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ABSTRACT 
The World Wide Web is emerging not only as an infrastructure 
for data, but also for a broader variety of resources that are 
increasingly being made available as Web services. Relevant 
current standards like UDDI, WSDL, and SOAP are in their 
fledgling years and form the basis of making Web services a 
workable and broadly adopted technology. However, realizing the 
fuller scope of the promise of Web services and associated service 
oriented architecture will requite further technological advances in 
the areas of service interoperation, service discovery, service 
composition, and process orchestration. Semantics, especially as 
supported by the use of ontologies, and related Semantic Web 
technologies, are likely to provide better qualitative and scalable 
solutions to these requirements. Just as semantic annotation of 
data in the Semantic Web is the first critical step to better search, 
integration and analytics over heterogeneous data, semantic 
annotation of Web services is an equally critical first step to 
achieving the above promise. Our approach is to work with 
existing Web services technologies and combine them with ideas 
from the Semantic Web to create a better framework for Web 
service discovery and composition. In this paper we 
present MWSAF (METEOR-S Web Service Annotation 
Framework), a framework for semi-automatically marking up Web 
service descriptions with ontologies. We have developed 
algorithms to match and annotate WSDL files with relevant 
ontologies. We use domain ontologies to categorize Web services 
into domains. An empirical study of our approach is presented to 
help evaluate its performance. 

Categories and Subject Descriptors 
D.2.12 [Software Engineering]: Interoperability – data mapping, 
interface definition languages, D.3.1 [Programming 
Languages]: Formal definitions and Theory – semantics, H.3.5 
[Information Storage and Retrieval]: Online Information 
Services – data sharing, web-based services 

General Terms: Algorithms, Experimentation. 

Keywords: Semantic Web services, WSDL, Ontology, 
semantic annotation of Web services, Web services discovery 

1. INTRODUCTION 
Web services are the latest attempt to revolutionize large scale 
distributed computing. With XML based standards like UDDI, 
WSDL, and SOAP, they are touted as the tools for universal 
connectivity and interoperability of applications and services. 

With the growing popularity of Web services, there arise issues of 
finding relevant services, especially with the possibility of the 
existence of thousands of Web services. We envision Web 
services as being initially applied more to address B2B/EAI 
challenges, rather than B2C services. In this context, Web services 
will be used as part of larger Web processes that result from Web 
services composition. Current standards have focused on 
operational and syntactic details for implementation and execution 
of Web services. This limits the search mechanism for Web 
services to keyword-based searches. Consider a scenario, where a 
user may want a Web service that takes “weather station code” as 
input and gives “Atmospheric conditions” as output. The current 
search mechanism at a popular Web service repository like 
Salcentral.com allows only keyword searches. Searching for the 
keyword “weather” gives about 3% of the total Web services in 
that repository. It returns all Web services, which have weather, 
mentioned in their description. The user has to manually analyze 
WSDL files to find the appropriate service. Five years from now 
when we are expected to have thousands of services, current 
syntactic search along with manual intervention would be 
untenable. Research in the Semantic Web area has shown that 
annotation with metadata can help us solve the problem of 
inefficient keyword based searches in the current web (which is 
based on HTML, HTTP, and URI’s). This concept of annotation 
can be extended to Web services to envision Semantic Web 
services. Semantically described services will enable better 
service discovery and allow easier interoperation and composition 
of Web services.  

Several approaches have already been suggested for adding 
semantics to Web services. Semantics can either be added to 
currently existing syntactic Web service standards like UDDI or 
WSDL [1] or services can be described using some ontology 
based description language like DAML-S [2]. The common factor 
in most of these approaches is relating concepts in Web services 
to domain specific ontologies. This relating and tagging of 
descriptions with concepts in ontologies is referred to as 
annotation. While significant research has been done on what to 
annotate, there has been little work on how to annotate. Current 
research of Web service annotation largely focuses on manual 
annotation [3] that poses several problems. The first problem is 
that of finding the relevant ontology or ontologies. In manual 
annotation, the burden of choosing the relevant ontology or 
ontologies lies with the user. This significantly increases the pre-
match effort as the user has to browse through the available 
ontologies to find a suitable domain ontology or ontologies (since 
a Web service may span more than one domain and may have to 
be mapped to a number of ontologies). The second problem arises 
because of the size of the Web service description and the size of 
the ontology or vocabulary. As Web service descriptions grow 
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larger (e.g., even a modest Web service “GlobalWeather” by 
CapeScience has 53 different elements and 55 different values of 
the parameters adding up to 108 concepts), the potential number 
of concepts in the Web service increase manifold. Furthermore the 
vocabularies, taxonomies, or ontologies used for annotation could 
also be very large with correspondingly large number of concepts 
(e.g. the world-fact-book ontology contains more than 1100 
concepts). Notice that average real world ontologies have been 
reported to exceed over 1 million instances [4]. Hence finding the 
appropriate ontological concepts to match to WSDL concepts can 
be a very tedious task. As we progress towards a Web of services, 
the number of services are likely to be in thousands or even more 
[5]. Given these factors, it is necessary to have a scalable and 
semi-automated way of annotating Web services with real world 
ontologies. 

A key enabling capability that can address the above scalability 
challenge is annotation with as much automation as possible 
without losing quality. We present a framework, METEOR-S 
Web service Annotation Framework (MWSAF), to semi-
automatically annotate WSDL descriptions of the services with 
relevant ontologies. MWSAF is a part of an ongoing project, 
METEOR-S, an effort to create Semantic Web processes, at the 
LSDIS lab, University of Georgia. We have implemented a 
number of algorithms to match concepts in WSDL files to 
ontologies.  

We describe the architecture, implementation, and working of the 
MWSAF in this paper. The main contributions of our work are 

• Addressing the need for semantics in the Web services 
framework, and providing a detailed approach that identifies 
four types of semantics for describing Semantic Web services 

• Identifying the technical challenges in (semantic) annotation 
of Web services.  

• Implementing algorithms for Semantic Annotation and 
categorization of Web services  

• Empirical testing of semantic annotation of Web services  

The rest of the paper is organized as follows: Section 2 describes 
the four types of semantics involved in the Web services 
framework. Section 3 describes the implementation and matching 
issues. The architecture is discussed in Section 4. Section 5 
discusses the empirical study. Section 6 lists the related works. 
We conclude in Section 7 and give an outline for future work. 

2. METEOR-S - ADDING SEMANTICS TO 
WEB SERVICE INDUSTRIAL STANDARDS 
There have been several attempts to add semantics to Web 
services [6][1]. The METEOR-S project at the LSDIS Lab, UGA 
attempts to add semantics to the complete Web process lifecycle 
by providing constructs for adding semantics to current industry 
standards. We believe our approach is more pragmatic than other 
top down approaches [2], which require developing new standards 
with no tangible benefits over our approach. We identify the four 
categories of semantics in the complete Web process lifecycle [7]. 

• Data Semantics (semantics of inputs/outputs of Web services) 
• Functional Semantics (what does a service do) 
• Execution Semantics (correctness & verification of execution 

) 

• QoS Semantics (performance and cost parameters associated 
with service) 

Covering the complete lifecycle of Web services involves adding 
the four categories of semantics to different layers of the Web 
service stack [8]. The service description layer of the stack 
provides the information necessary for invoking Web services. 
WSDL is the de facto standard for this layer. However, WSDL 
descriptions are syntactic and do not explicate the semantics of 
the service providers. METEOR-S provides a mechanism to add 
data, functional and QoS semantics to WSDL files. MWSDI 
provides an infrastructure to leverage data, functional and QoS 
semantics by enhancing UDDI [9]. The top layer i.e. the flow 
layer deals mainly with service composition. A comprehensive 
framework for Semantic Web service composition is provided in 
MWSCF [10]. This paper concentrates on a semi-automated 
approach for adding data semantics to WSDL files. 

Figure 1 gives an overview of these four types of semantics and 
different stages of Web process lifecycle development. 

 
Figure 1. Four types of Semantics in Web services 

3. IMPLEMENTATION AND MATCHING 
ISSUES 
Expressiveness of ontologies and the XML schema used by 
WSDL are significantly different because of the different reasons 
behind their development [11]. The XML schema is used in 
WSDL descriptions to provide a basic structure to the data 
exchanged by the Web service. It therefore provides a minimal 
containment relationship using the complexType, simpleType and 
element constructs. On the other hand ontologies are developed to 
capture real world knowledge and domain theory [12]. Therefore 
the languages used to describe the ontologies, model the real 
world entities as classes (concepts) and their properties. They also 
provide the named relationships between different concepts and 
properties, making it easier to model entities in the real world 
more expressively. For example, consider the real world 
phenomenon “Snowfall which is caused by extreme low 
temperatures”. An ontology can very well describe this 
phenomenon because it can have concepts “extreme low 
temperatures” and “Snowfall” and relate the two with the named 
relationship “causes”. A WSDL schema can have the elements 
“extreme low temperatures” and “Snowfall” but since there is no 
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support for named relationships, it cannot represent this 
phenomenon.  

3.1 SchemaGraphs 
The difference in expressiveness of XML schema and ontology 
makes it very difficult to match these two models directly. A 
possible solution to this problem is to convert both the models to 
a common representation format to facilitate better matching. We 
have used this approach and devised a representation format 
called SchemaGraph. SchemaGraph thus provides a generic 
solution wherein ontologies in any language like DAML, RDF-S, 
or OWL etc can be used. A SchemaGraph is a set of nodes 
connected by edges. We use conversion functions to convert both 
XML schema and ontology1 to SchemaGraphs.  

The conversion function used for converting XML schema to 
SchemaGraph is WSDL2Schema and uses the conversion rules 
specified in Table 1. 

Table 1. XML Schema to SchemaGraph conversion rules 

XML schema Construct SchemaGraph representation 
ComplexType Node 

Elementary XML Data Type 
Element defined under 
complexType   

Node and an Edge between 
complexType node and this node 
with name “hasElement” 

ComplexType XML Data 
Type Element defined under 
complexType   

Edge  

SimpleType Node 

Values defined for simple 
types 

Node and edge between 
simpleType and this node with 
name “hasValue” 

Elements Nodes 
Example 

 

                                                                 
1 Currently we use ontologies represented using RDF-S and subset 

of DAML+OIL. 

Ontology2Schema is the conversion function used for creating 
SchemaGraph representation of the ontology. The set of 
conversion rules used for this are listed in Table 2. 

 
Table 2. Ontology to SchemaGraph conversion rules 

Ontology representation SchemaGraph representation 

Class Node 

Property with basic 
datatypes as range 
(Attribute) 

Node with edge joining it to the 
class with name “hasProperty” 

Property with other class as 
range (Attribute) 

Edge between the two class nodes 

Instance Node with edge joining it to the 
class with name “hasInstance” 

Class – subclass 
relationship 

Edge between class node to 
subclass node with name 
“hasSubClass” 

Example 

 

Once both the ontology and the XML schema are represented in a 
common SchemaGraph representation, we apply our matching 
algorithm to find the mappings between them. Once a concept is 
matched against all the concepts in an ontology, the best mapping 
needs to be picked out for annotation. In the next few sections we 
present our algorithm to calculate the match between two 
SchemaGraphs. 

3.2 Mapping Two Concepts 
Every concept from the WSDL SchemaGraph is compared against 
concepts from the ontology SchemaGraph. The function 
findMapping listed in Table 3 returns the mapping between a 
WSDL and ontology concept pair which consists of wci, oci 
(WSDL concept and  ontology concept) and MS (Match Score). 

<daml:Class rdf:ID="WindEvent"> 
     <rdfs:comment>Superclass for all events  
          dealing with wind</rdfs:comment>  
     <rdfs:label>Wind event</rdfs:label>  
     <rdfs:subClassOf rdf:resource="#WeatherEvent" />  
</daml:Class> 
<daml:Property rdf:ID="windDirection"> 
     <rdfs:label>Wind direction</rdfs:label>  
     <rdfs:domain rdf:resource="#WindEvent" /> 
     <rdfs:range rdf:resource = 

"http://www.w3.org/2000/10/XMLSchema#string" />  
</daml:Property> 
<daml:Property rdf:ID="windSpeed"> 
    <rdfs:label>Wind speed</rdfs:label>  
    <rdfs:domain rdf:resource="#WindEvent" />  
    <rdfs:range rdf:resource="#Speed" />  
</daml:Property>  

WindEvent 

windDirection Speed 

hasProperty windSpeed

SchemaGraph representation of  the part of ontology* 

<xsd:complexType name="Direction"> 
   <xsd:sequence> 
     <xsd:element maxOccurs="1" minOccurs="1"       
           nillable="true"  name="compass" 
           type="xsd1:DirectionCompass" />  
     <xsd:element maxOccurs="1" minOccurs="1"  
           name="degrees" type="xsd:int" />  
   </xsd:sequence> 
</xsd:complexType>   

SchemaGraph representation of  the part of WSDL 

Direction 

degrees Direction 
Compass 

hasElement compass 
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Table 3. Overview of function findMapping 

FUNCTION   findMapping 
INPUTS 

 

wci Є W, oci Є O 
where, W is the set of all elements in a WSDL 
file, W = {wc1, wc2, wc3, …., wcn} in 
SchemaGraph representation 
and O is the set of ontological concepts of an 
Ontology denoted by O = {oc1, oc2, oc3, …, 
ocm} in SchemaGraph representation 

OUTPUT 

 

mi = (wci, ocj, MS) 
where, mi is the mapping between wci and ocj 
and MS is the Match Score calculated for the 
mapping wci and ocj ( MS Є [0,1] ) 

The MS is composed of two different measures : Element Level 
Match (ElemMatch) and Schema level match (SchemaMatch). 
ElemMatch provides the linguistic similarity of two concepts 
whereas SchemaMatch takes care of structural similarity. The MS 
is calculated as the weighted average of ElemMatch and 
SchemaMatch as shown in Equation 1. 

( ) ( )12w011w0,where
2w1w

hSchemaMatc*2wElemMatch*1w  SM

≤≤≤≤
+

+=

 
Equation 1. Formula for Calculating Match Score (MS) 

Weights w1 and w2 indicate the contribution of Element level 
match and Schema level match, respectively, in the total match 
score. If two concepts have a matching structure then more 
weightage should be given to the SchemaMatch. If a WSDL 
concept does not have any structure then the SchemaMatch should 
not be considered. Based on these conditions the values of w1 and 
w2 are changed as shown in Table 4. 

Table 4. Weight values for calculating MS 

Condition w1 w2 

Default 0.4 0.6 

WSDL concept is leaf node 1 0 

SchemaMatch > 0.9, ElemMatch < 0.9 0.1 0.9 

SchemaMatch > 0.75, ElemMatch < 0.75 0.2 0.8 

SchemaMatch > 0.65, ElemMatch < 0.65  0.3 0.7 

SchemaMatch < 0.5, ElemMatch > 0.5 and 
WSDL Concept is of SimpleType 

1 0 

SchemaMatch < 0.5, ElemMatch < 0.5 and 
WSDL Concept is of SimpleType 

0.5 0.5 

3.2.1. Element level Match (ElemMatch) 
The Element level match (ElemMatch) is the measure of the 
linguistic similarity between two concepts based on their names. 
Here we assume that the concepts from WSDL and ontologies 
have meaningful names. The ElemMatch function uses various 
name and string matching algorithms like NGram, synonym 
matching, abbreviation expansion, stemming, tokenization, etc. 
The NGram algorithm calculates the similarity by considering the 
number of qgrams [13][14][15] that the names of two concepts 

have in common. The CheckSynonym algorithm uses WordNet 
[16] to find synonyms whereas; the CheckAbbreviations 
algorithm uses a custom abbreviation dictionary. The 
TokenMatcher uses the Porter Stemmer [17] algorithm, 
tokenization, stop-words removal, and substring matching 
techniques to find the similarity. It first tokenizes the string based 
on punctuation and capitalization. Then it removes unnecessary 
words from the list of tokens, using a stop-word list. If it cannot 
match these individual token then it stems them using porter 
stemmer algorithm and tries to match them using NGram 
technique. If any of these algorithms return a full match, i.e., 1 on 
scale of 0 to 1, then a match score of 1 for linguistic similarity is 
returned. If all the match algorithms give a match value of zero, 
then the linguistic similarity of those concepts is 0. If on the other 
hand, none of the match algorithms give a match score of 1, i.e., 
an exact match, then the average of all non-zero match scores is 
taken. Equation 2 and Table 5 explain all these cases with 
examples. 

( )
( ) ( )( )

( )
( )

( )
( )ExpansiononAbbreviatiMatchScorems

MatchingSynonymMatchScorems
NGramMatchScorems

,where

0msmsmsif
0msms1ms0if

1msmsmsif

0
ms

1
ElemMatch

3

2

1

321

312

321

2

=
=

=

===
==∧<<

=








=
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Equation 2. Formaula for Calculating ElemMatch 

Table 5. Examples of ElemMatch 

WSDL 
Concept 

Ontological 
Concept 

Elem
Match 

Algorithm 

wind WindEvent 0.639 NGram 

wind WindChill 0.478 NGram 

snow Snowfall 1 Synonyms 

slp Sea Level Pressure 1 Abbreviation 

relative_humidi
ty 

Relative 
Humidity 

1 NGram 

3.2.2. Schema level Match (SchemaMatch) 
The Schema level Match is the measure of structural similarity 
between two concepts. Many times concepts from both XML 
schema and ontologies are expressed in terms of other concepts. 
Hence while matching such concepts, it is important to match the 
sub-concepts tree under that concept also. SchemaMatch accounts 
for this by calculating the geometric mean of Sub-concept 
Similarity (subConceptSim) and the Sub-concept Match 
(subConceptMatch). Equation 3 gives the formula for 
SchemaMatch. 

[ ] [ ]1,0MatchsubConcept1,0SimsubConcept,where
MatchsubConcept*SimsubConcepthSchemaMatc

∈∈
=

 
Equation 3. Formula for Calculating SchemaMatch 

3.2.1.1 Sub-concept Similarity (subConceptSim) 
The Sub-concept Similarity (subConceptSim) (Equation 4) is the 
average match score of each individual property of the concept.  
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subconceptMS

SimsubConcept

n
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i

=
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Equation 4. Formula for Calculating subConceptSim 

3.2.1.2 Sub-concept Match (subConceptMatch): 
subConceptMatch (Equation 5) can be defined as the fraction of 
the total number of properties of a concept that are matched. 

( )
( )ssubConcepttotaln

ssubConceptmatchednMatchsubConcept =
 

Equation 5. Formula for Calculating subConceptMatch 

Table 6 below shows how subConceptSim and subConceptMatch 
are calculated. Pressure is the WSDL concept with sub-concepts 
delta, slp and relative_humidity and PressureEvent is the 
ontological sub-concept with properties Sea Level Pressure, 
RelativeHumidity etc. 

Table 6. Calculations of SchemaMatch 
WSDL Concept 
Pressure 

Ontological Concept 
PressureEvent 

MS 

Delta ---- 0 

Slp Sea Level Pressure 1 

relative_humidity RelativeHumidity 1 

subConceptSim (Pressure, PressureEvent) = (1+1+0)/3 = 0.667 
subConceptMatch (Pressure, PressureEvent) = 2/3 = 0.667 

3.3 Finding the Best Mapping 
As each WSDL concept is compared against all the concepts from 
ontologies, it is necessary to find the best matching concept. We 
have implemented a function getBestMapping listed in Table 7 for 
the same. 

Table 7. Overview of function getBestMapping 
FUNCTION  getBestMapping 
INPUTS  wci Є W,  O = {oc1, oc2, oc3, …, ocm} 
OUTPUT  Best(mi = (wci, ocj, MS)) 

This algorithm maintains a variable for best mapping, whose MS 
is checked against the newly generated mapping. If the new 
mapping has a better MS, it is assigned as the best mapping. Since 
we are trying to find a match for a WSDL concept, while 
comparing with the ontological concept we only consider the 
number of children of the WSDL concept. This gives the same 
schema level match for the best matching ontological concept and 
its super-concepts. Therefore, it is necessary to implement some 
technique to rank the best matching ontological concept higher 
than its super-concepts. The getBestMapping function achieves 
this by considering the total number of sub-concepts of the two 
concepts being mapped.  

 

 

Table 8. Mappings for WSDL concept PhenomenonType 
Ontology 
Concept 

Elem 
Match 

Schema 
Match 

sub 
concep

ts 

MS Ra
nk 

Weather 
Phenomena 

0.614 0.854 106 0.81 2 

OtherWeather 
Phenomena 

0.442 0.396 13 0.42 3 

CurrentWeather 
Phenomena 

0.564 0.854 35 0.79 1 

For example, consider a WSDL concept PhenomenonType which 
best matches to ontological concept CurrentWeatherPhenomena 
and WeatherPhenomena is the super-concept of 
CurrentWeatherPhenomena. From Table 8 we can see that both 
have the same SchemaMatch but WeatherPhenomena has a better 
ElementMatch making MS for it slightly better than the MS of 
CurrentWeatherPhenomena. Thus if we do ranking based on MS, 
WeatherPhenomena will get ranked higher. This can be avoided 
by considering the number of sub-concepts of both of them. From 
Table 4 we know that ElemMatch has very little weightage (0.2) if 
SchemaMatch is above 0.75. Also if we have two candidate 
concepts with same SchemaMatch value, then the concept with 
less number of sub-concepts is a better match. Thus ranking 
algorithm gives more weight to number of concepts than 
ElemMatch when SchemaMatch is same. Hence we are able to 
rank CurrentWeatherPhenomena higher than WeatherPhenomena. 

3.4 Categorizing and Annotating WSDL 
Each Web service description, i.e., the WSDL file, is compared 
against all the ontologies in the Ontology-store (Explained in 
Section 4). For every ontology, a set of mapping is created. Two 
measures are derived from these set of mappings; the first is the 
Average Concept Match (avgConceptMatch) and the second is the 
Average Service Match (avgServiceMatch).  

3.4.1. Average Concept Match (avgConceptMatch) 
The Average concept match tells the user about the degree of 
similarity between matched concepts of the WSDL schema and 
ontology. This measure is used to decide if the computed 
mappings should be accepted for annotation. It is normalized on 
the scale of 0 to 1 where 0 denotes no similarity and 1 denotes 
complete similarity. Equation 6 gives the formula for 
avgConceptMatch. 

( )

conceptsmappedofnok,where
k

mMS

MatchavgConcept

k

1i
i

=

=
∑

=  

Equation 6. Formula for Calculating avgConceptMatch 

3.4.2. Average Service Match (avgServiceMatch) 
The Average service match helps us to categorize the service into 
categories. It is calculated as the average match of all the concepts 
of a WSDL schema and a domain ontology. The domain of the 
ontology corresponding to the best average service match also 
represents the domain of the Web service. The Average service 
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match as shown in  Equation 7 is also normalized on the scale of 0 
to 1. 

( )

conceptstotalof.non
conceptsmappedof.nok,where

n

mMS
MatchavgService

k

1i
i

=
=

=
∑

=

 

Equation 7. Formula for Calculating avgServiceMatch 

We explain both these measures further with the example given in 
Table 9. From the table we can see that AirportWeather service 
matches better with Weather-ont ontology (5 ot of 8 concepts 
mapped) than Geo ontology (2 out of  8 concepts mapped). 
Therefore, the domain of AirportWeather service is Weather. 
Similarly, IMapQuest service is from Geographical domain.  

Table 9. avgServiceMatch and avgConceptMatch 

Num concepts Web 
service 

Ontolo
-gy total mappe

d 

avg 
concept 
Match 

avg 
service 
Match 

Airport 
Weather 

Weathe
r-ont 

8 5 0.756 0.47 

Airport 
Weather 

Geo 8 2 0.655 0.16 

IMapQuest Geo 9 6 0.9 0.6 
IMapQuest Weathe

r-ont 
9 2 0.388 0.075 

4. ARCHITECTURE 
In this section we explain the architecture of the system. The three 
main components of the system are an ontology-store, the matcher 
library, and a translator library. 
4.1 Ontology-Store 
Ontology-store as the name suggests stores the ontologies. These 
ontologies will be used by the system to annotate the Web service 
descriptions in WSDL. The ontologies are categorized into 
domains. The system allows the user to add new ontologies to the 
ontology store. Currently the system supports DAML, and RDF-S 
ontologies. These ontologies are stored as “.daml” or “.rdfs” files 
in different folders. Names of these folders correspond to domain 
names. This component of our architecture will be replaced by a 
high quality search mechanism of ontologies from ontology 
registries or a P2P mechanism supporting semantic search of 
ontologies [8]. 
4.2 Translator Library  
The translator library consists of the programs that are used to 
generate the SchemaGraph representations (explained in Section 
3.1). Currently, the translator library provides two translators, 
WSDL2graph and Ontology2graph. WSDL2graph takes as input 
the WSDL file to be annotated and generates the SchemaGraph 
representation, which is fed to the matching algorithm. In a 
similar manner the Ontology2Graph generates the SchemaGraph 
for the ontology. 

4.3 Matcher Library 
The matcher library provides two types of matching algorithms, 
element level matching algorithms and schema matching 
algorithms.  

Currently only one schema matching algorithm, findGraphMatch, 
is implemented. Element level matching algorithms provided by 
the library include NGram, TokenMatcher, CheckSysnonyms and 
CheckAbbreviations which are detailed in Section 3.2.1. The 
Matcher library also provides user with option to add new 
matching algorithms using an API. Figure 2 shows the interface 
for selecting existing element level algorithms and for adding new 
ones. 

 
Figure 2. Matcher Library – Algorithm Selector 

Once the getBestMapping function returns a set of best mappings 
for the WSDL schema the mappings can be displayed using the 
user interface. The user is provided with the ability to accept or 
reject the suggested mappings. Concepts can also be matched 
manually. The user can also visualize the WSDL descriptions and 
ontologies in a tree format. Once the mappings are accepted, they 
are written back to the WSDL file (Section 9 – Figure 5). Figure 3 
gives an overview of MWSAF architecture. 

 
Figure 3. MWSAF – Architecture 
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5. RESULTS AND EMPIRICAL TESTING 
To test our algorithm we first obtained a corpus2 of 424 Web 
services from SALCentral.org and XMethods.com. Although our 
initial intention was to test our algorithm on the whole corpus, we 
have limited our testing to two domains, due to lack of relevant 
domain specific ontologies. We are in the process of creating new 
domain ontologies and plan to extend our testing for remaining 
Web services in the future. 

The two domains we have selected for testing are Weather and 
Geographical domains. Although the ontologies used are not 
comprehensive enough to cover all the concepts in these domains, 
they are sufficient enough to serve the purpose of categorization. 
We have taken a set of 24 services out of which 15 are from 
geographical domain and 9 from weather domain. The services are 
categorized based on the categorization threshold (CT), which 
decides if the service belongs to a domain. If the best average 
service match (Section 3.4.2) calculated for a particular Web 
service is above the CT then the service belongs to the 
corresponding domain. Graph 1 depicts the categorization 
obtained by applying our algorithm on this set of 24 Web services 
for different CT values. 
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Graph 1. Categorization statistics of Web services 

It is very important to choose the CT value correctly. We can see 
from Graph 1 that for CT = 0.5, very few services have been 
categorized. Whereas for CT = 0.4, although all Web services are 
categorized, two services from the weather domain have been 
wrongly categorized in the geographical domain. These two 
services are WorldWeather and ForecastByICAO. Both these 
services take “ICAO code” as input and return the “weather as an 
array of string”. As the output is not described in terms of 
concepts from weather domain and the categorization is based 
only on the input concept “ICAO code” (which is mapped to 
concept from Geo ontology), these services are wrongly 
categorized. 

                                                                 
2 Acknowledgement: Andreas Hess and N. Kushmeric [18] for 

lending us the corpus 
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Graph 2. Selecting domain for a Web service 
Graph 2 summarizes the categorization process of 6 different Web 
services. These services are compared to 5 different ontologies 
and the average service match scores are obtained. A service 
belongs to the category of the domain ontology for which it gives 
the best match score. For example, the second service in the 
graph, i.e., the AirportWeather service best matches to the 
“Weather-ont” ontology and hence belongs to the weather 
domain. The match scores for other domain ontologies suggest 
that this service may contain a few concepts from these other 
domains. 

Graph 3 shows two plots of match scores of 17 Web services 
(categorized in geographical domain) compared with two versions 
of domain specific Geo ontology. The lower plot shows Match 
Scores with the original Geo ontology. We can see that the Match 
Scores are quite low because the Geo ontology (number of 
concepts = 94) is not comprehensive enough to contain all the 
concepts from the geographical domain. This observation is 
proved by the upper plot, which shows a significant increase in 
Match Scores of these Web services, when compared with the 
new Geo ontology with a few added concepts. 
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Graph 3. Mappings with Geo ontology – Match Scores 

Graph 4 gives a comparison between total number of concepts and 
the number of mapped concepts for all the 17 Web services. The 
topmost plot shows total number of concepts in web services, the 
plot at bottom shows number of mapped concepts before adding 
new concepts to Geo ontology and the middle plot shows the 
number of concepts mapped after adding new concepts to the 
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ontology. This plot also supports the fact that matches are low due 
to the incomplete domain ontology. 
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Graph 4. Mappings with Geo ontology – Number of concepts 

Although Graph 3 and Graph 4 show that low match scores can be 
improved with better ontologies, still we can see that some of the 
Web services do not show much increase in the Match Scores. 
The reason behind this is many Web services span more than one 
domain and hence contain concepts from domains other than the 
geographical domain. Also as WSDL files are generated 
automatically by web servers, the input and output parameters do 
not always have meaningful names. 

6. RELATED WORK 
Our work presents an approach for adding semantics to Web 
services. In this section, we discuss some other efforts that 
describe adding semantics to Web services. We also look into 
some schema matching efforts, as it is the basis of our approach to 
semantically describe Web services. 

DAML-S (soon to be OWL-S) uses an upper ontology to 
semantically describe Web services. We share the vision of adding 
semantics to Web services by using annotated WSDL descriptions 
in our previous work [8]. The common factor in the 
aforementioned two efforts is in mapping the message parts in 
WSDL to ontologies. With the potential growth in Web services, 
finding relevant ontologies for a particular service will be a 
significant problem. An even more difficult task will be to map 
the concepts in the ontologies to elements in WSDL. Even though 
DAML-S assumes manual annotation of Web services, we believe 
that annotation in the real world will be a non-trivial task, without 
some degree of automation. This work primarily aims on 
providing a semi-automatic approach to matching elements in 
WSDL to ontologies. [18] talks about using semantic metadata to 
semi-automatically categorize Web services into predefined 
categories making the service discovery simpler. It uses machine 
learning techniques for categorization. There are two significant 
differences in our approach and that suggested in [18]. First, we 
believe our approach is richer as we consider the structure of 
WSDL concepts, rather than just the names. Secondly, we use 
ontologies for classification as compared to vocabularies used by 

[18]. Ontologies are more descriptive and capture domains more 
accurately than vocabularies, leading to better classification.  

Since we are matching XML schema used by the WSDL files to 
ontologies, it is worthwhile to explore the Ontology matching and 
Schema matching areas. Mapping ontologies is a hard problem 
[19]. The research in this area varies from ontology merging [20] 
to mapping ontologies for service discovery [21]. The techniques 
used are also varied, ranging from machine learning [22][23], 
graph analysis [20][24], to heuristic based matching [24]. Schema 
matching is an old research area and there has been a lot of 
research in this area from different perspectives [24], which is 
also related to earlier schema integration work [26][27][28]. 
There are different approaches to schema matching like matching 
the whole schema structure versus matching the individual 
elements of the schema. There are many machine learning 
techniques [29][30][31] where some matching rules are fed to the 
match algorithm and then it guesses the new matches. Some 
match algorithms use more than one technique and are called 
hybrid matchers. Due to space limitation, we are not able to 
discuss all of them in this paper. Rather, we focus on two of the 
more relevant schema matching techniques and their relationship 
to our work, namely, COMA [32] and Cupid [33]. 

Cupid is a hybrid matcher which combines name matching with 
structure matching. It uses predefined synonym dictionary to find 
element level matches. Every schema node has two dimensions of 
similarity; the element level match calculated using name matches 
and predefined synonym dictionary and structure match. COMA 
implements a matcher library which has different matchers 
varying from simple matchers like name, soundex, and synonym 
matchers to hybrid matchers using name and path information. 
Although these matching techniques are different and find the 
matches using different algorithms, some of the basic steps like 
name matching, tokenization, word expansion, finding words with 
similar meaning, etc., are common. In fact, even though the 
implementations are different, these steps are the basis of the most 
of the schema matching techniques.   

In this paper, we have discussed annotation of input and output 
concepts of Web services. Relating Web services to process 
ontologies has been discussed in [34]. We are currently working 
on algorithms to map operations in WSDL files to concepts in 
process ontologies. 

7. CONCLUSION AND FUTURE WORK 
In this paper we have described MWSAF, a framework for semi-
automatic annotation of Web services. We have discussed the 
issues in matching XML schemas to ontologies, which forms the 
crux of our approach.. This work was undertaken as a part of the 
METEOR-S system. While many other efforts have talked about 
adding semantics to Web services, practical implications of 
actually annotating Web services with real world ontologies have 
not been discussed in great detail. We further carried out 
experiments involving Web services and ontologies independently 
created by others, and coped with the practical difficulty in our 
effort due to lack of domain ontologies and well structured WSDL 
files. This prototyping and early experimentation leads us to 
believe that our approach will scale well when the users will have 
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to deal with thousands of Web services, but also have the benefit 
of higher quality and more comprehensive ontologies. We plan to 
release our tool for public use through sourceforge. We are 
currently working on completing the documentation and user 
guide for this public release.  
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9. APPENDIX A 

 
Figure 4. Screenshot of the MWSAF tool 

Figure 4 above gives a screenshot of the MWSAF tool. The user first loads the WSDL file (1) to be mapped. This WSDL file is compared 
with all the ontologies from the ontology-store to find the most suitable domain ontology using the “findDomain” option from the “Tools” 
menu. This option returns the match scores with each ontology (2). The best-matched ontology can then be selected for annotation. 
Mappings for this ontology can be viewed and the user can accept or reject suggested mappings (3). The tool also allows viewing of 
mappings with other ontologies, in case if the WSDL file contains concepts from other domains. There is also a facility to add extra 
mappings manually. The WSDL file and ontology can be viewed in a tree format (1) and (5) respectively to facilitate manual mapping. (4) 
shows accepted mappings, which are then written to the WSDL file as shown in Figure 5.  
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+<xsd:complexType Ont-Concept="weather:windDirection" name="Direction"> 
- <xsd:complexType name="Station"> 
- <xsd:sequence> 

  <xsd:element Ont-Concept="geo:icao" maxOccurs="1" minOccurs="1" name="icao" nillable="true" type="xsd:string" />  
  <xsd:element Ont-Concept="geo:wmo" maxOccurs="1" minOccurs="1" name="wmo" nillable="true" type="xsd:string" />  
  <xsd:element Ont-Concept="geo:iata" maxOccurs="1" minOccurs="1" name="iata" nillable="true" type="xsd:string" />  
  <xsd:element Ont-Concept="geo:elevation" maxOccurs="1" minOccurs="1" name="elevation" type="xsd:double" />  
  <xsd:element Ont-Concept="geo:latitude" maxOccurs="1" minOccurs="1" name="latitude" type="xsd:double" />  
  <xsd:element Ont-Concept="geo:longitude" maxOccurs="1" minOccurs="1" name="longitude" type="xsd:double" />  

  </xsd:sequence> 
  </xsd:complexType> 
 

Figure 5. Part of Annotated WSDL file 
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