCard(m, m m′) =
max{|c| : c ∈ Π ∪ ∅, |c|
= 1}.
Proof: Let Π be a partitioning of Domain(m m′) by ind(., ., m m′). By con-
dition (3) of Lemma B.3.1, md contains a distinct instance for each y ∈ m−
Domain(m m′). Moreover, {d | (y, d) ∈ m md and y ∈ m− Domain(m m′)}
is disjoint with {d | (y, d) ∈ m md and y ∈ ∪Π}. Let cmax be a maximal
equivalence class of Π . Condition (2) requires md to have a distinct instance
for each y ∈ Π . If |cmax| = 1, then there are no two distinct indistinguish-
able instances in m, and condition (2) is satisfied trivially. Otherwise, |md| ≥

230 B. Proofs of Simplification Theorems

|cmax|+ |m−Domain(m m′)|. Taking into account the case when |cmax| = 1,
we obtain |md| ≥ max{|c| : c ∈ Π ∪{∅}, |c|
= 1}+ |m−Domain(m m′)| = k.

Next we prove by construction that there always exist m md with |md| =
k that satisfies (1)-(3). That will allow us to conclude that each md must
have the cardinality of exactly k due to condition (4). We construct m md

as follows. Notice that for each equivalence class c = {y1, . . . , yp} ∈ Π , there
exist a total injective function fc : c → cmax, since cmax is maximal. Let f
be a mapping defined as f = ∪{fc : c ∈ Π}. f is a surjective function onto
cmax. Let g be a bijection from m−Domain(m m′) onto some set S, such that
S∩Range(f) = ∅. Now, let m md = f∪g and md = Range(m md) = cmax∪S.
By construction, m md is a surjective function with |md| = k that satisfies
(1)-(3). �

References

Abiteboul, S. and Duschka, O. M. 1998. Complexity of Answering Queries
Using Materialized Views. In Proc. ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS). ACM Press, 254–263.
Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-
Wesley, Reading, Mass.
Agarwal, S., Keller, A. M., Wiederhold, G., and Saraswat, K. 1995. Flexible
Relation: An Approach for Integrating Data from Multiple, Possibly Inconsis-
tent Databases. In Proc. Intl. Conf. on Data Engineering (ICDE), P. S. Yu and
A. L. P. Chen, Eds. IEEE Computer Society, 495–504.
Agrawal, R., Somani, A., and Xu, Y. 2001b. Storage and Querying of E-
Commerce Data. In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
149–158.
Agrawal, S., Chaudhuri, S., and Narasayya, V. R. 2001a. Materialized View and
Index Selection Tool for Microsoft SQL Server 2000. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data.
Ahn, I. 1994. Database Issues in Telecommunications Network Management.
In Proc. ACM SIGMOD Intl. Conf. on Management of Data. 37–43.
Aiken, A., Widom, J., and Hellerstein, J. M. 1992. Behavior of Database Pro-
duction Rules: Termination, Confluence, and Observable Determinism. In Proc.
ACM SIGMOD Intl. Conf. on Management of Data. 59–68.
Alagic, S. and Bernstein, P. A. 2001. A Model Theory for Generic Schema
Management. In Proc. DBPL 2001, Springer, LNCS. 228–246.
Anyanwu, K. and Sheth, A. 2002. The ρ operator: Discovering and Ranking
Associations on the Semantic Web. In SIGMOD Record. 42–47.
Atzeni, P., Ausiello, G., Batini, C., and Moscarini, M. 1982. Inclusion and
Equivalence between Relational Database Schemata. Theoretical Computer Sci-
ence 19, 267–285.
Atzeni, P. and Torlone, R. 1996. Management of Multiple Models in an Ex-
tensible Database Design Tool. In Proc. Intl. Conf. on Extending Database
Technology (EDBT). 79–95.
Bancilhon, F. and Spyratos, N. 1981. Update Semantics of Relational Views.
ACM Transactions on Database Systems (TODS) 6, 4, 557–575.
Banerjee, J., Kim, W., Kim, H.-J., and Korth, H. F. 1987. Semantics and
Implementation of Schema Evolution in Object-Oriented Databases. In Proc.
ACM SIGMOD Intl. Conf. on Management of Data. 311–322.
Baral, C., Kraus, S., and Minker, J. 1991. Combining Multiple Knowledge
Bases. IEEE Transactions on Knowledge and Data Engineering (TKDE) 3, 2,
208–220.
Barsalou, T. and Gangopadhyay, D. 1992. M(DM): An Open Framework for
Interoperation of Multimodel Multidatabase Systems. In Proc. Intl. Conf. on
Data Engineering (ICDE), F. Golshani, Ed. IEEE Computer Society, 218–227.

232 References

Batini, C., Lenzerini, M., and Navathe, S. B. 1986. A Comparative Analy-
sis of Methodologies for Database Schema Integration. ACM Computing Sur-
veys 18, 4, 323–364.
Becker, P. 1996. Verteiltes Modell-Management und Objektbanken für diskrete
Probleme und diskrete Strukturen. Ph.D. thesis, University of Tübingen.
Bell, J. 1988. Toposes and Local Set Theories: An Introduction. Oxford Uni-
versity Press.
Bergamaschi, S., Castano, S., and Vincini, M. 1999. Semantic Integration of
Semistructured and Structured Data Sources. SIGMOD Record 28, 1, 54–59.
Bergamaschi, S., Castano, S., Vincini, M., and Beneventano, D. 2001. Seman-
tic Integration of Heterogeneous Information Sources. Data and Knowledge
Engineering 36, 3, 215–249.
Berlin, J. and Motro, A. 2001. Autoplex: Automated Discovery of Content for
Virtual Databases. In Proc. Intl. Conf. on Cooperative Information Systems
(CoopIS). 108–122.
Berlin, J. and Motro, A. 2002. Database Schema Matching Using Machine
Learning with Feature Selection. In CAiSE. 452–466.
Bernstein, P. A. 1999. Review – EXPRESS: A Data EXtraction, Processing,
and REStructuring System. ACM SIGMOD Digital Review 1.
Bernstein, P. A. 2003. Applying Model Management to Classical Metadata
Problems. In Proc. of the 1st Biennial Conf. on Innovative Data Systems Re-
search (CIDR).
Bernstein, P. A. and Bergstraesser, T. 1999. Meta-Data Support for Data Trans-
formations Using Microsoft Repository. IEEE Data Engineering Bulletin 22, 1,
9–14.
Bernstein, P. A., Bergstraesser, T., Carlson, J., Pal, S., Sanders, P., and Shutt,
D. 1999. Microsoft Repository Version 2 and the Open Information Model.
Information Systems 24, 2, 71–98.
Bernstein, P. A., Haas, L. M., Jarke, M., Rahm, E., and Wiederhold, G. 2000a.
Panel: Is Generic Metadata Management Feasible? In Proc. Intl. Conf. on Very
Large Data Bases (VLDB). 660–662.
Bernstein, P. A., Halevy, A. Y., and Pottinger, R. 2000b. A Vision of Manage-
ment of Complex Models. SIGMOD Record 29, 4, 55–63.
Bernstein, P. A. and Rahm, E. 2000. Data Warehouse Scenarios for Model Man-
agement. In Intl. Conf. on Conceptual Modeling (ER) 2000. LNCS, Springer,
1–15.
Biskup, J. and Convent, B. 1986. A Formal View Integration Method. In Proc.
ACM SIGMOD Intl. Conf. on Management of Data. 398–407.
Blanning, R. W. 1982. Data Management and Model Management: a Relational
Synthesis. In Proc. of the 20th ACM Southeast Regional Conf. 139–147.
Blott, S. and Vckovski, A. 1995. Accessing Geographical Metafiles through a
Database Storage System. In Advances in Spatial Databases, 4th Intl. Sympo-
sium, SSD’95. 117–131.
Bohannon, P., Freire, J., Haritsa, J. R., Ramanath, M., Roy, P., and Simeon, J.
2002. LegoDB: Customizing Relational Storage for XML Documents. In Proc.
Intl. Conf. on Very Large Data Bases (VLDB). 1091–1094.
Borgida, A. 1995. Description Logics in Data Management. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 7, 5, 671–682.
Borkin, S. A. 1978. Data Model Equivalence. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB). 526–534.
Bretherton, F. P. and Singley, P. T. 1994. Metadata: A User’s View. In Proc.
Intl. Conf. on Scientific and Statistical Database Management (SSDBM). 166–
174.

References 233

Brin, S. and Page, L. 1998. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. In Proc. Intl. World Wide Web Conf. (WWW). Computer
Networks.
Brown, P. G. and Haas, P. J. 2003. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB). 668–679.
Buneman, P., Davidson, S. B., and Kosky, A. 1992. Theoretical Aspects
of Schema Merging. In Proc. Intl. Conf. on Extending Database Technology
(EDBT), A. Pirotte, C. Delobel, and G. Gottlob, Eds. Lecture Notes in Com-
puter Science, vol. 580. Springer, 152–167.
Casanova, M. A. and Vidal, V. M. P. 1983. Towards a Sound View Integration
Methodology. In Proc. ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS). 36–47.
Castano, S. and Antonellis, V. D. 1999. A Schema Analysis and Reconcilia-
tion Tool Environment. In Proc. Intl. Database Engineering and Applications
Symposium (IDEAS). 53–62.
Chawathe, S. S. and Garćıa-Molina, H. 1997. Meaningful Change Detection in
Structured Data. In Proc. ACM SIGMOD Intl. Conf. on Management of Data.
26–37.
Chen, C., Feng, Y., and Feng, J. 2002. View Merging in the Context of View
Selection. In Proc. Intl. Database Engineering and Applications Symposium
(IDEAS). 33–43.
Chirkova, R., Halevy, A. Y., and Suciu, D. 2001. A Formal Perspective on
the View Selection Problem. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB). 59–68.
Claypool, K. T. 2002. Managing Schema Change in a Heterogeneous Environ-
ment. Ph.D. thesis, Worcester Polytechnic Institute.
Claypool, K. T., Jin, J., and Rundensteiner, E. A. 1998. SERF: Schema Evolu-
tion through an Extensible, Re-usable and Flexible Framework. In Proc. ACM
Intl. Conf. on Information and Knowledge Management (CIKM). 314–321.
Claypool, K. T. and Rundensteiner, E. A. 2003. Sangam: A Framework for
Modeling Heterogeneous Database Transformations. In Proc. Intl. Conf. on
Enterprise Information Systems (ICEIS).
Clifton, C., Housman, E., and Rosenthal, A. 1997. Experience with a Combined
Approach to Attribute-Matching Across Heterogeneous Databases. In IFIP 7th
Conf. on Database Semantics (DS-7).
Cluet, S., Delobel, C., Siméon, J., and Smaga, K. 1998. Your Mediators Need
Data Conversion! In Proc. ACM SIGMOD Intl. Conf. on Management of Data.
177–188.
Codd, E. F. 1970. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM 13, 6, 377–387.
Cosmadakis, S. S. and Papadimitriou, C. H. 1984. Updates of Relational Views.
Journal of the ACM 31, 742–760.
Date, C. J. 1995. An Introduction to Database Systems, 6 ed. Addison-Wesley.
Davidson, S., Buneman, P., and Kosky, A. 1995a. Semantics of Database Trans-
formations. In LNCS, Springer, Vol. 1358.
Davidson, S., Overton, G. C., and Buneman, P. 1995b. Challenges in Integrating
Biological Data Sources. Journal of Computational Biology 2, 4, 557–572.
Davies, J. and Woodcock, J. 1996. Using Z: Specification, Refinement and Proof.
Prentice Hall.
Dayal, U. and Bernstein, P. A. 1978. On the Updatability of Relational Views.
In Proc. Intl. Conf. on Very Large Data Bases (VLDB), S. B. Yao, Ed. IEEE
Computer Society, 368–377.

234 References

de Amo, S. and Halfeld Ferrari Alves, M. 2000. Efficient Maintenance of Tem-
poral Data Warehouses. In Proc. Intl. Database Engineering and Applications
Symposium (IDEAS). 188–196.
Decker, S., Jannink, J., Melnik, S., Mitra, P., Staab, S., Studer, R., and Wieder-
hold, G. 2000a. An Information Food Chain for Advanced Applications on the
WWW. In Proc. European Conf. on Digital Libraries (ECDL), LNCS, Springer.
Vol. 1923. 490–493.
Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M. C. A., Broekstra,
J., Erdmann, M., and Horrocks, I. 2000b. The Semantic Web: The Roles of XML
and RDF. IEEE Internet Computing 4, 5, 63–74.
den Bussche, J. V., Gucht, D. V., and Vossen, G. 1993. Reflective Programming
in the Relational Algebra. In Proc. ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems (PODS). 17–25.
Do, H. H., Melnik, S., and Rahm, E. 2002. Comparison of Schema Matching
Evaluations. In Proc. GI-Workshop Web and Databases, LNCS 2593, Springer,
2003.
Do, H. H. and Rahm, E. 2000. On Metadata Interoperability in Data Ware-
houses. Tech. Rep. 01, University of Leipzig.
Do, H. H. and Rahm, E. 2002. COMA – A System for Flexible Combination of
Schema Matching Approaches. In Proc. Intl. Conf. on Very Large Data Bases
(VLDB). 610–621.
Doan, A., Domingos, P., and Halevy, A. Y. 2001. Reconciling Schemas of Dis-
parate Data Sources: A Machine-Learning Approach. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data.
Doan, A., Madhavan, J., Domingos, P., and Halevy, A. Y. 2002. Learning to
Map between Ontologies on the Semantic Web. In Proc. Intl. World Wide Web
Conf. (WWW). 662–673.
DOM 1998. XML Document Object Model (DOM), W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1/.
ElMasri, R. 1980. On the Design, Use, and Integration of Data Models. Ph.D.
thesis, Stanford University. STAN-CS-80-801.
Embley, D. W., Jackman, D., and Xu, L. 2001. Multifaceted Exploitation of
Metadata for Attribute Match Discovery in Information Integration. In Work-
shop on Information Integration on the Web (WIIW). 110–117.
Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. 2003. Data Exchange:
Semantics and Query Answering. In Proc. Intl. Conf. on Database Theory
(ICDT). 207–224.
Fan, W., Benedikt, M., Chan, C.-Y., Freire, J., and Rastogi, R. 2003. Capturing
both Types and Constraints in Data Integration. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data.
Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y., and Suciu, D. 1997.
STRUDEL: A Web-site Management System. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data. 549–552.
Fernandez, M. F., Kadiyska, Y., Suciu, D., Morishima, A., and Tan, W. C.
2002. SilkRoute: A Framework for Publishing Relational Data in XML. ACM
Transactions on Database Systems (TODS) 27, 4, 438–493.
Goldstein, J. and Larson, P.-Å. 2001. Optimizing Queries Using Materialized
Views: A Practical, Scalable Solution. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data.
Goldstone, R. L. and Rogosky, B. J. 2002. Using Relations with Conceptual
Systems to Translate Across Conceptual Systems. Cognition 84, 295–320.

References 235

Gotthard, W., Lockemann, P. C., and Neufeld, A. 1992. System Guided View
Integration for Object-Oriented Databases. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 4, 1, 1–22.
Günther, O., Müller, R., Schmidt, P., Bhargava, H. K., and Krishnan, R. 1997.
MMM: A Web-Based System for Sharing Statistical Computing Modules. IEEE
Internet Computing 1, 3, 59–68.
Gupta, A., Mumick, I. S., and Ross, K. A. 1995. Adapting Materialized Views
after Redefinitions. In Proc. ACM SIGMOD Intl. Conf. on Management of
Data. 211–222.
Gupta, A. K., Suciu, D., and Halevy, A. Y. 2003. The View Selection Problem
for XML Content Based Routing. In Proc. ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS). 68–77.
Gusfield, D. and Irving, R. 1989. The Stable Marriage Problem: Structure and
Algorithms. MIT Press, Cambridge, MA.
Halevy, A. Y. 2001. Answering Queries Using Views: A Survey. VLDB Jour-
nal 10, 4, 270–294.
Halevy, A. Y., Ives, Z. G., Suciu, D., and Tatarinov, I. 2003. Schema Mediation
in Peer Data Management Systems. In Proc. Intl. Conf. on Data Engineering
(ICDE).
He, B. and Chang, K. C.-C. 2003. Statistical Schema Matching across Web
Query Interfaces. In Proc. ACM SIGMOD Intl. Conf. on Management of Data.
217–228.
Hegner, S. J. 1994. Unique Complements and Decomposition of Database
Schemata. Journal on Computer Systems Science 48, 9–57.
Hull, R. 1986. Relative Information Capacity of Simple Relational Database
Schemata. SIAM Journal on Computing 15, 3, 856–886.
Hull, R. 1997. Managing Semantic Heterogeneity in Databases: A Theoretical
Perspective. In Proc. ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS). 51–61.
Hull, R., Benedikt, M., Christophides, V., and Su, J. 2003. E-Services: a Look
Behind the Curtain. In Proc. ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS). 1–14.
ISO 2002. Information technology – Z formal specification notation – Syntax,
type system and semantics, ISO/IEC 13568.
Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., and Wiederhold,
G. 1999. An Algebra for Semantic Interoperation of Semistructured Data. In
IEEE Knowledge and Data Engineering Exchange Workshop (KDEX), Chicago.
77–84.
Jeh, G. and Widom, J. 2002. SimRank: A Measure of Structural-Context Simi-
larity. In Proc. SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining.
Kalinichenko, L. A. 1990. Methods and Tools for Equivalent Data Model Map-
ping Construction. In Proc. Intl. Conf. on Extending Database Technology
(EDBT). 92–119.
Kanehisa, M. 2000. Post-Genome Informatics. Oxford University Press.
Kang, J. and Naughton, J. F. 2003. On Schema Matching with Opaque Column
Names and Data Values. In Proc. ACM SIGMOD Intl. Conf. on Management
of Data. 205–216.
Keller, A. M. and Ullman, J. D. 1984. On Complementary and Independent
Mappings on Databases. In Proc. ACM SIGMOD Intl. Conf. on Management
of Data. 143–148.
Kementsietsidis, A., Arenas, M., and Miller, R. J. 2003. Mapping Data in Peer-
to-Peer Systems: Semantics and Algorithmic Issues. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data.

236 References

Kook, H. J. and Novak, G. S. 1991. Representation of Models for Expert Prob-
lem Solving in Physics. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 3, 1, 48–54.
Lakshmanan, L. V. S., Sadri, F., and Subramanian, G. S. N. 2001. SchemaSQL
— An Extension to SQL for Multidatabase Interoperability. In ACM Transac-
tions on Database Systems (TODS). 476–519.
Lassila, O. and Swick, R. 1998. Resource Description Framework (RDF) Model
and Syntax Specification. http://www.w3.org/TR/REC-rdf-syntax/.
Laurent, D., Lechtenbörger, J., Spyratos, N., and Vossen, G. 2001. Monotonic
Complements for Independent Data Warehouses. VLDB Journal 10, 4, 295–
315.
Lechtenbörger, J. and Vossen, G. 2003. On the Computation of Relational
View Complements. ACM Transactions on Database Systems (TODS) 28, 2,
175–208.
Lee, A. J., Nica, A., and Rundensteiner, E. A. 2002. The EVE Approach: View
Synchronization in Dynamic Distributed Environments. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 14, 5, 931–954.
Lenzerini, M. 2002. Data Integration: A Theoretical Perspective. In Proc. ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS).
233–246.
Lerner, B. S. 2000. A Model for Compound Type Changes Encountered in
Schema Evolution. ACM Transactions on Database Systems (TODS) 25, 1,
83–127.
Li, C., Bawa, M., and Ullman, J. D. 2001. Minimizing View Sets without Loos-
ing Query-Answering Power. In Proc. Intl. Conf. on Database Theory (ICDT).
99–103.
Li, C., Bohannon, P., Korth, H., and Narayan, P. 2003. Composing XSL Trans-
formations with XML Publishing Views. In Proc. ACM SIGMOD Intl. Conf.
on Management of Data.
Li, W.-S. and Clifton, C. 2000. SemInt: A Tool for Identifying Attribute Corre-
spondences in Heterogeneous Databases using Neural Networks. Data & Knowl-
edge Engineering 33, 49–84.
Lovàsz, L. and Plummer, M. 1986. Matching Theory. North-Holland, Amster-
dam.
Mac Lane, S. 1998. Categories for a Working Mathematician, 2 ed. Springer.
Madhavan, J., Bernstein, P. A., Domingos, P., and Halevy, A. Y. 2002.
Representing and Reasoning about Mappings between Domain Models. In
AAAI/IAAI 2002. 80–86.
Madhavan, J., Bernstein, P. A., and Rahm, E. 2001. Generic Schema Matching
with Cupid. In Proc. Intl. Conf. on Very Large Data Bases (VLDB). 49–58.
Madhavan, J. and Halevy, A. 2003. Composing Mappings Among Data Sources.
In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
Maibaum, T. S. 1977. Mathematical Semantics and a Model for Data Bases.
In Proc. IFIP Congress, Toronto, Canada. North Holland, 133–138.
Marco, D. 2000. Building and Managing the Meta Data Repository: A Full
Lifecycle Guide. Wiley.
Markowitz, V. M. and Shoshani, A. 1992. Representing Extended Entity-
Relationship Structures in Relational Databases: A Modular Approach. ACM
Transactions on Database Systems (TODS) 17, 3, 423–464.
McCarthy, J. L. 1982. Metadata Management for Large Statistical Databases.
In Proc. Intl. Conf. on Very Large Data Bases (VLDB). 234–243.
McGee, W. 1959. Generalization — Key to Successful Electronic Data Process-
ing. Journal of the ACM 6, 1 (Jan.), 1–23.

References 237

Mecca, G., Atzeni, P., Masci, A., Merialdo, P., and Sindoni, G. 1998. The
Araneus Web-Base Management System. In Proc. ACM SIGMOD Intl. Conf.
on Management of Data. 544–546.
Melnik, S. 2000. Declarative Mediation in Distributed Systems. In Proc. Intl.
Conf. on Conceptual Modeling (ER), Salt Lake City. 66–79.
Melnik, S. and Decker, S. 2000. A Layered Approach to Information Modeling
and Interoperability on the Web. In Proc. ECDL’00 Workshop on the Semantic
Web, Lisbon, Portugal.
Melnik, S., Garćıa-Molina, H., and Paepcke, A. 2000. A Mediation Infrastruc-
ture for Digital Library Services. In Proc. of the 5th ACM Intl. Conf. on Digital
Libraries. 123–132.
Melnik, S., Garćıa-Molina, H., and Rahm, E. 2002. Similarity Flooding: A
Versatile Graph Matching Algorithm and Its Application to Schema Matching.
In Proc. Intl. Conf. on Data Engineering (ICDE). 117–128.
Melnik, S., Rahm, E., and Bernstein, P. A. 2003a. Developing Metadata-
Intensive Applications with Rondo. Intl. Journal on Web Semantics 1.
Melnik, S., Rahm, E., and Bernstein, P. A. 2003b. Rondo: A Programming
Platform for Generic Model Management. In Proc. ACM SIGMOD Intl. Conf.
on Management of Data.
Miller, R. J., Haas, L. M., and Hernández, M. A. 2000. Schema Mapping as
Query Discovery. In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
77–88.
Miller, R. J., Hernández, M. A., Haas, L. M., Yan, L.-L., Ho, C. T. H., Fagin,
R., and Popa, L. 2001. The Clio Project: Managing Heterogeneity. SIGMOD
Record 30, 1, 78–83.
Miller, R. J., Ioannidis, Y. E., and Ramakrishnan, R. 1994. Schema Equiva-
lence in Heterogeneous Systems: Bridging Theory and Practice. Information
Systems 19, 1, 3–31.
Milo, T. and Zohar, S. 1998. Using Schema Matching to Simplify Heterogeneous
Data Translation. In Proc. Intl. Conf. on Very Large Data Bases (VLDB),
A. Gupta, O. Shmueli, and J. Widom, Eds. Morgan Kaufmann, 122–133.
Mitra, P., Wiederhold, G., and Jannink, J. 1999. Semi-automatic Integration
of Knowledge Sources. In Intl. Conf. on Information Fusion.
Mitra, P., Wiederhold, G., and Kersten, M. L. 2000. A Graph-Oriented Model
for Articulation of Ontology Interdependencies. In Proc. Intl. Conf. on Extend-
ing Database Technology (EDBT), C. Zaniolo, P. C. Lockemann, M. H. Scholl,
and T. Grust, Eds. Lecture Notes in Computer Science, vol. 1777. Springer,
86–100.
Motro, A. 1987. Superviews: Virtual Integration of Multiple Databases. IEEE
Transactions on Software Engineering 13, 7 (July), 785–798.
Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge Uni-
versity Press.
Mumick, I. S., Quass, D., and Mumick, B. S. 1997. Maintenance of Data Cubes
and Summary Tables in a Warehouse. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data. 100–111.
Nestorov, S., Abiteboul, S., and Motwani, R. 1998. Extracting Schema from
Semistructured Data. In Proc. ACM SIGMOD Intl. Conf. on Management of
Data.
Noy, N. F. and Musen, M. A. 2000. PROMPT: Algorithm and Tool for Auto-
mated Ontology Merging and Alignment. In Proc. AAAI/IAAI.
Noy, N. F. and Musen, M. A. 2002. PromptDiff: A Fixed-Point Algorithm for
Comparing Ontology Versions. In Proc. AAAI/IAAI.

238 References

Ogata, H., Fujibuchi, W., Goto, S., and Kanehisa, M. 2000. A Heuristic Graph
Comparison Algorithm and its Application to Detect Functionally Related En-
zyme Clusters. Nucleic Acids Research, 4021–4028.
OMG 2002a. Meta-Object Facility (MOF) Specification, Version 1.4, Object
Management Group. http://www.omg.org/cgi-bin/doc?formal/2002-04-03.
OMG 2002b. Unified Modeling Language (UML)
Specification, Version 1.5, Object Management Group.
http://www.omg.org/cgi-bin/doc?formal/03-03-01.
Palopoli, L., Saccà, D., Terracina, G., and Ursino, D. 2003. Uniform Tech-
niques for Deriving Similarities of Objects and Subschemes in Heteroge-
neous Databases. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 15, 2, 271–294.
Paolini, P. and Pelagatti, G. 1977. Formal Definition of Mappings in a Data
Base. In Proc. ACM SIGMOD Intl. Conf. on Management of Data. 40–46.
Papakonstantinou, Y., Garćıa-Molina, H., and Widom, J. 1995. Object Ex-
change Across Heterogeneous Information Sources. In Proc. Intl. Conf. on Data
Engineering (ICDE). Taipe, Taiwan, 251–260.
Papakonstantinou, Y. and Vassalos, V. 1999. Query Rewriting for Semistruc-
tured Data. In Proc. ACM SIGMOD Intl. Conf. on Management of Data.
455–466.
Parsons, J. and Wand, Y. 2000. Emancipating Instances from the Tyranny
of Classes in Information Modeling. ACM Transactions on Database Systems
(TODS) 25, 2, 228–268.
Peckham, J., MacKellar, B., and Doherty, M. 1995. Data Model for Extensible
Support of Explicit Relationships in Design Databases. VLDB Journal 4, 2,
157–191.
Peters, R. J. and Özsu, M. T. 1997. An Axiomatic Model of Dynamic Schema
Evolution in Objectbase Systems. ACM Transactions on Database Systems
(TODS) 22, 1, 75–114.
Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M. A., and Fagin, R. 2002.
Translating Web Data. In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
Pottinger, R. and Bernstein, P. A. 2003. Merging Models Based on Given
Correspondences. In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
Powers, S. 2003. Practical RDF , 1 ed. O’Reilly & Associates.
Rahm, E. and Bernstein, P. A. 2001. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal 10, 4, 334–350.
Roddick, J. F. 1992. Schema Evolution in Database Systems - An Annotated
Bibliography. SIGMOD Record 21, 4, 35–40.
Roddick, J. F., Al-Jadir, L., Bertossi, L. E., Dumas, M., Estrella, F., Gregersen,
H., Hornsby, K., Lufter, J., Mandreoli, F., Mannistö, T., Mayol, E., and Wede-
meijer, L. 2000. Evolution and Change in Data Management - Issues and Di-
rections. SIGMOD Record 29, 1, 21–25.
Rosenthal, A. and Reiner, D. S. 1994. Tools and Transformations – Rigorous
and Otherwise – for Practical Database Design. ACM Transactions on Database
Systems (TODS) 19, 2, 167–211.
Shanmugasundaram, J., Kiernan, J., Shekita, E. J., Fan, C., and Funderburk,
J. 2001a. Querying XML Views of Relational Data. In Proc. Intl. Conf. on
Very Large Data Bases (VLDB). 261–270.
Shanmugasundaram, J., Shekita, E. J., Barr, R., Carey, M. J., Lindsay, B. G.,
Pirahesh, H., and Reinwald, B. 2001b. Efficiently Publishing Relational Data
as XML Documents. VLDB Journal 10, 2-3, 133–154.
Shoshani, A., Olken, F., and Wong, H. K. T. 1984. Characteristics of Scientific
Databases. In Proc. Intl. Conf. on Very Large Data Bases (VLDB). 147–160.

References 239

Shu, N. C., Housel, B. C., Taylor, R. W., Ghosh, S. P., and Lum, V. Y. 1977.
EXPRESS: A Data EXtraction, Processing, and REStructuring System. ACM
Transactions on Database Systems (TODS) 2, 2, 134–174.
Spaccapietra, S. and Parent, C. 1994. View Integration: A Step Forward in
Solving Structural Conflicts. IEEE Transactions on Knowledge and Data En-
gineering (TKDE) 6, 2, 258–274.
Stonebraker, M. 2003. Profiles of Distinguished Database Researchers: An In-
terview by Marianne Winslett. SIGMOD Record 32, 2, 60–67.
Stonebraker, M., Anderson, E., Hanson, E. N., and Rubenstein, W. B. 1984.
Quel as a Data Type. In Proc. ACM SIGMOD Intl. Conf. on Management of
Data. 208–214.
Subrahmanian, V. S. 1994. Amalgamating Knowledge Bases. ACM Transac-
tions on Database Systems (TODS) 19, 2, 291–331.
Tannenbaum, A. 2001. Metadata Solutions: Using Metamodels, Repositories,
XML, and Enterprise Portals to Generate Information on Demand. Addison-
Wesley.
Theodoratos, D., Ligoudistianos, S., and Sellis, T. K. 2001. View Selection
for Designing the Global Data Warehouse. Data and Knowledge Engineering
(DKE) 39, 3, 219–240.
Ullman, J. D. 1997. Information Integration Using Logical Views. In Proc.
Intl. Conf. on Database Theory (ICDT), F. N. Afrati and P. G. Kolaitis, Eds.
Lecture Notes in Computer Science, vol. 1186. Springer, 19–40.
Velegrakis, Y., Miller, R. J., and Popa, L. 2003. Mapping Adaptation under
Evolving Schemas. In Proc. Intl. Conf. on Very Large Data Bases (VLDB).
Wiederhold, G. 1977. Database Design. McGraw-Hill Book Com-
pany, New York, NY. 2nd Ed., January 1983, 768 pages, repub-
lished in the ACM SIGMOD Anthology DVD, available online at
http://www-db.stanford.edu/pub/gio/dbd/acm/toc.html.
Wiederhold, G. 1992. Mediators in the Architecture of Future Information
Systems. IEEE Computer 25, 38–49.
Wiederhold, G. 1994. An Algebra for Ontology Composition. In Proc. of Mon-
terey Workshop on Formal Methods, U.S. Naval Postgraduate School, Monterey
CA. 56–61.
Wiederhold, G. 2003. The Product Flow Model. In Proc. 15th Conf. on Software
Engineering and Knowledge Engineering (SEKE). 183–186. Keynote.
Yan, L.-L., Miller, R. J., Haas, L. M., and Fagin, R. 2001. Data-Driven Under-
standing and Refinement of Schema Mappings. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data.

