
Tracking Complex Changes During Ontology Evolution

Natalya F. Noy
Stanford Medical Informatics,

Stanford University,
Stanford, CA 94305

noy@smi.stanford.edu

Michel Klein
Vrije University Amsterdam

De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

michel.klein@cs.vu.nl

1 The Need and Requirements for Version
Comparison

For the Semantic Web to succeed, it will require the devel-
opment and integration of numerous ontologies. As ontol-
ogy development becomes a more ubiquitous and collabora-
tive process, support forontology versioning[Klein, 2001;
Noy and Klein, 2003] becomes necessary and essential. This
support must enable users to compare versions of ontologies
and analyze differences between them.

There are several reasons to maintain and compare ontol-
ogy versions. First, ontologies that support the Semantic Web
undergoregular changes, just as other artifacts do. Second,
as ontologies become larger,collaborative developmentof
ontologies becomes common. Ontology designers working
in parallel on the same ontology need to maintain and com-
pare different versions, examine the changes that others have
performed, and so on. Third, the more expressive languages
for the Semantic Web, such as DAML+OIL and OWL, are
Description Logic (DL) languages. One can view the task of
comparing the asserted and the inferred subsumption hi-
erarchiesin a DL ontology as a versioning problem: The user
needs to see how the classification has changed the hierarchy,
where were the classes moved, and so on.

We can reuse some of the approaches from the fields of
software versioning and collaborative document processing
for ontology versioning, but we must keep in mind one crucial
difference: In the case of software code and documents, what
is compared aretext files. For ontologies, we need to compare
the structureand semanticsof the ontologies and not their
textual serialization.

2 Complex ontology changes
The first step in comparing the structure of ontologies rather
than their textual serialization is establishing correspon-
dences between concept definitions in two versions, identi-
fying that a conceptA in one version becameA′ in the other.

Identifying correspondences between concepts in different
versions leads directly to the second step: identifying sim-
ple changes between versions, such as addition or deletion
of concepts, change in concept defintions, and so on.. How-
ever, in order to assist users in analyzing and understanding
the changes that have occurred from one version to another,
we must identifycomplexchanges as well: For example, it is

more useful to know that a concept wasmovedfrom one place
in the hierarchy to another than to know that it was deleted
from one and added to the other.

More specifically, the following are some of the complex
changes that we have identified.
Add a subtree: Create a new class and create one or more of
its subclasses.
Delete a subtreeDelete a class and all its subclasses.
Move a subtree to a different locationMove a subtree of
classes to a different location in the class hierarchy. This op-
eration is essentially equivalent to changing a superclass of
the root of this subtree.
Move a set of sibling classes to a different locationMove
two or more classes that are siblings in the class hierarchy to
the same new location in the class hierarchy (i.e., they remain
siblings, but under a different parent).
Create a new abstractionMove a set of siblings down in a
class hierarchy, creating a new superclass.
Remove an abstractionDelete a class, moving its subclasses
to become subclasses of its superclass.
Split a classSplit a class into two or more sibling classes.
Merge classesMerge two or more siblings into a single class.

3 User Interface
We have developed PROMPTDIFF, a tool for tracking changes
between ontology versions[Noy and Musen, 2002]. It is a
plugin to the Prot́eǵe ontology environment[Protege, 2002].

Figure 1 shows how PROMPTDIFF presents the result of
comparing two versions of the UNSPSC ontology, which is
a standardized hierarchy of products and services that en-
ables users to consistently classify the products and services
they buy and sell. User input results in regular updates,
consisting, for example, of additions of new products, or
re-classifications of existing products. In the PROMPTD-
IFF result, the classes that were deleted are crossed out, the
added classes are underlined, and classes that were renamed
or changed are in bold. We use color coding to make the
changes even more apparent. The warning icon () overlayed
with the class icon indicates that the subtree rooted at the class
has undergone some changes.

Figure 2 showscomplex changesin these two versions of
the UNSPSC ontology: The addition of several classes rooted
at Distribution and Control centers and accessories
is in fact a tree addition. The icon at the root of the added

Figure 1: Comparison of two versions of the UNSPSC on-
tology in PROMPTDIFF. The classes that were deleted are
crossed out and the added classes are underlined.

subtree has an overlayed add icon () indicating that all
classes in this subtree have the same status—they were all
added in this version. If a whole tree is deleted, an overlayed
delete icon () identified the tree-level operation. The class
Electrical equipment and components and supplies
was moved to this location from another position in the tree.
The tooltip indicates where it was moved from.

Figure 3 shows the moved class in its old position in the
hierarchy: The class appears in grey and the tooltip indicates
where the class was moved to.

To summarize, we visualize two types of changes: (1)
class-level changes and (2) tree-level changes. For class-
level changes, the class-name appearance indicates whether
the class was added, deleted, moved to a new location,
moved from a different location, or its name or definition has

Figure 2: A comparison thats shows a moved class (in bold)
and the addition of a subtree.

Figure 3: The old position of the moved class (see Figure 2).

changed. If all classes in a subtree have changed in the same
way (e.g., were all added or deleted), then the changed icon
at the subtree root indicates that the tree-level operation.

4 Outlook
We have presented a tool for examining changes between on-
tology versions and identified a set of complex changes be-
tween ontology versions. Currently, PROMPTDIFF does not
display all the changes presented in Section 2, although inter-
nally it identifies all of them. We plan to experiment with ad-
ditional visual metaphors for displaying all complex changes
and to evaluate whether using too many different visual clues
puts too much of a cognitive load on the user.

Another natural extension of the current tool would be en-
abling users to accept and reject changes. the default We can
also consider using logs of changes if they are available (per-
haps grouping together some basic changes in the log into sin-
gle complex changes) to determine the differences between
versions. comparing ontology concepts in likely have

Finally, as we gain more experience with ontology version-
ing, we will be able to identify more complex changes be-
tween versions, and, more important, find automatic ways of
determining that such changes have occurred.

Acknowledgments
This research was supported in part by a contract from the
U.S. National Cancer Institute.

References
[Klein, 2001] M. Klein. Combining and relating ontologies:

an analysis of problems and solutions. InIJCAI-2001
Workshop on Ontologies and Information Sharing, pages
53–62, Seattle, WA, 2001.

[Noy and Klein, 2003] Natalya F. Noy and Michel Klein.
Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 5, 2003. in press.

[Noy and Musen, 2002] N. F. Noy and M. A. Musen.
PromptDiff: A fixed-point algorithm for comparing ontol-
ogy versions. InEighteenth National Conference on Arti-
ficial Intelligence (AAAI-2002), Edmonton, Alberta, 2002.

[Protege, 2002] Protege. The Protéǵe project,
http://protege.stanford.edu, 2002.

