
 1

Management of the Evolution of Database-Centric

Information Systems

Panos Vassiliadis George Papastefanatos Yannis Vassiliou Timos Sellis
Univ. of Ioannina,

Dept. of Computer Science,
Ioannina, Hellas
pvassil@cs.uoi.gr,

http://www.cs.uoi.gr/~pvassil

National Technical Univ. of Athens,
Dept. of Electrical & Computer Engineering,

Athens, Hellas
{gpapas, yv, timos}@dblab.ece.ntua.gr,

http://www.dblab.ece.ntua.gr/

1 Introduction

Assume a database surrounded by a large variety of applications depending on it. For
example, data entry or query forms are used by hundreds of users updating or querying
information and complex workflows that operate in the enterprise frequently pose
queries to the database. What happens if we delete a popular attribute from a relation in the
database? Typically, all applications accessing this attribute will crash. Take for example,
the case in Figure 1, where we use an Architecture-graph-like sketch representation of
two relations (WORKS and EMP) and a query Q1. Observe the attribute EMP.Emp#,
which is the Primary Key (PK) of relation EMP. Its role is such that it participates as (1)
a grouper in the group-by query Q1, (2) a part of join condition between relations EMP
and WORKS, (3) a part of the result of Q1, while, at the same time, (4) it is also part of a
foreign key in the database. Clearly, the impact of deleting this attribute is significantly
higher for the structure of the database and its surrounding applications, than, e.g.,
attribute WORKS.Hours. At the same, if for some reason we would like to alter the
primary key of relation EMP, this would incur even higher reconstruction costs of the
database (both due to the presence of query Q1 and the foreign key among relations
WORKS and EMP).

SELECT E.Emp#, SUM(HOURS)

AS T_HOURS
FROM EMP E, WORKS W
WHERE E.Emp# = W.Emp#
GROUP BY E.Emp#

Fig. 1. A graph for a small part of a database and a query over it

In the rest of this section, we will describe what we believe to be an interesting research
agenda for the database community, in the context of database evolution.

1.1 Study of the fundamental laws of evolution

A fundamental problem in the area of database evolution is the lack of empirical studies.

To our knowledge there has been exactly one experiment on the evolution of database

systems [Sjøb93], which took place almost 15 years ago with duration of 18 months.

 2

To our perception, the following research questions present an interesting research

agenda on the topic:

− Can we collect test cases and observe them in order to come up with the

fundamental laws that govern database evolution?

− Can we establish an experimental protocol for monitoring existing real-world

databases and discover the way they evolve?

− Can we collect such results and make them available to the research

community (without unveiling crucial information that the database owners

would like to keep hidden)?

1.2 Principled description of the architecture of a database-centric information
system

In [BHP00], the authors introduced the idea of model management as a first-class citizen
of database research. Till then, metadata management had received significant attention
from the research community, but with no major practical results in industrial
applications. The main goal we need to pursue is to discover a commonly agreed

formalism to express the internals of a database-centric system, on the grounds of
a well-founded theory. The main questions that arise in this context are:

- Can we derive a model of the structural properties and dynamics of database-

centric systems?

- How can we trace the full range of interdependencies in the components of a

complex database-centric system?

- Can we provide a scientific foundation for the architecture of complex

database-centric systems?
In our research, we refer to the main construct that keeps the enriched metadata of a
database-centric environment as the Architecture Graph of the system [AG06]. So far, we
have had some preliminary results in the construction of blueprints for data warehouse
environments and in the management of the evolution of a database, by exploiting the
Architecture Graph [PKVV05, PSTS05, PaVV06]. We refer to the latter in the following
section.

1.3 Principled response to evolutionary events

Mostly all the work of the research community on database evolution has focused on
conceptual models and object-oriented databases [Rod+00], without any treatment of the
significantly more difficult problem of managing a regular relational database which is
surrounded by a large number of applications.
The main problem that we have to deal with is:
Given a set of user requirements on the structure, content and future availability
of a certain part of data stored in a database, how do we handle events that affect
the above properties in order to satisfy all user requirements?
This research topic raises the following questions:

- Given a certain event, how do we forecast its impact as this is propagated
throughout the whole database, via module interdependencies?

- How do we handle conflicts? E.g., what happens if the administrator needs to
delete a certain attribute, while a user has explicitly banned any such action?

- How do we keep versions of the database consistent to user views?

- How easily can we express user requirements (since the data entry for
metadata is always the biggest problem in metadata management)?

 3

- How do we treat evolution (and addition of information in particular), in the
absence of user requirements?

- How can we perform all the above with minimal effort, for existing systems

Viewed from another point of view that concerns the automation of the reaction to

changes, the question that arises concerns our ability to derive (semi) automatic

mechanisms for the:

o self-monitoring,
o impact prediction,
o auto-regulation,
o self-repairing

of complex information systems?

1.4 Metrics

Given a model that describes the possible evolution of a database, how good is a certain
schema that a designer produces? Is design A better than design B? Evaluating the
design of a database, given a prediction for its evolution in the future is a very difficult
research problem.

There is a huge amount of literature devoted in the evaluation of software artifacts
[Fent94, FeNe02]. The main idea for the state-of-the-art in design metrics is the adoption
of measure families, like size, complexity, coupling and cohesion for graph-theoretic system
representations. The definition of these measure families is generic, in the sense, that
depending on the underlying context, one can define his own measures that fit within
one of the aforementioned categories. In order to be able to claim fitness within one of
the aforementioned categories, there is a specific list of properties that the proposed
measure must fulfill.

- What are the “right” measures for the quality of the design of a database,
given estimations on its workload and evolution?

- What are the “right” families of such measures?

- Is there an underlying well-founded theory that supports the above results?

1.5 Design Patterns

Design patterns constitute a principled way of teaching, designing and documenting
software systems [GHJV95]. Moreover, design patterns allow us to evaluate the quality of
a design by measuring the compliance of a logical schema to a set of underlying patterns.
Given a well-founded theory of patterns, the less deviations a schema has from the
theory, the less is the risk of maintenance problems, since the amount of necessary
improvisations the designer makes is reduced.

− Can we come up with a well-founded theory for design patterns to guide
both database and application designers?

− Can we eliminate maintenance traps that occur due to ad-hoc, or unavoidably
complex solutions?

− Can we design principled methods for testing database designs?

− Can we devise a documentation method that makes the
administrator’s/developer’s life easier as the user
requirements/data/systems/database/… evolve?

 4

2 Adapting queries and views to database evolution

So far we have had preliminary results in the management of database evolution and
specifically in the adaptation of queries and views to events that alter the underlying
database schema [PKVV05, PaVV06]. In this section, we discuss the main results of our
approach so far.

The main mechanism towards handling schema evolution is the annotation of the
constructs of the database graph (i.e., nodes and edges) with operators that handle
schema evolution. Therefore, we first introduce a graph modeling technique that
uniformly covers relational tables, views, database constraints and SQL queries as first
class citizens. The proposed technique provides an overall picture not only for the actual
database schema but also for the architecture of a database system as a whole, since
queries are incorporated in the model. Moreover, we distinguish the following essential
components, which are included in our model: relations, conditions (covering both
database constraints and query conditions), queries and views. The proposed modeling
technique represents all the aforementioned database parts as a directed graph with the
aforementioned entities being represented as nodes and edges covering different
semantics of their interrelationships (e.g., part-of, value mapping edges, etc).
We, then, formulate a set of rules that allow the identification of the impact of changes
to database relations, attributes and constraints and propose an automated way to
respond to these changes. The impact of the changes involves the software built around
the database, mainly queries, stored procedures, triggers etc., which are affected in two
ways: (a) syntactically, meaning that it is possible that the execution of the code will
produce a compilation/execution failure and (b) semantically, meaning that a change in the
database can affect the semantics of the software built around it. We abstract software
modules where SQL is embedded within a host language and treat every such module as
a set of SQL queries. The rules that we propose are annotations of the graph that
determine the policy to be followed in the case of an event that modifies the graph. The
combination of events and annotations determines the action to be followed for the
handling of the potential change, i.e., the adaptation of the query to the change.
The space of potential events is quite simple and comprises the space of hypothetical
actions (addition/deletion) over specific database graph constructs (relations, attributes and
conditions). For each of the above events, the administrator annotates the appropriate
graph constructs (i.e., nodes and edges) with policies that dictate the way they will
regulate the change. Two kinds of policies are defined: (a) propagate the change, meaning
that the graph must be reshaped to adjust to the new semantics incurred by the event and
(b) block the change, meaning that we want to retain the old semantics of the graph and
the hypothetical event must be blocked or, at least, constrained, through some rewriting
that preserves the old semantics [NiLR98, VeMP04].
In order to give a flavor of our approach, we start with the simplest example of an SPJ
query, specifically the query SELECT * FROM EMP. Assume now that the designer extends
the relation EMP with a new attribute PHONE. When an attribute is added to a relation of
the underlying schema, we need to identify the queries to which the addition must be
reflected and propagated. Both the current database systems and the state of the art in
research do not react to this change, but rather, they let the designer/administrator
propagate the change to any queries he thinks they should be modified to include the
extra attribute. Eventually, the designer/administrator is obliged to rewrite the queries,
which are to be modified, by adding appropriately the extra attribute to their syntax. This
treatment is mainly due to the fact that (a) the addition of an attribute does not
syntactically affect the involved queries (i.e., the existing queries can still be executed
without any problem) and (b) up to now, we do not have any mechanism to tell the

 5

system that once an attribute is added to a relation, it must also be added to certain
queries that access this particular relation.
Based on these, in the presence of an addition of an attribute, an impact prediction
system must trace all queries and views that are potentially affected and ask the
designer/administrator to decide upon which of them must be modified to incorporate
the extra attribute. Extending the current modeling, for each element potentially affected
by the addition, we annotate its respective graph construct (i.e., nodes, edges) with the
aforementioned policies. According to the policy defined on each construct the
respective action is taken to adjust the query to the change. Therefore, for the event of
attribute addition, the policies defined on the query and actions taken according to each
policy are:

• Propagate attribute addition. In this case, when an attribute is added to a relation
appearing in the FROM clause of the query, this addition must be reflected to the
SELECT clause of the query.

• Block attribute addition. In this case, the addition to the relation must be ignored and
the query is immune to the change. The SELECT * clause must be rewritten to SELECT
A1,…,A n without the newly added attribute.

• Prompt. In this case (default, for reasons of backwards compatibility) the
designer/administrator must handle the impact of the change manually, like what
happens now in database systems.

from

map-select

S

Q

S SS

EMP

PhoneEmp# NameEmp#

Name
S

map-select

...

On attribute addition
then propagate

Fig. 2: Propagating addition of attribute PHONE to the schema of the query

The graph of the query SELECT * FROM EMP is shown in Figure 2. The annotation of the
FROM edge as propagating addition indicates that the addition of PHONE node will be
propagated to the query and the new attribute is included in the SELECT clause of the
query. If a FROM edge is not tagged with this additional information, then a default case is
assumed and the designer/administrator is prompted to decide.
Different policies capturing the same event can be defined on different elements of the
graph --e.g., a relation node is annotated for propagating a deletion of an attribute to all
queries accessing this attribute, whereas a specific query is annotated to block this
change. As these policies may not always align towards the same goal, a general guideline
for handling policy conflicts is proposed, which follows the rule: policies defined on
query graph structures are stronger than policies defined on view graph structures which
in turn prevail on policies defined on relation graph structures. According to the
prevailing policy the proper action is taken.
To alleviate the designer from the burden of manually annotating all graph constructs, a
graph representation tool [PKVV05] and a simple extension of SQL with clauses
concerning the evolution of important constructs is proposed.

3 References

[ArGr06] Architecture Graphs for Databases. Project description available at
http://www.cs.uoi.gr/~pvassil/projects/architecture_graph

 6

[BHP00] Bernstein P.A., Halevy, A.Y., Pottinger, R.: A Vision of Management of

Complex Models. SIGMOD Record 29(4): 55-63, 2000.
[FeNe02] N.E. Fenton, M. Neil: Software metrics: roadmap. ICSE - Future of SE

Track 2000: 357-370.
[Fent94] N. Fenton. Software Measurement: A Necessary Scientific Basis. In IEEE

Trans. on Software Engineering, 20(3), March 1994.
[GHJV95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. “Design Patterns: Elements of

Reusable Objects- Oriented Software”. Professional Comptuting Series. Addison-
Wedley, Reading, Ma, 1995.

[NiLR98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CSV algorithm for view
synchronization in evolvable large-scale information systems. In Proc. of
International Conference on Extending Database Technology (EDBT ‘98).
Lectures notes in computer science, Springer, p.359-373. Valencia, Spain,
Mar 1998.

[PaVV06] G. Papastefanatos, P. Vassiliadis, Y. Vassiliou. Adaptive Query Formulation
to Handle Database Evolution. Forum of the 18th Conference on
Advanced Information Systems Engineering (CAiSE 2006), Luxembourg
June 5-9, 2006 (short paper).

[PKVV05] G. Papastefanatos, K. Kyzirakos, P. Vassiliadis, Y. Vassiliou. Hecataeus: A
Framework for Representing SQL Constructs as Graphs. In 10th
International Workshop on Exploring Modeling Methods in Systems
Analysis and Design (EMMSAD’2005)

[Rod+00] J.F. Roddick et al. Evolution and Change in Data Management - Issues and
Directions. SIGMOD Record 29(1), p.21-25 (2000)

[Sjøb93] Sjøberg, D.: "Quantifying Schema Evolution". Information and Software
Technology, Vol. 35, No. 1, pp. 35-44, 1993.

[VSTS05] P. Vassiliadis, A. Simitsis, M. Terrovitis, S. Skiadopoulos. Blueprints for
ETL workflows. In Proc. 24th International Conference on Conceptual
Modeling (ER 2005), pp. 385-400, 24-28 October 2005, Klagenfurt, Austria

[VeMP04] Y. Velegrakis, R.J. Miller, L. Popa. Preserving mapping consistency under
schema changes. VLDB J. 13(3), pp. 274-293, 2004.

