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AESTRACT 

Given a multirelational database scheme and a relational 
mapping f ?ransforming it,an important question is . 
whether the resulting scheme is equivalent to the 
original one. This question was addressed in the 
literature with respect to those relational schemes that 
satisfy the so called universal relation assumption; 
however. no study was ever concerned with multi- 
relational (data base) schemes that do not necessarily 
satisfy this assumption. 

We present two general definitions of lossless 
transformation of the database scheme based, on the 
so-called closed world and open world assumptions. 
While both definitions seem to be practically justified, 

the one based on the open world assumption is more 
“tractable“ .We are able to test losslessness defined in 
such a way for a wide class of relational expressions 
and dependencies. An algorithm for testing losslessness 
of a mappings (which are arbitrary relational expressions 
built up from projections, Cartesian products and 
restrictions) is presented in the paper. Moreover, given 
a lossless transformation, our algorithm enables us to 
explicitly construct an “inverted” mapping that restores 
the corresponding state of the original database. The 
application of the algorithm to schemes specified by 
differrent types of dependencies is described In 
particular the application of the algorithm for schemes 
specified by inclusion dependencies is presented.ln this 
case the aigorithm works for families of inclusion 
dependencies having finite chase property.This class of 
inclusion dependencies is characterized in the paper. 
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INTRODUCTION 

The problem of lossless transformations of a database 
schemes has been extensively studied in the literature 
(see for example EUII. This is not surprising since the 
problem is of great practical importance. For example, 
the whole database design process can be viewed as a 
process of consecutive transformations of an input 
database scheme. The losslessness of these 

transformations should always be maintained in order to 
guarantee that what we obtain as the result of the 

design process IS in fact a different form of the Same 

database. 

Most frequently the transformations under study were 
restricted to simple prqjections. The join operator was, 
in turn, used to restore the original database state from 

the new scheme. 

lntuitively,we say that f = cf ,,... fn> a sequence of 

relational expressions is a lossless transformation Of 

database scheme P if there exists some transformation 
g, such that p = g(f(p)) for any instance p of P. In other 
words, if there exists any transformation enabling US t0 

restore the original state p from <f ,Ip) . f,(p)>, then 

this transformation must be a join. 

This is a very convenient situation, since in order to test 

whether <f, . . . fh> is .lossless we do not have to 

examine all possible transformations and check whether 
they restore the original database state; it suffices to 
examine the corresponding join 

Unfortunately, this is no longer true when the database 
scheme P is built up from more than one relational 
scheme and does not necessarily satisfy the universal 
relation assumption. Given a transformation <f, . . . fh> . 

we have no “hints” about how the “inversion” restoring 
the original database state might look like (it need not 
even be a relational expression). 

253 



Indeed, suppose, for example, that P = <P,(A,B,C), 

P,(B,C,D), Ps(A,D,E)> where P,. P,. Pg are relational 

schemes defined over ABC, BCD, and ADE respectively 
and let 

f = <f,. f,, f,> where 

f, = 7rncc(P, 04 Fs) 

f2 = ‘ABE (P, w PJ 

fs - U,,D (P2 w P,) 

Then we do not have a definite candidate to restore the 
original state p of P from 

The 
look 

f (PI =<f , (PI 9 f a (PI * f s (PI ’ 

candidate for inversion mapping could potentially 

like 

g=<~ABclf ,(p) w f,(P) w f$pJ). 

Qo(f ,(p) w f ,lP) 04 f,(p)). 

~*B,(f,@)W f,(P)W f,(p))> 

but it could also look like 

. g = <n&f ,(p)l # n,,(f2(pi), 

r&f, (PII w n&f ,(Pll. 

n&f ,(p! pa f s(p))> 

We may find some other reasonable candidates if we 
do not restrict ourselves to PJ-expressions, we can 

find even more of them. 

It is clear that the intuitive definition of a lossless 
transformation, bansed on existence of some “inversion” 
mapping restoring the original state of the 
database, is not acceptable from the practical point of 
view. 

Indeed in order to prove that a given transformation f 
is lossless we must find an “inversion” g.This is only 
way of proving its existence. Apparently we need some 
other formalization which would meet our intuitions and 
the same time would make the property of being 
lossless effectively decidable by an algorithm. 

The existing literature lacks such a general 
approach,which would cover both single relational and 
multi-relational schemes. To our knowledge there is no 
study in the literature which concerns itself with 
lossless transformations of w-relational schemes, not, 
necessarily satisfying U.I.A (which are most frequent in 
practice).The existing research is restricted to 
decompositions of a single relational scheme,or schemes 
satisfying the U.I.A. 

In this paper we are going to formulate two definitions 
of lossless transformations based on two different 
logical interpretations of a relational database, namely 
so-called open world and closed world assumptions. 

Both definitions are somewhat natural but one based on 
the open world assumption is more “constructive”.We 
are able to test it efficiently. The algorithm for testing 
losslessness of a transformation which are well formed 
arbitrary relational expression built up from projections 

and joins ;S presented in the paper. This 
algorithm,given a state of the new database scheme 
obtained by the lossless transformation, enables us to 
restore the corresponding original state of the database 
scheme. Therefore,in +he ‘case of a lossless 
transformation, we can construct inversion mapping 
explicitly. 

1. BASIC NOTIONS 

1.1 Relations and Tables 

A relation r is a collection. of functions (tuples) from a 
set of attributes (XI to some domain (D). For notational 
smplicity we assume one common (infinite) domain. By 
the m of a relation r we mean its set of attributes . 
a(r). By a relation name we mean a symbol R with an 
associated type. We will say that relation r is the 
instance of relation name R if the type of r is equal to 
the type of Ft. We consider the usual relational 
operators: proiection,cartesian product, restriction,- 
and selection (denoted by r.+r), r s,e,&rl,rus,n$) 

respectively). For any subset of relational operators such 
that project (PLcartesian product (Cl, restriction (RI. 
selection ISI andunion (U) .by a relational & expression) 
we mean any well formed expression built up from 
relation names and the relational operators in PFor 
example ,a PCR-expression is built up using 
projection,cartesian product and restriction 

Further in the text we deal with “positional” version of 
relational algebra [Ul].defined ‘by reffering to the 
columns of relations by numbers, not by names of 
attributes. In this way we avoid operation of 
renaming,needed for example to define Cartesian 

product 

A database scheme P is the collection of relational 

names P , ,.., Pn together with a set of dependencies. The 

instance of the database scheme is a sequence of 

relations <r,,.., n r > and it is called a multirelation. The 

number n of relations in a multirelation will be called an 
the index of the multirelation.The expression f will be 
called monotonic iff for every relations lmultirelations) 

r,s rgs * f(r) Ef(sL 
A Qb& [IL11 is a relation with variables as well as 
constants allowed as entries. Let V be a countably 
infinite set of symbols called variables. Bya e of 
type X we mean any finite collection of tuples (i.e. 
functionsfrom X into D u V). 

By a valuation, we mean any mapping v:V+ D. A 
valuation can be extended over the set D (v(c)=c for all 
c in D) and over the set of tuplesand tables in the 
standard, way.By rep (T) we will mean the function 
assigning to each table T the following set of relations: 

{s : there exists v such that v(T)csj 
By a multitable we shall mean a sequence of tables T = 

CT,... T,>. Tables and multitables are Just relations and 
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multirelations with null values. The variables play the 

role of indexed null values. Therefore, it is possible to 
represent the fact that the same two values, although 

unknown, are the same. By a minimal multitable T’ we 

will understand the multitable CT, . . . Tn> such that Tj = 

# for all jti and Ti = ft], where t is the tuple built up 
only from variables. There are n different (up to 
renaming the variables) minimal multitables of an index 
n. 

Dependencies 

We will deal here with implicational dependencies 
defined as T/t, where T is a table and t is a tuple such 
that all the variables that occur in t also occur in T; 
furthermore, no symbol occurs in two different columns 
or T/(e,= e,) ,where e, and e2 are two symbols 

suchthat at least one of them is a variable occurring in 
T. 

Inclusion dependencies [CFP] will also play an important 
role in this paper. By a family of dependencies with 
finite chase we will mean any family c of implicational 
or inclusion dependencies such that chase$T) is finite 

for any finite T. By chase$T) we understand here the 

result,possibly infinite, of the well known process, with 
rules corresponding to implicational and inclusion 
dependencies,the latter ones requiring generation of 
additional tuples with new variables. 

The Universal Instance Assumption 

We will say that the instance cr,,-,rn> of the scheme 

R=4 ,....,Rn> satisfies Universal Instance Assumption(UIA) 
iff there exist (universal1 relation r over the set of all. 
attributes occuring in the scheme such that each of 
relations r; is a projection of r. 

The Open World and the Closed World Assumptions 

Both Closed World (CWA) and Open World(O.WAl 
assumptions are two different ways of looking at a 
relational instance from a logical point of view. Under 

the CWA we treat the tuples not belonging to a relation 
r as expressing negative relationship, while under the 
OWA we admit the lack of knowledge about the “real” 
status of those tuples. In consequence, under the OWA 
we do not really know which of the relations, among 
those containing database state s, corresponds to the 

real one. This gives rise to the family of candidate 
relations denoted by rep(s) and defined as rep(s) = {r: 

r>sj . 

Inversions of Relational Expressions 

Let T be a (multi) table and let f be a relational 
expression such that the type of the result of (the set 

of altributesl is equal to the type of T.Let f-‘(rep(T)) 
denote the set of relations (multirelations) s such that 
f(sPrep(R. In [IL l] it was proved thatif f is a relational 

expression built up from projections, Cartesian products 

and restrictions. then there exists a table (multitable) 

such that rep (U) = f-‘(rep(T)). In CILI the algorithm 
constructing thistable was given. Let us denote the 
table resulting from this algorithmby f-h. If f = cf,.,. 

fn> and T = <T, . . . Tn> is the multitable with the type 

corresponding to the type of f, then 

f, -‘(rep(T))=nnl=,fI-‘(rep(T,)). 

and again by [ILll.there existslmultitable) such that 

rep(U) = f-’ (rep(T)) . 

2. Local Properties 

We introduce here the notion of locality (or k-locality) 

since it will be useful in further considerations. 

Definition 

Let Q = tftr(R) be some universal property, where R 
ranges over relations or multirelations. We say that Q 

‘is k-local iff 

V,F,(R)-‘VR(IIRII~k -F(R)), 

where 1 IR 1 1 denotes the number of tuples in R. The 
k-locality reduces the infinitness of the problem to the 
finite, possibly tractable dimension and is certainly a 
desirable property. An example of a k-local property 
is the equivalence of two relational expressions not 
involving the difference operator. As shown in [IL33 
for any two expressions f,g not involving the 
difference 

V,f (R) -g (R) --VR: 1 1 R 1 1 srf (R) -g (R) 

(k depends on the complexity of f and g). 

It turns out that locality of many properties depends 
strictly on the general logical assumptions which are 
made about the database, more specifically, on whether 

OWA or the CWA is made. Generally speaking, the 
DWA is computationally more tractable than the CWA; 
for example, many properties become k-local under 
OWA 

The notion, which in many situations under the OWA 
implies k-locality, is the notion of distributivness defined 
as follows: 

Definition 

A set 8 of relations (multirelations) is distributive (k- 
distributivejif there exists k)O such that for any Se 4 

SW {Qe 4 :QCS A 1 IQ1 Ilk) 

In the case of multirelations S, the cardinality II II 
is understood component-wise; i.e., if S=<S ,,...Sn> then 

k=<k,,...k,> and I IS I 1 smaller than k means I IS,1 Iski 

for iefl...n}. k-distributivenesss frequently implies k- 
locality under the OWA It will be the case in our 
problem. 

3. Lossless transformations 
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Generally speaking. a transformation (function) f is 

lossless iff it is one to one, or, in other words, if 
f-‘(f(x))={x] for any x belonging to the domain of f. ‘In 
this paper, we will adopt this definition, thus restr,cting 
ourselves to relational mappings f or sequences of 
them. The possibility of different definitions of 
losslessness for a given mapping f will be related to 
the differen: notions of database state, i.e.. different 
structures of the domain of the function f. 

The two different assumptions (CWA and OWAJ lead to 
essentially different notions of a database state. While 
under the CWA the state of the database is simply a 
relation, under the OWA it is the s d relations 
Imultirelations). In consequence, under the CWA the 
mapping f is the mapping between the relations, while 
under the OWA it is the mapping between sets of them, 

Let 4 be a set of relational (multirelationali instances of 

some databaseschema This set is usually defined by 
some finite set of dependencies. A transformation f is 
a lossless transformation of under the CWA iff: (1) For 
every s in the set of relations in that are mapped 
onto f(s) under f is equal to {s). Formally, (1) could be 
restated as 

(1’) Vseg f-‘(f (s))n 4 =is} 

We can repeat the same reasoning under the OWA 
obtaining the following definition of the lossless 
transformation under the OWA. (2) For every s in , the 
set of relations in that are mapped onto rep(f(s)) is 
equal to rep(s) Formally. 

(2’) VSE4 f-‘(repIf (S)))n4= 

rep 6) n 4 
In other words, under the OWA. we would again like to 
be able to restore the original state from the new 
schema. The only difference lies in the definition of 
this state. 

In both definitions we do not specify how the mapping 
f and its inversion should look like. In this sense, our 
definitions are general. Further in the paper f will be 
understood as the sequence of relational expressions 
defining some new multirelational schema 

Again, both definitions can be justified. The definition 

based on the OWA is, howe*ver, (as a!l the definitions 
based on the OWAi more constructive as ‘we will show 
further in the paper. Ii is easy to prove that the OWA 
losslessness implies the CWA losslessness as the 
following result shows. 

&cl 1 For any monotone f,if f is lossless in the OWA 
sense then it is lossless in the C’WA sense. Poor 

f - ‘(rep(f(sMn 4 =repisln 4 - 
y, (f(S) c f(q) - s c q) 

Now suppose that f is lossless in the OWA sense and 
that 

f bl = f (9) 9 then f (q)Df (s) and f (s)D f (q) , 

But according to (1) 

f (s) >f (q) -s=q 
and f (s)Ef (q) =%_Cq, 
hence s = q and 
f is lossless in the CWA sense. 

In general, the converse is not true as can be easily 
shown.lndeed,for any f take 4 ={sl,sJ such that 

f(s,)l;f(s.J, s,$s, nor s$s,: then f is CWA lossless but 

not OWA lossless. One the other hand, we could not 
find (any “reasonable” set of database instances, i.e., 
those corresponding to some standard dependencies) an 
example of any transformations f that would be CWA 
lossless but not OWA lossless. 

Our conjecture is that the OWA losslessness closely 
approximates the CWA losslessness 

The, result of Fact 1 is important, since even if 
somebody does not accept the OWA interpretation, the 
positive result of testing OWA losslessness, implies 
CWA lossless. We are now going to characterize the 
OWA losslessness more closely, using the notion of k- 

distributivity. 

Theorem_ _! 

Let d be a k-distributive set of database instances and 
let f=<f,,...fn> be monotonic then f is OWA lossless on 

8 iff it is lossless for any QE 8 such that 1 IQ 1 ISk. In 
other words, the losslessness of mapping is the k-local 
property for kydistributive schemes. 

Proof 

It suffices to prove that 

(3) t-Pi=, f ,- ‘(rep(f ,(Q)))n 8 =rep(Q)n d 

for ail @with 1 IQ1 I<k implies 

nni= ,fi-‘(rep(f/SM 4 =rep(S)n d for all Se4 

First of all let us notice that for any Se d 

sen,=, “f/rep!f,(SDln d 

therefore 

rep(S)n$=nnl=, fi- ‘(rep(f,(Sl)ln’j 

On the other hand 
U Ocsf i(QEf /S) 

(by monotonicity of fi) and 

(4) nni= ,fi- ‘(rep(fi(Sl)lnd 

c n” ,= , f,- ‘(rep(ua,,f,(QH)n~ 

since 
rep(uacsfl(QPrep(fi(S)I 

rep(uacsfi(QD=no,srep(fi(Q)I 

and finally (4) can be transformed into the form 

(5) n acsnni=rfi-‘(rep(fi(Qljln & 

but from (1) 

nni= ,fi-‘(rep(f,(Q)))n =rep(Q)n d 

therefore, (6) can be transformed further into 
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nacsrep(Q)n =rep(S)n d 

s=u ocSQ by the decomposability of /5 

mendencies and losslessness of transformations ~---- 

Lemma:For any set c of dependencies with finite chase 
there is a k such that Sal(C) is k-distributive 

Proof: 

Let Minimal(C) = {chaseC(Ti) i= 1 . ..n). where T”) are 

minimal multitables for our database schema. We have 
then the following decomposition property 

VSeSa,~C~S=u (v(Ul:UeMinimal(Clhv(U)~S~ 

The set Minimal Cc I “parametrizes” the set of all minimal 
multirelations in Sat&‘) i.e. multirelations of the form v(W) 

where WeMinimal and v is a certain valuation of 
variables in W. We are ready now to present our 
algorihm for testing losslessness. 

ALGORITHM 

Let f=<f ,,....f,> be the sequence of PCR transformations 

Let c be the set of dependencies wi?h a finite chase. 
In order to test whether f=<f ,,....f”> is lossless do the 

follorving: 

11) Generate the set -of multitables Minimal(C) 

:2) For each of the multitables W e Minimal(C). compute 
U=f-‘(f(W)!treating variables in W as pairwise different 
constants. (3) Test whether chaseCkJ) is equivalent (in 

the sense of table or tableaux equivalence) to multitable 

chaseC(W). If it is the case for every WeMinimal( 
then f=<f,,..,f,> is losslessif not, then f is lossy. 

Restorinq the original database state 

An important fact is that, given a losless transformation, 
our technique enables us to restore the original state of 
the database from the new state of the database. It 
turns out that our algorithm explicitely constructs the 
“inversion” . 

Given a state S of the new scheme, the corresponding 
state of the original database scheme is computed as 

Q=Constant (chaseCf-‘(rep(S))) 

where Constant (T) is the set of all 
tuples of multitable T without variables 
(i .e., only constants occurring in them). 

Sketch of the Proof of Correctness of the Algorithm 

We will sketch here the proof of correctness, which 
will be presented in the full version of the paper. By 
Theorem 1 we can restrict our attention to test (2’) only 
for multirelations of the form v(W) for some valuation v 
and some minimal multitable from the set Minimal cc). 

Therefore, we have to prove that 

f - ‘(replf(vlW)l)lnSat~)=rep(v(W))nSat(C) 
for every W e Minimal(C). As we know 

f- ‘(reptflvtW))))=rep(U! for some multitable U. Finally, 
rep(U) nSat (C) =rep (v (W) ) nSat (1) 
iff rep(chaseC(U))=rep(chaseCv(w)) . 

What remains to be shown here is how to go from 
particular valuation v to ark valuation v. This is simple, 
however, and corresponds actually to what the algorithm 
1 is doing. We treat the variables occurring in W as 

parameters - generalized constants. compute f-’ and 
apply chase treating those paramters as if they were 
pairwise different constants. The proof of the 
correctness of this step is somewhat laborous and will 
be presented in the full version of the paper. 

4. Applications of the algorithm: Multirelational database 
schemes specified by inclusion @rlcJ functional 

dependencies 

4.1 Inclusion dependencies 

inclusion dependencies (IDS) play the key role in our 
considerations about lossless transformations of 
multirealtional schemes. This is so simply because 
without inclusion dependencies only trivial 

transformations are lossless. 

We will characterize here the families of IDS having 
finite chase property and, in consequence, k- 
distributivity property. This class contains Sciore’s 

noncircular IDS and, referring to his argumentation, is a 
“reasonable” one. 

Let r[X](;s[Y] be an inclusion dependency where both 
X and Y are collections of column numbers. We will 
say that two relations R and S satisfy inclusion 

dependency r [X]Es[Y] iff 

where, y and ? are orderings of the elements of X and 

Y in the increasing order. For 

example,r[ 1,3,6]-Cs[2.9,7] will be satisfied by R and S 

iff 

Notice that the order of columns is now .important in 

making the projection. 
Notice also that any inclusion dependency ID determines 
a one to one correspondence E between elements of 

-X and Y.That is ,&j iff the ordinal of j in Y is the 
same as ordinal of i in X. For any subset x’ of X B(X) 
= IID(il:ieX) Following the idea from [SC] with each 
family D of inclusion dependencies we may associate a 
graph Go The nodes of this graph wili correspond to 

the relational schemes and the edges (there could be 
many between two nodes) to the differeht inclusion 
dependencies. Each edge is labelled by the associated 
inclusion dependency.We will be interested here in those 
families of inclusion dependencies which have finite 
chase propeity.This will enable us to handle the problem 
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of testing loselessnsess of transformations efficiently. 

What is then the class of families of IDS having the 
finite chase property? Before giving the precise answer 
we will introduce the special class of families o 
inclusicn dependencies. 

Definition 
A cycle r%,~s2~. . .sn*r 

where 

IDo=rCX,los,CY,] 

IDn=snCXnr,lCrCYn+,l 

is called a proper cycle iff 

(i) Ynff, 

&“_, (m”+ . . .mo(Y,,,p,+, 
The family which is either acyclic or contains only 
proper cycles is called proper circular. 

The proper circular families include .noncircular families 
of Sciore 

Further in 

[SC]]. They include circular families such as: 

~rCll~sC11 :s[ll~r[l] 1 cr 
ir[l,21 C sC1,21; 
sE1.315 wc1.31 
wCi1 C rIl1 I 

addition to Sciore’s noncircular families of lD 
we will also allow proper circular families of the type 
described above.The importance of this families is 
showed in the following theorem 

Theorem 2 

The family of inclusion dependencies has a finite chase 
iff it is proper circular. 

Let us start the chase procedure by assuming that R 
contains one parameterized tuple x=<x ,...x,> where 

x , ,...x are variables. Inclusion dependencies associated 
with different edges of the cycle 

r--*s,.spsst...sn3r 

will successvely introduce (via chase rules) new 
parameterired tuples to the relations s,,.,.s,.lf the 

resulting table after applying rules associated with edge 

s”-?s” satisfies all inclusion dependencies then the 

chase will terminate, if not we will have to use inclusion 
dependencies associated with the edge sn-r introducing 

a new tuple into r, and in consequence entering the 
infinite loop. Therefore we have to examine the 

conditions under which we do not enter the infinite 

loop which are also, the conditions for finite chase. 

It is obvious that if the family of inclusion dependencies 
is not circular, then it must have a finite chase. Assume 
then that the family contains a proper Cycle. 

Then, however. we will not have to apply the rule 
associated with inclusion dependency sn [X&r [Y,!, since 

after application of rules associated with 

r-+s ,,.... sn- ,+s, the resulting multitable will satisfy all 

inclusion dependencies 
ID,...IDn j ( sn[x”l,~ r w 

wilt be satisfied since Y&X, Assume now that our 

conditions are not metThen there exists a non proper 
cycle 

r+s,-,s,...sg+r 

That is either 

‘I?$ ‘i or Y,$x, but 

for some k such that k=2,..,n- 1 

Ek (Ek-: * * - ~ocq,’ Q xk+2 

If Y,4X, than obviously after application of the rule of 

chasi associated with ID “-, the resulting multitable will 

not satisfy ID” . so we have to apply the rule 

associated with ID” introducing a new tuple into R and 

entering in that way the infinite loop. 

not 
If YnsX, but one of the other conditions iswatisfied 

then after application of the chase rule corresponding 
to ID, we will have the situation 

‘,+,c~,(~~-, (. . . ITo (Y&l I$r [Y,!, 

Since chase (by inclusion dependencies) always 

introduces new symbols,we will also have 

and again it will be necessary to apply rule ID” entering 

the infinte loop again. By N(r,,r,) let us denote the 

number of different pathes from ri to rj in the graph 

Go for the family of inclusion dependencies D and 
let ko=<k,...kn> 

where n is then number of relational schemes in our 
database scheme,and 

kj=Max{N(ri,rj):i=l..n) 

By the neiqhbor of a node r, we will mean any node r, 

such that there is arc between r, and r, in the graph Go. 

Theorem 3 

The family D of inclusion dependencies is decomposable 
iff it is proper circular. 

Since a proper circular family has a finite chase, the set 
Minimal 0) is defined and each S Sat(D) can be 
represented as 

S=U{v(W) :WeMinimal (D)and v(W)rS) 
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The cardinal&y of structured family D of IDS Sat(D) is l-decomposable, 

that is, each S Sat(D) can be represented as 
S=uS’ such that 5’ .$ <l....i> 
and S’eSat (D) . 

W’~chaseC(T’)eMinimal (D) 

is equal to k=!k,‘,....kni) 

where kj’=N(ri,rj), therefore, the cardinality of any of 

v(W) in the decomposition of S is smaller than 
ko=<k,,...,kh> 

where k,=Max 1 N(ri.rj):i= l..nI. The proper circular 

families of inclusion dependencies have, therefore, the 
properties required by our algorithm. 

Collorary 1 

We can test the losslessness of the transformations 

f=cf ,,...fh> of the database scheme specified by the 
family of proper circular inclusion dependencies using 

Algorithm 1. Since each family of functional 
dependencies is 1 -distributive (i.e. each relation 
satisfying some family of functional dependencies can 
be viewed as the union of one tuple relations which 
trivially satisfy , we can also apply our algorithms to 
database scheme, specified by the class of proper 
circular inclusion dependencies and functional 
dependencies. 

Collorary 2 

We can test, using Algorithm 1, the losslessness of the 
transformation f=cf ,,...f,> of any database scheme, 

specified by the family of functional and proper circular 
inclusion dependencies. We may also test schemes 
specified by arbitrary implicational and proper circular 
inclusion dependencies. However, in an arbitrary case 
the index f’k”) of locality may be quite large depending 

on the degree of interaction between arbitrary 
implicational dependencies. We do not pursue this 
matter further since the general case does not seem to 
really occur in practice. Usually, each’relation scheme 
of the database scheme is enforced to satisfy at most 

one total tuple generating dependency (join dependency). 
This situation could be handled,for example, by 
projecting the relation according to the join dependency, 
adding some inclusion dependencies and treating the 
resulting scheme as the original one with the join 
dependency replaced by the ;nclusion ones. There is an 

interesting subclass of inclusion dependencies which 
enables us to deal with the whole class of implicational 
dependencies still maintaining e~cn 1 -decomposability 
(i.e. k=l) and, in consequence, l-locality of the 
equivalence problem. 

Definition 

By a tree structured family of IDS we mean any proper 
circular family such that for any two relational schemes 
r and s the number of different pathes in the graph Go 

from r to s, IN(r,s))=l. As the immediate conclusion 
from Theorem 3 we obtain : Corollary 3 For any tree 

Finally. since any family of implicational dependencies is 
1 -distributive we obtain. 

Collorary 2 

For any family c consisting of the set of arbitrary 
implicational dependencies and tree structured class of 
inclusion dependencies, the set Sata) is l- 
decomposable. In consequence, we can apply our 
algorithm to the database schemes specified by c . In 
this case the algorithm will be especially simple, since in 
all multitables from the set Minimal a’, each table 
contains at most one tuple. Tree structured families of 
inclusion dependencies correspond directly to tree 
structured ISA hierarchies and therefore are practically 
important subfamilies of IDS. 

CONCLUSIONS 

In this paper, we have presented a formal definition of 
a lossless transformations of a database under the 
closed and the open world assumptions, using the 
notions of k-locality and k-distributivity. We proposed 
an algorithm for testing whether a transformation,which 
is a vector of arbitrary relational expressions built up 
from projection, Cartesian product and restriction, is 

lossless. The algorithm can be applied to database 

schemes specified by various types ot dependencies 
including implicational and inclusion dependencies. and 

not necessarily satisfying the Universal Instance 

Assumption. Although we cannot deal with arbitrary 

families of ID’s we can constructively deal with two 
important subfamilies: the so called proper circular IDS, 
which are slightly more general than Sciore’s noncircular 
IDS, and tree structured IDS. Proper circularfamilies of 
inclusion dependencies are those which have finite chase 
inclusion dependencies; they play the crucial role in 
ourconsiderations. In the case where a given 

transformation turns out to be lossless our algorithm 
explicitly constructs the inversion mapping restormg the 
state of the original database scheme from any given 
state of the new transformed database scheme. There 
are some other related problems which, although not 
discussed here. are important from the practical point 
of view. They are: 

a) Given a relational transformation f of a database 
scheme, what other information (given in the form of 
transformation g) should be added in order to make 
transformation <f,g7 lossless? Transformation g could 

be treated as the complement of f (see CBS 11). This 
technique could be directly used for testing whether the 
transformation g is a complement of f (we must test 
whether <f,g> is lossless). The other, more difficult 

problem is the generation of complements of the 
transformation f. This could also be .done by a .similar 
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technique, and will be treated elsewhere. 

b) For the two relational transformations f and g, is the 
independence of f and g in the sense of CBS21 a k- 
local property under the open world assumption. 
Between all invariant transformations of a given database 
scheme, those whose “components” are independent are 
of real practical interest; therefore, this problem 
deserves attention. We believe that our technique is 

applicable in this case and similar algorithms for testing 
independence could be created. 
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