
Making Workflow Change Acceptable

Aldo de Moor and Manfred A. JeusfeldAldo de Moor and Manfred A. Jeusfeld
Infolab, Tilburg University, Tilburg, The Netherlands

Virtual professional communities are supported by
network information systems composed from standard

Internet tools. To satisfy the interests of all community

members, a user-driven approach to requirements

engineering is proposed that produces not only mean-

ingful but also acceptable specifications. This approach

is especially suited for workflow systems that support

partially structured, evolving work processes. To ensure

the acceptability, social norms must guide the specifica-
tion process. The RENISYS specification method is

introduced, which facilitates this process using composi-

tion norms as formal representations of social norms.

Conceptual graph theory is used to represent four

categories of knowledge definitions: type definitions,

state definitions, action norms and composition norms. It

is shown how the composition norms guide the legitimate

user-driven specification process by analysing a case on
the development of an electronic law journal.

Keywords: Breakdown; Knowledge representation;
Legitimate user-driven specification; Social norms;
Virtual communities; Workflow modelling

1. Introduction

Collaborative work is increasingly being done in a
distributed fashion. It is no longer only carried out in the
classic hierarchical organisation, where detailed orders
are given from the top down to groups of employees.
Rather, teams of collaborating professionals from within
and across organisations are expected to set their own
goals and organise their own ways of working. This
collaboration requires having people from many

different organisations and locations work together

intensively on complex tasks. Distributed computer

technologies are therefore useful for supporting these

professional networks. Especially commonly available

Internet-based network information tools, ranging from

mailing lists to a wide range of sophisticated Web

applications, have great potential to increase the efficacy

of collaboration. However, matching complex collabora-

tive requirements with these tools is not a trivial task.

The requirements engineering process therefore deserves

careful support.

The virtual professional communities in which such

collaboration is to take place are defined as networks of

professionals whose collaboration for realising shared

goals is mostly or completely computer enabled. To

model the community’s activities, we see the work

processes being carried out in such communities as

workflows. However, despite the many promises offered

by network technologies, it turns out to be very hard in

practice to make them successfully support the work-

flows of these communities. One of the main reasons is

that an ongoing co-evolution of network requirements

and supporting information tools is needed for adequate

collaboration in these dynamic networks to be realisable.

In order for the members of a virtual professional

community to collaborate productively, it is not

sufficient to merely make available a set of standard

Internet information tools. Instead, an integrated in-

formation system supporting the communal workflows

needs to be constructed out of these standard technolo-

gical components. The selection and configuration of

these tools should be dependent on the collaborative

context in which they are being used. Active user

participation in the specification process of such

continuously evolving socio-technical systems is

needed. As the required changes cannot be predicted, a

specification process should be started as soon as a user

Requirements Eng (2001) 6:75–96
� 2001 Springer-Verlag London Limited Requirements

Engineering

Correspondence and offprint requests to: Aldo de Moor, Infolab,
Tilburg University, PO Box 90153, 5000 LE, Tilburg, The Nether-
lands. Email: ademoor/jeusfeld@kub.nl



encounters a breakdown, which is any problem related to
the work or its technological support that is experienced
by a user during its performance.
To increase the legitimacy of changes in the

information system of a professional community,
proposed modifications should not only be meaningful
with respect to the existing system requirements, but also
acceptable to all community members. To system-
atically support such a legitimate user-driven specifica-
tion process, specification methods are needed.
Traditionally, the system development phase has been

decoupled from the use phase of a system. System
developers elicit requirements from users, then imple-
ment a system according to these requirements, and
deliver that system to the users. In our case, however, we
are interested in methods that support the continuous co-
evolution of both the requirements and the implementa-
tion. We believe that such an approach is technically
feasible if limited to workflow systems that are built
from reusable Internet tools. Workflow systems are
interesting research objects for studying the acceptability
of requirements changes since they target distributed
teams. Moreover, they provide flexible facilities to adapt
them to those changes.

1.1. Towards Acceptable Specification Change

The members of virtual professional communities, like
their counterparts in normal communities, are subjected
to shared social norms. To ensure the acceptability of
specification changes, these norms should guide both the
operations of such a network and the specification
processes in which the network is being defined. As
virtual professional communities are generally egalitar-
ian in nature, the norms that guide these processes
cannot be imposed from above, but need to be defined by
the community itself.
For acceptable specifications to be produced via a

method, a way of capturing these norms in a formal
representation needs to be found. Composition norms are
what we call the formally represented social norms
guiding the specification process. For specification
changes to be acceptable, the composition norms must
be used to determine which users need to be involved in
what capacity in a specification process. If this can be
accomplished, all community members can see the
particular interests they represent sufficiently reflected in
the specified goals, activities, organisational structures
and information technologies of the network. Such a
norm-guided specification approach should make colla-
boration possible, not only upon the initiation of the

network, but especially when tasks, organisational
structures and supporting technologies have grown in
complexity.

The RENISYS (REsearch Network Information
SYstem Specification) method provides such a composi-
tion norm-guided approach. Earlier work focused on the
representation and organisation of norms [1,2], and on
the development of an ontological framework in which
specification knowledge can be expressed [3]. A full
description of the recent state of method and prototype
tool, as well as the underlying theory of legitimate user-
driven specification, is given elsewhere [4,5,6].

1.2. Related Work

Key aspects of requirements engineering methods are the
negotiation of requirements between stakeholders and
the traceability of requirements.

The requirements engineering community has con-
sidered collaboration and negotiation between stake-
holders for several years. Robinson and Volkov [7] draw
an analogy between the systems life cycle and
negotiation life cycle. The negotiation (of requirements)
should be planned and tool supported just like the
systems life cycle. Systems development in general aims
at producing a system in teamwork whereas negotiation
aims for a contract resolving conflicting goals. The main
players in the negotiation life cycle are the owner (main
stakeholder of the negotiation outcome), the analyst

(formalises and refines the owner’s goals), the designer

(plans the interaction between the participants), and the
facilitator (provides the tools for negotiation). The
authors identify communication support, creative con-
flict resolution and contract monitoring as open areas of
research. For the first area, software agents exchanging
formalised goals are proposed. The second area is about
opening up the search space of possible solutions to a
conflict. This turns out to be particularly difficult when
the goal models are automatically processed. Finally,
contract monitoring is about the match between the
contract and its enactment in the system development
and usage phases. Interesting in this approach is the
identification of agent roles and the view on negotiation
as a structured process. The RENISYS approach covers
similar roles and provides a formal framework to
represent their rights and obligations. However, it does
not focus on automated conflict support, but on
identifying which users can play what negotiation roles
in various stages of the requirements negotiation
process.

A thorough empirical study of traceability models and
link types is given in Ramesh and Jarke [8] and Ramesh
[9]. The study covers about 25 cases from various

76 A.de Moor and M. A. Jeusfeld



industries and exhibits more than 40 incarnations of
traceability link types. Traceability can be applied to
learn from previous system development processes and
to guide the current process. Of particular interest with
respect to our approach are models of rationales which
record the arguments and assumptions behind a design
decision. In the KBSA-ADM system [10], for instance, a
truth maintenance system is incorporated to keep the
network of assumptions, rationales and decisions
consistent. Essentially, it helps stakeholders to discuss
in a consistent way about requirements. The RENISYS
method adds the dimension of legitimacy to such a
network: who is allowed to propose meaningful changes
and who has to be consulted in the decision making
process?

A third area of related work is enterprise modelling. A
prominent example is the ARIS toolset [11]. ARIS splits
the co-evolution task into four levels. The process design
level is the modelling environment (consisting of data
models, control models, organisational models and
function models) where all aspects of the computerised
information system are abstractly represented. Below
that is the process management level. Here, the
execution of the (implemented) information system is
supervised by monitoring systems. Certain parameters of
the running information system can be adjusted when the
monitor system exhibits unsatisfactory performance. The
third level concerns workflows. The control model is
mapped to a workflow plan and executed by a (standard)
workflow management system. Finally, the process

application level manages reusable components support-
ing certain steps in the workflow (e.g., a word processor
for writing invoices).

There is a major drawback with applying a traditional
approach like ARIS to supporting the legitimate user-
driven specification of network information systems in
virtual professional communities: although the meaning
(semantics) of the changes is often specified in great
detail, it is unclear who is authorised to make what
specification changes. Changes made under the control
of an external design team are often opaque to the users,
and may not reflect the interests of a community as a
whole. This, in turn, can lead to systems that no longer
satisfactorily support their communities. Therefore, any
specification change proposed to resolve a breakdown
must be acceptable to the community as well. Only then
can the legitimacy of these changes be guaranteed. So,
our research question is: How can a community adapt its
information system without violating its social norms?

The objective of this article is to show how the norm-
guided specification processes supported by the RE-
NISYS method can produce acceptable specification
changes of (workflow-enacting) network information
systems. The method is improving on the agreement

dimension mentioned by Pohl [12], by providing a
language to express and evaluate so-called composition
norms. These norms specify permissions, obligations and
prohibitions of the community members in the discourse
about system changes.

In Section 2 we present our view on workflow
modelling as a process that should be focused on
interpretation instead of on representation. Section 3
outlines the RENISYS method. Section 4 introduces the
knowledge representation approach used. In Section 5
we illustrate the method by discussing the support it
provides in subsequent steps of the legitimate user-
driven specification process and by analysing a
simplified case of the development of an electronic law
journal. Section 6 contains some conclusions.

2. Workflow Modelling

Many definitions exist of the workflow concept. One
definition conceives of a workflow as a unit of work that
happens repeatedly in an organisation of work [13].
However, this interpretation does not clearly capture two
important aspects of workflows: (1) that they are
coordinated and (2) that they can be supported by
information technology. A more explicit definition along
these lines is that a workflow is an automated
organisational process, which means that the coordina-
tion, control and communication of activities are
automated, but that the activities themselves can be
either automated or performed by people [14]. However,
this definition needs to be relaxed, as in virtual
professional communities much of the coordination
and control is done by human actors. Therefore, we
define a workflow as a recurring unit of work of which
the coordination, control and execution can be partially
or completely automated.

2.1. Workflow Management Systems

To automate or enact workflow processes, workflow
management systems are required. These are systems
that allow for the design, execution and management of
business processes and activities in a network [15]. Two
kinds of workflow management systems can be
distinguished, based on the degree to which the
workflows are structured. Most current workflow
systems are transaction focused, which means that they
create structures to implement and enforce frequently
recurring processes. Ad hoc applications, on the other
hand, focus more on supporting creative knowledge
activities. Their main aim is to provide some but no
complete control to make sure that tasks, responsibilities,

MakingWorkflow Change Acceptable 77



etc. are delivered [16]. Such deliverables and control
structures are of a more indeterminate kind than those
available in transaction-focused systems. Thus, in ad hoc
workflow management systems more attention needs to
be paid to the triggering and evaluation of workflows by
human beings.
Most workflow-enacting information systems cur-

rently either focus on unstructured or on structured
processes. However, the processes in between, the
partially structured workflow processes, often lack
support [14]. This is definitely the case in virtual
professional communities, in which very creative,
unstructured work is linked in complex ways to, for
instance, formal document management procedures. In
order to enact this whole spectrum of workflows, one
should be able to model the different kinds of
dependencies that these modes of work entail.

2.2. A Basic Workflow Model

Workflow modelling methods can be of two categories:
activity-based (also known as input–process–output
(IPO)-based) and conversation-based approaches
[14,17]. In activity-based approaches, the focus is on
the objects being used and produced in a process and on
the task and process dependencies, whereas in conversa-
tion-based approaches the commitments created in
conversations between participants play a central role.
A typical example of the first approach is the ExSpect

method [18]. Using the Petri net formalism, in ExSpect
complex tokens can be moved between input and output
channels and stored via transitions. The method has
proven to be especially useful for the modelling,
simulation and analysis of the logistical workflows of
business organisations.
Two well-known examples of conversation-based

workflow modelling methods are the ActionWorkflow
approach [19] and the DEMO specification method [20].
In the ActionWorkflow approach, conversations are
structured around the action workflow loop. In this
loop, a performer agrees to perform some action to the
satisfaction of the customer who proposed it. In the
DEMO (Dynamic Essential Modelling of Organisations)
method, the core concept is the transaction, in which two
actors, the initiator and the executor, agree on an
essential action to be carried out, in what is called an
actagenic conversation. The actors agree that this action
has been satisfactorily performed by producing a fact in
a factagenic conversation.
In order to specify the partially structured workflows

prevailing in virtual professional communities, both
modelling approaches are incorporated in our model of
the workflow. From the activity perspective, each

workflow has a set of input and output objects. From
the conversation point of view, each workflow has an
initiator and executor. However, in addition to the
customer/performer, initiator/executor roles of respec-
tively ActionWorkflow and DEMO, we distinguish a
third role: the evaluator. This role is necessary, as in
loosely organised networks often the participants who
are responsible for approving the result of a workflow
are different from the ones who started the process or
produced the result. The resulting model of a single
workflow is shown in Fig. 1. More detailed workflow
models that include aggregation and inter-workflow
dependencies are required in real-world cases, but for the
sake of argument this simple model suffices here.

Both activity- and conversation-based workflow
modelling methods still face some serious drawbacks
[17]. First, their models are often either too rigid or too
lax. What they should offer is the possibility to just
capture the constraints that require satisfaction. Second,
they are fragile, in the sense that the models become
irrelevant when unforeseen changes occur in the context
to which they apply. For instance, in an editorial
environment, publication and review processes are
often defined either very broadly, leaving too many
degrees of freedom for the user needing guidance, or too
detailed, making the system inflexible and hard to
change. Especially in virtual professional communities,
such as research environments, accurate workflow
models are crucial, but it is often very difficult to predict
their structure in advance [21].

These factors may have contributed to the fact that so
far only little concrete guidance has been given for the
redefinition of complex workflows, which is necessary
for them to better meet evolving user needs [17,22].
Another factor contributing to the current problems is
that there has been insufficient involvement of users in
the modelling process, whereas workflow management
systems should allow users and implementors to jointly
define workflow processes [13].

Summing up, many of these problems are caused by
current methods paying too much attention to the
representation of detailed requirements and designs,
instead of focusing on the organisation of the human

Fig. 1. A basic workflow model.

78 A.de Moor and M. A. Jeusfeld



interpretation process of the complex and sometimes
chaotic context of work. Instead of regarding specifica-
tions as directly implementable accounts of work
processes, they should be considered as heuristic devices
that can be used to discuss and reach agreement on who
is to be involved in their specification process in what
particular way [23]. In the next section, the RENISYS
specification method is outlined, which aims to deal with
these problems by developing such an interpretive
approach.

3. The RENISYS Method

In the RENISYS project, a theory on legitimate user-
driven specification has been developed, as well as a
specification method that has been partially implemented
by means of a prototype web server. Theoretical work
related to the project has been published elsewhere [1–
6]. We first give a summary of the developed approach
in this section, before focusing on the norm-guided
specification process in more detail.

In the project, an analysis was first made of the need
for network information systems in research networks,
which form an important class of virtual professional
communities. A model was developed of Internet-
enabled research collaboration supported by common
information tools, such as mailing lists and web
applications. The core of this model is a reference
framework, consisting of three domains, which give
different perspectives on the same reality. Key entities in
all three domains are workflows, as well as the actors
that play roles in these workflows, and the objects that
are produced in them. The first domain, the problem
domain, models the workflows, called activities, that are
needed to accomplish the goals of the community. The
human network describes the organisational structures
and workflows of the community, e.g., group structures
and discussion and decision-making processes. Together,
these domains form the usage context of the information
system. In the information system, the required informa-
tion and communication (I/C) processes of the network
are represented. These processes (e.g., editing a text or
sending a mail) manipulate information objects. These
required I/C processes are then mapped to the I/C
processes that are enabled by the information tools
comprising the information system. As indicated before,
we do not consider the specification process in which
this modelling takes place to happen only once. Instead,
it is regarded as a continuous form of process
composition [24], in which users gradually define and
refine their requirements and mappings to the supporting
information tools.

To define the characteristics of the user participation
in the specification process, a study was made of existing
user-centred specification approaches. These were
classified along two dimensions: the roles that users
play as sources and as modellers of specification
knowledge. A class of specification methods which is
still largely undeveloped is that of legitimate user-driven
specification methods, which can be characterised as
methods in which the users themselves control the
modelling process and where groups of users, rather than
individual users, act as sources of specifications.

Using this background, we next outline the actual
specification approach, which focuses on the handling of
breakdowns.

3.1. Breakdown Handling

As soon as a user becomes aware of a breakdown in his
work or supporting tools, the breakdown needs to be
formulated in terms of knowledge definitions to be
changed. These changes should be worked out and
accepted in a form of group conversation. The break-
down-handling process is therefore subdivided into three
stages:

1. Breakdown awareness: The individual user becomes
aware of his breakdown, invokes the specification
tool and classifies the breakdown.

2. Breakdown formulation: The individual user identi-
fies those problematic knowledge definitions which,
in his view, need changing.

3. Breakdown resolution: The group of relevant users
produces a set of knowledge definition changes that
are legitimate, i.e., meaningful and acceptable, to the
community as a whole.

In Fig. 2 the specification method that supports this
breakdown-handling process is outlined: when a user
becomes aware of a breakdown, he can call the
RENISYS tool from the application he is currently
using, for example by clicking a link in the web
application currently being used. This calling informa-

tion tool can then be considered as the starting point for
breakdown formulation. For instance, if an editor is
editing a report using some web page, the likelihood is
high that the problems experienced are related to the
workflows (i.e., editing processes) being supported by
this calling information tool (assuming that a web page
can be regarded as such a tool). Next, the user classifies
the breakdown, for instance indicating that it is a
breakdown having to do with the tool support provided.
RENISYS subsequently supports the individual user in
the breakdown formulation process by suggesting
definitions from the knowledge base that could be

MakingWorkflow Change Acceptable 79



problematic. These suggestions are partially based on the

knowledge about the workflows supported by the calling

information tool, and partially on the breakdown class.

In the above example, RENISYS asks the user if the edit

process definition needs to be changed. The breakdown

formulation stage results in one or more problematic

knowledge definitions that need to be changed. For each

problematic definition, one or more knowledge defini-

tions from the knowledge base are changed in a

conversation for specification. Definitions from the

knowledge base can also be used to situate the

conversation for specification, for example, by showing

the knowledge context of the definition to be changed,

and by selecting which users to involve in the

conversation. In Section 3.1.2 a concrete example of

the handling of breakdowns using RENISYS is given.

Whereas the breakdown awareness and formulation

stages are conducted by the individual user facing the

breakdown, the breakdown resolution process is con-

sidered to consist of a group conversation for specifica-

tion. From our point of view, theories from the

Language/Action Perspective (LAP) school, such as

speech act theory and Habermas’s theory of commu-

nicative action, are well suited to model these

conversations. In this perspective, language is not only

usable to say, but also to do something (for an

introduction to the language/action approach, see

Dignum et al. [25]). Speech act theory is used to

represent the specification process as a conversation

about a knowledge definition change. However, this
theory alone does not allow for the adequate challenging
of background assumptions, which is essential if
specification changes are to be acceptable to all members
of the community. Van Reijswoud’s Transaction Process
Model (TPM) [26] builds on both speech act theory and
the theory of communicative action to structure
communication acts in business processes. He distin-
guishes between successful transactions, which lead to
the intended result, discussion processes, in which
unclarities can be resolved, and discourse processes,
which help to explore the context of concepts used in the
other processes. We have adapted the TPM to a
Specification Process Model (SPM) to represent con-
versations for specification as processes of rational
discourse, in which such context assumptions can be
challenged. An extensive description of the make-up of
these conversations is given in de Moor [4]. In this
paper, we do not repeat how the conversations
themselves are to be modelled and supported. Instead,
we focus on the equally important problem of how to
determine who should be involved in these conversations
and in which capacity.

A major remaining problem is how to ensure that only
those users are involved in a conversation for specifica-
tion to whom a knowledge definition change is relevant.
In other words, a conversation for specification needs to
be situated, in the sense that the context of the
knowledge definition to be changed determines its
settings. This context should help to find out both
which users to involve and what other knowledge
definitions are needed in order to make the change.
Key concepts in modelling the contexts of conversations
for specification are composition norms. Whereas action
norms guide the operational workflows of network
participants (i.e., defining that an editor is permitted to
carry out the edit process), composition norms describe
the acceptable workflow changes they can make (i.e.,
defining that a steering committee is required to change

the definition of the edit process). Composition (and
action) norms have one of three deontic effects, which
indicate the obligations they create for the actor to which
they apply: the compositions they describe are either
permitted (i.e., the actor may be involved), required (the
actor must be involved), or forbidden (the actor may not
be involved). A permitted composition (norm) is an
example of a privilege, a required composition is called
a responsibility and a forbidden composition is classified
as a prohibition.

To represent and reason about composition norms, and
to handle norm conflicts, we make use of two deontic
theories, namely Stamper’s semiotic theory [27] and
dynamic deontic logic [28]. Using this interpretation of
norms, a context model has been developed, in which

Fig. 2. The RENISYS specification method.

80 A.de Moor and M. A. Jeusfeld



both an internal and an external conversation context are
distinguished. The internal conversation context deter-
mines which knowledge definitions are related to the
knowledge definition being changed, depending on the
particular kind of specification process being carried out.
Composition norms that are applicable to the various
users determine the external conversation context of a
conversation for specification. Using this context, it can
be determined which users can legitimately control the
conversation, in the sense of initiating, executing or
evaluating it. In this paper, we focus on the external
conversation context, as we want to describe who to
involve in specification changes. In de Moor [4] a full
description is given of how to calculate the external
conversation context out of a given set of composition
norms. Here, we only informally illustrate how this is to
be done in Section 5.

We next illustrate the prototype tool that has been
developed to support the specification process. The
architecture of the RENISYS tool is first described, after
which its functionality is demonstrated with an example.

3.1.1. Tool Architecture

The RENISYS specification tool supports the users
playing different (individual or group) roles in the
specification process outlined in Fig. 2, by generating
different kinds of web pages. The specification tool
consists of a web server that can be accessed by any
common web browser, such as Netscape or Explorer.
The server is composed of three interrelated servers: a
knowledge base, a page generator and a script server.

The knowledge base stores and makes accessible all
specification knowledge definitions and auxiliary in-
formation. It has been implemented as a Postgres server.
Such a server can manage a number of relational
databases, each of which contains one or more tables. In
these tables tuples of information are stored.

The page generator creates the web pages that provide
the interface with the user. The generator has been
implemented as a web server that allows for the dynamic
generation of web pages interpretable by any web
browser. A dynamic web page is similar to an ordinary
web page, but, in addition, its variables can be set at run-
time.

The script server provides the scripts that enable
complex procedures, like those required for the
calculation of norm dynamics.

By accessing web pages called forms, users issue
various kinds of specification commands. The forms are
interpreted by the page generator, which may send one
or more SQL commands to the Postgres server. This
server then carries out the requested operations on the

tables of its databases, and returns the SQL results to the
page generator. This server uses the results to generate a
new web page that the user can view with the browser.

Instead of sending a set of SQL commands to the
Postgres server, the page generator can also send a
complex command to the script server. By this we mean
a command that requires one or more special procedure
or function scripts to be executed. These scripts
themselves may also issue SQL commands to obtain or
update the data they require for their calculations. After
the commands have been executed, the script server
returns the command results to the page generator.

3.1.2. Tool Functionality: A Use Case

The functionality of the tool is best illustrated by an
example. Assume that John, who is a reviewer of an
electronic journal, is using a web browser to fill in
review comments on a paper, and feels dissatisfied. His
problem is that he would actually like to be able to
discuss a paper with other reviewers and the editor,
instead of doing the current individual blind review.

After John has called RENISYS from the application
he is currently working with (i.e., the ‘Review Paper’
web page), and has identified himself, he is presented
with the ‘Problem Awareness’ page (Fig. 3). He then has
to indicate what is the most likely cause of his
breakdown. One of four options needs to be selected:

Fig. 3. The RENISYS tool: classifying the problem.

MakingWorkflow Change Acceptable 81



goals, activities, organisation or supporting tools of the
network. John selects activities since he wants to change
the review process.
In the next page (not displayed), the main parts of the
knowledge definitions linked to the selected breakdown
class are presented. In the example, let us say that two
activities are mapped to the ‘Review Paper’ web page:
the Edit and the Review process. John selects the Review
process as the core breakdown entity. John is then also
shown all the knowledge definitions related to the core
breakdown entity, from which he selects the problematic
definition that he wants to be created, modified or
deleted. In this case, since the core breakdown entity is a
workflow, there are three related kinds of knowledge
definitions: first, there is the workflow itself (Review
process). Second, there are the related action norms (all
the norms indicating who can initiate, execute or
evaluate the workflow). Third, there are the related
workflow mappings. These are mappings that show by
which the concrete information and communication
processes workflows are actually supported. After
considering these options, John selects the Review

process as the problematic definition.
In the next RENISYS page (not displayed), John

indicates that he wants a new activity, the Paper

Discussion process, to be created, and explains in free
text what is his problem and what he suggests as the
solution. This change is an example of a type creation

specification process (see Section 4 for an overview of
all specification processes).
RENISYS calculates which composition norms apply

to this so-called active specification process, and as a
result of this calculation selects the users who should be
invited to initiate, execute and evaluate the knowledge
definition change. When it is their turn, these users are
invited by email to access the relevant ‘conversation for
specification’ page that is part of the specification tool.
Here, they produce a new, tentative Paper Discussion
type definition. Once this preliminary definition has been
accepted by the evaluators, the implementor of the
journal web server, for example the system adminis-
trator, is notified of the definition change. He is sent all
the comments made by the users involved in the
specification process, so that he knows what to change.
The moment he has implemented the changes, John and
all the users involved in the definition change are invited
to evaluate whether the implemented changes indeed are
what they expected them to be.
This, in a nutshell, is a description of the specification

process supported by RENISYS. In Section 5.1 this basic
functionality is explained in more detail. The current
implementation of the tool is a research prototype. At
present, only a subset of the specification processes (e.g.,
type creation processes) is fully supported. However,

work is underway to develop a robust version of the tool
that can be used for a large variety of real-world
applications. This version will also include a more
refined definition presentation format plus a short tutorial
on the basics of legitimate user-driven specification.

The above example shows the essence of legitimate
user-driven specification. The main advantage is in the
correct enactment of the social norms that should guide
the evolution of the system. Using RENISYS, the
stakeholders can be assured that the changes to the
system do not violate their legitimate interests.

In this article, we concentrate on the roles that the
knowledge definitions play in the specification process,
as both initialising and being legitimately changed in
these conversations. In the next section, Section 4, we
introduce the representation of the specification knowl-
edge categories distinguished in RENISYS.

4. Knowledge Representation

The intended output of a specification process is a
changed knowledge definition. The specification process
consists of a conversation for specification and an
embedded definition process, in which the actual
knowledge definition change is carried out. We
distinguish 12 different definition processes (three
types of specification processes for each of four
categories of knowledge definitions, discussed below).
The semantics and properties of these definition
processes are less relevant to understand the legitimacy
of the overall specification process. They are discussed
in detail in de Moor [4].

There are three kinds of specification processes:
creations, modifications and terminations of knowledge
definitions. We distinguish four categories of knowledge
definitions: type definitions, state definitions, action
norms and composition norms. As explained earlier,
action norms define which actors can be involved in
what workflows, whereas composition norms describe
who can make changes in these and derived knowledge
definitions. To explain the ontological meaning of the
terms used in the definitions, type definitions are
necessary. For example, a type definition of a workflow
can represent that there must be at least one input and
one output object. State definitions are required to
express entities in the actual world, e.g. the particular
users of a specific tool.

In order to represent, reason about and use the
knowledge definitions, conceptual graph theory has
been selected as the knowledge representation formal-
ism. We first briefly give the rationale for our use of this

82 A.de Moor and M. A. Jeusfeld



theory and introduce some of its core elements. In the
next section we present our formal representation of the
various specification knowledge categories.

4.1. Conceptual Graph Theory

In this section, we first introduce this theory and then use
it to describe the semantics of the knowledge definition
categories.

4.1.1. Why Conceptual Graph Theory?

The representation language of choice must be rich
enough to allow the efficient expression of complex
definitions. Since the users themselves are the specifiers,
it is important that their definitions can be easily
transformed into a (pseudo-) natural language format.
At the same time the representation language must be
sufficiently formal and constrained to allow for mean-
ingful specification inferences to be made. Conceptual
graph theory has these properties, and has been used to
represent knowledge definitions and the operations that
can be applied to them [1].

Conceptual graph theory (CGT), introduced by John
Sowa [29], provides a knowledge representation
formalism for typed first-order logic, which has been
applied to many different domains, from natural
language processing to information systems specifica-
tion. Conceptual graphs can be represented in both a
graphic and a linear notation. CGT is more than a
syntactic variant of first-order logic because it can
enforce conceptual definitions of concepts and relations
in terms of natural language-related primitives [30]. The
formal structures and operations of the theory have been
shown to be useful for representing and processing
terminological knowledge in concrete applications; see,
for example, Angelova and Bontcheva [31].

Users do not have to understand conceptual graphs.
The graphs are used to describe and theorise about the
knowledge specification processes, which can be
implemented using dedicated conceptual graph tools or
by other techniques. For example, a graph can be stored
as a tuple in a particular database table. However,
conceptual graphs are not directly presented to the users.
For presentation purposes, the tool can carry out more or
less simple transformations to fill out slots in predefined
natural language sentences, which can be either
assertions or requests. In this way, users can interact
with the specification tool in a semi-natural way, while
the formality of the graphs ensures that the semantics of
and inferences applied to the specification knowledge are
well understood. Thus, the graphs described in the next
sections are only concise summaries of possibly much

more complex implementations and presentations. Note
that in the current implementation of the tool the
presentation of the definition is still quite primitive.
Based on the results of actual tool usage and results from
conceptual graph research, we intend to refine the format
of the presented information considerably in the near
future.

4.1.2. A Brief Introduction to Conceptual Graph
Theory

As CGT is relatively unknown, we give a brief
introduction of conceptual graphs in linear notation.
Conceptual graphs are constructed out of concepts and
conceptual relations.

. Concept

A concept has two fields: a type and a referent field. The
fields are separated by a colon and surrounded by square
brackets. The type field contains a type label that is part
of a type hierarchy. The referent field designates a
particular entity with the mentioned type. The referent
field is optional: if it is not given, the concept is
considered to be a generic concept, by default quantified
with the existential quantifier.

A referent can be a generic marker, denoted by *, or
an individual marker. If the referent is a generic marker,
then the concept is a generic concept. The generic
marker may be followed by a variable identifier (lower
case), e.g. *x. These named generic markers are useful
for cross-referencing concepts. Individual markers
identify individual concepts. They consist of a number
sign followed by some identification number or constant
(upper case), e.g. #123 or #John. Sowa also
distinguishes various set referents, which we do not
use here. All definitions using set referents can be
translated into simple definitions using simple referents.
Using set referents would introduce theoretical complex-
ity, which is unnecessary for our specification purposes
and would distract from the main point of this paper.

A concept has the following format:

[Type : Ref]

An example of a concept is [List_Owner : #John],
which says that John is a list owner.

. Conceptual Relation

A conceptual relation links two or more concepts. Each
conceptual relation has a relation type, surrounded by
parentheses, and one ore more arcs, represented by
arrows, each of which must be linked to some concept. If
a relation has n arcs, it is called n-adic. In our research,
we only make use of dyadic relations. A dyadic relation
has the following representation:

MakingWorkflow Change Acceptable 83



[Type1 : Ref1] ? (R_Type) ? [Type2 : Ref2]

Generally, the relations can be read, in the direction of
the arrows, as ‘source-concept has a relation to the
destination concept’.
An example of a relation is

[Buyer : #Mary]?(Poss)?[Book : #War_ and_Peace]

which, literally translated, means ‘There is a buyer Mary
who possesses the book War and Peace’.

. Conceptual Graph

A conceptual graph is a combination of concept nodes
and conceptual relation nodes. A graph can consist of a
single concept, but every arc of every conceptual relation
must be linked to some concept.
To represent such a graph, one of its concepts is

chosen as the head of the graph. If more than one relation
is connected to a concept, the dash symbol ‘–’ can be
used to separate the common concept from the rest of
these relations. A conceptual graph is ended by a period.
The general format of a conceptual graph is based on

this pattern:

[Type1 : Ref1] –

(R_Type1) ? [Type2 : Ref2]

(R_Type2) ? [Type3 : Ref3] –

(R_Type3)...

A nested graph is a special kind of conceptual graph,
which has as its referent a set of conceptual graphs.
These graphs are said to occur in the context of the type
of concept. A nested graph with a singleton graph
referent, which is the kind of graph we use here, has the
following format:

[Type : [Graph]].

We use these nested graphs to represent specification
knowledge definitions. The general graph format for
specification knowledge definitions is

[K : [Definition]].

Here, the knowledge category K e {Type, State,
AN, CN}, whereas Definition represents a specifica-
tion knowledge definition in graph format. As the graph
representation for each category of knowledge definition
differs, they will each briefly be discussed next.

4.2. Specification Knowledge Categories

For each knowledge definition category, the role and
structure of the definition are presented.

4.2.1. Type Definitions

A type definition is an ontological definition. An
ontology is an explicit specification of a conceptualisa-
tion, which itself is an abstract, simplified view of the
world that needs to be represented for some purpose
[32]. In our case, this purpose is the specification of
network information systems. An ontology forms only
part of a knowledge base, as it contains a vocabulary
useful for describing a domain rather than knowledge
about the state of the domain itself. Ontological
definitions provide a definition of the meaning of an
entity. Such knowledge can be represented in different
ways. For our purpose, type definitions are most
suitable.1

Type definitions provide a clear canonical core for
definition knowledge, which is useful in eliciting and
checking required properties of specification entities.
The basis for an ontology consisting of type definitions is
a type hierarchy. The type of each entity used in any
state, ontological or normative definition must be
included in this type hierarchy.

A type definition has the following format:

[Type : [td : *x] ? (Def) ? [tg : *x] dif(dt)].

Here, td is the defined type, tg is the genus (the
supertype), and dif(dt) is the differentia of the type
definition. The differentia consists of a subgraph that
specialises the genus to the defined type.

An example of a type definition is the following one,
which represents that an editorial process is an activity
that results in a publication:

[Type : [Edit : *x]?(Def)?[Activity : *x] –

(Rslt) ? [Publication]].

4.2.2. State Definitions

A state definition asserts something about one or more
particular entities in the universe of discourse. Such a
definition will normally contain at least one instantiated
entity of which the value is known, e.g. stating that John
is a list owner of some mailing list. Still, there may be
cases when a state definition contains no such

1Two knowledge representation techniques often used to describe the
meaning of entities are schemas and type definitions. Schemas can be
used to represent stereotyped or prototypical definitions of entities. A
schema contains a number of slots with default values, describing
properties of the entity. These default values can be overruled in case
of exceptions. Type definitions, on the other hand, only represent
essential properties that define the meaning of what it requires to be an
entity of a particular type. We use type definitions instead of schemas
to represent the meaning of entities, because we want ontological
definitions only to contain typical, not just prototypical knowledge
(cf. [33], p. 373).

84 A.de Moor and M. A. Jeusfeld



instantiation, for instance when it is known that there is
some list owner, but it is not (yet) known which person
plays this role.

A state definition has the following format:

[State: [Definition]].

Definition is a conceptual graph formed by a
combination of concepts and relations. This graph must
be a specialisation of some type definition in order to be
meaningful.

The graph definition of the example just mentioned
would be

[State : [List_Owner : #John]?(Poss) –

[Mailing_List : *]].

4.2.3. Action Norm Definitions

Action norms describe the roles that users can play in the
control of workflows through actor roles. An action

norm regulates the behaviour of users at the operational
level by saying that an action is either permitted
(Perm_Action), required (Req_Action) or for-
bidden (Forb_Action).

An action norm (definition) is represented as follows:

[AN: [Actor] / (Agnt) / [Control] –

(Obj) ? [Workflow]].

The following action norm says that an editor is
permitted to execute the edit process:

[Perm_Action: [Editor] / (Agnt) / [Exec] –

(Obj) ? [Edit]].

4.2.4. Composition Norm Definitions

A composition norm regulates the behaviour of users at
the specification level by saying that it is either a
permitted composition (Perm_Comp), a required
composition (Req_Comp) or a forbidden composition
(Forb_Comp).

A composition norm (definition) is represented as
follows:

[CN : [Actor] / (Agnt) / [Control] –

(Obj) ? [Specify] ? (Rslt) –

[Definition]].

[Specify] stands for some specification process, i.e.,
a creation, modification or termination process of the
knowledge definition. [Definition] stands for some
definition in one of the four knowledge categories, i.e.,
type, state, action, or composition norm definitions.

The following composition norm says that an editor is
permitted to initiate the modification process of the edit
process (type):

[Perm_Comp : [Editor] / (Agnt) –

[Init] ? (Obj) ? [Modify] ? (Rslt) –

[Type : [Edit : *x]]].

5. Supporting the Legitimate User-Driven
Specification Process

In this section, we illustrate how the web-based
RENISYS supports the legitimate user-driven specifica-
tion process. We first show how the method, making use
of the knowledge definitions introduced in the previous
section, concretely supports the users in their specifica-
tion process steps. We then show how specification
processes consisting of these steps can be repeatedly
applied to support the evolution of the network
information system of a realistic community, by using
material from the case of the development of an
electronic law journal. A similar analysis of the
specification evolution of a research network on
sustainable development was done in de Moor [4].

5.1. Specification Process Steps

In Section 3.1.2 the functionality provided by the
RENISYS method and tool was briefly illustrated
showing the hypothetical example of the handling of
user John’s breakdown during the review process. To
resolve this breakdown, he proposed the creation of a
new type of paper discussion process. In the current
section, we illustrate the concrete support provided by
RENISYS by exploring this example in more detail,
subsequently looking at the support for the various
specification steps in the breakdown awareness, for-
mulation, and resolution stages.

Breakdown Awareness

. Step 1: Invoking RENISYS

In general, the user will invoke the RENISYS tool while
working in another tool, for instance, some web
application. He is then asked if his problem is related
to the web page from which RENISYS was called. In
RENISYS, mappings can be made from particular web
pages of these invoking tools to specific knowledge
definitions in its specification knowledge base. This is
useful to limit the amount of definitions presented to the
user. If the problem is indeed related to the calling page,
then only the mapped definitions will be shown as
potentially problematic definitions. For example, if a
web page allows a user to edit a document, then only the
definitions related to the editorial process are shown to
the user.

MakingWorkflow Change Acceptable 85



Example: John, who was working on the ‘Review Paper’
page and who wants to create a completely new review
discussion process, indicates that the problem is indeed
related to the page he invoked.

. Step 2: Classifying the Breakdown

The complete set of legitimate knowledge definitions is
not presented to the user all at once. First, the breakdown
is classified, using classes that are related to the work
situation and that the user can easily understand. For
instance, in the prototype tool, the user can choose from
the following breakdown classes: goals, activities,
organisation and tools. Each of these classes links to
different subsets of knowledge definitions. For instance,
the breakdown class Activities comprises type definitions
which have as their defined type Activity. If necessary,
the breakdown classes can be changed in future versions
of RENISYS; however, the four underlying knowledge
categories – type definitions, state definitions, action
norms and composition norms – will remain the same.

Example: John, who wants to create a new paper
discussion process, selects Activity as the breakdown
class, because he is not satisfied with the current
properties of the activity Review Paper.

Breakdown Formulation

. Step 3: Selection of Core Breakdown Entity

Once the breakdown class has been chosen, the
breakdown formulation process starts. First, all knowl-
edge definitions mapped to the selected breakdown class
(and, if selected, calling page) are retrieved. Depending
on the conceptual class, parts of these definitions are
then shown, from which the user has to select the core

breakdown entity. Note that on the RENISYS web pages
the query to be selected is not presented in raw graph
format. For instance, in the case of an activity break-
down, asking the user to select a core breakdown entity
is posed as: ‘Please select the activity type most closely
related to your problem.’ The activities to be selected are
then obtained from the type definition graphs that
describe activities, and displayed in a standard pulldown
list.

Example: John has an activity breakdown. In this case,
type definitions are retrieved that define activities. Since
John indicated that his problem was linked to the calling
page, only those activity-defining type definitions related
to the ‘Review Paper’ web page are used, which are
those definitions describing review and editorial
processes. Thus, the pulldown list now only contains
the Review and Edit labels. Since the new paper
discussion process is part of the review process, John
selects the Review activity as the core breakdown entity.

. Step 4: Selection of Problematic Definition

For each type of core breakdown entity, there is a set of
related definitions. For instance, for activities, the related
definitions are the action norms and the workflow
mappings (which are type definitions). The appropriate
definitions can be retrieved from the knowledge base by
making the appropriate conceptual graph projections.
For action norms, such a projection retrieves all norms in
which the Workflow component is a subtype of the
selected activity. The core breakdown entity and its
related definitions are then presented to the user on the
web page in an easily readable format. From this set, the
user selects the most problematic definition. If needed,
this can be repeated.

Example: John needs to select a problematic definition
from: the core breakdown entity, the action norms related
to this process, and the workflow mappings that indicate
by which information and communication processes this
workflow is supported. The core breakdown entity was
identified as the Review activity. One of the retrieved
action norms related to the Review process, could be:

[Perm_Action : [Editor] / (Agnt) / [Exec] –

(Obj) ? [Edit]].

This norm is presented to the user in a pulldown list as
‘An editor is permitted to execute the editorial process’.
An example of a workflow mapping is: ‘The Review
Process is a Group Discussion Process that is enabled by
a Mail Redistribution Process.’ John, since he wants to
create a new kind of review process, selects the Review
activity as the problematic definition.

. Step 5: Scheduling of the Problematic Definition

Now that a problematic definition has been identified,
the user needs to determine the action to be performed
on it. If the user wants a critical discussion to be started
on it, the definition is added to the discourse agenda.
This discourse process is explained in detail in de Moor
[4]. If, on the other hand, the user wants the definition to
be changed, it is added to the specification agenda. In
that case, the appropriate specification process type
needs to be indicated: either to create a new definition
based on the problematic definition, to modify, or
terminate it. Besides this scheduling process, the user
also makes a free-format problem description, in which
he explains why the definition needs to be criticised or
changed. Once the definition scheduling process has
finished, another problematic definition may be selected
and scheduled, if necessary.

Example: John indicates that he wants to create a new
Review activity: the Paper Discussion process. In the
problem description, he explains why such a refinement

86 A.de Moor and M. A. Jeusfeld



is needed. RENISYS then classifies this request as a type
creation specification process.

Breakdown Resolution

. Step 6: Selection of Users to Involve

The proposed change of the problematic knowledge
definition is made in the active specification process,
which consists of three compositions: the initiation,
execution and evaluation of the specification process. At
the heart of the specification process is the definition
process, in which the actual definition change is made.
In the case of a (workflow) type creation process, this
definition process would include identifying the super-
type, the input and output objects of the workflow, etc.
To select which users to legitimately involve in the
different compositions, the applicable norm sets need to
be calculated. For each user and composition (i.e., user
John and composition ‘execution of Review-type
creation’), a separate applicable norm set is calculated.

In de Moor [5], the algorithms to do the complex
conceptual graph calculations required to determine the
applicable norm sets are presented, involving general-
isation hierarchies of norm graphs. The norms in these
sets can have conflicting deontic effects, e.g. one saying
that it is forbidden, another one that it is permitted for
user John to execute the creation of type definitions of the
review process. To handle these conflicts, a norm conflict
resolution mechanism is needed. Ours uses a slight
variation of standard dynamic deontic logic [34]. An
example of how conflicting norms could apply to the
same user is that John has these two norms in his
applicable norm set for the execution of the review type
creation process: a general norm saying that it is
forbidden for users to change their own workflow
processes, as well as a more specific norm saying that it
is permitted for reviewers to be involved in the changing
of such workflows.

For each applicable norm set, its resultant deontic

effect is calculated, which says if it is permitted, required

or forbidden for a particular user to either initiate, execute

or evaluate the particular specification process in which

the problematic knowledge definition is to be changed.

Once the resultant deontic effects for all applicable

norms sets have been calculated, all legitimate initiators

I, executors X and evaluators E of the activity

specification process are known.

Example: In the example, John has one prohibition and

one privilege in his applicable composition norm set for

the composition ‘execution of the Review-type creation

process’. The resultant deontic effect would be that it is

forbidden for John to be involved in the execution of this
process (which would consist of modifying a type

definition template for the Review supertype), since

prohibitions have precedence over privileges in our

logic:

der(DCN_APPL(John, Exec_Create_Type(Review))) = Forb

On the other hand, for a user Jane, the resultant deontic

effect might be that she is permitted to be involved in the

execution of this definition process (see Fig. 4).

. Step 7: Supporting the Conversation for Specification

Users who have been selected in the norm calculation

process receive an email when their input is required.

Initiators are invited if the user who has the breakdown

(the problem experiencer) does not have initiator
privileges himself. If this is the case, a legitimate

initiator must judge whether it is worth starting a

breakdown resolution process.

Various RENISYS web pages are used to support the

group conversation in which the specification process is

carried out. In this conversation, the definition to be

Fig. 4. Support for a legitimate type creation process.

MakingWorkflow Change Acceptable 87



changed is initiated, worked out, evaluated and, if
necessary, further discussed. These procedural aspects
were discussed in detail elsewhere [4,6].
At the heart of each conversation is the definition

process in which the actual knowledge definition change
is produced. In Section 4 we distinguished 12 such
processes (one for each combination of specification
process and knowledge definition category). Each of
these definition processes comes with its own set of
customised web pages. An example of a type creation
page is shown in Fig. 5.
In this subsection, we showed in detail the function-

ality that RENISYS provides, as well as the role that
knowledge definitions play in the coordination and
performance of the specification process in which a
knowledge definition is changed. Next, analysing a
concrete case, we show the role that sequences of such
specification processes can play in the evolution of the
virtual professional community and its supporting
network information system.

5.2. Case: The Development of an Electronic Law
Journal

Single knowledge definition change processes, as
illustrated in the previous section, are the basic building
blocks of network information system evolution. We

next show how the repeated use of these processes can
be used to foster the growth of virtual professional
communities.

IWI, a Dutch organisation stimulating new ways of
distributing scientific information, funded a project to
create an Electronic Journal on Comparative Law

(EJCL2). The project group included participants from
various academic law institutes, university libraries and
computer centres. The goal was to have all publishing
activities, ranging from paper submission to editing, peer
review and publication, being done completely electro-
nically, making use of the web. The project started in
spring 1997 and ended in summer 1998.

The initially basic set of requirements defined by the
users (e.g., editors or authors) gradually evolved in scope
and complexity. Furthermore, the set of simple informa-
tion tools over time included more advanced groupware
applications. For instance, at first only a relatively
simple web site and mailing list were being used,
whereas later also the much more sophisticated BSCW
tool [35], supporting advanced group work, was
integrated into the network information system. Because
of the clear legitimate user-driven specification aspects,
the EJCL project was an interesting case to test and
refine the theory underlying the RENISYS method.

Although the EJCL conversations for specification
largely took place in face-to-face mode, we assume that
the kinds of composition norms discovered there are
similar to those needed in virtual conversations. In fact,
their explicit representation is even more important
there: they can serve as the main drivers of the
specification process, since the normal social cues that
abound in physical meetings are lacking. Future
empirical research will have to demonstrate to what
extent composition norm-guided change processes in
virtual and physical professional communities are indeed
comparable.

5.2.1. The Ontological Framework

Before a virtual professional community can start
working with its network information system, and is
able to specify its changes, a set of meaningful
knowledge definitions is needed. Such definitions can
be in the form of a reference model. Based on a typology
of virtual professional communities, such a model can be
used to select clusters of definitions that are most likely
to satisfy the requirements of the particular community
of users. If necessary, they can be modified by the users
before taking effect. We described the use of such
reference models in system specification in more detail
in Van der Rijst and de Moor [36]. Since the purpose of

Fig. 5. The RENISYS tool: a type creation page.

2http://law.kub.nl/ejcl/

88 A.de Moor and M. A. Jeusfeld



this article is to show how users can manage their own
workflow change, instead of to describe all their
potential requirements in detail, we will not use a full
reference model here. Instead, we base ourselves on the
RENISYS ontological primitives. Since space is lacking
to completely describe the ontologies, we will only
introduce those concepts necessary to represent the
knowledge definitions made in the example. The
RENISYS ontological framework was described in
more detail in de Moor and Weigand [3]. The type
hierarchy composed from the elements of the framework
relevant to the current example is given in Fig. 6. These
concepts will be introduced in the definitions that follow.

5.2.2. Supporting the Network Life Cycle

Viable virtual professional communities require many
knowledge definitions, which are defined in sequences of
breakdown-handling processes over a longer period of
time. Virtual professional communities are networks that
are not immediately fully operational, but go through
several life cycle stages to mature [37]. These we call the
network conception, construction and operation stages.
Additionally, a fourth, network termination stage, could
also be distinguished. To illustrate, we describe the first
two stages of the life cycle: the network conception and
construction.

5.2.2.1. Network Conception

Although the legitimate user-driven specification process
is in principle ongoing, it has to get started at a particular
moment in time. This network conception stage is
crucial, in the sense that the initial knowledge definitions
produced determine to a large extent the success of
future specification processes. Definitions created in this
stage have a special status. Since they are used to get the
network started, the definitions cannot be created in a
legitimate way yet. In a sense, this situation resembles a
fundamental problem in law, where the conception of a
legal system is always fraught with problems: who is
allowed to define a law when no law yet exists to govern
this legal conception process?

However, this lack of legitimacy of the initial
definitions in effect is less serious than it may seem.
First, participation in virtual professional communities is
essentially voluntary, so that prospective members can
refuse to participate if these initial definitions are not to
their liking. Second, because of the strongly developed
participatory definition change mechanisms, problematic
definitions can be criticised or changed later on.

In order to produce the conception definitions, a
special actor, the network conceiver, is appointed. This
actor only has temporary existence. It can produce any
definition deemed necessary, without being constrained
by composition norms. However, after these definitions
have been created, the network conception stage comes
to an end, and the network conceiver role is terminated.
From then on, any definition change should be
legitimate.

Definitions to be produced in this stage include at
least:

. some type definition of a network constructor who is
to be responsible for making the construction stage
definitions.

. one or more subjects playing this role (state
definitions).

. the compositions’ norms that describe which compo-
sitions the network constructor is permitted, required
and forbidden to make. A subset of these norms could
be constitutional norms, being those composition
norms that should not be modifiable by the users.
Such norms are not studied here, however.

The project to create an electronic journal is sponsored
by the IWI organisation. The network conceiver makes
the following definitions:3

Fig. 6. The type hierarchy for the example.

3The verbal description of each knowledge definition is followed by
the subject who is the definer, as well as by the definition identifier.
This identifier consists of a knowledge category indicator (‘T’ = type,
‘S’ = state, ‘AN’ = action norm, ‘CN’ = composition norm) followed
by a number.

MakingWorkflow Change Acceptable 89



– A sponsor is an actor in the problem domain (NC,T1).

– IWI is a sponsor of the project (NC,S1).

. (T1) [Type : [Sponsor : *x] ? (Def) –

[PD_Actor : *x]].

. (S1) [State: [Sponsor : #IWI]].

The network conceiver defines some initial composition
norms. First, to prevent users from removing restrictions
on their specification rights, they should not be able to
change their own forbidden compositions.

– No actors in the network should be able to change the

forbidden compositions in which they themselves play
a role (NC,CN1).

. (CN1)

[Forb_Comp : [Actor : *x] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[Forb_Comp : [Actor : *x] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[Definition]]].

Furthermore, the sponsor should be able to change all
definitions:4

– A sponsor may change any knowledge definition

(NC,CN2).

. (CN2)

[Perm_Comp : [Sponsor] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[Definition]].

The sponsor is responsible for handling changes in the
goals of the network:

– A sponsor must handle the specification process of any

network goal (NC,CN3).

. (CN3)

[Req_Comp : [Sponsor] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Goal]]].

Thus, these knowledge definitions precisely specify how
the sponsor may currently be involved in the evolution
of the socio-technical system that is formed by the
electronic journal community and its supporting network
information system. The composition norms ensure that
other users cannot change the goals of the network
without the sponsor’s agreement. Or, put more posi-
tively: the sponsor will always be invited into
discussions about goal changes (and is expected to
participate in them, since the last composition norm
concerns a responsibility, which means that the actor
must be involved). Note that the composition norms

themselves are only used to determine who is to
participate in these discussions (conversations for
specification, see Fig. 2), the inner workings of which
are outside the scope of this paper.

5.2.2.2. Network Construction

To reduce the risk of making illegitimate knowledge
definitions, the set of network conception definitions
should be minimal in size. The definitions required for
the development of the network should be legitimately
produced by the network participants themselves as soon
as possible. Thus, after the conception definitions have
taken effect, the network construction stage begins. In
this stage, the network participants define the knowledge
definitions needed to get the network going. User
involvement should be relatively simple to accomplish,
since willingness to participate is mostly high at the
beginning of the life of the network.

If the construction stage is complex, it can be
subdivided. One natural way to partition the network
construction stage is according to the main activities or
business processes. Different subgroups of users,
covered by the composition norms defined in the
previous stage, can work out the definitions for these
focal points of network development.

The construction stage of the electronic law journal
network consists of various substages. First, there is the
definition of the project organisation. Then, the overall
publishing process is defined to consist of a number of
main activities. The definition of one of these activities,
the paper submission process, is then described.

(1) Defining the Project Organisation

The project organisation is defined by IWI, the sponsor.
The goal of the network is to produce an issue of the
electronic journal:

– A journal issue is an object in the problem domain
(IWI,T2).

– There is an issue of the Electronic Journal on

Comparative Law (EJCL) (IWI,S2).
– The goal of the network is to produce this issue

(IWI,S3).

. (T2) [Type : [Journal_Issue : *x] ? (Def) –

[PD_Object : *x]].

. (S2) [State : [Journal_Issue : #EJCL]].

. (S3) [State : [Goal : #EJCL]].

5.2.2.3. Norm Dynamics Calculation

We illustrate the calculation of the norm dynamics by
taking a closer look at the specification of definition S3.
At the time of its specification, legitimate composition

4Apart from its own forbidden compositions. However, since the
sponsor has no need to change them, it is not affected by CN1.

90 A.de Moor and M. A. Jeusfeld



norms (CN1–CN3) are in force. Since there is at least
one user (IWI) playing an actor role (Sponsor) that
matches with the actor component of each of these
norms, all three norms are invoked. If the composition
part (i.e., control process plus specification process) of
one of these norms matches with one of the compositions
of the active specification process (the process in which
the current knowledge definition, i.e. S3, is to be
produced), that involved norm becomes an active

norm. The specification process for definition S3 is the
‘creation of a goal state definition’. The active norms for
this process are CN2 and CN3. These norms also form
the applicable norm sets for user IWI for all active
compositions, which means that they cover the initiation,
execution and evaluation of the active specification
process for that particular user. Of these norms, CN3 has
preference, since in our norm conflict resolution
semantics a required composition has a higher priority
than a permitted composition (see de Moor [4]). The
resultant deontic effect for user IWI is therefore that it
must handle the (initiation, execution and evaluation of
the) creation process of a goal state definition when
triggered.

The sponsor is not going to coordinate the project
itself, but appoints a project team:

– A project team is an actor in the problem domain

(IWI,T3).

– There is a project team PT1 (IWI,S4).

. (T3) [Type: [Project_Team : *x] ? (Def) –

[PD_Actor : *x]].

. (S4) [State: [Project_Team : #PT1]]

– The project team is permitted to make any definition

change (IWI,CN4).

. (CN4)

[Perm_Comp : [Project_Team] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[Definition]].

However, the sponsor does not want the project team to
be able to change the sponsor’s right to overrule any
knowledge definition that it does not agree with:

– The project team may not make any changes in the

composition norms which specifically concern the

sponsor (IWI,CN5).

. (CN5)

[Forb_Comp : [Project_Team] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[CN : [Sponsor] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[Definition]]].

Furthermore, the goals of the network are determined by
the sponsor and should not be changed by the project
team:

– The project team may not change the goals of the

network (IWI,CN6).

. (CN6)

[Forb_Comp : [Project_Team] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Goal]]].

Finally, IWI appoints a project coordinator.

– A project coordinator is an actor in the problem

domain (IWI,T4).
– There is a project coordinator PC1 (IWI,S5).

. (T4) [Type: [Project_Coord : *x] ? (Def) –

[PD_Actor : *x]].

. (S5) [State: [Project_Coord : #PC1]].

The project coordinator is made specifically responsible
for evaluating that any required functionality is
adequately enabled, which in RENISYS is defined by
both so-called support definitions and required imple-
mentations. A support definition assigns a specific user
and tool to a workflow mapping, thus representing how
some required functionality for that user is to be enabled.
A required implementation definition assigns, for all
users, some information tool to a particular required
information or communication process. An example of
such a definition is that a mailing list server is to be
accessible to all users for the redistribution of sent mail.

– The project coordinator is required to evaluate all
support definition changes (IWI,CN7).

. (CN7)

[Req_Comp : [Project_Coord] / (Agnt) –

[Eval] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Support]]].

– The project coordinator is required to evaluate all

required implementation definition changes

(IWI,CN8).

. (CN8)

[Req_Comp : [Project_Coord] / (Agnt) –

[Eval] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Req_Impl]]].

(2) Defining the Publishing Process

The project team, once operational, starts with the
definition of the publishing process, which is the main
activity needed to accomplish the goal of having a
published journal. It is allowed to do so because of
permitted composition CN4 and because none of the
forbidden compositions CN1, CN5 and CN6 applies.

MakingWorkflow Change Acceptable 91



The project team defines the publishing process in two
partial type definitions:

– The publishing process is an activity in which a

journal issue is produced (PT1,T5).
– The publishing process consists of an edit process, a

review process, a submission process, . . . (PT1,T6).5

. (T5) [Type: [Publish : *x] ? (Def) –

[Activity : *x] ? (Rslt) ? [Journal_Issue]].

. (T6) [Type : [Publish : *x] ? (Part) –

[Edit]

[Review]

[Submit]

...].

Next, the project team appoints a technical committee
that is to take care of defining the technological support
for enabling the required functionality.

– A technical committee is an actor in the problem

domain (PT1,T7).
– There is a technical committee TC1 (PT1,S6).

. (T7) [Type : [Techn_Comm : *x] ? (Def) –

[PD_Actor : *x]].

. (S6) [State : [Techn_Comm : #TC1]].

The project team gives the technical committee the
responsibility to determine which information tools are
to enable the work done in the network. In RENISYS,
these are described by support and required implementa-
tion definitions:

– A technical committee is required to handle any

support definition change (PT1,CN9).

. (CN9)

[Req_Comp : [Techn_Comm] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Support]]].

– A technical committee is required to handle any

required implementation definition change

(PT1,CN10).

. (CN10) [Req_Comp : [Techn_Comm] / (Agnt) –

[Control] ? (Obj) ? [Specify] ? (Rslt) –

[State : [Req_Impl]]].

(3) Defining the Paper Submission Process

The technical committee analyses all publishing activ-
ities to define what information tools can best be used to
support them. One of these activities is the paper
submission process (see T6). Submitting a paper
basically consists of transferring a file from the author
to the site of the journal, which results in the following

workflow mapping (i.e., a mapping between workflows
from the different domains in the reference framework,
which is used to define required functionality):

– The paper submission process (problem domain) is an

interaction (human network) enabled by a send-file

process (information system) (TC1,S7).

. (S7) [State : [Workflow_Mapping : #34] ? (Part) –

[Submit]

[Interaction]

[Send_File]].

Thus, S7 is an instance of the workflow mapping type
definition which shows how an activity (submit) is
ultimately to be implemented as a send-file process in
the information system.

To enable this required functionality, the technical
committee proposes that all users should have access to
an FTP server, a tool that enables basic file transfer:

– To enable the sending of files in the paper submission

process, an FTP server6 should be used (TC1,S8).

. (S8) [State : [Req_Impl : #42] –

(Inst) ? [FTP_Server]

(Obj) ? [Workflow_Mapping : #34]].

Because of CN4, the project team is permitted to change
any (state) definition. Thus, each time some state change
request is made, the project team can decide for itself
whether or not to become actively involved in the
specification process. Regarding definitions S7 and S8,
the project team has no problems, and it approves of
them. Because of CN8, the project coordinator is asked
to approve of S8 as well, which he does.

However, after having given it some further thought,
the project coordinator has a problem with this
definition. In his view, an FTP server is not really
suitable for submitting papers. Among other things, file
transfer is relatively cumbersome and insecure using this
tool. Instead, he proposes to use a BSCW server (see
Horstmann and Bentley [35]). This tool has been
optimised for file distribution processes, as it enables
advanced, user-friendly and secure file transfer. There-
fore, the project coordinator requests to modify state
definition S8 into:

– To enable the sending of files in the paper submission

process, a BSCW server should be used (PC1,S8).

. (S8) [State: [Req_Impl : #42] –

(Inst) ? [BSCW_Server]

(Obj) ? [Workflow_Mapping : #34]].

5Each of these activities themselves also has type definitions, which
are not listed here.

6We assume that the information tool type definitions, as well as the
definitions that describe which IC processes they enable, have already
been defined. These could, for example, be retrieved from a standard
tool functionality library.

92 A.de Moor and M. A. Jeusfeld



Because of CN8, the technical committee is involved in
the handling of this requested state definition modifica-
tion process. In turn, they have their own objections,
however. The main problem they see is that the BSCW
tool, despite its user-friendly interface, is too complex to
learn because it offers so much functionality. No
agreement is initially reached between the project
coordinator and the technical committee, while they
are executing the definition process. However, another
actor, the project team, is also permitted to be involved
in this specification process (CN4). So far, it has not
actively participated, but now that a specification
discourse has been started it plays a mediating role and
the conflict is resolved. All actors now approve of the
proposed state modification, making it legitimate. To
alleviate the concerns of the technical committee, great
care will be taken to facilitate the BSCW learning
process. To this purpose, a set of FAQs will be
developed, and personal instruction sessions will be
held for authors who do not feel comfortable with it.
These agreements are explicitly entered in the solution
description attached to definition S8.

5.3. Discussion

By analysing the, still largely face-to-face, legitimate
user-driven specification process in virtual professional
communities such as in the EJCL case, insights into the
key change processes and required knowledge defini-
tions, notably composition norms, have been obtained.
The users are not directly presented with the bare graph
definitions presented in the example. Instead, these
definitions are used by the RENISYS specification tool
to select and notify the relevant users, and to construct
the options on the web pages through which the users
interact. Vice versa, data entered by the user via a web
page can be represented in such an abstract format. A
prototype has shown the proof of concept that the
method indeed can be implemented. It is currently being
tested in larger-scale experiments. However, since the
objective of this paper is to explain the ideas of
legitimate user-driven specification at the more abstract
level, the properties of the tool are not discussed further
here.

The choice for conceptual graphs as a uniform
representation formalism was made because of its
expressiveness, its pattern matching and advanced
graph generalisation facilities. The knowledge defini-
tions and the conversation processes in which they are
changed have a strict formal semantics. Via these
semantics, the resultant deontic effect of the composition
norms applicable to a user in a particular specification

process stage can be computed, using norm and state

definitions and precedence rules to resolve conflicts

between norms. Based on this information, authorisa-

tions for users to get involved in conversation acts are

derived. Since the purpose of the current paper is to

discuss the role of legitimate user-driven specification in

workflow modelling, the algorithms are not included

here, although they are described at length in de Moor

[4].

A potential problem arises when more than one user is

permitted to make a change. In the current conversation

process support module, we assume that a change can be

legitimately made if just one of the permitted users is

involved. Alternative policies, e.g. that all permitted

users must agree, could be represented by changing the

conversation process rules.

In general, a breakdown can be resolved by more than

one change (in our case study, the submit functionality

could be enabled by both FTP and BSCW). The EJCL

team decided to implement just one change (BSCW).

Still, it would have been equally legitimate to implement

both or to remove the submit function from the

specification. RENISYS does not make any suggestions

about which alternative solution is best. Instead, it

assembles the relevant users affected by the change

and supports them in formulating and deciding upon

the knowledge definition changes that are most relevant

– in their eyes – to the resolution of the particular

breakdown.

The case study showed that the initiation of the

knowledge base with the proper initial knowledge

definitions is a crucial step. Through composition

norms, users have the opportunity to express – and

protect – their interests in a formal way. Great care must

be taken to ensure the safety of the composition norms in

the sense that their actual deontic effects equal their

intended deontic effects. On the one hand, users should

not be able to ‘overspecify’, so that they can change

more than they actually should. On the other hand,

enough flexibility for future changes must be guaranteed

by the defined norms allowing for the necessary changes

to indeed be possible. In this case, for example, the

sponsor has to safeguard his control over the goal

without restricting the project team in its ability to

design the relevant composition norms. It took several

iterations to find a safe starting set of composition

norms that prevents actors of the project team from

removing or disabling the goal (of establishing the

electronic law journal), while at the same time allowing

them to make changes in the activities (and their

technological support) via which the goals were to be

accomplished.

MakingWorkflow Change Acceptable 93



6. Conclusions

Workflow management systems are powerful instru-
ments to enact and guide cooperation in virtual
professional communities, provided that they are care-
fully designed and that the interests of the members of
the virtual community are taken into account. It was not
our intention to propose another workflow modeling
language. Instead, we have worked out a perspective on
the acceptability of workflow changes in order to make
them legitimate. Without such a perspective, a design
team can only answer questions such as ‘Have all
specified user requirements been fulfilled?’ With a
legitimate user-driven approach like ours, also the
question ‘Do the specifications match the authentic

requirements of the community?’ can be more affirma-
tively answered.
In the RENISYS specification method, we have

developed an approach to engineering the requirements
of this particular class of workflow systems (as opposed
to traditional systems) by interpreting social norms, in
order to make only legitimate changes to the system
specifications. These are changes that are not only
meaningful, but also acceptable to all members of the
community. In the method, the members of the virtual
community control the specification of their own
composition norms, which are formal representations
of their informal social norms. The specification process
starts with a set of initial knowledge definitions,
including composition norms. System development is
regarded as a series of conversations for specifications,
which do not violate the communal composition norms,
between selected members of the virtual community.
The formal representation of norms allows their deontic
effect on the various users to be computed at any time,
while the informality of the actual discussions is
guaranteed.
We strongly believe that the norm-guided specifica-

tion process will increase the feeling of ownership that
the users have with their workflow system and will
promote their active participation in the change process.
Discussing composition norms has the additional
advantage of increasing community cohesion by
making users aware of the social norms that often
invisibly guide their joint work.
Another advantage of the legitimate user-driven

approach is that the focus is on identifying relevant
human actors, instead of on developing detailed
functional specifications. This allows a large amount of
tacit knowledge to be brought to bear on any
specification change. Besides reducing the time required
on the specification process, this is also likely to ensure
that specifications will become more varied and tailored.
It is to be expected that two different communities will

develop socio-technical solutions to their problems that
are quite different, compared to standard approaches that
do not so much take the social context of the network
information system into account.

It may be argued that we introduce a complex
machinery to handle relatively simple functionality
changes. It should be understood that our focus is on
optimising acceptability, not technical functionality. The
quality of the technical solutions still depends fully on
the technical expertise of the implementors, about which
the method does not make any judgement. For ensuring
these aspects of system quality, other, more traditional
system development methods could be used, if desired.
However, the complexity we introduce is essential to
safeguard the interests of the community members and
ensure their active involvement in the specification
process. It might be compared to a democratic system,
which, although it is a sometimes costly and complex
way of decision making compared to more autocratic
approaches of governance, has the enormous advantage
of respecting the wishes of the community and
engendering true, rather than forcefully imposed
acceptance of sometimes painful decisions.

Traditional specification approaches, like ARIS, focus
on optimising a workflow system for requirements that
are hierarchically defined. The authority basis for
changes is founded in that hierarchy. Such an approach
is valid for systems that require central control of their
development and maintenance, i.e., safety-critical
systems for power plants. Virtual professional commu-
nities, however, are not governed by such a hierarchy,
but instead should allow their interests to be balanced by
their unique social norms. Although such norms are
always present in any community, they are usually not
made explicit. We claim that an active use of social
norms that have been explicitly defined is essential in the
design and evolution of workflow systems for virtual
professional communities. Such communities cannot be
formed – or maintained – by a workflow system being
imposed upon them. Instead, the community must be
able to create a normative framework that establishes the
rules of acceptable changes to their workflow system, a
framework that is often unique to the community at
hand.

Existing requirements engineering approaches empha-
sise the ‘correctness’ of mapping user requirements to
systems. Although users are regarded here as the
ultimate measure for the correctness of the system – it
has to fulfil what the user wants – the users themselves
are rarely active players in those scenarios. In our
approach, however, legitimacy of changes to the
(workflow) system is key. By precisely answering the
question of who is to define a change requirement, users
can become more actively involved in a way that is more

94 A.de Moor and M. A. Jeusfeld



acceptable to the community as a whole. Legitimacy is
thus added as a new dimension to requirements
engineering. We argue that this is not only enhancing
the acceptability of changes. It also may make
discussions about change more efficient, since the right
subset of all users can be computed from the
composition norms in the knowledge base. This is also
particularly relevant for geographically distributed
human networks. Note that we do not claim that our
approach should replace existing specification ap-
proaches, for example from the field of requirements
engineering. In our opinion, ours could be complemen-
tary to these methods. It would be interesting to see if a
concrete coupling between RENISYS and one or more
of these approaches can be achieved.

Much work is still needed in order to provide adequate
support of legitimate user-driven specification processes
in virtual professional communities. Typologies and
reference models of virtual professional communities
can help to reduce the burden of setting up new network
information systems. The current specification tool
prototype needs to be further developed, as at the
moment it provides only rudimentary conversation
support and can deal with only simple graphs. Much
theoretical and empirical research also remains to be
done. For instance, would it be better to start with few
generic (strong) composition norms or with many
specific (weaker) composition norms? Besides the
electronic law journal case, we have started further
case studies to gain the empirical evidence required to
answer such questions.

References

1. de Moor A. Applying conceptual graph theory to the user-driven
specification of network information systems. In: Proceedings of
the fifth international conference on conceptual structures,
University of Washington, Seattle, WA, 3–8 August 1997.
LNAI 1257. Springer, Berlin, 1997, pp 536–550

2. de Moor A, Mineau G. Handling specification knowledge
evolution using context lattices. In: Proceedings of the sixth
international conference on conceptual structures, ICCS’98,
Montpellier, France, 10–12 August 1998, pp 416–430

3. de Moor A, Weigand H. An ontological framework for user-
driven system specification. In: Proceedings of the 32nd Hawaii
international conference on system sciences (HICSS-32), Maui,
Hawaii, 5–8 January 1999

4. de Moor A. Empowering the user: a method for the legitimate
user-driven specification of network information systems. PhD
thesis, Tilburg University, The Netherlands, 1999

5. de Moor A. Composition norm dynamics calculation with
conceptual graphs. In: Proceedings of the eighth international
conference on conceptual structures (ICCS2000), Darmstadt,
Germany, August 2000. LNAI 1867. Springer, Berlin, 2000, pp
522–535

6. de Moor A. The initialization of conversations for specification: a
context of social norms. In: Proceedings of the fifth international
workshop on the language-action perspective on communication
modelling (LAP2000), Aachen, Germany, 14–16 September
2000. Aachener Informatik Berichte 2000-06, 2000, pp 1–20

7. Robinson W, Volkov V. Supporting the negotiation life cycle.
Commun ACM 1998;41(5):95–102

8. Ramesh B, Jarke M. Towards reference models for requirements
traceability. CREWS Report 99-13, Technical University of
Aachen, Germany, 1999

9. Ramesh B. Factors influencing requirements traceability practice.
Commun ACM 1998;41(12):37–44

10. Ramesh B, Dhar V. Supporting systems development by
capturing deliberations during requirements engineering. IEEE
Trans Software Eng 1992;18(6):498–510

11. Scheer A-W. ARIS. In: Bernus P, Mertins K, Schmidt G (eds).
Handbook on architectures of information systems. Springer,
Berlin, 1998, pp 541–565

12. Pohl K. The three dimensions of requirements engineering: a
framework and its applications. Information Syst 1994;19(3):
243–258

13. Schäl T. Workflow management systems for process organiza-
tions. Springer, Berlin, 1996

14. Sheth A, Georgakopoulos D, Joosten S, Rusinkiewicz M, Scacchi
W, Wileden J, Wolf A. Report from the NSF workshop on
workflow and process automation in information systems.
SIGMOD Rec 1996;25(4):55–67

15. Abbott KR, Sarin SK. Experiences with workflow management:
issues for the next generation. In: Furuta R, Neuwirth C (eds).
Proceedings of the conference on computer supported cooperative
work, Chapel Hill, NC, 22–26 October 1994. ACM Press, New
York, 1994, pp 113–120

16. Khoshafian S, Buckiewicz M. Introduction to groupware, work-
flow, and workgroup computing. Wiley, New York, 1995

17. Klein M. Challenges and directions for coordination science. In:
Proceedings of the second international conference on the design
of cooperative systems (COOP’96), Juan-les-Pins, France, 2–14
June 1996, pp 705–722

18. Van der Aalst WMP, Van Hee KM, Houben GJ. Modelleren en
analyseren van workflow: een aanpak op basis van petri-netten.
[Modelling and analysing workflow: an approach based on Petri-
nets.] Informatie 1995;37(11):744–753

19. Medina-Mora R, Winograd T, Flores R, Flores F. The action
workflow approach to workflow management technology.
Information Soc 1993;9(4):391–404

20. Van der Rijst N, Van Reijswoud V. Comparing speech act based
modeling approaches for the purpose of information system
development. In: Proceedings of the 3rd European conference on
information systems, Athens, 1–3 June 1995, pp 353–365

21. McClatchey R, Vossen G. Workshop on workflow management
in scientific and engineering applications. SIGGROUP Bull
1997;18(3):20–23

22. Sheth A. From contemporary workflow process automation to
adaptive and dynamic work activity coordination and collabora-
tion. SIGGROUP Bull 1997;18(3):17–20

23. Robinson M, Bannon L. Questioning representations. In:
Proceedings of the second European conference on computer-
supported cooperative work, Amsterdam, 25–27 September 1991,
pp 219–233

24. Fitzpatrick G, Welsh J. Process support: inflexible imposition or
chaotic composition? Interact Comput 1995;7(2):167–180

25. Dignum F, Dietz J, Verharen E, Weigand H (eds). Proceedings of
the first international workshop on communication modeling:
‘Communication modeling – the language/action perspective’,
Tilburg, The Netherlands, 1–2 July 1996. Springer eWiC series
[http://www.springer.co.uk/eWiC/Workshops/CM96.html]

26. Van Reijswoud V. The structure of business communication:
theory, model and application. PhD thesis, Delft University, 1996

27. Stamper R. Social norms in requirements analysis: an outline of
MEASUR. In: Requirements engineering: technical and social
aspects. Academic Press, New York, 1994, pp 107–139

28. Meyer JJCh, Wieringa RJ. Deontic logic: a concise overview. In:
Meyer JJCh, Wieringa R (eds). Deontic logic in computer
science: normative system specification. Wiley, Chichester, 1993,
pp 3–15

29. Sowa JF. Conceptual structures: information processing in mind
and machine. Addison-Wesley, Reading, MA, 1984

MakingWorkflow Change Acceptable 95



30. Lehmann F. CCAT: the current status of the conceptual catalogue
(ontology) group, with proposals. In: Ellis G, Levinson R (eds).
Proceedings of the third international workshop on PEIRCE: a
conceptual graphs workbench, University of Maryland, 19 August
1994

31. Angelova G, Bontcheva K. DB-MAT: knowledge acquisition,
processing and NL generation using conceptual graphs. In:
Eklund PW, Ellis G, Mann G (eds). Conceptual structures:
knowledge representation as interlingua. LNAI 1115. Springer,
Berlin, 1996, pp 131–134

32. Gruber TR. Toward principles for the design of ontologies used
for knowledge sharing. Technical report KSL 93-04, Knowledge
Systems Laboratory, Stanford University, 1993

33. Luger GF, Stubblefield WA. Artificial intelligence and the design

of expert systems. Benjamin Cummings, Redwood City, CA,
1989

34. Meyer JJCh, Wieringa R (eds). Deontic logic in computer
science: normative system specification. Wiley, Chichester, 1993

35. Horstmann T, Bentley R. Distributed authoring on the web with
the BSCW shared workspace system. Standard View 1997;5(1):9

36. Van der Rijst N, de Moor A. The development of reference
models for the RENISYS specification method. In: Nunamaker JF
Jr, Sprague RH Jr (eds). Proceedings of the 29th Hawaii
international conference on system sciences, Maui, 3–6 January
1996. IEEE Computer Society Press, Los Alamitos, CA, 1996, pp
455–464

37. Kreiner K, Schultz M. Informal collaboration in R&D: the
formation of networks across organizations. Organ Stud
1993;14(2):189–209

96 A.de Moor and M. A. Jeusfeld


