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general approach, issues such as what special XML match-
ing rules should be provided to the rule base and assignment
of priority for each rule would �rst need to be solved to put
the approach in the XML context.

The machine-learning approach taken in [6] attempts to
train a learner by a set of user-provided mappings from a
data source to the global schema and then discovers the
characteristic instance patterns. Given a new data source,
one-to-one mappings between the leaf nodes of two schema
trees can be established by trying out those learned matches.
However it does not match source-schema elements with a
hierarchical structure, i.e., the inner nodes in the schema
tree, as needed for XML. Furthermore, in cases where ex-
ample data sets of both source and target XML documents
are available, such an approach could not be applied.

Tree Matching. Much work has been done in the area of
tree matching. [14] and [22] address the change detection
problem for ordered and unordered trees respectively. How-
ever, the tree matching problem treats the label of each node
as a second class citizen. For example, the cost of relabeling
is assumed to be cheaper than that of deleting a node with
the old label and inserting a node with the new label. How-
ever if we model an XML schema as a tree, some labels of
the nodes can be names of the XML tags which carry seman-
tic meaning. A relabel from one node to another semantic
unrelated node will cause an undesirable result. Thus the
assumption is invalid for the XML domain. We overcome
this limitation in our work.

LaDi� [5] adapts a simple cost model in which insert, delete
and move are all unit cost operations, i.e., cost is 1. We
now re�ne the cost model to take XML characteristics into
account. LaDi� also assumes that each node of the input
trees has a special label that describes its semantics (seman-
tic tag). For example, a tree representing a document may
have tags \paragraph", \section", etc. And for each leaf
node in the source tree, there is at most one leaf node in
the target tree that is \close" to it (unique close partner).
These assumptions facilitate the matching. MH-Di� [4] al-
lows 
exible cost models and drops the assumptions in [5]
but then takes quadratic time in the size of the input.

There are a number of di�erences between the tree match-
ing problem studied in [5, 4] and the speci�c problem of
matching trees that model XML schemas. First, some of
their edit operations such as copy and glue in [4] are not
meaningful for an XML schema. Instead we need XML-
schema-speci�c edit operations. Second, the assumption of
unique close partner in [5] does not necessarily hold true.
Meanwhile the assumption of semantic label holds for some
of the nodes in the XML model. That is, some of the nodes
do not have tags describing their semantics (e.g., constraint
nodes which will be introduced in Section 2) while others
do have them (e.g., tag nodes). Hence it is not possible to
only use the assumptions to direct the mapping. Neither is
it suitable to completely discard the assumption as [4] has
done which will result in a high time complexity.

XML Document Restructuring. [7] studies how to change
an XML document in terms of both schema and data. It pro-
pose a set of DTD change primitives that can be applied to

an old DTD to derive a new DTD and corresponding data
change will be made implicitly as well. These primitives,
however, do not cover all the XML schema mappings that
are most likely to happen.

1.3 The Xtra Approach
Since DTDs are currently the dominant industry standard,
we address the problem of how to transform a document
conforming to a source DTD so that it will conform to a
target DTD. Our approach could easily be adapted to XML
Schema [18]. Given a source and a target DTD, we �rst
model each DTD as a tree. This allows us to express the
problem as how to transform one DTD tree into another. To
this end, we have de�ned a set of DTD transformation oper-
ations that establish the semantic relationships between two
trees. We also de�ne a cost model for choosing a sequence of
transformation operations among multiple alternatives. We
have developed an algorithm to discover a sequence of oper-
ations (i.e., transformation script) that transforms a source
DTD tree into a target DTD tree. The discovery process is
based on provided auxiliary information (e.g., synonym dic-
tionary, domain ontology, etc.) and a cost model we de�ne
for choosing a transformation script among multiple alter-
natives. Lastly, we use the resulting transformation script to
generate a eXtensible Stylesheet Language Transformations
(XSLT) script [19]. The XSLT script can then be applied to
source XML documents to transform them into XML doc-
uments conforming to the target DTD. Figure 1 shows the
architecture of our system.
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Target DTD
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Figure 1: Xtra System Architecture

The primary contributions of our work include:

1. We propose a set of DTD transformation operations
that capture common discrepancies between alterna-
tive DTD design behaviors for modeling real-world
data.

2. We de�ne a cost model (based on the concept of data
capacity) for measuring the quality of DTD transfor-
mations.

3. We have implemented an XML TRAnslation proto-
type system (Xtra)1, and run experiments on both real
and synthetic XML document to verify the feasibility
of our approach.

1Xtra has been demonstrated at ACM SIGMOD 2001.
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2. DTD DATA MODEL
Document Type De�nition (DTD) [17] describes the struc-
ture of XML documents as a list of element type decla-
rations. Elements can in turn have content particles, at-
tributes or be empty. The structure of elements is de�ned
via a content-model built out of operators applied to its
content particles. Content particles can be grouped as se-
quences (e.g., a,b) or as choices (e.g., ajb) with both a and b
being content particles again. For every content particle, the
content-model can specify its occurrence in its parent con-
tent particle using regular expression operators (i.e., ?; �;+).
Attributes can be of various types such as ID, CDATA, etc.
They can be optional (#IMPLIED) or mandatory (#RE-
QUIRED). Optionally, attributes can have a default or a
constant value (#FIXED). We model an element type dec-
laration as a tree, denoted as T = (N, p, l), where N is the
set of nodes, p is the parent function representing the parent
relationship between two nodes, and l is the labeling func-
tion representing the properties of a node. We categorize a
node n 2 N based on its label l(n).

� Tag node:

{ Element node: Each element node n is associ-
ated with an element type T . l(n) is a singleton in
the format of [Name] where Name is T 's name.

{ Attribute node: Each attribute node n is asso-
ciated with an attribute type T . l(n) is quadruple
in the format of [Name, Type, Def , V al] where
Name is T 's name, Type is T 's data type (e.g.,
CDATA, etc.), Def is T 's default property (e.g.,
#REQUIRED, #IMPLIED, etc.), and V al is T 's
default or �xed value if any.

� Constraint node:

{ List node: Each list node n indicates how its
children are composed, that is, by sequence (i.e.,
l(n) = [\,"]) or by choice (i.e., l(n) = [\j"]).

{ Quanti�er node: It represents whether its chil-
dren occur in its parent's content model one or
more (i.e., l(q) = [\+"], called plus quanti�er
node), zero or more (i.e., l(q) = [\*"], called star
quanti�er node), or zero or one times (i.e., l(q) =
[\?"], called qmark quanti�er node).

A tree rooted at a node of element type T is called T 's type
declaration tree. We assume each DTD has a unique root
element type whose type declaration tree is then the DTD
tree. For example, Figure 2 shows two sample DTDs of
web-service purchase orders. These two DTDs will be used
as the running example through the paper. The DTDs are
modeled as DTD trees in Figures 3 and 4. For simplicity,
we mark each node with its name rather than a complete
label. In the following, we represent each node by its name
n with a subscript i indicating the number of the DTD it
is within (i.e., 1 or 2). The format is then <n>i

2. Since
each element type declaration is composed of a list of con-
tent particles enclosed in a parenthes (optionally followed
by a quanti�er), we do not explicitly model the outermost
parenthesis construct as a sequence list node in the DTD
trees. For example, <name>2 has two children <first>2

and <last>2 rather than a sequence list node.

2If there is duplicate name, another subscript specifying
which one it is can be added, i.e., <nj>i

<!ELEMENT company (address, cname, personnel)>
<!ATTLIST company license CDATA #IMPLIED>
<!ELEMENT address (street, city, state, zip)>
<!ELEMENT cname (#PCDATA)>
<!ELEMENT personnel (person)+>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT person (name, email?,url?, fax+)>
<!ELEMENT name (family|given|middle?)*>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT middle (#PCDATA)>

(a)

<!ELEMENT company (cname,(street, city, state, postal),
personnel,license?)>

<!ELEMENT cname (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT postal (#PCDATA)>
<!ELEMENT personnel (person)+>
<!ELEMENT license (#PCDATA)>
<!ELEMENT person (name, email+, url?, fax, fax?, phonenum)>
<!ELEMENT name (first, last)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT phonenum (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>

(b)

Figure 2: Example DTDs of Web Service A and B's

Purchase Orders

3. TRANSFORMATION OPERATIONS

3.1 Taxonomy of Transformation Operations
We identify two primary causes of discrepancies between the
DTD components modeling the same concepts: First, the
properties of the concepts may di�er. For example, phone
number is required in contact information in DTD 2 while
it is not required in DTD 1. Second, due to the relatively
free-form nature of XML and lack of a standard for DTD
design, a given concept can be modeled in a variety of ways.
For example, an atomic property can be represented as ei-
ther a #PCDATA sub-element or an attribute. We have
studied the common DTD design patterns and correspond-
ingly proposed a set of transformation operations, as listed
below3.

1. add(T, n): Add a subtree T under node n, i.e., add a
new content particle to element n's content model.

2. insert(n, p, C): Insert a new node n under node p with
n a quanti�er node or a sequence list node and move a
subset of p's children C to become n's children. If n is a
quanti�er node, the operation changes the occurrence
property of the children C in p's content model from
\exactly once" to correspond to n. If n is a sequence
list node, it groups the nodes C.

n cannot be an attribute node since an attribute node
would not have any children. And we do not allow n to
be an element node because it may cause undesirable
matches. See Example 1.

3We use \child" to refer to direct child versus \descendants".
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Figure 4: DTD 2's DTD Tree

3. delete(T): Delete subtree T , i.e., delete a content par-
ticle T from a content model. This is the reverse op-
eration of add.

4. remove(n): Remove node n with n a quanti�er or a
sequence list node. All n's children now become p(n)'s
children. This is the reverse operation of insert.

5. relabel(n, l, l'): Change node n's original label l to l0.

� relabel within the same type (the operation does
not change the node's type):

(a) Renaming between two element nodes, two
attribute nodes or two quanti�er nodes but not
between a sequence list node and a choice list
node; (b) Conversion between an attribute's de-
fault type #REQUIRED and #IMPLIED.

� relabel across di�erent types (the operation changes
the node's type):

(a) Conversion between a sequence list node and
an element node which has children. This cor-
responds to using a group instead of an element
type or encapsulating the group into a new ele-
ment type. See Example 2. (b) Conversion be-
tween an attribute node with type CDATA, de-
fault type #REQUIRED, no default or �xed value

and a #PCDATA element node; (c) Conversion
between an attribute node of default property
#IMPLIED and a #PCDATA element node with
a qmark quanti�er parent node. (b) and (c) are
allowed in that people can model a one-to-one re-
lationship property as either an attribute or an
subelement. See Example 3.

6. unfold(T; <T1; T2; :::; Ti>): Replace subtree T with a
sequence of subtrees T1; T2; :::; Ti. T must root at a
repeatable quanti�er node. T1, T2, ..., and Ti satisfy
that: (1) they are adjacent siblings; and (2) they or
their subtrees without a qmark quanti�er root node
are isomorphic. unfold recasts a repeatable content
particle as a sequence of non-repeatable content parti-
cles. See Example 5.

7. fold(<T1; T2; :::; Ti>; T ): This is the reverse operation
of unfold.

8. split(m1;<n1; n2>): A sequence list node m1 is split
into a star quanti�er node n1 and a choice list node n2.
Because there is no DTD operator to create unordered
sequences, tuples <a; b> tend to be expressed using
the construct (ajb)� rather than (a; b)j(b; a). This op-
eration corresponds to converting an ordered sequence
to an unordered one. See Example 5.

9. merge(<n1; n2>;m1): n1 and n2 are merged into a
single node m1 with n1 a star quanti�er node, n2 a
choice list node and m1 a sequence list node. This is
the reverse operation of split.

Example 1. For the DTDs shown as below, it is inap-
propriate to derive <name>2 from <name>1 by inserting a
tag node CEO between company and name since <name>2

indicates the company's CEO's name while <name>1 in-
dicates the company's name. We would rather �rst delete
name and then insert a subtree rooted at CEO to derive
DTD 2.

<!ELEMENT company (name,address,webpage)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT webpage (#PCDATA)>

DTD 1
<!ELEMENT company (CEO,webpage)>
<!ELEMENT CEO (name, address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT webpage (#PCDATA)>

DTD 2

Example 2. <!ELEMENT company (street, city, state,
zip)> can be transformed from <!ELEMENT company

(address)><!ELEMENT address (street, city, state, zip)>

Example 3. <!ELEMENT company (license?)>
<!ELEMENT license (PCDATA)> can be transformed
from <!ELEMENT company (EMPTY )> <!ATTLIST
company license CDATA #IMPLIED> by a relabel op-
eration.

Example 4. <!ELEMENT person (fax+)> can be un-
folded to <!ELEMENT person (fax, fax) or
<!ELEMENT person (fax, fax?)>.

Example 5. <!ELEMENT name (first, last)> is split
into <!ELEMENT name (firstjlast)�>.
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3.2 Constraints on the Transformation
While our atomic operations re
ect intuitive transforma-
tions, some combinations of operations may result in non-
intuitive transformations. For example, for the DTDs shown
in Example 1 in Section 3.1, we can derive DTD 2 from DTD
1 by �rst inserting a sequence list node above name and
address, and then relabeling the sequence list node to tag
node CEO. This is equivalent to the forbidden operation of
inserting a tag node CEO above name and address.

Common design patterns show that an element type dec-
laration will not be deeply nested. A survey of real world
DTDs [13] analyzes 65 DTDs available at [20]. The depth of
content models is de�ned as: 0 for EMPTY ; 1 for a single
element, a sequence or a choice; ...; n for an alternation of
sequences and choices of depth n. For example, (a, (bj(c; d)))
has depth 3. It turns out that the maximum depth of an
element type's content type is almost around 2 and 3 with
the average depth being even lower. This is because com-
plex regular expressions are not advisable since it is diÆcult
to understand. Also, usually the complex expression can
be rewritten by some simpler ones. According to this de-
sign pattern, if a node n1 has a matching partner n2, it is
highly likely that n1 and n2 have a similar depth in the sub-
trees rooted at their nearest matching ancestors in the DTD
trees. This gives a hint that if the DTDs are designed in a
common manner, the search space can be pruned to gain
time eÆciency. Therefore we discover only change scripts
that do not violate the constraint that a node can be only
operated on by a non-relabel operation optionally followed or
following a relabel operation4.

4. COST MODEL OF OPERATIONS
These operations can be combined into a variety of equiv-
alent transformation scripts. In order to facilitate selec-
tion among alternative transformations, we propose a cost
model that evaluates the cost of transformation operations
in terms of their impact on the data capacity of the docu-
ment schemas. Relative information capacity [8] measures
the semantic connection between database schemas. That
is, two schemas are considered equivalent if and only if there
is a one-to-one mapping between all data instances in the
source and the target schema. We assume that the DTDs
in our study are 
at [10], i.e., no schema information such
as the names of element or attribute types in one DTD are
stored as PCDATA or values of attributes in an XML doc-
ument conforming to another DTD. Hence we only consider
PCDATA and attribute values in XML documents as data.
The data capacity of an XML document denotes the collec-
tion of all of its data.

4.1 Factors of the Cost Model
Data capacity gap. We say a transformation operation is
data capacity reducing (DC-Reduce) if it must result in the
loss of data, e.g., delete a subtree. Correspondingly, we have
data capacity increasing (DC-Increase) operations, e.g., add
a subtree, and data capacity preserving (DC-Preserve), e.g.,
relabel an element node to a sequence list node. However,
for some operations, it is diÆcult to determine from the
DTDs alone whether the transformation will result in the

4Relabel is the only operation that does not change the
tree's topology.

loss, addition, or preservation of data capacity. For exam-
ple, the operation remove quanti�er node <\*"> changes
the content particle from non-required to required which may
cause an increase in data. It also changes the content parti-
cle from repeatable to non-repeatable which may cause data
reduction. Hence reducing, increasing or preserving of data
capacity are all possible and depend on the individual source
XML document. We call these transformations data capac-
ity ambiguous (DC-Ambiguous). We use DC(op) to denote
the cost that the data capacity gap of the operation op con-
tributes to op's overall cost. For any two ops falling into the
same category, DC(op) is the same and 0 � DC(op) � 1.

Potential data capacity gap. Although some transfor-
mations are data capacity preserving, there may still be a
potential data capacity gap between a document conforming
to the source DTD and one conforming to the target DTD.
For example, the operation insert a quanti�er node <\+">
is a DC-Preserve transformation. However, it changes the
children content particles' occurrence property from count-
able to non-countable and then allows the XML documents
to accommodate more data in the future. We use PDC(op)
to denote the cost that the potential data capacity gap
contributes to operation op's overall cost. Then we de�ne
PDC(op) = wrequired � required changed(op)+wcountable �
repeatable countable(op), where required changed(op) and
countable changed(op) are two boolean functions that in-
dicate whether the properties \required" or \countable" of
the content particles that are operated on by op are changed
or not. Weights wrequired and wcountable indicate the impor-
tance of the change of the corresponding property for the po-
tential data capacity. They satisfy wrequired+wcountable = 1.
Only operations that insert, remove or relabel a quanti�er
node may have a PDC cost that is not 0. For example,
suppose wrequired = wcountable = 0:5, then for op of in-
sert a quantifer node < \+">, required changed(op) = 0,
countable changed(op) = 1, therefore PDC(op) = 0:5 � 0 +
0:5 � 1 = 0:5.

Relative factors of operands. The number, size or prop-
erty of operands involved in an operation may impact the
data capacity or the potential data capacity gap. We use
Fac(op) to denote the factor. For example, for a content
model (fax+), a fold operation deriving it from (fax, fax)
will be more expensive than that deriving it from (fax,
fax, fax). This is because the former one causes a greater
potential data gap. For another example, when relabel-
ing occurs between two tag nodes, if their names are syn-
onyms (e.g., \zip" and \postal"), Fac(op) is 0. If no knowl-
edge about the relationship of the two names' relationship
is available, then Fac(op) is proportional to the similarity of
their name strings. For example, Fac(op) of relabeling be-
tween \address"and \addr" will be less than that between
\address" and \capital".

We then have, Cost(op) = (DC(op) + PDC(op)) � Fac(op).
The user of the Xtra system can customize the cost model by
tuning the DC(op), PDC(op) and Fac(op). We also provide
a default setting. Intuitively information loss is not desirable
in that old information cannot be reconstructed from the
new information. Hence the more information loss the oper-
ation causes, the more expensive the operation is. Therefore
we rank the cost of each data capacity gap category from
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lower to higher in the order of DC-Preserve, DC-Increase,
DC-Ambiguous and DC-Reduce. However our algorithm of
discovery the transformation script does not depend on this
particular relationship.

4.2 Examples
We illustrate how to use the cost model to choose a match-
ing plan from multiple candidates using the running exam-
ple. Assume we have the following settings: DC-Preserve,
0.6; DC-Increase, 0.8; DC-Ambiguous, 0.9; DC-Reduce, 1.0.
And Fac(op) for an operation op of relabeling between an
element node and a sequence list node is 3 while that for re-
labeling between two synonym element nodes is 0. Also, for
an operation op that adds a subtree, we de�ne that Fac(op)
is proportional to the number i of subtree's leaf nodes (i.e.,
Fac(op) = k � i) and we assume k = 1. Suppose now we
have two options to derive the subtree rooted at <;>2. The
�rst option is to match <address>1 to <;>2, i.e., relabel
<address >1 from [address] to [; ] and relabel <zip>1 from
[zip] to [postal]. The second option is to add a new subtree
which is the one �nally rooted at (<;>2. For the �rst op-
tion, the cost of the �rst relabeling is (DC(op)+PDC(op))�
Fac(op) = (0:6+0)�3 = 1:8 while the cost of the second re-
labeling is (DC(op)+PDC(op))�Fac(op) = (0:6+0)�0 = 0.
The total cost is then 1:8 + 0 = 1:8. For the second option,
the cost is (DC(op)+PDC(op))�Fac(op) = (1:0+0)�4 = 4.
In this case, the �rst option is preferable due to its lower
cost. However, suppose that < address >1 only has one
single child node <postal>1. The �rst option now has three
more operations than the original sequence of operations,
i.e., add <street>1, add <city>2 and add <state>1. These
three additional operations cost (0:8+0)�1 = 0:8 each. The
total cost of the �rst option is therefore 1:8 + 0:8 � 3 = 4:2.
The cost of the second option is (i.e., 4) does not change
since the sequence of operations does not change. This time
the �rst option is not preferable since it is more expensive
than the second option.

5. GENERATION OF DTD TREE MATCHES
5.1 Simplified Element Trees
We constrain our investigation to the domain of E-business
documents that are exchanged between services that share
a common ontology. We thus can use name similarity as
the �rst heuristic indicator of a possible semantic relation-
ship between two tag nodes. For example, in Figures 3 and
4, the matching document root type all have a child node
named personnel, so without looking at their descendants,
we can match these two nodes. We can derive the match-
ing between two personnel nodes' descendants by comparing
two personnel 's type declaration trees separately. However
suppose in DTD 2, people were used instead of personnel and
no synonym knowledge was given. We would then need to
look further at personnel and people's descendants to decide
whether to match them.

We therefore introduce the concept of a simpli�ed element
tree. Such a tree is designed to capture the relationship
indicated by names between speci�c elements of the two
documents. When two DTDs are provided, we say a tag
node is non-rename-able if there exists any tag in the other
DTD whose name is the same or a synonym. In another
word, the Fac(op) cost of an operation op of renaming a

non-rename-able node to another node with a non-synonym
name is in�nitely expensive. A simpli�ed element tree of
element type E, denoted as ST , is a subtree of E's type
declaration tree T that roots at T 's root with each branch
ending at the �rst reachable non-rename-able node. In Fig-
ures 3 and 4, the four subtrees within the dashed lines are
simpli�ed element trees of company, personnel, person and
name in the two DTDs respectively.

5.2 The Matching Algorithm
DMatch(Dtd Match) is an XML-structure-speci�c tree match-
ing algorithm. The general unordered tree matching prob-
lem is a notoriously high complexity NP problem [22]. As we
have mentioned in Section 1.2, the typical assumption about
relabeling in general tree matching does not hold in our sce-
nario. Thus those techniques do not apply to our scenario.
Our dMatch tree matching algorithm here incorporates the
domain characteristics of speci�c DTD tree transformation
operations, the imposed constraints and the cost model.

Given a source simpli�ed element tree T1, and a target sim-
pli�ed element tree T2, we call nodes in T1 source nodes and
nodes in T2 target nodes. If n1 and n2 are a source and
a target node respectively, the DMatch(n1, n2) algorithm
discovers a sequence of operations (i.e., the transformation
script) that transforms the subtree rooted at n1 to the sub-
tree rooted at n2. We call the sequence of operations a trans-
formation script. The total cost of the script is then the cost
of matching (deriving) n1 and n2. For the source nodes that
are deleted or removed, since they are not mapped to any
existing target node, in order to simplify the description, we
specify two special nodes, namely, �1 and �2. A node which
is removed is said to be mapped to �1. And a node which
is deleted is said to be mapped to �2.

DMatch is composed of two phases. The �rst phase is pre-
processing. And We have two special nodes, namely, �1

and �2. �1 is mapped to nodes which are operated on by
remove operation. And �2 is mapped to nodes which are
operated on by delete operation. The operations add, in-
sert, delete, remove and relabel set up a one-to-one mapping
relationship. However, the operations unfold, fold, split and
merge set up a one-to-many relationship. For example, un-
fold maps one subtree to multiple subtrees, split maps two
nodes (a star quanti�er and a choice list node) to a sequence
list node. In order to make the matching discovery process
for each node be uniform, we preprocess each of the simpli-
�ed element trees.

person
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email url fax

??
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name ?

email url fax

+ (2)? |phonenum

person

name ?

email url fax

+ (2)?
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email url fax
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(a) (b)

Figure 5: Preprocessing: Fold

In the preprocessing phase, we will convert all the repre-
sentations of a sequence of non-repeatable content particles
into the format of a repeatable content particle, i.e., perform
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fold operations. For example, Figure 5 (a) will be converted
to Figure 5 (b). In Figure 5 (b), we mark the plus quanti-
�er node with a number (i.e., two) indicating the maximum
occurrence of content particle fax. By marking these nodes
resulting from the preprocessing, we are able to keep track
of where they are derived from. Thus we will not lose the
information needed for computing the overall cost. Second,
we will impose a certain order on those representations that
allow arbitrary combination of content particles, i.e., per-
form merge operations.

In the second phase, we then �nd one-to-one node mappings.
To derive the transformation from the subtree rooted at n1
and the subtree rooted at n2, for each child m1 of n1, we
attempt to �nd a matching partner m2 (a matching partner
can be either be also a special node �1 or �2). This match-
ing discovery is done in two passes. In pass 1, we visit each
child m1 of n1 sequentially and compare it with a certain
set of target nodes. We call the set of nodes that will be
compared with the current source node matching candidate
set. Since we have the constraints that a node cannot be di-
rectly operated on more than once, m1's matching partner
m2 can only be on the same level as m1 (no operation or
relabel operated on m1) or one level deeper than m1 (insert
operated on m1) or a special node (delete or remove oper-
ated on m1). By recursively applying DMatch to m1 and
each node si (0 < i < jSj) in S, we �nd a node sk with the
least matching cost c. We have a control strategy to decide
whether to match m1 with sk. In pass 1, we apply a delay-
match scheme which delays matching sk with m1 if the cost
is not low enough, i.e., c is not less than the cost of deleting
m1. Thus sk can be preserved to be matched with another
node associated with a satisfactorily low cost.

Source Matching Candidate Set
element element node on the same level.
attribute attribute node on the same level.
choice choice node on the same level.
sequence sequence node on same level or one level deeper;

�1.
quanti�er quanti�er node on same level or one level deeper;

�1.

Figure 6: Matching Candidate Set in Pass 1
Source Matching Candidate Set
element element node on same level or one level deeper;

sequence node on same level;
attribute node on same level.

attribute element node on the same level.
choice choice node on same level or one level deeper.
sequence sequence node on same level or one level deeper;

�1;
quanti�er node on same level.

quanti�er quanti�er node on same level or one level deeper;
�1;
sequence node on same level.

Figure 7: Matching Candidate Set in Pass 2

After visiting all children of n1, we begin pass 2 and traverse
all unmatched children of n1 again, comparing them with
possible candidates. Again, we apply DMatch to m1 and
each node si in S and �nd a node sk with the least matching
cost c. Now a must-match scheme is applied in contrast to
the delay-match scheme in pass 1. m1 would be matched
with sk if c is less than the cost of deletingm1 and adding sk.
Figures 6 and 7 show the nodes that will be selected into the
matching candidate set S in pass 1 and pass 2 respectively.

The pseudo code of theDMatch algorithm is shown in Figure
8. The full details of the algorithm, including discussion of
optimality, time complexity, etc. can be found in [15].

DMatch(n1, n2)
f//pass 1

for n1's each child m1

f
Set S = m1's matching candidate set in pass 1;
for each node si 2 S

apply DMatch(m1, si);
select a node sk in S associated with a least cost; c
if c < the cost of deleting m1

match m1 and sk . //delay-match scheme
g

//pass 2
for n1's each unmatched child m0

1

f
Set S0 = m

0

1
's matching candidate set in pass 2;

for each node s0
i
2 S

0

apply DMatch(m0

1
, s0

i
);

select a node s0
k
in S0 associated with a least cost c0;

if c0 < the cost of deleting m0

1
+ the cost of adding s0

k

match m0

1
and s0

k
. //must-match scheme

g
g

Figure 8: Pseudo Code of DMatch Algorithm

Given matching root element types, R1 andR2 of two DTDs,
we apply DMatch to the roots of R1 and R2's simpli�ed tree.
The root match is propagated down the tree and matches
between the name-match nodes of element types E1 and
E2 are identi�ed. We then recursively apply the DMatch
algorithm to E1 and E2's simpli�ed trees until no new name-
match node matches are generated.

5.3 Example Illustrating Matching Process
We now describe how the match discovery between DTD 1
and DTD 2 depicted in Figures 3 and 4 would be done by
our system. We will use the same settings as shown in the
examples in Section 4.2.

As shown in Figures 3 and 4, there are four pairs of sim-
pli�ed element trees, i.e., company, personnel, person and
name. We apply DMatch to the root type company 's sim-
pli�ed element trees �rst. We traverse <company>1's chil-
dren one by one. For <address>1, its matching candidate
set is empty since all the element nodes on the same level
(i.e., 2) are non-rename-able. For <cname>1, its matching
candidate set contains only <cname>2. Since they have the
same name, they are matched. Similarly, <personnel>1 is
matched against <personnel>2. For attribute <id>1, its
matching candidate set is empty. In pass 2, <address>1's
matching candidate set contains only<,>2. We applyDMatch
to them and derive the transformation script composed of
an operation of relabeling \address" to \,". As illustrated
in Section 4, <address>1 will be mapped to <,>2. At-
tribute <license>1's matching candidate set now contains
element <license>2. And with the parameter setting, they
will be matched. Now each of <company>1's children has
a partner. Hence we are done with matching element type
company.

We continuously apply DMatch to the element simpli�ed
trees of each pair of element type matched by name, i.e.,
personnel, person and name. In this way, all matches be-
tween them are discovered.

74



6. DISCUSSION
Once the relationship has been set up, an XSLT generator
will generate an XSLT script for transforming the source
XML documents into the target format. We have imple-
mented a working system XTra and run experiments on it.
The data sets we are using for experimentation include both
real world data collected from [20] and synthetic data. It
turns out that our algorithm can satisfactorily discover ac-
ceptable transformations. Due to the space limitation, we
do not further discuss them here. The details can be found
in [15].

7. CONCLUSION AND FUTURE WORK
This work proposes an approach for automating the trans-
formation of XML documents. Speci�cally, we focus on two
fundamental problems. First, we address the problem of
how to automate the identi�cation of semantic relationships
between XML-based documents. To this end, we propose
a set of DTD transformation operations that capture com-
mon discrepancies between alternative DTD design behav-
iors for modeling a given entity. We also de�ne a cost model
for quantifying the quality of XML schema transformations.
Second, we have developed an algorithm that performs the
actual transformation of an XML-based document from a
given schema to a di�erent, yet related, schema. Our work
is unique because we incorporate domain-speci�c character-
istics of the XML documents, such as domain ontology, com-
mon transformation types, and speci�c DTD modeling con-
structs (e.g., quanti�ers and type-constructors). This allows
us to avoid the high level of user interaction as well as the
complexity required by other approaches. We have imple-
mented a prototype system (Xtra), and run experiments on
both real and synthetic data to verify the validity of our
approach [15].

XML-Schema [18] is emerging as a potential standard for
describing the structure of XML documents. In the future
we could investigate how to adapt our approach to exploit
the richer treatment of types o�ered by XML Schema as
additional hints of similarity.
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