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Abstract

Detecting and representing changes to data is important

for active databases, data warehousing, view maintenance,

and version and configuration management. Most previous

work in change management has dealt with flat-file and

relational data; we focus on hierarchically structured data.

Since in many cases changes must be computed from old

and new versions of the data, we define the hierarchical

change detection problem as the problem of finding a

“minimum-cost edit script” that transforms one data tree to

another, and we present efficient algorithms for computing

such an edit script. Our algorithms make use of some

key domain characteristics to acKleve substantially better

performance than previous, general-purpose algorithms. We

study the performance of our algorithms both analytically

and empirically, and we describe the application of our

techniques to hierarchically structured documents.

1 Introduction

We study the problem of detecting and representing

changes to hierarchically structured information. De-

tecting changes to data (henceforth referred to as deltas)

is a basic function of many important database facilities

and applications, including active databases [WC96],

data warehousing [HGMW+95, IK93, ZGMHW95], view

maintenance [GM95], and version and configuration

management [HKG+94].

For example, consider the World-Wide Web. A user

may visit certain (HTML) documents repeatedly and is

interested in knowing how each document has changed

since the last visit. Assuming we have saved the old

version of the document (which many web browsers do
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already for efficiency), we can detect the changes by

comparing the old and new versions of the document.

In addition, we are interested in presenting the changes

in a meaningful way. For example, a paragraph that

has moved could be marked with a “tombstone” in its

old position and be highlighted in its new position.

Similarly, insertions, deletions, and updates could be

marked using changes in colors and fonts.

The work on change detection reported in this paper

has four key characteristics:

●

●

●

Nested Information. Our focus is on hierarchical in-

formation, not “flat” information (e.g., files contain-

ing records or relations containing tuples). With flat

information deltas may be represented simply as sets

of tuples or records inserted into, deleted from, and

updated in relations [GHJ+ 93, LGM95]. In hierar-

chical information, we want to identify changes not

just to the “nodes” in the data, but also to their re-

lationships. For example, if a node (and its children)

is moved from one location to another, we would like

this to be represented as a “move” operation in the

delta.

Object Identifiers Not Assumed. For maximum gen-

erality we do not assume the existence of identifiers

or keys that uniquely match information fragments

across versions. For example, to compare structured

documents, we must rely on values only since sen-

tences or paragraphs do not come with identifying

keys. Similarly, objects in two different design con-

figurations may have to be compared by their con-

tents, since object-ids may not be valid across ver-

sions. Of course, if the information we are comparing

does have unique identifiers, then our algorithms can

take advantage of them to quickly match fragments

that have not changed.

Old, New Version Comparison. Although some

database systems, particularly active database sys-

tems, build change detection facilities into the sys-

tem itself [WC96], we focus on the problem of detect-

ing changes given old and new versions of the data.
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We believe that a common scenario for change detec-

tion, especially for applications such as data ware-

housing, or querying and browsing over changes, in-

volves “uncooperative” legacy databases (or other

data management systems), where the best we can

hope for is a sequence of data snapshots or “dumps”

[HGMW+95, LGM95].

High Perjomnance. Our goal is to develop high per-

formance algorithms that exploit features common

to many applications and can be used on very large

structures. In particular, [ZS89, SZ90] present algo-

rithms that always find the most “compact” deltas,

but are expensive to run, especially for large struc-

tures. (The running time is at least quadratic in the

number of objects in each structure compared. The

properties of these algorithms are described in more

detail in Section 2.) Our algorithms are significantly

more efficient (intuitively, our running time is pro-

portional to the number of objects times the number

of changes), but may sometimes find non-minimal,

although still correct, deltas. We show that if the

application domain has a certain property—very in-

tuitively, that there are not “too many duplicate

objects, ” —then our algorithm also always generates

minimal deltas. Our empirical studies suggest that

this property does hold in practice.

To describe a delta between two versions of hierar-

chical data, we use the notion of a minimum cost edit

script. The minimum cost edit script for two trees is

defined using node insert, node delete, node update, and

subtTee move as the basic editing operations. An inter-

esting feature of our approach is that there is a clean

separation of the change detection problem into two

subproblems: (1) finding a matching between objects

in the two versions, and (2) computing an edit script.

If objects have unique identifiers, the first problem is

simplified, and we can use this property to achieve a

speed-up.

Although a minimum cost edit script is a good

formal notion of the delta between two trees, it is

not always the most convenient method for displaying

or querying deltas. We have developed a second,

equivalent representation scheme called a delta tree

for this purpose. Due to lack of space, we do not

describe delta trees in this paper; they are described

in [CRGMW95].

To demonstrate our approach and algorithms, we

have implemented a system to detect, mark, and

display changes in structured documents, based on their

hierarchical structure. Our system, called La.Difl, takes

two versions of a Latex document as input and produces

as output a Latex document with the changes marked.

We have used this system to experimentally evaluate the

performance of our algorithms; results are presented in

Section 6.2. We have also implemented our algorithms

in change detection modules for HTML pages and for a

simple nested-object model [P GMW95].

The remainder of the paper is organized as follows.

We discuss related work in Section 2. Section 3 de-

scribes our general approach, divides our problem into

two distinct subproblems, and provides preliminary def-

initions. Our algorithms for solving the two subprob-

lems are discussed in Sections 4 and 5. Section 6 de-

scribes the application of our techniques to hierarchi-

cally structured documents and presents our empirical

performance study. Conclusions and ongoing work are

covered in Section 7. Due to space constraints, several

details and proofs of theorems are not presented in this

paper, and may be found in [CRGMW95].

2 Related Work

Most previous work in change management has dealt

only with flat-file and relational data. For example,

[LGM95] presents algorithms for efficiently comparing

sets of records that have keys. The GNU difl utility

compares flat text files by computing the LCSl of their

lines using the algorithm described in [Mye86]. There

are also a number of front-ends to this standard cliff

program that display the results of difl in a more

comprehensible manner. (The ediff program [Kif95]

is a good example.) However, since the standard difi

program does not understand the hierarchical structure

of data, such utilities suffer from certain inherent

drawbacks. Given large data files with several changes,

difl often mismatches regions of data. (For example,

while comparing Latex files, an item is sometimes

matched to a section, a sentence is sometimes matched

to a Latex command, and so on. ) Furthermore, these

utilities do not detect moves of data—moves are always

reported as deletions and insertions. Some commercial

word processors have facilities for comparing documents

and marking changes. For example, Microsoft Word has

a “revisions” feature that can detect simple updates,

inserts, and deletes of text. It cannot detect moves.

WordPerfect has a “mark changes” facility that can

detect some move operations. However, there are

restrictions on how documents can be compared (on

either a word, phrase, sentence, or paragraph basis).

Furthermore, these approaches do not generalize to non-

document data.

The general problem of finding the minimum cost

edit distance between ordered trees has been studied

in [ZS89]. Compared to the algorithm presented there,

our algorithm is more restrictive in that we make some

assumptions about the nature of the data being rep-

resented. Our algorithm always yields correct results,

but if the assumptions do not hold

1We define the Longest Common

Section 4.

it may produce sub-

Subsequence (LCS) in
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optimal results. Because of our assumptions, we are

able to design an algorithm with a lower running-time

complexity. In particular, our algorithm runs in time

O(ne + ez), where n is the number of tree leaves and e

is the “weighted edit distance” (typically, e << n). The

algorithm in [ZS89] runs in time 0(n210g2n) for bal-

anced trees (even higher for unbalanced trees). z Our

work also uses a different set of edit operations than

those used in [ZS89]. The two sets of edit operations

are equivalent in the sense that any state reachable us-

ing one set is also reachable using the other. A more

detailed comparison of the two sets of edit operations is

in [C RGMW95].

We believe our approach and that in [ZS89] are com-

plementary; the choice of which algorithm to use de-

pends on the domain characteristics. In an applica-

tion where the amount of data is small (small tree

structures), or where we are willing to spend more

time (biochemical structures), the more thorough al-

gorithm [ZS89] may be preferred. However, in appli-

cations with large amounts of data (object hierarchies,

database dumps), or with strict running-time require-

ments, we would use our algorithm. The efficiency of

our method is based on exploiting certain domain char-

acteristics. Even in domains where these characteristics

may not hold for all of the data, it may be preferable to

get a quick, correct, but not guaranteed optimal, solu-

tion using our approach.

3 Overview and Preliminaries

In this section, we formulate the change detection

problem and split it into two subproblems that are

discussed in later sections. We first introduce these

problems informally using an example, and then present

the formal definitions and terms used in the rest of the

paper.

Hierarchically structured information can be repre-

sented as ordered trees---trees in which the children of

each node have a designated order. We address our

problem of detecting and representing changes in the

context of such trees. (Hereafter, when we use the term

“tree” we mean an ordered tree.) We consider trees

in which each node has a label and a vaiue.3 We also

assume that each tree node has a unique identifier; iden-

tifiers may be generated by our algorithms when they

are not provided in the data itself. Note that the nodes

that represent the same real-world entity in different

versions may not have the same identifier. We refer to

the node with identifier x as “node Z“ for conciseness.

2Efficient parallel algorithms for unit-cost editing are presented
in [S290], which also presents a uniprocessor variant that runs in

time 0(e2n1 min(nl , n2 )), where n.l and n2 are the tree sizes.

3We have found this label-value model to be useful for semi-

structured data in general [P GMW95]. We have defaults for the

label and value of a node that does not specify them explicitly.
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\------_------+ ---- t)

.--------- ----------J

Figure 1: Running example

As a running example, consider trees TI and T2 shown

in Figure 1, and ignore the dashed lines for the moment.

The number inside each node is the node’s identifier and

the letter beside each node is its label. All of the interior

nodes have null values, not shown. Leaf nodes have

the values indicated in parentheses. (These trees could

represent two structured documents, where the labels D,

P, and S denote Document, Paragraph, and Sentence,

respectively. The values of the sentence nodes are the

sent ences themselves.) We are interested in finding the

delta between these two trees. We will assume that TI

represents the “old” data and T2 the %ew” data, so we

want to determine an appropriate transformation from

tree TI to tree T2.

Our first task in finding such a transformation is

to determine nodes in the two trees that correspond

to one another. Intuitively, these are nodes that

either remain unchanged or have their value updated

in the transformation from T1 to T2 (rather than, say,

deleting the old node and inserting a new one). For

example, node 5 in T1 has the same value as node 15

in T2, so nodes 5 and 15 should probably correspond.

Similarly, nodes 4 and 13 have one child node each,

and the child nodes have the same value, so nodes 4

and 13 should probably correspond. The notion of a

correspondence between nodes that have identical or

similar values is formalized as a matching between node

identifiers. Matchings are one-to-one. We say that

a matching is partial if only some nodes in the two

trees participant e, while a matching is total if all nodes

participate. Hereafter, we use the term “matching” to

mean a partial matching unless stated otherwise.

Hence, one of our problems is to find an appropriate

matching for the trees we are comparing. We call this

problem the Good Matching problem. In some applica-

tion domains the Good Matching problem is easy, such

as when data objects contain object identifiers or unique

keys. In other domains, such as structured documents,

the matching is based on labels and values only, so the

Good Matching problem is more difficult. Furthermore,

not only do we want to match nodes that are identical

(with respect to the labels and values of the nodes and
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their children), but we also want to match nodes that

are “approximately equal.” For instance, node 3 in Fig-

ure 1 probably should match node 14 even though node

3 is missing one of the children of 14. Details of the

Good Matching problem —including what constitutes a

“good” matching—are addressed in Section 5. A match-

ing for our running example is illustrated by the dashed

lines in Figure 1.

We say that two trees are isomorphic if they are

identical except for node identifiers. For trees T1 and

T2, once we have found a good (partial) matching

M, our next step is to find a sequence of “change

operations” that transforms tree T1 into a tree T; that is

isomorphic to T2. Changes may include inserting (leaf)

nodes, deleting nodes, updating the values of nodes, and

moving nodes along with their subtrees. Intuitively, as

T1 is transformed into T{, the partial matching M is

extended into a total matching M’ between the nodes

of T; and T2. The total matching M’ then defines

the isomorphism between trees T; and T2. We call the

sequence of change operations an edit script, and we say

that the edit script con~onns to the original matching

M provided that M’ ~. M. (As will be seen, an edit

script conforms to partial matching M as long as the

script does not insert or delete nodes participating in

M.) Edit scripts are defined in more detail shortly.

We would like our edit script to transform tree T1 as

little as possible in order to obtain a tree isomorphic

to T2. To capture minimality of transformations, we

introduce the notion of the cost of an edit script, and

we look for a script of minimum cost. Thus, our

second main problem is the problem of finding such

a minimum cost edit script; we refer to this as the

kfinimum Conforming Edit Script (MCES) problem.

The remainder of this section formally defines edit

operations and edit scripts. Our algorithm for the

MCES problem is presented in Section 4, and Section 5

presents our algorithm for the Good Matching problem.

Note that we consider the MCES problem before the

Good Matching problem, despite the fact that our

method requires finding a matching before generating

an edit script. As will be seen, the definition of a good

matching relies on certain aspects of edit scripts, so for

presentation purposes we consider the details of our edit

script algorithms first.

3.1 Edit Operations

In an ordered tree, if nodes VI, . . . . Vm are the children

of node u, then we call vi the ith child of u. For a

node x, we let l(z) denote the label of z, V(Z) denote

the value of z, and p(z) denote the parent of z if z is

not the root. We assume that labels are chosen from

a fixed but arbitrary set. In the definitions of the edit

operations, T1 refers to the tree on which the operation

is applied, while T2 refers to the resulting tree. The four

edit operations on trees are the following:

Insert: The insertion of a new leaf node x into T1,

denoted by INS((Z, 1, v), y, k). A node z with label

1 and value u is inserted as the kth child of node

y of T1. More precisely, if U1, . . . . Um are the

children of y in T1, then l<k~m+ land

Ul, ..., uk_l, x,uk, . . . , Um are the children of y in

T2. The value v is optional, and is assumed to be

null if omitted.

Delete: The deletion of a leaf node x of TI, denoted by

DEL(z). The result T2 is the same as T1, except

that it does not contain node x. DEL(Z) does

not change the relative ordering of the remaining

children of p(z). This operation deletes only a leaf

node; to delete an interior node, we must first move

its descendants to their new locations or delete them.

Update: The update of the value of a node z in TI,

denoted by UPD(X, val). T2 is the same as T1 except

that in T2, V(Z) = vai.

Move: The move of a subtree from one parent to

another in Tl, denoted by MOV(Z, y, k). T2 is the

same as T1, except x becomes the kth child of y.

The entire subtree rooted at x is moved along with

x.

Figure 2 shows examples of edit operations on trees. In

the figure, node 6 has label A and value foo. The labels

and values of the other nodes are not shown.

3.2 Edit Scripts

Informally, an edit script gives a sequence of edit oper-

ations that transforms one tree into another. Formally,

we say T1 ~ T2 when T2 is the result of applying the edit

operation el to T1. Given a sequence E = el, . . . . em

of edit operations, we say T1 ~ Tm+l if there exist

T2, . . .,Tm such that TI % T2 ~ . . . ‘G Tm+l. A se-

quence E of edit operations transforms T1 into T2 if

TI ~ T; and T; is isomorphic to T2. (Recall that two

trees are isomorphic if they differ only in the identifiers

of their nodes. ) We call such a sequence of edit opera-

tions an edit script of TI with respect to T2. Notice that

an edit script does not tell us how the original match-

ing between T1 and T2 should be modified to obtain the

total matching between T; and T2. This will be done as

the edit script is generated; see section 4.

Example 3.1 Consider the trees T1 and T2 shown in

Figure 3. The following edit script below transforms TI

into T2:

INS((ll, See, foo), 1,4), Mov(5, 11, 1), DEL(2), uPD(9, baz)

Figure 3 also shows the intermediate trees in the

transformation specified by the above edit script. (The

last update is not shown in order to save space.)
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Figure 2: Edit operations on a tree

D D
INS((11,Sec.foo),1,4)

s(1) s(1)

s(x)

s(a) s(a)

Figure 3: Applying the edit script of Example 3.1

3.3 A Cost Model for Edit Scripts

Given two trees, in general there are many edit scripts

that transform one tree to the other. Even when an edit

script must conform to a given mat thing, there may

be many correct scripts. (Recall that we defined the

concept of an edit script conforming to a matching in

Section 3.) For example, the following edit script, when

applied to the initial tree in Example 3.1, produces the

same final tree as that produced by the edit script in

the example:

INS((ll, See, foo), 1, 4), DEL(6), DEL(7), DEL(5),

INS((12, S,a), 11, l), INs((13, S, b), 11,2), uPD(9, baz)

Intuitively, this edit script does more work than neces-

sary, and is thus an undesirable representation of the

delta between the trees. To formalize this idea, we in-

troduce the cost of an edit script.

We first define the costs of edit operations and then

use these costs to define the cost of edit scripts. The cost

of an edit operation depends on the type of operation

and the nodes involved in the operation. Let CD (z),

cl(z), and c~ (z) denote respectively the cost of deleting,

inserting, and updating node x, and let cM (x) denote

the cost of moving the subtree rooted at node x. In

general, these costs may depend on the label and the

value of z, as well as its position in the tree. In this

paper, we adopt a simple cost model where deleting

and inserting a node, as well as moving a subtree,

are considered to be unit cost operations. That is,

CD(Z) = c~(x) = c~(iz) = 1 for all z.

Now consider the cost Cu (z) of updating the value of a

node z. We assume that this cost is given by a function,

compare, that evaluates how different z‘s old value v is

from its new value v’. This compare function takes two

nodes as arguments and returns a number in the range

[0, 2]. Although the nature of the compare function is

arbitrary, it should be consistent with the costs of the

other edit operations in the following sense: Suppose z

is moved, and its value v is updated so that v is very

similar to v’. Then compare(v, v’) should be less than

1, so that the cost of moving and updating z is less than

the cost of deleting z and replacing it with a new node

with value v’. If v and v’ are very different, we would

rather have the edit script contain a delete/insert pair,

so the update cost should be greater than 1. Finally,

the cost of an edit script is the sum of the costs of its

individual operations.

4 Generating the Edit Script

In this section we consider the Minimum Conforming

Edit Script problem, motivated in the previous section.

The problem is stated as follows. Given a tree TI

(the old tree), a tree T2 (the new tree), and a (partial)

matching iM between their nodes, generate a minimum

cost edit script that conforms to M and transforms T1

to T2. Our algorithm starts with an empty edit script

E and appends edit operations to E as it proceeds. To

explain the working oft he algorithm, we apply each edit

operation to T1 as it is added to E. When the algorithm

terminates, we will have transformed T1 into a tree that
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is isomorphic to T2. In addition, the algorithm extends

the given partial matching M by adding new pairs of

nodes to M as it adds operations to E. When the

algorithm terminates, M is a total matching between

the nodes of T1 and T2.

4.1 Outline of Algorithm

The algorithm is most easily explained as consisting of

the five phases that we describe below. We use our

running example from Figure 1. We are required to

find a minimum cost edit script that transforms T1 into

T2, given the matching M shown by the dashed lines in

the figure.

The Update Phase: In the update phase, we look

for pairs of nodes (z, y) G M such that the values at

nodes x and y differ. For each such pair (in any order)

we add the edit operation UPD (z, v(y)) to E (recall that

for a node z, v(m) denotes the value of z), and we apply

the update operation to TI. At the end of the update

phase, we have transformed T1 such that V(Z) = v(y)

for every pair of nodes (z, y) E M.

S/) s(h) !$) qn s(d) s(.) s(a) s(c) 5(I> s($) s(,) m)

\ \\ ~...’i.-L--7’L---- L.. ,
\ \

\ . _--:::y-::::~?:;+ ----- ‘ ,“-------------------- ------------ z

Figure 4: Running example: after align phase

m2Hh
‘(’J 5“} y ?@ 710 s(e) w y Sf) s[n W) s(e) s(a)
‘. ‘. . -’& -- .--#----- .---.’---, ‘

‘\ .-;;::::::::::\- z.”---- ?’---’ ,~’‘\ --------------------- . =----------------- ..-------.

Figure 5: Running example: after insert phase

The Align Phase: Let the pmtner of a node denote

the node to which it is matched (by a given matching).

Suppose (z, y) c M. We say that the children of x

and y are misaligned if z has matched children u and v

such that u is to the left of v in T1 but the partner

of u is to the right of the partner of v in T2, In

Figure 1, the children of the root nodes 1 and 11 are

misaligned. In the align phase we check each pair of

matched internal nodes (z, y) e M (in any order) to

see if their children are misaligned. If we find that

the children are misaligned, we append move operations

to E to align the children. We explain how the move

operations are determined in Section 4.2 below. In our

running example, we append MOV (4, 1, 2) to E, and we

apply the move operation to T1. The new T1 is shown

in Figure 4.

The Insert Phase: We assume, without loss of

generality, that the roots of T1 and T2 are matched in

M.* In the insert phase, we look for an unmatched

node z c T2 such that its parent is matched. Suppose

Y = p(z) (i.e., Y is the parent of z) and y’s partner

in T1 is z. We create a new identifier w and

append lNs((w, l(z), v(z)), z, k) to E. The position k

is determined with respect to the children of x and z

that have already been aligned with respect to each

other; details are in Section 4.3. We also apply the

insert operation to T1 and add (w, z) to M. In our

running example we append INS((21, S, g), 3, 3). The

transformed T1 and the augmented M are shown in

Figure 5. At the end of the insert phase, every node

in T2 is matched but there may still be nodes in T1 that

are unmatched.

m~gh
w ?J yn S(d) S[.) s(g) s(*) S(., sw w, s(.) 5[8,

‘. ‘. -.’+-..-----”.- .’- ...’---, ‘
‘\

‘. .-::::::::::::\-- ””----> ’---’ ,,”7*= ------
-------------------- . ----------------,

Figure 6: Running example: after delete phase

The Move Phase: In the move phase we look for

pairs of nodes (z, y) ~ M such that (p(z), p(y)) @ M.

(Recall from Section 3.1 that p(z) denotes the parent of

z.) Suppose v = p(y). We know that at the end of the

insert phase, v has some partner u in T1. We append

the operation MOV(Z, u, k) to E, and we apply the move

operation to T1. Here the position k is determined with

respect to the children of u and v that have already

been aligned, as in the insert phase. At the end of the

move phase T1 is isomorphic to T2 except for unmatched

nodes in T1. In our running example, we do not need

to perform any actions in this phase.

The Delete Phase: In the delete phase we look

for unmatched leaf nodes z e TI. For each such

node we append DEL(~) to E and apply the delete

operation to T1. (Note that this process will result in

a bottom-up delete—descendants will be deleted before

their ancestors. ) At the end of the delete phase T1 is

isomorphic to T2, E is the final edit script, and M is the

41f the roots of TI and T2 are not matched in M, then we add

new d— y roots that are matched.
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total matching to which E conforms. Figure 6 shows the

trees and the matching after the delete phase.

4.2 Aligning Children

The align phase of the edit script algorithm presents

an interesting problem. Suppose we detect that for

(x, y) < ~, the children of z and y are misaligned. In

general, there is more than one sequence of moves that

will align the children. For instance, in Figure 7 there

are at least two ways to align the children of nodes 1

and 11. The first consists of moving nodes 2 and 4 to

the right of node 6, and the second consists of moving

nodes 3, 5, and 6 to the left of node 2. Both yield the

same final configuration, but the first one is better since

it involves fewer moves.

------ -------------------
~~...--- -m.

,Q&Q @&QB
,!, , ,,

‘! . . . . . . . . . . . . . . . - . +....---, ,, ,, ,’ ,,
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Figure 7: A matching with misaligned nodes

To ensure that the edit script generated by the

algorithm is of minimum cost, we must find the shortest

sequence of moves to align the children of z and y. Our

algorithm for finding the shortest sequence of moves is

based on the notion of a longest common subsequence,

described next.

Given a sequence S = a1a2 . . . an, a sequence S’ is a

subsequence of S if it can be obtained by deleting zero or

more elements from S. That is, S’ = ail . . . aim where

1 ~ il < i2 < . . . < im s n. Given two sequences

SI and S2, a longest common subsequence (LCS) of

S1 and S2, denoted by L CS(S1, S2), is a sequence

S = (&l, Y1) . . . (z~, y~) of pairs of elements such that

(1) x,. . . zk is a subsequence of S1; (2) yl . . . y~ is a

subsequence of Sz; (3) for 1 s i s k, equal(zi, yi) is

true for some predefine equality function equa~ and

(4) there is no sequence S’ that satisfies conditions 1,2,

and 3 and is longer than S. The length of an LCS of S1

and S2 is denoted by IL CS(S1, S2)1.

We use an algorithm due to Myers [Mye86] that

computes an LCS of two sequences in time O(IVD),

where N = ISI] + 1S2] and D = N – 2/LCS(Sl, S2)l.

We treat Myers’ LCS algorithm as having three inputs:

the two sequences Sl and S2 to be compared, and an

equality function equal(z, y) used to compare z c S1

and y 6 S2 for equality. That is, we treat it as the

procedure L CS(S1, S2, equal).

The solution to the alignment problem is now straight-

forward. Compute an LCS S of the matched children of

nodes x and y, using the equality function equal(u, v)

that is true if and only if (u, v) c M. Leave the chil-

dren of x that are in S fixed, and move the remain-

ing matched children of z to the correct positions rel-

ative to the already aligned children. In Figure 7, the

LCS is 3,5,6 (matching the sequence 12, 13, 14). The

moves generated are MOV(2, 1, 5) and MOV(4, 1, 5). In

[CRGMW95], we show that our LCS-based strategy al-

ways leads to the minimum number of moves.

4.3 The Complete Algorithm

We now present the complete algorithm to compute

a minimum cost edit script E conforming to a given

matching M between trees T1 and T2. In the algorithm,

we combine the first four phases of Section 4.1 (the

update, insert, align, and move phases) into one

breadth-first scan on T2. The delete phase requires

a post-order traversal of T1 (which visits each node

aft er visiting all its children). The order in which the

nodes are visited and the edit operations are generated

is crucial to the correctness of the algorithm. (For

example, an insert may need to precede a move, if the

moved node becomes the child of the inserted node. )

The algorithm applies the edit operations to T1 as they

are appended to the edit script E. When the algorithm

terminates, T1 is isomorphic to T2. The algorithm

also uses a matching M’ that is initially M, and adds

matches to it so that M’ is a total matching when the

algorithm terminates. As mentioned earlier, we assume

without loss of generality that the roots of T1 and T2

are matched in M.

The algorithm is shown in Figure 8. It uses

two procedures, AiignChiidren and FindPos, shown in

Figure 9. The claims made by the two statements

in Algorithm EditScript that are marked with (*) are

substantiated in [CRGMW95], where it is also proved

that Algorithm EditScript generates a minimum cost

edit script conforming to the given matching M.

Let us now consider the running time of this algo-

rithm. We first define the notion of misaligned nodes.

Suppose z 6 T1 and y = p(z). A move of the form

M(z, y, k) for some k is called an intra-parent move of

node z; such moves are generated in the align phase

of the algorithm. The number of misaligned nodes of

T1 with respect to T2 is the minimum number of intra-

parent moves among all minimum cost edit scripts. We

can show [CRGMW95] that the running time of Algo-

rithm EditScript is O(ND), where i’V is the total num-

ber of nodes in T1 and T2 and D is the total number

of misaligned nodes. (Note that D is typically much

smaller than N.)

5 Finding Good Matchings

In this section we consider the Good Matching problem,

motivated in Section 3. We want to find an appropriate
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l. Ei-e, M’+M

2. Visit the nodes of T2 in breadth-tlrst order
/* combme, the update, insert, align, and move phages */

(a) Let z be the current node in the breadth-first search of 2’2
and let y = p(z). Let z be the partner of g in &f’. (*)

(b) If z has no partner in M’

i. k + FindPos(z)

ii. Append INS((UJ, a, v(z)), z, k) to E, for a new identifier
w.

iii. Add (w, z) to M’ and apply INS((IU, CZ,v(a)), z, k) to Z’I,

(c) else if ~ is not the root/* r has a partner in M’ ‘/

i. Let w be the partner of a in M’, and let v = p(w) in T1.

ii. If V(W) # v(z)

A. Append upD(w, v(m)) toE.

B. Apply uPD(w, v(m)) to2’1.

iii. If(y, v) @M’

A. Letzbethe partner ofyin M’. (*)

B. k+- FindPos(z)

C. Append Mov(w, z,k)to E.

D. Apply Mov(w, z,k)to T1.

(d) A@nChildren(w,z)

3. Doapost-order traversal of Tl. /*the delete phase */

(a) Letwbethe current nodeinthe post-order traversal of Tl.

(b) Ifwhasno partner in Af’then append DEI,(w) toE and
apply DEL(w) to T~.

4. E is a minimum cost edit script, ill’ is a total matching, and
2’1 is isomorphic to T2.

Figure 8: Algorithm EditScript

matching between the nodes of trees T1 and T2 that can

serve as input to Algorithm EditScript. In applications

in which the data has object-ids or keys, we can match

nodes using these object-ids or keys. However, as

described in Section 1, our focus here is on applications

where information may not have keys or object-ids that

can be used to match “fragments” of objects in one

version with those in another. We use the term keylew

data for hierarchical data that may not have identifying

keys or object-ids.

When comparing versions of keyless data, there may

be more than one way to match objects. Thus we need

to define matching criteria that a matching must satisfy

to be considered “good” or appropriate, In general,

the matching criteria will depend on the domain being

considered. One way of evaluating matchings that is

desirable in many situations is to consider the minimum

cost edit scripts that conform to the matchings (and

transform TI into T2 ). Intuitively, a matching that

allows us to transform one tree to the other at a lower

cost is a better matching. Formally, for matchings &f

and M’, we say that ikf is better than M! if a minimum

cost edit script that conforms to M is cheaper than a

minimum cost edit script that conforms to Afr. Our

goal is to find a best matching, that is, a matching M

that satisfies the given matching criteria and such that

Function Align Children(w, z)

1. Mark all children of w and all children of z “out of order.”

2. Let S1 be the sequence of children of w whose partners are
children of= and let S2 be the sequence of children of z whose
partners are children of w.

3. Detine the function eguol(a, b) to be true if and only if
(a, b) c M’.

4. Let S e LCS(S1, S2, equal).

5. For each (a, b) c S, mark nodes a and b ‘[in order.”

6. For each a E S1, b E S2 such that (a, b) c M but (a, b) @ S

(a) k + FindPos(b).

(b) Append MOV(a, w, k) toE and apply MOV(a, w, k) toT1.

(.) Mark a and b “in order.”

Function FindPos(z)

1.

2.

3.

4.

5.

Let y = p(o) in T2 and let w be the partner of z (z c T1 ).

If z is the leftmost child of y that is marked “in order)” return
1.

Find w c T2 where u is the rightmost sibling of = that is to
the left of z and is marked “in order.”

Let u be the partner of v in 2’1.

Suppose u is the ith child of its parent (counting from left to
right) that is marked “in order. ” Retu& i + 1.

Figure 9: Functions Align Children and FindPos

there is no better matching M’ that also satisfies the

criteria.

Unfortunately, if our matching criterion only requires

that matched nodes have the same label, then finding

the best matching has two difficulties. The first

difficulty is that many matchings that satisfy only this

trivial matching criterion may be unnatural in certain

domains. For example, when matching documents, we

may only want to match textual units (paragraphs,

sections, subsections, etc. ) that have more than a

certain percentage of sentences in common. The second

difficult y is one of complexit y: the only algorithm known

to us to compute the best matching as defined above

(based on post-processing the output of the algorithm

in [ZS89]) runs in time 0(n2) where n is the number

of tree nodes [Zha95]. To solve the first difficulty, we

restrict the set of matchings we consider by introducing

stronger matching criteria, as described below. These

criteria also permit us to design efficient algorithms

for matching. In the rest of this section, we describe

some matching criteria for keyIess data, using structured

documents as an example.

5.1 Matching Criteria for Keyless Data

Our goal in this section is to augment the trivial

label-matching criterion with additional criteria that

simultaneously yield matchings that are meaningful in

the domains of the data being considered, and that

make possible efficient algorithms to compute a best

matching.

Our first matching criterion states that nodes that are
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“too dissimilar” may not be matched with each other. movie title in one snapshot may “closely resemble” at

For leaf nodes, this condition is stated as follows. most one movie title in the other,

Matching Criterion 1 For leaf nodes z E T1 and

y c T2, (z, y) can be in a matching only if 1(z) = l(y)

and cornpme(v(z), v(y)) s ~ for some parameter f such

that O ~ ~ < 1. (Recall that 1(z) and V(Z) denote the

label and value of node x, and that compare is defined in

Section 3.3 as a function used for determining the cost

of updating a leaf node.) 0

We also want to disallow matching internal nodes that

do not have much in common. Here a more natural

notion than the value (which is often null in the label-

value model) is the number of common descendants.

Let us say that an internal node z contains a node y

if y is a leaf node descendent of z, and let Iz I denote

the number of leaf nodes z contains. The following

constraint allows internal nodes x and y to match only

if at least a certain percentage of their leaves match

(where t is a parameter):

Matching Criterion 2 Consider a matching M con-

taining (z, y), where z is an internal node in T1 and

y is an internal node in T2. Define common(x, y) =

{(w, z) e M \ z contains w, and y contains z}. Then in

&f we must have l(x) = l(y) and lC~&,flf~~)l > t for

some t satisfying ~ ~ t< 1. •l

Recall from Section 1 that one of the features of

our work is that we use domain characteristics to

design efficient algorithms. We now introduce these

domain characteristics and formalize them by stating

two assumptions that they let us make.

The hierarchical keyless data we are comparing has

labels, and these labels usually follow a structuring

schema, such as the one defined in [AC M95]. Many

structuring schemas satisfy an acyclic labels condition,

formalized in the following assumption:

Assumption 1 There is an ordering <1 on the labels

in the schema such that a node with label 11 can appear

as the descendent of a node with label 12 only if 11 <1 12.

In schemas where this condition is not satisfied, we can

use domain semantics to merge labels that form a cycle,

so that the resulting schema satisfies this condition

[CRGMW95].

Our next assumption states (informally) that the

compare function is a good discriminator of leaves. It

states that given any leafs in the old document, there is

at most one leaf in the new document that is “close” to

s, and vice versa. For example, consider a world-wide

web “movie database” source listing movies, act ors,

directors, etc. A tree representation of this data may

contain movie titles as leaves. This assumption says

that, when comparing two snapshots of this data, a

Assumption 2 For any leaf z E T1, there is at most

one leaf y ~ Tz such that compa~e(v(z), v(y)) s 1.

Similarly, for any leaf y E T2, there is at most one leaf

z c T1 such that compare(v(z), v(y)) <1. ❑

This assumption may not hold for some domains.

For example, legal documents may have many sentences

that are almost identical. The algorithms we describe

below are guaranteed to produce an optimal matching

when Assumption 2 holds. When Assumption 2 does

not hold, our algorithm may generate a suboptimal,

but still correct, solution. However, we can often post-

process such a suboptimal solution to obtain an optimal

solution. We discuss this issue further in Section 6.3.

Matching Criteria 1 and 2 and the assumptions that

we have introduced above allow us to simplify the

best matching problem as follows. (Recall that a best

matching is a matching that can be used to produce

an edit script of the lowest cost among all matchings

satisfying the Mat thing Criteria. ) We say that a

matching is maximal if it is not possible to augment

it without violating the Matching Criteria. We can

show that our Matching Criteria imply that there is

a unique maximal matching. Furthermore, given our

assumptions, we can show that this unique maximal

matching is also the best matching. These statements

are formalized in the following theorem, which is proven

in [CRGMW95]:

Theorem 5.1 (Unique Maximal Mat thing) If T1

and T2 are trees satisfying Matching Criteria 1 and 2

and Assumptions 1 and 2, then there is a unique

maximal matching M of the nodes of T1 and T2.

Moreover, M is also the unique best matching that

satisfies the matching criteria.

5.2 A Matching Algorithm

Theorem 5.1 allows us to design a simple algorithm for

computing the best matching. This algorithm, called

algorithm Match, is presented in [CRGM W95], and runs

in quadratic time, Below, we present a faster algorithm,

called FastMatch, for computing the unique maximal

mat thing. Our algorithm uses a function equal to

compare nodes. For leaf nodes, equal(z, y) is true if and

only if l(a) = l(y) and compare (v(z), v(y)) < j, where

~ is a parameter valued between O and 1. For internal

nodes, equai(z, y) is true if and only if l(x) = l(y) and

-
> t, where t >0.5 is a parameter.

Figure 10 shows Algorithm FastMatch, which uses the

longest common subsequence (LCS) routine, introduced

earlier in Section 4.2, to perform an initial matching

of nodes that appear in the same order. Nodes still

unmatched after the call to LCS are processed using
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linear search. We assume that all nodes with a given

label 1 in tree T are chained together from left to right.

Let chainT (1) denote the chain of nodes with label 1 in

tree T. Node z occurs to the left of node yin chain~ (1)

if a appears before y in the in-order traversal of T when

siblings are visited left-to-right.

1.M+4

2. For each leaf label 1 do
(a) S1 i-- cliain~l (1).

(b) S, + &i7b*,(t).

(c) lCS + ~CS(Sl, Sz, equal).

(d) For each pair of nodes (=)y) ~ 1.s, add (z, y) to M.

(e) For each unmatched node c ~ S1, if there is an
-atched node y ~ S2 such that e~ual( z, V) then

A. Add (x)Y) to M.

B. Mark z and y “matched.”

3. Repeat steps 2a–2e for each internal node label 1.

Figure 10: Algorithm J’astkfaich

Now we analyze the running time of Algorithm

FastMatch. Define the weighted edit distance e between

trees T1 and T2 as follows. Let E = elez . . . en be the

shortest edit script that transforms T1 to T2. Then the

weighted edit distance is given by e = ~l<i<n wi w here

w~, for 1 ~ i < n, is 1 if e~ is an insert or = delete, Izl if

ei is a move of the subtree rooted at z, and O otherwise.

Recall that [x [ denotes the number of leaf nodes that

are descendants of node z. Intuitively, the weighted

edit distance indicates how different the two trees are

“structurally,” where the degree of difference associated

with the move of a subtree depends on the number of

leaves in the subtree. In [CRGMW95] we show that the

running time of Algorithm FastMatch is proportional

to (ne + e2)c + 21ne where n is the total number of

leaf nodes, c is the average cost of comparing two leaves

(using the compare function), 1 is the number of internal

node labels, and e is the weighted edit distance between

TI and Tz.

6 Implementation and Performance

To validate our method for computing and representing

deltas, as well as to have a vehicle for studying the

performance of our algorithms, we have implemented

a program for computing and representing changes in

structured documents. In Section 6.1, we describe

the implementation of this program, called LaDiff. In

Section 6.2, we study the running time of FastMatch,

and in Section 6.3, we discuss the effect of the

Assumption 2 of Section 5 on the quality of the solution

produced by FastMatch.

6.1 Implementation

In the following description, we focus on Latex docu-

ments, but the implement ation also handles other kinds

of structured documents (e.g., HTML). LaDzff takes as

input two files containing the old and new versions of a

Latex document. These files are first parsed to produce

their tree representations (the old tree and new tree, re-

spectively). Currently, we parse a subset of Latex con-

sisting of sentences, paragraphs, subsections, sections,

lists, items, and document. It is easy to extend our

parser to handle a larger subset of Latex, and we plan

to do so in the future. Next, the edit script and delta

tree are computed using the algorithms of Sections 4–

5. Our program takes the match threshold t (Section

5) as a parameter. Our comparison function for leaf

nodes—which are sentences—first computes the LCS

(recall Section 4.2) of the words in the sentences, then

counts the number of words not in the LCS. Interior

nodes (paragraphs, items, sections, etc. ) are compared

as described in Section 5. Finally, a preorder traversal of

the delta tree is performed to produce an output Latex

document with annotations describing the changes. Our

implementation uses a modified version of the LCS algo-

rithm from [Mye86]. Note that we cannot use the LCS

algorithm used by the standard UNIX a!ifl program, be-

cause it requires inequality comparisons in addition to

equality comparisons.

6.2 Empirical Evaluation of FastMatch

Recall from Section 5 that the running time of Algo-

rithm FastMatch is given by an expression of the form

rlc + Tz. In this expression, rl represents the number

of leaf node comparisons (invocations of function com-

pare), c is the average cost of comparing leaf nodes, and

72 represents the number of node partner checks. Part-

ner checks are implemented in LaDiffas integer compar-

isons. We know that rl is bounded by (ne+ez ), and that

rz is bounded by 21ne, where n is the number of tree

nodes, e is the weighted edit distance between the two

trees, and 1 is the number of internal node labels. The

parameter e depends on the nature of the differences

between the trees (recall the definition of weighted edit

distance in Section 5.2).

There are two reasons for studying the performance

of FastMatch empirically. The first reason is that the

formula for the running time contains the weighted edit

distance, e, which is difficult to estimate in terms of

the input. A more natural measure of the input size is

the number of edit operations in an optimal edit script,

which we call the unweighed edit distance, d. We can

show analytically that the ratio e/d is bounded by log n

for a large class of inputs, but we believe that in real

cases, its value is much lower than log n. We therefore

study the relationship between e and d empirically.

The second reason is that we would like to test our

conjecture that the analytical bound on the running

time of FastMatch is “loose,” and in most practical

sit uations the algorithm runs much faster.

For our performance study, we used three sets of files.
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Figure 11: Weighted edit distance

The files in each set represent different versions of a

document (a conference paper). We ran FastMatch on

pairs of files within each of these three sets, (Comparing

files across sets is not meaningful because we would

be comparing two completely different documents.) In

Figure 11 we indicate how the weighted edit distance (e)

varies wit h the unweighed edit distance (d), for each of

the three document sets. Recall that n is the number

of tree leaves, that is, the number of sentences in the

document. We see that the relationship between e and d

is close to linear. Furthermore, the variance with respect

to the three document sets is not high, suggesting that

e/d is not very sensitive to the size of the documents (n).

The average value of e/d is 3.4 for these documents.
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Figure 12: Running time

In Figure 12 we plot how the running time of

FastMatch varies with the weighted edit distance e.

The vertical axis is the running time as measured by

the number of comparisons made by FastMatch and

the horizontal axis is the weighted edit distance. Note

that the analytical bound on the number of comparisons

made by FastMatch is much higher than the numbers

depicted in Figure 12; on the average, Fast Match

makes approximately 20 times fewer comparisons than

those predicted by the analytical bound, supporting our

conjecture that the analytical bound on the running

time is a loose one. We also observe that Figure 12

suggests an approximately linear relation between the

running time and e, although there is a high variance.

This variance may be explained by our first observation

that the actual running time is far below the predicted

bound.

6.3 Quality of FastMatch’s matching

Another issue that needs to be addressed is the effect of

Assumption 2 on the quality of the solution produced

by FastMatch. Recall from Section 5 that FastMatch

is guaranteed to produce an optimal matching only

when Assumption 2 holds. When Assumption 2 does

not hold, the algorithm may produce a suboptimal

matching. We describe a post-processing step that,

when added to FastMatch, enables us to convert the

possibly suboptimal matching produced by FastMatch

into an optimal one in many cases: Proceeding top-

down, we consider each tree node z in turn. Let y be

the partner of x according to the current matching. For

each child c of x that is matched to a node c’ such

that parent(c’) # y, we check if we can match c to

a child c“ of y, such that compare (c, c“) ~ ~, where

~ is the parameter used in Matching Criterion 1. If

so, we change the current matching to make c match

c“. This post-processing phase removes some of the

suboptimalities that may be introduced if Assumption 2

does not hold for all nodes.

Even with post-processing, it is still possible to have a

suboptimal solution, as follows: Recall that Fast Match

begins by matching leaves, and then proceeds to match

higher levels in the tree in a bottom-up manner.

With this approach, a mismatch at a lower level

may “propagate,” causing a mismatch at one or more

higher levels. Our post-processing step will correct

all mismatches other than those that propagated from

lower levels to higher levels. It is difficult to evaluate

precisely those cases that in which this propagation

occurs without performing exhaustive computations.

However, we can derive a necessary (but not sufficient)

condition for propagation, and then measure that

condition in our experiments. Informally, this condition

states that in order to be mismatched, a node must

have more than a certain number of children that violate

Assumption 2, where the exact number depends on the

match threshold t. Actually, this condition is weak;

a node must satisfy many other conditions for the

possibility y of a mismatch to exist, and even then a

mismatch is not guaranteed.

For the same document data analyzed earlier, Table 1

shows some statistics on the percentage of paragraphs

that may be mismatched for a given value of the match
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Threshold t: [ 0.5 0.6 0.7 0.8 0.9 1.0

% mismatched S: \ 0.4 1 3 7 9 10

Table 1: Mismatched paragraphs in FastMatch.

threshold t. For example, we see that with t = 0.6,

we may mismatch at most l~o of the paragraphs. A

lower value of t results in a lower number of possible

mismatches. We see that the number of mismatched

paragraphs is low, supporting our claim. Since the

condition used to determine when a mismatch may

occur is a weak one, the percentage of mismatches

is expected to be much lower than suggested by

these numbers. Furthermore, note that a suboptimal

matching compromises only the quality of an edit script

produced as the final output, not its correctness. In

many applications, this trade-off between optimality

and efficiency is a reasonable one. For example, when

computing the delta between two documents, it is often

not critical if the edit script produced is slightly longer

than the optimal one.

7 Summary and Future Work

We have motivated the problem of computing and

representing changes in hierarchically structured data.

Our formal definition of the change detection problem

for hierarchically structured data uses the idea of

a matching and a minimum cost edit script that

transforms one tree to another. We have split the

change detection problem into two subproblems: the

Good Matching and the Minimum Conforming Edit

Script problems. We have presented algorithms for

these problems, and we have studied our algorithms

both analytically and empirically. Finally, as an

application of some of these ideas, we have implemented

a program for computing and representing changes

in structured documents. More details about the

implement at ion, including a sample ‘(run, ” can be found

in [CRGMW95].

We are working on generalizing our algorithms to

detect changes in data that can be represented as graphs

but not necessarily trees. We are also investigating

other matching criteria to improve the performance of

our algorithms, especially for non-document domains.

We plan to further investigate the tradeoff between

optimality and efficiency to produce a parameterized

algorithm A.(k) where the parameter k specifies the

desired level of optimality. We are also improving the

implement ation of our LaDiff program, and extending

it to HTML and SGML documents. We also plan to

incorporate the cliff program in a web browser so that

users can monitor web pages of interest and track their

changes over time.
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