

METEOR-S Web Service Annotation Framework
Abhijit Patil, Swapna Oundhakar, Amit Sheth, Kunal Verma

LSDIS Lab, Department of CS, University of Georgia, 415 GSRC, Athens, GA 30602
{patil, swapna, amit, verma}@cs.uga.edu

ABSTRACT
The World Wide Web is emerging not only as an infrastructure
for data, but also for a broader variety of resources that are
increasingly being made available as Web services. Relevant
current standards like UDDI, WSDL, and SOAP are in their
fledgling years and form the basis of making Web services a
workable and broadly adopted technology. However, realizing the
fuller scope of the promise of Web services and associated service
oriented architecture will requite further technological advances in
the areas of service interoperation, service discovery, service
composition, and process orchestration. Semantics, especially as
supported by the use of ontologies, and related Semantic Web
technologies, are likely to provide better qualitative and scalable
solutions to these requirements. Just as semantic annotation of
data in the Semantic Web is the first critical step to better search,
integration and analytics over heterogeneous data, semantic
annotation of Web services is an equally critical first step to
achieving the above promise. Our approach is to work with
existing Web services technologies and combine them with ideas
from the Semantic Web to create a better framework for Web
service discovery and composition. In this paper we
present MWSAF (METEOR-S Web Service Annotation
Framework), a framework for semi-automatically marking up Web
service descriptions with ontologies. We have developed
algorithms to match and annotate WSDL files with relevant
ontologies. We use domain ontologies to categorize Web services
into domains. An empirical study of our approach is presented to
help evaluate its performance.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability – data mapping,
interface definition languages, D.3.1 [Programming
Languages]: Formal definitions and Theory – semantics, H.3.5
[Information Storage and Retrieval]: Online Information
Services – data sharing, web-based services

General Terms: Algorithms, Experimentation.

Keywords: Semantic Web services, WSDL, Ontology,
semantic annotation of Web services, Web services discovery

1. INTRODUCTION
Web services are the latest attempt to revolutionize large scale
distributed computing. With XML based standards like UDDI,
WSDL, and SOAP, they are touted as the tools for universal
connectivity and interoperability of applications and services.

With the growing popularity of Web services, there arise issues of
finding relevant services, especially with the possibility of the
existence of thousands of Web services. We envision Web
services as being initially applied more to address B2B/EAI
challenges, rather than B2C services. In this context, Web services
will be used as part of larger Web processes that result from Web
services composition. Current standards have focused on
operational and syntactic details for implementation and execution
of Web services. This limits the search mechanism for Web
services to keyword-based searches. Consider a scenario, where a
user may want a Web service that takes “weather station code” as
input and gives “Atmospheric conditions” as output. The current
search mechanism at a popular Web service repository like
Salcentral.com allows only keyword searches. Searching for the
keyword “weather” gives about 3% of the total Web services in
that repository. It returns all Web services, which have weather,
mentioned in their description. The user has to manually analyze
WSDL files to find the appropriate service. Five years from now
when we are expected to have thousands of services, current
syntactic search along with manual intervention would be
untenable. Research in the Semantic Web area has shown that
annotation with metadata can help us solve the problem of
inefficient keyword based searches in the current web (which is
based on HTML, HTTP, and URI’s). This concept of annotation
can be extended to Web services to envision Semantic Web
services. Semantically described services will enable better
service discovery and allow easier interoperation and composition
of Web services.

Several approaches have already been suggested for adding
semantics to Web services. Semantics can either be added to
currently existing syntactic Web service standards like UDDI or
WSDL [1] or services can be described using some ontology
based description language like DAML-S [2]. The common factor
in most of these approaches is relating concepts in Web services
to domain specific ontologies. This relating and tagging of
descriptions with concepts in ontologies is referred to as
annotation. While significant research has been done on what to
annotate, there has been little work on how to annotate. Current
research of Web service annotation largely focuses on manual
annotation [3] that poses several problems. The first problem is
that of finding the relevant ontology or ontologies. In manual
annotation, the burden of choosing the relevant ontology or
ontologies lies with the user. This significantly increases the pre-
match effort as the user has to browse through the available
ontologies to find a suitable domain ontology or ontologies (since
a Web service may span more than one domain and may have to
be mapped to a number of ontologies). The second problem arises
because of the size of the Web service description and the size of
the ontology or vocabulary. As Web service descriptions grow

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

553

larger (e.g., even a modest Web service “GlobalWeather” by
CapeScience has 53 different elements and 55 different values of
the parameters adding up to 108 concepts), the potential number
of concepts in the Web service increase manifold. Furthermore the
vocabularies, taxonomies, or ontologies used for annotation could
also be very large with correspondingly large number of concepts
(e.g. the world-fact-book ontology contains more than 1100
concepts). Notice that average real world ontologies have been
reported to exceed over 1 million instances [4]. Hence finding the
appropriate ontological concepts to match to WSDL concepts can
be a very tedious task. As we progress towards a Web of services,
the number of services are likely to be in thousands or even more
[5]. Given these factors, it is necessary to have a scalable and
semi-automated way of annotating Web services with real world
ontologies.

A key enabling capability that can address the above scalability
challenge is annotation with as much automation as possible
without losing quality. We present a framework, METEOR-S
Web service Annotation Framework (MWSAF), to semi-
automatically annotate WSDL descriptions of the services with
relevant ontologies. MWSAF is a part of an ongoing project,
METEOR-S, an effort to create Semantic Web processes, at the
LSDIS lab, University of Georgia. We have implemented a
number of algorithms to match concepts in WSDL files to
ontologies.

We describe the architecture, implementation, and working of the
MWSAF in this paper. The main contributions of our work are

• Addressing the need for semantics in the Web services
framework, and providing a detailed approach that identifies
four types of semantics for describing Semantic Web services

• Identifying the technical challenges in (semantic) annotation
of Web services.

• Implementing algorithms for Semantic Annotation and
categorization of Web services

• Empirical testing of semantic annotation of Web services

The rest of the paper is organized as follows: Section 2 describes
the four types of semantics involved in the Web services
framework. Section 3 describes the implementation and matching
issues. The architecture is discussed in Section 4. Section 5
discusses the empirical study. Section 6 lists the related works.
We conclude in Section 7 and give an outline for future work.

2. METEOR-S - ADDING SEMANTICS TO
WEB SERVICE INDUSTRIAL STANDARDS
There have been several attempts to add semantics to Web
services [6][1]. The METEOR-S project at the LSDIS Lab, UGA
attempts to add semantics to the complete Web process lifecycle
by providing constructs for adding semantics to current industry
standards. We believe our approach is more pragmatic than other
top down approaches [2], which require developing new standards
with no tangible benefits over our approach. We identify the four
categories of semantics in the complete Web process lifecycle [7].

• Data Semantics (semantics of inputs/outputs of Web services)
• Functional Semantics (what does a service do)
• Execution Semantics (correctness & verification of execution

)

• QoS Semantics (performance and cost parameters associated
with service)

Covering the complete lifecycle of Web services involves adding
the four categories of semantics to different layers of the Web
service stack [8]. The service description layer of the stack
provides the information necessary for invoking Web services.
WSDL is the de facto standard for this layer. However, WSDL
descriptions are syntactic and do not explicate the semantics of
the service providers. METEOR-S provides a mechanism to add
data, functional and QoS semantics to WSDL files. MWSDI
provides an infrastructure to leverage data, functional and QoS
semantics by enhancing UDDI [9]. The top layer i.e. the flow
layer deals mainly with service composition. A comprehensive
framework for Semantic Web service composition is provided in
MWSCF [10]. This paper concentrates on a semi-automated
approach for adding data semantics to WSDL files.

Figure 1 gives an overview of these four types of semantics and
different stages of Web process lifecycle development.

Figure 1. Four types of Semantics in Web services

3. IMPLEMENTATION AND MATCHING
ISSUES
Expressiveness of ontologies and the XML schema used by
WSDL are significantly different because of the different reasons
behind their development [11]. The XML schema is used in
WSDL descriptions to provide a basic structure to the data
exchanged by the Web service. It therefore provides a minimal
containment relationship using the complexType, simpleType and
element constructs. On the other hand ontologies are developed to
capture real world knowledge and domain theory [12]. Therefore
the languages used to describe the ontologies, model the real
world entities as classes (concepts) and their properties. They also
provide the named relationships between different concepts and
properties, making it easier to model entities in the real world
more expressively. For example, consider the real world
phenomenon “Snowfall which is caused by extreme low
temperatures”. An ontology can very well describe this
phenomenon because it can have concepts “extreme low
temperatures” and “Snowfall” and relate the two with the named
relationship “causes”. A WSDL schema can have the elements
“extreme low temperatures” and “Snowfall” but since there is no

554

support for named relationships, it cannot represent this
phenomenon.

3.1 SchemaGraphs
The difference in expressiveness of XML schema and ontology
makes it very difficult to match these two models directly. A
possible solution to this problem is to convert both the models to
a common representation format to facilitate better matching. We
have used this approach and devised a representation format
called SchemaGraph. SchemaGraph thus provides a generic
solution wherein ontologies in any language like DAML, RDF-S,
or OWL etc can be used. A SchemaGraph is a set of nodes
connected by edges. We use conversion functions to convert both
XML schema and ontology1 to SchemaGraphs.

The conversion function used for converting XML schema to
SchemaGraph is WSDL2Schema and uses the conversion rules
specified in Table 1.

Table 1. XML Schema to SchemaGraph conversion rules

XML schema Construct SchemaGraph representation
ComplexType Node

Elementary XML Data Type
Element defined under
complexType

Node and an Edge between
complexType node and this node
with name “hasElement”

ComplexType XML Data
Type Element defined under
complexType

Edge

SimpleType Node

Values defined for simple
types

Node and edge between
simpleType and this node with
name “hasValue”

Elements Nodes
Example

1 Currently we use ontologies represented using RDF-S and subset

of DAML+OIL.

Ontology2Schema is the conversion function used for creating
SchemaGraph representation of the ontology. The set of
conversion rules used for this are listed in Table 2.

Table 2. Ontology to SchemaGraph conversion rules

Ontology representation SchemaGraph representation

Class Node

Property with basic
datatypes as range
(Attribute)

Node with edge joining it to the
class with name “hasProperty”

Property with other class as
range (Attribute)

Edge between the two class nodes

Instance Node with edge joining it to the
class with name “hasInstance”

Class – subclass
relationship

Edge between class node to
subclass node with name
“hasSubClass”

Example

Once both the ontology and the XML schema are represented in a
common SchemaGraph representation, we apply our matching
algorithm to find the mappings between them. Once a concept is
matched against all the concepts in an ontology, the best mapping
needs to be picked out for annotation. In the next few sections we
present our algorithm to calculate the match between two
SchemaGraphs.

3.2 Mapping Two Concepts
Every concept from the WSDL SchemaGraph is compared against
concepts from the ontology SchemaGraph. The function
findMapping listed in Table 3 returns the mapping between a
WSDL and ontology concept pair which consists of wci, oci
(WSDL concept and ontology concept) and MS (Match Score).

<daml:Class rdf:ID="WindEvent">
 <rdfs:comment>Superclass for all events
 dealing with wind</rdfs:comment>
 <rdfs:label>Wind event</rdfs:label>
 <rdfs:subClassOf rdf:resource="#WeatherEvent" />
</daml:Class>
<daml:Property rdf:ID="windDirection">
 <rdfs:label>Wind direction</rdfs:label>
 <rdfs:domain rdf:resource="#WindEvent" />
 <rdfs:range rdf:resource =

"http://www.w3.org/2000/10/XMLSchema#string" />
</daml:Property>
<daml:Property rdf:ID="windSpeed">
 <rdfs:label>Wind speed</rdfs:label>
 <rdfs:domain rdf:resource="#WindEvent" />
 <rdfs:range rdf:resource="#Speed" />
</daml:Property>

WindEvent

windDirection Speed

hasProperty windSpeed

SchemaGraph representation of the part of ontology*

<xsd:complexType name="Direction">
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1"
 nillable="true" name="compass"
 type="xsd1:DirectionCompass" />
 <xsd:element maxOccurs="1" minOccurs="1"
 name="degrees" type="xsd:int" />
 </xsd:sequence>
</xsd:complexType>

SchemaGraph representation of the part of WSDL

Direction

degrees Direction
Compass

hasElement compass

555

Table 3. Overview of function findMapping

FUNCTION findMapping
INPUTS

wci Є W, oci Є O
where, W is the set of all elements in a WSDL
file, W = {wc1, wc2, wc3, …., wcn} in
SchemaGraph representation
and O is the set of ontological concepts of an
Ontology denoted by O = {oc1, oc2, oc3, …,
ocm} in SchemaGraph representation

OUTPUT

mi = (wci, ocj, MS)
where, mi is the mapping between wci and ocj
and MS is the Match Score calculated for the
mapping wci and ocj (MS Є [0,1])

The MS is composed of two different measures : Element Level
Match (ElemMatch) and Schema level match (SchemaMatch).
ElemMatch provides the linguistic similarity of two concepts
whereas SchemaMatch takes care of structural similarity. The MS
is calculated as the weighted average of ElemMatch and
SchemaMatch as shown in Equation 1.

() ()12w011w0,where
2w1w

hSchemaMatc*2wElemMatch*1w SM

≤≤≤≤
+

+=

Equation 1. Formula for Calculating Match Score (MS)

Weights w1 and w2 indicate the contribution of Element level
match and Schema level match, respectively, in the total match
score. If two concepts have a matching structure then more
weightage should be given to the SchemaMatch. If a WSDL
concept does not have any structure then the SchemaMatch should
not be considered. Based on these conditions the values of w1 and
w2 are changed as shown in Table 4.

Table 4. Weight values for calculating MS

Condition w1 w2

Default 0.4 0.6

WSDL concept is leaf node 1 0

SchemaMatch > 0.9, ElemMatch < 0.9 0.1 0.9

SchemaMatch > 0.75, ElemMatch < 0.75 0.2 0.8

SchemaMatch > 0.65, ElemMatch < 0.65 0.3 0.7

SchemaMatch < 0.5, ElemMatch > 0.5 and
WSDL Concept is of SimpleType

1 0

SchemaMatch < 0.5, ElemMatch < 0.5 and
WSDL Concept is of SimpleType

0.5 0.5

3.2.1. Element level Match (ElemMatch)
The Element level match (ElemMatch) is the measure of the
linguistic similarity between two concepts based on their names.
Here we assume that the concepts from WSDL and ontologies
have meaningful names. The ElemMatch function uses various
name and string matching algorithms like NGram, synonym
matching, abbreviation expansion, stemming, tokenization, etc.
The NGram algorithm calculates the similarity by considering the
number of qgrams [13][14][15] that the names of two concepts

have in common. The CheckSynonym algorithm uses WordNet
[16] to find synonyms whereas; the CheckAbbreviations
algorithm uses a custom abbreviation dictionary. The
TokenMatcher uses the Porter Stemmer [17] algorithm,
tokenization, stop-words removal, and substring matching
techniques to find the similarity. It first tokenizes the string based
on punctuation and capitalization. Then it removes unnecessary
words from the list of tokens, using a stop-word list. If it cannot
match these individual token then it stems them using porter
stemmer algorithm and tries to match them using NGram
technique. If any of these algorithms return a full match, i.e., 1 on
scale of 0 to 1, then a match score of 1 for linguistic similarity is
returned. If all the match algorithms give a match value of zero,
then the linguistic similarity of those concepts is 0. If on the other
hand, none of the match algorithms give a match score of 1, i.e.,
an exact match, then the average of all non-zero match scores is
taken. Equation 2 and Table 5 explain all these cases with
examples.

()
() ()()

()
()

()
()ExpansiononAbbreviatiMatchScorems

MatchingSynonymMatchScorems
NGramMatchScorems

,where

0msmsmsif
0msms1ms0if

1msmsmsif

0
ms

1
ElemMatch

3

2

1

321

312

321

2

=
=

=

===
==∧<<

=








=

∨∨

Equation 2. Formaula for Calculating ElemMatch

Table 5. Examples of ElemMatch

WSDL
Concept

Ontological
Concept

Elem
Match

Algorithm

wind WindEvent 0.639 NGram

wind WindChill 0.478 NGram

snow Snowfall 1 Synonyms

slp Sea Level Pressure 1 Abbreviation

relative_humidi
ty

Relative
Humidity

1 NGram

3.2.2. Schema level Match (SchemaMatch)
The Schema level Match is the measure of structural similarity
between two concepts. Many times concepts from both XML
schema and ontologies are expressed in terms of other concepts.
Hence while matching such concepts, it is important to match the
sub-concepts tree under that concept also. SchemaMatch accounts
for this by calculating the geometric mean of Sub-concept
Similarity (subConceptSim) and the Sub-concept Match
(subConceptMatch). Equation 3 gives the formula for
SchemaMatch.

[] []1,0MatchsubConcept1,0SimsubConcept,where
MatchsubConcept*SimsubConcepthSchemaMatc

∈∈
=

Equation 3. Formula for Calculating SchemaMatch

3.2.1.1 Sub-concept Similarity (subConceptSim)
The Sub-concept Similarity (subConceptSim) (Equation 4) is the
average match score of each individual property of the concept.

556

()

Conceptmaintheofssubconceptofnon,where
n

subconceptMS

SimsubConcept

n

1i
i

=

==
∑

Equation 4. Formula for Calculating subConceptSim

3.2.1.2 Sub-concept Match (subConceptMatch):
subConceptMatch (Equation 5) can be defined as the fraction of
the total number of properties of a concept that are matched.

()
()ssubConcepttotaln

ssubConceptmatchednMatchsubConcept =

Equation 5. Formula for Calculating subConceptMatch

Table 6 below shows how subConceptSim and subConceptMatch
are calculated. Pressure is the WSDL concept with sub-concepts
delta, slp and relative_humidity and PressureEvent is the
ontological sub-concept with properties Sea Level Pressure,
RelativeHumidity etc.

Table 6. Calculations of SchemaMatch
WSDL Concept
Pressure

Ontological Concept
PressureEvent

MS

Delta ---- 0

Slp Sea Level Pressure 1

relative_humidity RelativeHumidity 1

subConceptSim (Pressure, PressureEvent) = (1+1+0)/3 = 0.667
subConceptMatch (Pressure, PressureEvent) = 2/3 = 0.667

3.3 Finding the Best Mapping
As each WSDL concept is compared against all the concepts from
ontologies, it is necessary to find the best matching concept. We
have implemented a function getBestMapping listed in Table 7 for
the same.

Table 7. Overview of function getBestMapping
FUNCTION getBestMapping
INPUTS wci Є W, O = {oc1, oc2, oc3, …, ocm}
OUTPUT Best(mi = (wci, ocj, MS))

This algorithm maintains a variable for best mapping, whose MS
is checked against the newly generated mapping. If the new
mapping has a better MS, it is assigned as the best mapping. Since
we are trying to find a match for a WSDL concept, while
comparing with the ontological concept we only consider the
number of children of the WSDL concept. This gives the same
schema level match for the best matching ontological concept and
its super-concepts. Therefore, it is necessary to implement some
technique to rank the best matching ontological concept higher
than its super-concepts. The getBestMapping function achieves
this by considering the total number of sub-concepts of the two
concepts being mapped.

Table 8. Mappings for WSDL concept PhenomenonType
Ontology
Concept

Elem
Match

Schema
Match

sub
concep

ts

MS Ra
nk

Weather
Phenomena

0.614 0.854 106 0.81 2

OtherWeather
Phenomena

0.442 0.396 13 0.42 3

CurrentWeather
Phenomena

0.564 0.854 35 0.79 1

For example, consider a WSDL concept PhenomenonType which
best matches to ontological concept CurrentWeatherPhenomena
and WeatherPhenomena is the super-concept of
CurrentWeatherPhenomena. From Table 8 we can see that both
have the same SchemaMatch but WeatherPhenomena has a better
ElementMatch making MS for it slightly better than the MS of
CurrentWeatherPhenomena. Thus if we do ranking based on MS,
WeatherPhenomena will get ranked higher. This can be avoided
by considering the number of sub-concepts of both of them. From
Table 4 we know that ElemMatch has very little weightage (0.2) if
SchemaMatch is above 0.75. Also if we have two candidate
concepts with same SchemaMatch value, then the concept with
less number of sub-concepts is a better match. Thus ranking
algorithm gives more weight to number of concepts than
ElemMatch when SchemaMatch is same. Hence we are able to
rank CurrentWeatherPhenomena higher than WeatherPhenomena.

3.4 Categorizing and Annotating WSDL
Each Web service description, i.e., the WSDL file, is compared
against all the ontologies in the Ontology-store (Explained in
Section 4). For every ontology, a set of mapping is created. Two
measures are derived from these set of mappings; the first is the
Average Concept Match (avgConceptMatch) and the second is the
Average Service Match (avgServiceMatch).

3.4.1. Average Concept Match (avgConceptMatch)
The Average concept match tells the user about the degree of
similarity between matched concepts of the WSDL schema and
ontology. This measure is used to decide if the computed
mappings should be accepted for annotation. It is normalized on
the scale of 0 to 1 where 0 denotes no similarity and 1 denotes
complete similarity. Equation 6 gives the formula for
avgConceptMatch.

()

conceptsmappedofnok,where
k

mMS

MatchavgConcept

k

1i
i

=

=
∑

=

Equation 6. Formula for Calculating avgConceptMatch

3.4.2. Average Service Match (avgServiceMatch)
The Average service match helps us to categorize the service into
categories. It is calculated as the average match of all the concepts
of a WSDL schema and a domain ontology. The domain of the
ontology corresponding to the best average service match also
represents the domain of the Web service. The Average service

557

match as shown in Equation 7 is also normalized on the scale of 0
to 1.

()

conceptstotalof.non
conceptsmappedof.nok,where

n

mMS
MatchavgService

k

1i
i

=
=

=
∑

=

Equation 7. Formula for Calculating avgServiceMatch

We explain both these measures further with the example given in
Table 9. From the table we can see that AirportWeather service
matches better with Weather-ont ontology (5 ot of 8 concepts
mapped) than Geo ontology (2 out of 8 concepts mapped).
Therefore, the domain of AirportWeather service is Weather.
Similarly, IMapQuest service is from Geographical domain.

Table 9. avgServiceMatch and avgConceptMatch

Num concepts Web
service

Ontolo
-gy total mappe

d

avg
concept
Match

avg
service
Match

Airport
Weather

Weathe
r-ont

8 5 0.756 0.47

Airport
Weather

Geo 8 2 0.655 0.16

IMapQuest Geo 9 6 0.9 0.6
IMapQuest Weathe

r-ont
9 2 0.388 0.075

4. ARCHITECTURE
In this section we explain the architecture of the system. The three
main components of the system are an ontology-store, the matcher
library, and a translator library.
4.1 Ontology-Store
Ontology-store as the name suggests stores the ontologies. These
ontologies will be used by the system to annotate the Web service
descriptions in WSDL. The ontologies are categorized into
domains. The system allows the user to add new ontologies to the
ontology store. Currently the system supports DAML, and RDF-S
ontologies. These ontologies are stored as “.daml” or “.rdfs” files
in different folders. Names of these folders correspond to domain
names. This component of our architecture will be replaced by a
high quality search mechanism of ontologies from ontology
registries or a P2P mechanism supporting semantic search of
ontologies [8].
4.2 Translator Library
The translator library consists of the programs that are used to
generate the SchemaGraph representations (explained in Section
3.1). Currently, the translator library provides two translators,
WSDL2graph and Ontology2graph. WSDL2graph takes as input
the WSDL file to be annotated and generates the SchemaGraph
representation, which is fed to the matching algorithm. In a
similar manner the Ontology2Graph generates the SchemaGraph
for the ontology.

4.3 Matcher Library
The matcher library provides two types of matching algorithms,
element level matching algorithms and schema matching
algorithms.

Currently only one schema matching algorithm, findGraphMatch,
is implemented. Element level matching algorithms provided by
the library include NGram, TokenMatcher, CheckSysnonyms and
CheckAbbreviations which are detailed in Section 3.2.1. The
Matcher library also provides user with option to add new
matching algorithms using an API. Figure 2 shows the interface
for selecting existing element level algorithms and for adding new
ones.

Figure 2. Matcher Library – Algorithm Selector

Once the getBestMapping function returns a set of best mappings
for the WSDL schema the mappings can be displayed using the
user interface. The user is provided with the ability to accept or
reject the suggested mappings. Concepts can also be matched
manually. The user can also visualize the WSDL descriptions and
ontologies in a tree format. Once the mappings are accepted, they
are written back to the WSDL file (Section 9 – Figure 5). Figure 3
gives an overview of MWSAF architecture.

Figure 3. MWSAF – Architecture

558

5. RESULTS AND EMPIRICAL TESTING
To test our algorithm we first obtained a corpus2 of 424 Web
services from SALCentral.org and XMethods.com. Although our
initial intention was to test our algorithm on the whole corpus, we
have limited our testing to two domains, due to lack of relevant
domain specific ontologies. We are in the process of creating new
domain ontologies and plan to extend our testing for remaining
Web services in the future.

The two domains we have selected for testing are Weather and
Geographical domains. Although the ontologies used are not
comprehensive enough to cover all the concepts in these domains,
they are sufficient enough to serve the purpose of categorization.
We have taken a set of 24 services out of which 15 are from
geographical domain and 9 from weather domain. The services are
categorized based on the categorization threshold (CT), which
decides if the service belongs to a domain. If the best average
service match (Section 3.4.2) calculated for a particular Web
service is above the CT then the service belongs to the
corresponding domain. Graph 1 depicts the categorization
obtained by applying our algorithm on this set of 24 Web services
for different CT values.

5
7

9 9

17
15

0

5

10

15

2 0

N
um

be
r o

f S
er

vi
ce

s

We a t he r Ge o

Service Category

C atego rizat io n T hresho ld = 0 .5
C atego rizat io n T hresho ld = 0 .4
A ctual N umber o f Serv ices

Graph 1. Categorization statistics of Web services

It is very important to choose the CT value correctly. We can see
from Graph 1 that for CT = 0.5, very few services have been
categorized. Whereas for CT = 0.4, although all Web services are
categorized, two services from the weather domain have been
wrongly categorized in the geographical domain. These two
services are WorldWeather and ForecastByICAO. Both these
services take “ICAO code” as input and return the “weather as an
array of string”. As the output is not described in terms of
concepts from weather domain and the categorization is based
only on the input concept “ICAO code” (which is mapped to
concept from Geo ontology), these services are wrongly
categorized.

2 Acknowledgement: Andreas Hess and N. Kushmeric [18] for

lending us the corpus

Weather-ont

Weather-ont

Weather-ont

Geo

Geo

Weather-ont

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Glo balweather A irpo rtWeather F astWeather Geo cash Geo WeatherF etcher

Weather-ont Geo Univ Gentology Atlas-Publication

Graph 2. Selecting domain for a Web service
Graph 2 summarizes the categorization process of 6 different Web
services. These services are compared to 5 different ontologies
and the average service match scores are obtained. A service
belongs to the category of the domain ontology for which it gives
the best match score. For example, the second service in the
graph, i.e., the AirportWeather service best matches to the
“Weather-ont” ontology and hence belongs to the weather
domain. The match scores for other domain ontologies suggest
that this service may contain a few concepts from these other
domains.

Graph 3 shows two plots of match scores of 17 Web services
(categorized in geographical domain) compared with two versions
of domain specific Geo ontology. The lower plot shows Match
Scores with the original Geo ontology. We can see that the Match
Scores are quite low because the Geo ontology (number of
concepts = 94) is not comprehensive enough to contain all the
concepts from the geographical domain. This observation is
proved by the upper plot, which shows a significant increase in
Match Scores of these Web services, when compared with the
new Geo ontology with a few added concepts.

0

0.2

0.4

0.6

0.8

1

Geo
ca

sh Geo

Cal
cD

is
ta

nce

Dire
ct

io
nSer

vi
ce

Fo
re

ca
st

ByI
CAO

Geo
Phon

e

Lo
ca

tio
nIn

fo

Im
ap

qu
est

Post
Add

rC
orr

ec
t

Poin
tW

SP

Ser
vi
ce

40

Ser
vi
ce

O
bj

ec
ts

USZi
pCod

e

W
orld

W
eat

her
zi
p4

Zi
pco

deR
es

ol
ve

r

zi
pCode

s

Services

Mapings with Original Geo ontology
Mappings with New Geo ontology

Graph 3. Mappings with Geo ontology – Match Scores

Graph 4 gives a comparison between total number of concepts and
the number of mapped concepts for all the 17 Web services. The
topmost plot shows total number of concepts in web services, the
plot at bottom shows number of mapped concepts before adding
new concepts to Geo ontology and the middle plot shows the
number of concepts mapped after adding new concepts to the

559

ontology. This plot also supports the fact that matches are low due
to the incomplete domain ontology.

0

8

16

24

32

40

48

56

Geo
ca

sh Geo

Cal
cD

is
ta

nc
e

Dire
ct

io
nSe

rv
ic
e

Fo
re

ca
st

By
IC

AO

Geo
Ph

on
e

Lo
ca

tio
nIn

fo

Im
ap

qu
es

t

Po
st

Add
rC

or
re

ct

Po
in

tW
SP

Se
rv

ic
e4

0

Ser
vi
ce

O
bj

ec
ts

USZ
ip

Co
de

W
orld

W
eat

her
zi
p4

Zip
co

de
Res

ol
ve

r

zi
pCo

de
s

Services

Total Number of Concepts
Mapped to original Geo ontology
Mapped to modified Geo ontology

Graph 4. Mappings with Geo ontology – Number of concepts

Although Graph 3 and Graph 4 show that low match scores can be
improved with better ontologies, still we can see that some of the
Web services do not show much increase in the Match Scores.
The reason behind this is many Web services span more than one
domain and hence contain concepts from domains other than the
geographical domain. Also as WSDL files are generated
automatically by web servers, the input and output parameters do
not always have meaningful names.

6. RELATED WORK
Our work presents an approach for adding semantics to Web
services. In this section, we discuss some other efforts that
describe adding semantics to Web services. We also look into
some schema matching efforts, as it is the basis of our approach to
semantically describe Web services.

DAML-S (soon to be OWL-S) uses an upper ontology to
semantically describe Web services. We share the vision of adding
semantics to Web services by using annotated WSDL descriptions
in our previous work [8]. The common factor in the
aforementioned two efforts is in mapping the message parts in
WSDL to ontologies. With the potential growth in Web services,
finding relevant ontologies for a particular service will be a
significant problem. An even more difficult task will be to map
the concepts in the ontologies to elements in WSDL. Even though
DAML-S assumes manual annotation of Web services, we believe
that annotation in the real world will be a non-trivial task, without
some degree of automation. This work primarily aims on
providing a semi-automatic approach to matching elements in
WSDL to ontologies. [18] talks about using semantic metadata to
semi-automatically categorize Web services into predefined
categories making the service discovery simpler. It uses machine
learning techniques for categorization. There are two significant
differences in our approach and that suggested in [18]. First, we
believe our approach is richer as we consider the structure of
WSDL concepts, rather than just the names. Secondly, we use
ontologies for classification as compared to vocabularies used by

[18]. Ontologies are more descriptive and capture domains more
accurately than vocabularies, leading to better classification.

Since we are matching XML schema used by the WSDL files to
ontologies, it is worthwhile to explore the Ontology matching and
Schema matching areas. Mapping ontologies is a hard problem
[19]. The research in this area varies from ontology merging [20]
to mapping ontologies for service discovery [21]. The techniques
used are also varied, ranging from machine learning [22][23],
graph analysis [20][24], to heuristic based matching [24]. Schema
matching is an old research area and there has been a lot of
research in this area from different perspectives [24], which is
also related to earlier schema integration work [26][27][28].
There are different approaches to schema matching like matching
the whole schema structure versus matching the individual
elements of the schema. There are many machine learning
techniques [29][30][31] where some matching rules are fed to the
match algorithm and then it guesses the new matches. Some
match algorithms use more than one technique and are called
hybrid matchers. Due to space limitation, we are not able to
discuss all of them in this paper. Rather, we focus on two of the
more relevant schema matching techniques and their relationship
to our work, namely, COMA [32] and Cupid [33].

Cupid is a hybrid matcher which combines name matching with
structure matching. It uses predefined synonym dictionary to find
element level matches. Every schema node has two dimensions of
similarity; the element level match calculated using name matches
and predefined synonym dictionary and structure match. COMA
implements a matcher library which has different matchers
varying from simple matchers like name, soundex, and synonym
matchers to hybrid matchers using name and path information.
Although these matching techniques are different and find the
matches using different algorithms, some of the basic steps like
name matching, tokenization, word expansion, finding words with
similar meaning, etc., are common. In fact, even though the
implementations are different, these steps are the basis of the most
of the schema matching techniques.

In this paper, we have discussed annotation of input and output
concepts of Web services. Relating Web services to process
ontologies has been discussed in [34]. We are currently working
on algorithms to map operations in WSDL files to concepts in
process ontologies.

7. CONCLUSION AND FUTURE WORK
In this paper we have described MWSAF, a framework for semi-
automatic annotation of Web services. We have discussed the
issues in matching XML schemas to ontologies, which forms the
crux of our approach.. This work was undertaken as a part of the
METEOR-S system. While many other efforts have talked about
adding semantics to Web services, practical implications of
actually annotating Web services with real world ontologies have
not been discussed in great detail. We further carried out
experiments involving Web services and ontologies independently
created by others, and coped with the practical difficulty in our
effort due to lack of domain ontologies and well structured WSDL
files. This prototyping and early experimentation leads us to
believe that our approach will scale well when the users will have

560

to deal with thousands of Web services, but also have the benefit
of higher quality and more comprehensive ontologies. We plan to
release our tool for public use through sourceforge. We are
currently working on completing the documentation and user
guide for this public release.

8. REFERENCES
[1] METEOR-S: Semantic Web Services and Processes,

http://swp.semanticweb.org
[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,

D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci, T.
Payne, and K. Sycara, “DAML-S: Web service Description
for the Semantic Web”, Proceedings of the 1st International
Semantic Web Conference (ISWC 2002).

[3] S. Agarwal, S. Handschuh, and S. Staab, “Surfing the
Service Web”, Proceedings of the 2nd International
Semantic Web Conference (ISWC 2003).

[4] A. Sheth, C. Ramakrishnan, “Semantic (Web) Technology In
Action Ontology Driven Information Systems for Search,
Integration and Analysis”, To appear in Data Engineering
special issue on the Semantic Web. December 2003.

[5] P. Holland, “Building Web Services From Existing
Application”, eAI Journal, September 2002, 45-47.

[6] D. Fensel, C. Bussler, “The Web service Modeling
Framework”, Vrije Universiteit Amsterdam (VU) and Oracle
Corporation

[7] A. Sheth, “Semantic Web Process Lifecycle: Role of
Semantics in Annotation, Discovery, Composition and
Orchestration”, Invited Talk, WWW 2003 Workshop on E-
Services and the Semantic Web, Budapest, Hungary, May 20,
2003.

[8] Web Service Conceptual Architecture (WSCA 1.0), IBM
Technical White Paper, May 2001.

[9] K. Verma, K. Sivashanmugam., A. Sheth, A. Patil, S.
Oundhakar, and J. Miller, “METEOR–S WSDI: A Scalable
Infrastructure of Registries for Semantic Publication and
Discovery of Web Services”, Journal of Information
Technology and Management (to appear, 2004).

[10] K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma,
“Framework for Semantic Web Process Composition”,
Technical Report 03-008, LSDIS Lab, Computer Science
Dept., UGA.

[11] M. Klein, D. Fensel, F. Harmelen, and I. Horrocks, “The
Relation between Ontologies and XML Schemata”,
Proceedings of the {ECAI}'00 Workshop on Applications of
Ontologies and Problem-Solving Methods, Berlin, Aug
2000.

[12] D. Fensel, “Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce”, Springer Verlag,
2001.

[13] R. C. Angell, G. E. Freund, et al., “Automatic Spelling
Correction using a Trigram Similarity Measure”, Information
Processing and Management, 1983.

[14] G. Salton, “Automatic Text Processing: The Transformation,
Analysis and Retrieval of Information by Computer”,
Massachusetts, Addison-Wesley, 1988.

[15] E. Zamora, J. Pollock, et al., “The Use of Trigram Analysis
for Spelling Error Detection”, Information Processing and
Management, 1981.

[16] G. Miller, “Special Issue, WordNet: An on-line lexical
database”, International Journal of Lexicography, Vol. 3,
Num. 4, 1990.

[17] M. Porter, “An Algorithm for Suffix Stripping”, Program –
Automated Library and Information Systems, 1980.

[18] A. Hess and N. Kushmerick, “Automatically attaching
semantic metadata to Web services”, Proceedings of the 2nd
International Semantic Web Conference (ISWC 2003).

[19] M. Klein, “Combining and relating ontologies: an analysis of
problems and solutions”, in (IJCAI 2001).

[20] N. Noy and M. Musen, “PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment”, Proceedings
of the National Conference on Artificial Intelligence (AAAI
2000).

[21] J. Cardoso and A. Sheth, “Semantic e-Workflow
Composition”.

[22] A. Doan, J. Madhavan, P. Domingos, and A. Halevy,
“Learning to Map between Ontologies on the Semantic
Web”, Describes the GLUE system, (WWW 2002).

[23] G. Stumme and A. Mädche, “FCA-Merge: Bottom-up
merging of ontologies”, Seventh Intl. Conf. on Artificial
Intelligence (IJCAI ’01), pages 225–230, Seattle, WA, 2001.

[24] P. Mitra, G. Wiederhold, and M. Kersten, “A graph-oriented
model for articulation of ontology interdependencies”,
Proceedings Conference on Extending Database Technology
2000 (EDBT’2000), Konstanz, Germany, 2000.

[25] H. Do, S. Melnik, and E. Rahm, “Comparison of schema
matching evaluations”, Proceedings of the 2nd Int.
Workshop on Web Databases (German Informatics Society),
2002.

[26] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “On the
logical foundations of schema integration and evolution in
heterogeneous database systems”, Proceedings of DOOD’93,
pages 81-100, Phoenix, AZ, December 1993.

[27] I. Schmitt and C. Türker, “An incremental approach to
schema integration by refining extensional relationships”,
Proceedings of the Seventh International Conference on
Information and Knowledge Management, 1998.

[28] F. Hakimpour and A. Geppert, “Resolving semantic
heterogeneity in schema integration: An ontology based
approach”, Proceedings of International conference on
Formal Ontologies in Information Systems FOIS'01. ACM
Press, October 2001.

[29] J. Berlin, and A. Motro, “Autoplex, Automated Discovery of
Content for Virtual Databases”, CoopIS 2001, 108–122.

[30] A. H. Doan, P. Domingos, and A. Halevy, “Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach”, SIGMOD 2001.

[31] A. H. Doan, J. Madhavan, P. Domingos, and A. Halevy,
“Learning to Map between Ontologies on the Semantic
Web”, WWW 2002.

[32] Hong-Hai Do and E. Rahm, “COMA - A System for Flexible
Combination of Schema Matching Approaches”,

561

Proceedings of the 28th International Conference on Very
Large Databases (VLDB), 2002.

[33] J. Madhavan, P. Bernstein, and E. Rahm, “Generic Schema
Matching with Cupid”, Proceedings of the International
Conference on Very Large Databases (VLDB), 2001.

[34] M. Klein and A. Bernstein, “Searching for Services on the
Semantic Web using Process Ontologies”, The First
Semantic Web Working Symposium (SWWS-1), 2001,
Stanford, CA, USA.

9. APPENDIX A

Figure 4. Screenshot of the MWSAF tool

Figure 4 above gives a screenshot of the MWSAF tool. The user first loads the WSDL file (1) to be mapped. This WSDL file is compared
with all the ontologies from the ontology-store to find the most suitable domain ontology using the “findDomain” option from the “Tools”
menu. This option returns the match scores with each ontology (2). The best-matched ontology can then be selected for annotation.
Mappings for this ontology can be viewed and the user can accept or reject suggested mappings (3). The tool also allows viewing of
mappings with other ontologies, in case if the WSDL file contains concepts from other domains. There is also a facility to add extra
mappings manually. The WSDL file and ontology can be viewed in a tree format (1) and (5) respectively to facilitate manual mapping. (4)
shows accepted mappings, which are then written to the WSDL file as shown in Figure 5.

11

22

11

33

44

55
+<xsd:complexType Ont-Concept="weather:windDirection" name="Direction">
- <xsd:complexType name="Station">
- <xsd:sequence>

 <xsd:element Ont-Concept="geo:icao" maxOccurs="1" minOccurs="1" name="icao" nillable="true" type="xsd:string" />
 <xsd:element Ont-Concept="geo:wmo" maxOccurs="1" minOccurs="1" name="wmo" nillable="true" type="xsd:string" />
 <xsd:element Ont-Concept="geo:iata" maxOccurs="1" minOccurs="1" name="iata" nillable="true" type="xsd:string" />
 <xsd:element Ont-Concept="geo:elevation" maxOccurs="1" minOccurs="1" name="elevation" type="xsd:double" />
 <xsd:element Ont-Concept="geo:latitude" maxOccurs="1" minOccurs="1" name="latitude" type="xsd:double" />
 <xsd:element Ont-Concept="geo:longitude" maxOccurs="1" minOccurs="1" name="longitude" type="xsd:double" />

 </xsd:sequence>
 </xsd:complexType>

Figure 5. Part of Annotated WSDL file

562

