
Defining Metrics for Conceptual Schema
Evolution

Lex Wedemeijer

ABP Pensioenen, The Netherlands
L.Wedemeijer@wxs.nl

Abstract. It is generally believed that a well-designed Conceptual
Schema will remain stable over time. However, current literature rarely
addresses how such stability should be observed and measured in the
operational business environment with evolving information needs and
database structures. This paper sets up a framework for stability of con-
ceptual schemas and proceeds to develop a set of metrics from it. The
metrics are based on straightforward measurements of conceptual fea-
tures. The validity of the set of metrics is argued here from theory, oper-
ational validity may be demonstrated by a longitudinal case study into
the evolution of conceptual schemas. The main contribution of this paper
is the realization that the measurement of conceptual schema stability is
an essential step for understanding and improving current theories and
best-practices for designing high-quality schemas that will stand the test
of time.

1 Introduction

According to the 3-schema architecture, a well-designed Conceptual Schema
(CS) satisfies many quality requirements [5,30,35]. It is the task of the designer
to meet these requirements in the best possible way. In particular, the CS is re-
quired to be stable enough to support a long-term systems lifetime and be flexible
enough to meet future information demands. Many design strategies exist that
claim to improve the flexibility of the CS design. Why they should enhance flex-
ibility is often explained, sometimes demonstrated, but rarely proven by actual
business cases. A designer that wants to prepare the CS for future changes, must
trust to experience and to state-of-the-art design practices, there is no way to
pick the ‘best’ design strategy for a particular business case at hand. Also, a cry
for wholesale flexibility of CSs is not a very specific requirement that designers
can meet with:

– flexibility can only be established ‘on the fly’. A potential for change can only
become apparent when a structural change occurs, and not when discussing
a new schema

– there is no distinction between structural changes that ought to be accom-
modated by the flexibility in the CS design, and those that are beyond the
desired flexibility, and
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– there is no way to verify that a CS has ‘enough’ flexibility, or to discover
that ‘more’ flexibility is needed.

It is clear that the notion of flexibility is too general and unspecific to be
of value in assessing the quality of a CS design, and does not contribute to an
understanding of the evolution of the CS. The main problems with the concept of
flexibility are both in the dependence on future events, and its lack of specificity.
What is needed is sound criteria that can be measured and researched by looking
at the actual schema evolution as changes occur over the operational lifetime,
and that can be used to improve current best-practices for CS stability and
flexibility. The central goal of this paper is to propose such a set of metrics. We
do not claim that the proposed set of metrics is exhaustive but, to the best of
our knowledge, the comprehensive set of metrics for schema evolution as defined
in this paper have not been reported before in the literature.

The paper is organized as follows. Section 2 introduces the general frame-
work for stability. Section 3 derives the principal requirements for stability and
proposes suitable metrics. Section 4 argues the validity of the set of metrics.
Section 5 discusses how these metrics can be applied in a field study of schema
stability. Section 6 looks at some related work. Section 7 draws conclusions and
outlines directions for further research.

2 The Framework

We assume the reader is familiar with the traditional 3-schema architecture [3]
(Figure 1). Our interest is in the CS being the single best way of perceiving the
Universe of Discourse (UoD), not only at design time but as they both evolve
over time. It is in their joint evolution that the CS must demonstrate its stability
and flexibility.

Intuitively, flexibility means adaptability, responsiveness to future changes in
the environment. And ‘more’ flexibility will mean a smaller impact of change.
Stability covers much of the same ground but where flexibility refers to a fu-
ture capacity for change, stability refers to the past, being evidence that any
required changes have been accommodated and that flexibility has been deliv-
ered. This leads us to conclude that flexibility and stability share the following
three ‘dimensions’ that are orthogonal to each other:

– an environment where changes originate, namely the Universe of Discourse,
– time required to adapt, i.e. the time needed to propagate changes to the

other components of the information system, and
– the potential to adapt.

These three dimensions are further refined into a number of high-level mecha-
nisms and best-practices that aid the designer in enhancing the future flexibility
of a CS. These mechanisms refine the framework as shown in Figure 2. The large
number of mechanisms and their wide variations in scope may possibly explain
why there is as yet no generally accepted and unambiguous definition of the
concept of schema stability.
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Fig. 1. 3-Schema Architecture

This framework provides a sound basis to evaluate overall flexibility of CSs.
It is built on the 3-Schema Architecture and establishes a clear cause-and-e�ect
relationship between ‘structural changes’ in the UoD and those in the CS. It
restricts the relevant environment from which changes stem to the Universe of
Discourse, and no more. This prevents inappropriate demands of flexibility on
the CS. For instance, it excludes changes in responsibilities and tasks of business
unit management, changes in the database management system, in the design
methodology or duties of the maintenance team etc. An important feature of
the framework is that it can be used not only to understand flexibility as a
potential for future change. It also provides us with a yardstick to measure to
what extend the CS flexibility has actually been exploited in the past. The next
section explains the importance of the past evolution of the CS in this respect.
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Fig. 2. Conceptual Schema framework for flexibility and stability
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This paper is about evolution of the CS over its operational life time. It does
not address the issue of quality of the CS as output from the initial life cycle
phase of schema design, be it delivered in the traditional ‘waterfall’ method or by
some iterative approach. For the same reason, we assume that a single data model
theory is used. The data model theory defines the constructs and constructions
of the CS, and any change in the data model theory must propagate down to
the CS [13]. As a result, changes in the CS are precipitated that are not driven
by new user requirements (but by the data management department).

Many design strategies exist that claim to deliver high-quality, flexible CS
designs. To name some important ones:

– schema transformations approach [16]
– reflective approaches [40,53]
– global schema integration [3,46]
– component-based development, or: (re)use of schema patterns [10] and
– ontological approaches [49,54]

Why any of these particular strategies should enhance the future flexibility
of a CS design is often argumented, but the literature is very scarce on actual
proof of flexibility in live business cases. While there is no real understanding how
these strategies succeed in delivering flexibility, we do not intend to research this
issue. The aim of this paper is to understand the mechanisms that are involved
in exploiting flexibility as a potential for change.

The life cycle phase of testing, when an unfinished CS is being completed,
is also beyond our scope. It is quite common for this phase that many changes
occur: be it correction of design failures, or enhancement of initial design quality.
But the need for adjustments in this stage indicates progress in the understand-
ing of requirements and improvements in the way of incorporating them into the
design. We feel that the amount and types of changes in this phase is a hallmark
of the designer’s ability and experience rather than an expression of real changes
in the UoD. Some interesting research in this area has been done by [7,8], but
not exploring the consequences in the operational life cycle phase.

3 Metrics for Conceptual Schema Evolution

The general framework serves to develop hypotheses on how schema stability
ought to be expressed in operational environments. With each hypothesis we
associate a metric that may be used to test the hypothesis for evolving conceptual
schemas in operational businesses. A metric can be defined as ‘a function whose
inputs are elementary measurements of an IT-artifact, and whose output is a
single value that can be interpreted as the degree to which the artifact possesses a
given property or satisfies a given hypothesis’ [45]. Each of our metrics produces
objective (i.e. repeatable) outcomes, and shows the desired tendency for the
associated hypothesis.
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3.1 Justified Change

By definition, a CS is a complete and correct model of the information structure
of the UoD, and nothing else. As long as the business activities of the organiza-
tion remain unchanged, the information needs remain the same. It follows that a
change in the CS is only justified if a change in the UoD information structure is
causing it. Any change in the CS that cannot be linked with some driving cause
in the UoD is by definition an unjustified change or instability. For instance, the
CS should be indifferent to technical changes: increasing transaction volumes,
more efficient data fragmentation plans, installation of additional infrastructure
etc. So our first demand that must hold in quality CSs is:

Hypothesis: every change in the CS is justified

To establish whether a change is justified, we need to

– determine every single CS change, and
– associate each one with the appropriate change driver(s) from the UoD.

The metric for justified change is the ratio of single CS changes that can be as-
sociated with an appropriate change driver, over the total number of CS changes
(either with, or without change driver). Ideally, the ratio is equal to 1.

The metric is sensitive to the definition of ‘single CS change’. Usually, the
‘single changes’ are identified with elementary, i.e. indecomposable changes as de-
fined in the data model’s taxonomy [6,21]. But care must be taken because many
taxonomies consider only transformation of a single construct or construction at
a time, while the actual semantics may be a single, coherent change in several
schema constructs at once. For instance, dissolving a generalization [55] involves
deleting the generalized entity, removing the associated is-a relationships, plus
moving all aggregation relationships that the generalization was involved in.

The metric is also sensitive to the demarcation of the UoD. Selecting the
right scope for the UoD is an important topic in design and will receive much
attention. But once the design phase is finished, the scope of the UoD is fixed.
After that, the CS is presumed to be the complete and correct model of the UoD
information structure and vice versa: the UoD is that which is modelled by the
CS. Consider for instance an enterprise that operates an integrated customer
database. To change its CS in order to model which regional offices manage a
fragment of the customer database is unjustified because the internal organi-
zation of the enterprise has not been included in the UoD. It is suggested in
[32] to distinguish between change drivers that are external to the enterprise (”a
more stable external environment enhances stability”) and those arising from
somewhere within the own organization (”a more simple internal environment
enhances stability”).

3.2 Proportional Change

In physics, the property of stability is defined for a system in (near) equilibrium
as: any disturbance in the system’s state will cause a reaction that is proportional
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to the size of the disturbance. Analogously, we want a small change in the UoD to
cause a proportionally small change in the CS, assuming the change is justified.
To wit: it is not uncommon that a relatively small change in the UoD triggers
an avalanche of changes in the CS. Such a situation deserves to be called an
instability, and we want our metrics to single it out as such. So we conjecture

Hypothesis: every change in the CS will be proportional to the
change in the UoD that causes it

To establish whether a change is proportional to the change driver, we need
to measure:

– the size of the change in the CS, and
– the severity of the change driver in the UoD

The metric for proportional change is established as the ratio of size of CS
change over the severity of UoD change. Ideally, the ratio should have a low
upper bound.

There is a problem here in observing the ‘size’ or ‘severity’ of the single
change in the UoD. This concept cannot be formalized rigorously, for the same
reason that ‘the information structure of the UoD’ cannot be formalized without
referring to some kind of conceptual representation. It is blatantly incorrect to
let the maintenance engineer decide on this: the severity of the UoD change will
then of course be judged by its impact on the CS! Nevertheless, an operational
measure of size could be the number of paragraphs explaining what has changed
in the UoD.

In contrast, the size of CS change is easily determined as the number of
affected constructs. Depending on the data model theory the size count can be
further refined into counts by type such as entity, attribute, constraint etc.

3.3 Proportional Rate of Change

Likewise, it can be said that a system constantly undergoing some kind of change
is not very stable. An operational CS which is meant to support many user
applications, must have an acceptable low rate of change. But what rates are
acceptable, what is not low enough? Users will generally relate it to the busi-
ness environment that is being modelled. A very turbulent environment changes
frequently, and users will accept a correspondingly high rate of change for the
CS that models it. That same rate will probably not be accepted in a stable
environment, such as a company engaged in the growing of a forest.

Too high a rate is an unstable system, and users and management will not
tolerate this for long. On the other hand, a CS with a very low rate of change
may not keep abreast with changing business requirements, and might actually
be too rigid to change at all. This holds for fragile legacy systems where any
change might precipitate an avalanche of unexpected side effects. So we have:

Hypothesis: the rate of change in the CS will be proportional to rate
of change in the UoD
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First, one has to measure the rate of change in the CS. This derives from two
measurements:

– the difference between old and new CS, i.e. the number of changes made in
creating the new CS version, and

– the lifetime of the CS versions, i.e. elapsed time between subsequent versions
going operational.

The rate-of-change is then calculated as the ratio of the number of differences
over the version lifetimes. The CS stability expressed in this rate of change
improves over time if either the lifetimes of CS versions increase—but this may
also reflect rigidity—or if the number of changes between versions decreases.

Next, a measure for rate of change in the UoD must be devised that is
targeted at changes in information structure. We are not concerned with changes
in information, that are handled by ordinary transactions and data updates. In
a similar fashion as above, we propose a rate of UoD measurement to be the
ratio of two numbers:

– the difference between old and new user requirements, i.e. the number of
changes made in the requirements deriving from the UoD, and

– the lifetime of the consecutive sets of user requirements.

The turbulence in the UoD can then be expressed as the ratio of the number
of changes in requirements, over the lifetime of requirements. Of course this
is a somewhat hypothetical measurement. When confronted with real business
situations, it will be next to impossible to come up with an exact and verifyable
‘count’ of differences in requirements. An alternative is to count the number of
change drivers, as discussed above in the metric for justified change.

The metric for proportional rate-of-change is established as the ratio of both
measurements: rate-of-change of the CS over rate-of-change in the UoD. Ideally,
the ratio should have a low upper bound. A first approximation is to set the
lifetime of user requirements equal to the lifetime of the CS versions, making it
cancel out of the equation. The metric simplifies to the ratio of:

– the difference between old and new CS, i.e. the number of changes made in
creating the new CS version, and

– the difference between old and new user requirements, i.e. the number of
changes made in the requirements deriving from the UoD.

The rate-of-change measurement per CS can be used to benchmark CSs that
cover a similar UoD. The CS with lowest rate of change is best, because it will
incur lowest cost and least interruption of service to customers. A similar metric
was employed by [9] in their study of the evolution of software programs.

There is a caveat, because the rate-of-change measurement is biased. It will
appear to be better for small CSs than for highly integrated CSs. If the UoD is
larger, then more features of the UoD can change, so the rate of change in the
CS will probably be higher. Imagine to cut up a large and complex CS in two
parts: the versions for each part can be expected to have half as much changes,
and a twice as long lifetime, so the overall rate of change is 4 times as low. The
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hypothesis should not be misinterpreted as an advise to fragment large CSs.
Other features of a non-conceptual nature may also influence the rate of change:
the capacity of the maintenance department. The rate will be significantly lower
if the department is understaffed.

This metric is not always applicable. A fundamental assumption is that the
entire CS is versioned [43]. Some approaches use other versioning mechanisms,
e.g. O-O data modeling theories allow versioning per construct [2]. In such a
case the hypothesis may still hold, but the metric, and some others to follow,
will not work and another one is needed.

3.4 Compatibility

Compatibility aims to ease change. Compatibility, the demand to keep the im-
pact of change as small as possible, is a natural drive towards stability. It will ease
schema evolution because the need for complex data conversions is intensionally
minimized.

We define a new CS to be compatible with the old one, if no data present
in any construct of the old CS needs to be altered or discarded to fit the new
schema. As compatibility will considerably lower overall cost, time and effort
of change, designers will go out of their way to achieve it. As a result, a CS
change may be compatible, but other quality aspects may be compromised. So
we conjecture:

Hypothesis: the rule is compatible change, the exception is
incompatibility at specific places in the schema

To establish at what locations a CS change is incompatible, we must look at
the general pattern of changes in data instances, and ignore for the time being
changes in schema constructs. The data that needs attention must be separated
from the data that can be left unchanged. By definition, the set of data to be
edited is a temporary External View on the old CS. A measure of compatibility
for CS change can be based on the relative size of that External View, so we
count per type of construct:

– the number of constructs in the ‘data-to-be-edited’ External View, and
– the number of constructs in the old CS

The level of compatibility is then calculated as 1—the ratio of these two counts.
Or, equivalently, it is calculated as the number of constructs in the old CS not
affected by the change divided by the total number of constructs in the old CS.
Ideally, the ratio is equal to 1, when all the data instances of the old schema fit
seamlessly in the new schema of things.

Whereas the previous rate-of-change metric was found to be biased towards
small CSs, this compatibility metric is biased towards large CSs. If the same
change is accomodated in two different CSs in the same way, then the metric
produces a more favourable outcome for the larger one.

Compatibility is closely related to the concepts of logical and physical data
independence [3,14]. A methodical way for improving compatibility is developed
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by [26], but their approach is limited to changes in a single entity (or rather,
relation).

Incompatibility is when data instances have to be edited, moved wholly or
partially from one entity into another, when relationships have to be reestab-
lished etc. It requires the editing of data instances beyond the scope of either the
old and the new CS. Such data conversion efforts are not uncommon in business
situations, but are rarely accounted for in the literature [31,33].

A form of incompatibility that is even harder to accommodate is when the
level of abstraction changes, causing differences between schemas that are known
as semantic discrepancies [47]. A methodical approach that supports the detec-
tion and prevention of such incompatibilities in schema evolution is found in
[56].

3.5 Extensibility

New ways of doing business are generally supposed to augment existing business
procedures and methods, not to replace them. It follows that when information
requirements change, the new requirements are additional to what is already
accounted for in the old CS. The most obvious changes of this kind are additions
of new constructs to the CS.

A type of change that often goes unnoticed is extension of the entity defini-
tion. While the entity name and composition are not changed, it is fundamentally
altered. This is because the intent is broadened, so many more data instances can
and will be recorded for it. An example is when the definition of ‘person’ is first
restricted to customers only, whereas after extension it also covers their spouses.
A consequence of extension is that the old CS becomes a valid External View
on the new CS, preferably an updateable one so that old update routines can
remain unchanged. On the data level, change by extension leaves the old data
fully compatible with the new schema, as discussed above. This line of reasoning
leads us to formulate:

Hypothesis: the rule is schema extension, the exception is
modification of existing constructs

To establish whether a change in the CS is an extension, we take the metric
for compatibility and refine it. For each type of construct in the new CS we
count:

– the number of pure additions, and
– the number of constructs in the new CS that differ from the old CS in any

way at all

The metric for extension is established as the ratio of the first over the second
count. Ideally, the ratio equals 1 meaning that there are only additions and no
other changes.

The metric is insensitive to the deletion of constructs, because a deleted
construct does not show up in either count. This is unfortunate because a CS
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change may appear to be a pure extension while actually, the new construct is
a variant of some construction that is deleted simultaneously.

Taxonomies are often based on the idea that change in a construct is a simple
concatenation of construct deletion plus construct addition [23]. However, this
does not hold at the level of data instances because data will be lost as soon as a
construct is deleted. If users are aware that a new construct is actually a variant
of something old, then they will demand data compatibility to safeguard their
data assets, i.e. that old data instances must be carried over into instances of
the new schema. Lossless transformations [16] are introduced into taxonomies to
guarantee that any relevant data instances are retained. Therefore the applica-
tion of metrics for extension and compatibility depends very much on the choice
of taxonomy.

3.6 Complexity Hampers Change

It is generally agreed that complexity is a main determinant in maintenance of
any product, be it hardware, software, or a conceptual schema [4,15].

As businesses depend more and more on information systems, and as most
changes to information systems augment the support for the business operation,
it can be expected that the overall size and complexity of information systems
will increase.

Surprisingly, the concept of complexity is often discussed only intuitively,
for instance [17] introduce their concept of complex object type as ‘simply a
boundary line drawn around a set of objects and relationships in the schema’
(p.425).

The usual feeling is that complexity has to do with the combined effect of
both a large number of things, and the coupling/interdependence between them,
the result being a difficulty to understand the entire setup. The complexity of
the composite system is then determined by the number of components, the
number of ways in which the components are interrelated, and how these may
change over time.

Authors point out that the complexity of a system has a negative impact on
its overall quality. As stated by [22] ‘“the more relationships the less comprehen-
sion” is possibly due to the accompanying increase in complexity.’ (p.348). We
are not interested in complexity as such, but in the effect of complexity of a CS
and its constructs on the overall stability. The general idea is that as complex-
ity of a CS is greater, change is more difficult. The maintenance engineer will
generally avoid to mess with complex structures, so we conjecture:

Hypothesis: a more complex CS will change less frequently

A metric for this hypothesis requires measures for the notions of schema
complexity and frequency of change. So if we can decide on objective measures
for

– the complexity of each CS version, and
– the lifetime of each CS version
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then their ratio is a first characterization for this hypothesis, assuming a linear
dependence between the two. Next, the hypothesis should be tested by comparing
these ratios for a number of CSs with equal and/or different complexities.

A prerequisite in this hypothesis is the objective indicator of CS complexity—
which is hard to find. Size is a first indicator of schema complexity but, as has
been observed by [37] ‘this assessment of complexity ignores the number of rela-
tionships, named and unnamed, in a given model’ (p.41). Moreover, complexity
of a CS is not only dependent on the information structure of the UoD alone.
Other factors are of perhaps greater importance, such as ease of use of the data
model theory, capabilities of the designer, restrictions due to demand for com-
patibility etc. [28], when researching software complexity, finds that ‘surprisingly,
much of the observed complexity appears to be technically unnecessary (and)
excessive schedule pressure and hasty design tend to be a common root cause’
(p.100).

Considering the many aspects that contribute to complexity, it can be
doubted that a single number suffices to express overall complexity. For instance,
complexity of a CS is very much dependent on the chosen data model theory. In-
fluencing factors are the kinds and levels of abstraction of data model constructs
and constructions, the ease of use for maintenance engineers etc. We will briefly
discuss two measures for complexity, and their consequences for our metric of
change.

A simple measure for complexity of the aggregate mechanism may be ob-
tained by regarding the CS as a lattice where each node is an entity and each
edge represents an aggregation relationship. In a more complex lattice, the num-
ber of edges (i.e. relationships) will exceed the number of nodes (entities), and
integrity constraints are required to ensure overall data consistency. In measur-
ing the complexity of any lattice of a certain size, we need to consider what
the ‘minimal’ complexity will be and set this to 0. We also need to account for
the fact that some CSs are actually not a single lattice, but are made up of
several unconnected subschemas. Our cyclomatic complexity metric for CSs is
calculated as:

number of unconnected lattices (subschemas)
− number of nodes (entities)
+ number of edges (relationships)

A simple lattice like two entities connected by a single relationship has a cy-
clomatic complexity of 0. Slightly more complex is a lattice of three entities that
are all connected, with a cyclomatic complexity of 1. This number has a sound
interpretation: it means that 1 constraint may suffice to guarantee referential
integrity in the lattice.

Our complexity metric is not new. McCabe’s measure of cyclomatic complex-
ity for software code follows the same line of reasoning; it can even be retraced
to the mathematician Euler (1707–1783). [24] apply McCabe’s software metric
in 7 case studies in the US Department of Defense. Their findings ‘suggest that
maintenance productivity declines with increasing complexity density’ (p.1287),
which agrees with our hypothesis. However, closer inspection reveals that the
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suggestion actually derives from a single outlier point in their small set of case
studies, so the argument is not really strong.

Just like aggregation, the mechanism of generalization can be a cause of
complexity. It was noted by [18] how class hierarchies may come to be used
inconsistently due to misunderstanding the overall structure of generalizations
and specializations.

A measure for complexity for the generalization mechanism is obtained along
similar lines. The generalized entity is devolved into a lattice with specializations
being nodes, and edges representing the generalization / specialization relation-
ship. Attempts at understanding and clarifying this lattice structure have been
described in [11,27,29].

3.7 Abstraction Reduces the Need for Change

The notion of CS abstraction is markedly similar to that of complexity. Like
complexity, the level of abstraction is an important design consideration. [15]
states that the stability of a CS depends on its level of abstraction. The general
idea is that a more abstract design will have a better stability. This is because a
less abstract, thus more detailed CS has more constructs and constructions that
need to be changed in order to adapt equally well to new requirements. So we
conjecture:

Hypothesis: a more abstract CS will go through less changes

A metric for this hypothesis should include

– the level of abstraction of the CS, and
– the number of constructs in the CS that change over time

Their ratio is a first characterization for the hypothesis, assuming a linear de-
pendence between the two. In order to test the hypothesis, ratios should be
compared for a number of CSs.

Like complexity, the metric for abstraction ought to build on a generally
accepted and well-defined measure of abstraction, which again is found to be
lacking. It is beyond the scope of this paper to suggest a solution to this issue,
but a few remarks are in order. First, it is evident that a CS with a higher
level of abstraction should have less constructs with more instances; while a
lower level of abstraction results in a CS with more constructs with fewer data
instances. Second, abstraction in the CS is strongly related to the data model
theory that is used. Some data models (e.g. those based on ontological principles
[54]) are considered to be more abstract than others. Third, CS designs are
often documented on multiple levels of abstraction [38], and the metric ought
to show consistently better outcomes on the higher levels. Finally, it must be
noticed that the terms abstraction and clustering (aggregation) are sometimes
used interchangeably [22].
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3.8 Susceptibility to Change

It is a common assumption that attributes of an entity will change more fre-
quently than the entity as a whole, and descriptive attributes will change more
often than primary-key attributes; [1] uses the term ‘sensitivity’. [57] argues that:
‘it is likely that “rules” set by management or other political bodies will change
more frequently and quickly than inherent properties, and that rule changes
will more frequently affect relationships among entities than the related entities
themselves’ (p.1241). In other words, some types of constructs provided by data
model theories are presumably more stable than others. Many designers exploit
this by doing CS design following the straightforward top-down approach, per-
haps calling it abstract-to-concrete. Entities and relationships are presumed to
have best stability and hence are modeled first. Attributes and relationship car-
dinalities are assigned later on, while integrity constraints and business rules
are the most volatile and are added to the schema as late as possible. So we
conjecture:

Hypothesis: some types of construct in the CS are more susceptible
to change

Obviously, metrics for this hypothesis must differentiate between the types
of construct. A simple measurement will include:

– the various types of construct as provided by the data model theory,
– the total number of constructs per type that is present in the CS, and
– the number of constructs per type that change (perhaps refined by including

the type of change, i.e. addition, alteration, or deletion)

The susceptibility to change per type of construct is calculated as the ratio of the
number of changed constructs, over their total number in the CS. These ratios
can then be compared between types. It seems reasonable to expect that the
ratio will be low for entities, while constraints will have a high ratio, meaning
they are very susceptible to change. The ratios can also be compared among
different CSs.

The hypothesis implicitly assumes that UoD features that are modeled with
one type of construct at one time, will be modeled with the same type of con-
structs at all times. That is, type persistence is assumed [31], while [33] assume a
type compatibility invariant when changing a CS. [42] argument that: ‘an object
type may not evolve into a method, and a constraint may not evolve into an
instance’ (p.357). Some authors concede that a construct might change its type,
e.g. in object-orientation [34], but this is not covered by our metric.

We already pointed out that there is no intrinsic reason why type persistence
should hold. It is up to the maintenance engineer to decide on the best way to
represent UoD features in the new CS, and the choice of construct can differ
from the one made in the old CS.
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3.9 Preservation of Entity Identity

If the CS is drawn up using a relational data model theory, the previous hypoth-
esis can be applied to changes in the important constructs of candidate-key and
functional-dependency. This also sheds some light on the preservation of entity
identity, because the set of candidate keys provides a sound understanding of the
entity identity as they discriminate each instance of the entity from the others.
So we conjecture:

Hypothesis: the rule is no change in candidate key, the exception is
change of composition of keys

The measurements for susceptibility to change apply, but care must be taken
to account for composite keys. What needs to be established is per entity the
composition of all candidate keys as present in the old and the new CS, and then
determine:

– the number of candidate keys that have been changed from the old CS, and
– the total number of candidate keys for each entity in the new CS.

The ratio of keys changed over the total number of keys is an indication of the
susceptibility to change of the candidate keys, and thus of the entity identity
itself. If keys are stable, then none will change, and the ratio is equal to 0. It is
reasonable to expect that this ratio is tightly linked with the susceptibility-to-
change metric for the entities, in other words candidate keys will change only if
the entity itself is observed to change.

In a live business environment, it may be very hard to establish beyond doubt
what constitutes a change of entity identity. For instance, if an Employee table
is defined, do we consider the table intention changed if data on temporary help
is entered into the table? A careful count is required that detects homonyms,
synonyms and other inconspicuous alterations in the composing attributes; and
the count must establish beyond doubt whether any one of the candidate keys
is affected by such alterations.

3.10 Change Is Local

It is a common assumption that changes in the CS are local, i.e. only a single
feature of the CS is affected whenever a single requirement changes. As formu-
lated by [5]: ‘every aspect of the requirements appears only once in the schema’
(p.140), or reversely [30] ‘a random grouping of attributes (lack of cohesiveness)
will make the E-R model difficult to maintain; however, the database accuracy is
not seriously compromised’ (p.685). This aspect of CS stability is often thought
to be the result of good schema design. Normalization is generally regarded to
take care of this aspect of stability, although normalization targets at eliminat-
ing update anomaly in data instances, not in data structures. The assumption
being that in a high-quality CS, a single feature of the UoD is modeled in only
a single construction of the CS, we stipulate:



234 L. Wedemeijer

Hypothesis: a single UoD change will cause change in only a single
CS construct or construction

It is evident what should be measured to establish this localization property:

– identify each single change driver in the UoD, and
– determine the number of constructs in the CS that change as a result

The metric is the ratio of the sum of change drivers over the sum of affected
constructs. Ideally, this ratio will be equal to 1. Notice that a single CS construct
can be affected by two different UoD changes, if that construct is ‘overloaded’
in the sense that it represents more than one UoD requirement.

There is a close relationship with the metric for justified change, but the
difference is in the perspective. Justification looks at the changes in the CS and
related them to some UoD change driver. The localization metric takes a single
UoD change and locates the constructs in the CS that are impacted.

As in the hypothesis of proportional change, there is a problem here as we
need to focus on single UoD change. A fairly objective and easy measure of
change drivers might be to count the number of paragraphs in the Change Re-
quest form, assuming each paragraph identifies a single need for change. A further
restriction is that unjustified changes must be ignored for obvious reasons.

3.11 Change Is Restricted to a Single Module

The above claim that changes in the CS are local is often supplemented with
a claim that a modular CS has better stability than a CS without modules.
The modules are expected to absorb changes and to isolate other modules from
the impact of change; comparable to the property of information hiding in O-O
approaches. So we conjecture:

Hypothesis: a single UoD change will cause change in only a single
CS module

We can use the previous measurements and apply them to establish a metric
for this localization property after each module and its exact boundaries has
been determined:

– identify each single change driver in the UoD, and
– determine the number of modules where a change is made as a result

The metric is the ratio of the sum of change drivers over the sum of affected
modules. Ideally, this ratio will be equal to 1 but it may turn out to be higher.

The literature remains vague on the definition and handling of the ‘module’
construct. There is no outstanding best-practice to determine good modules for
a CS. Nor can the ‘goodness’ or ‘optimality’ of the chosen modularization be
assessed in a rigorous way. Some methods for choosing modules have been de-
scribed in [17,39,50]. Size (granularity), complexity and even more so the criteria
for clustering are critical issues in determining good modules, but it is rarely ex-
plained how the right choice will enhance schema stability. It may be speculated
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that modularization improves stability by way of the ‘time to adapt’ dimension,
because the impact of any change will be confined to only one or two modules.

The exact boundaries between modules are also important, we feel that it is
an ‘unjustified change’ if some feature of the UoD is modeled first in one module,
but shifted into another one later. Our metric may be included in strategic
studies to find out which method may be most favorable in a particular business
situation to enhance stability of the CS by modularity.

3.12 Modules Are Stable

Once it is decided to decompose a CS into a set of modules, there will be a feeling
that each module has ‘a life of its own’. That is, each module is the valid and
complete model of an isolated part of the UoD, and satisfies all the usual quality
requirements such as understandability, correctness, data independence etc. The
logical implication is that each module can and will evolve as an independent
unit within the CS, and its evolution can be traced over time. So we conjecture:

Hypothesis: modules in the CS are stable

Some authors take the concept of module even so far that the module is
redefined as a single entity [52]. It does have an internal structure, but that
remains hidden from outside the module. This is a form of information-hiding,
which is a familiar concept in O-O approaches. However, we feel that the idea
cannot be easily extended to the relational model, because it infringes upon some
of the basic axioms on which the relational data model is built.

Notice furthermore that instability of a module does not mean that the CS as
a whole is unstable. The rates of change and levels of complexity and abstraction
can also vary greatly among modules, this is related to the dynamics of their
corresponding UoDs which may vary from extremely slow to very turbulent. The
hypothesis actually brings us back to where we started: to understand stability
of the CS. Only now the hypothesis concerns modules only, not the CS as a
whole. We gather that all of the previous hypotheses and metrics can be used
to study the stability of the CS modules separately.

4 Soundness of the Metrics

Having established the hypotheses on stability and the procedures to mea-
sure them by, we must ascertain their quality. Internal validity is: establishing
the cause-and-effects as distinguished from spurious relationships. The metrics
should produce verifiable outcomes based on clear measurement procedures, and
be independent of the observer as well as the timing of the observation. In addi-
tion, the metrics ought to show the desired tendencies: a more stable CS should
show more favorable outcomes of the metrics, and a less stable CS should show
worse metrics. To illustrate this point, consider the example provided by [28]
of a careless use of a ‘cost-per-line-of-code’ metric. A more powerful, productive
programming language will obviously produce less lines of code. But the cost per
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line of code, calculated as the ratio of (variable-cost+�xed-cost) / (lines-of-code)
may go up when �xed costs are included in total cost.

We claim that our set of metrics possesses internal validity. This is because
they are well associated with our framework for CS stability with three dimen-
sions depicted in Figure 3. This is an argument from theory only; we do not claim
validity based on statistical correlations [45]. However, we do not claim that all
properties and mechanisms of stability are covered equally well, for instance no
metric adresses the \facilitate change propagation" mechanism. This does not
signify that the mechanism is unimportant in our framework; if so, it would have
been left out. Rather the reason is that any metric for this mechanism involves
non-conceptual features of the business environment. The change at the CS level
must somehow be sized against the time and e�ort spent in adapting applica-
tions and transaction-processing software, user interfaces, data storage etc. This
approach can be seen in project planning methods such as Function Point Anal-
ysis, and it is evident that the metrics involved in FPA are not conceptual in
nature.

Mechanism to
enhance flexibility

environment
select the best UoD scope

capture the essence of the UoD

adaptability

3.2 proportional size of change
3.3 proportional rate of change

facilitate change propagation

minimize impact of change
timeliness

3.4 compatibility
3.5 extensibility

provide clustering in the design 3.11 change is per module
3.12 modules are stable

model each feature only once 3.9 preservation of identity
3.10 change is local

provide layering in the design 3.8 susceptibility to change

CS flexibility Metric to
characterize stability

3.1 justified change

keep the CS simple 3.6 complexity
3.7 level of abstraction

Fig. 3. Metrics to characterize stability based on the framework

Internal validity rests on the fact that the metrics target only conceptual
properties of operational CSs. Therefore, all CSs that satisfy the ‘�rst principles’
of good conceptual composition, can be subjected to our metrics. It can be easily
checked that no metric explicitly includes non-conceptual characteristics of the
business environment or database system such as:

{ overall size of the database, i.e. the same set of metrics can be applied to
study small to very large databases

{ types of data access, an area covered by CRUD analyses [19], cohesion in
methods [4,20] and other approaches

{ intensity of data access and volatility (number of daily update transactions)
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– number of users and user applications that access the database
– characteristics (constructs and constructions) of the specific Data Model

Theory in use
– features of the software- or hardware-architecture of the enterprise such as

data distribution or fragmentation across multiple sites, and
– the preferred design approach or the organizational/architectural design

strategies.

But there is a complication. The metrics can have an implicit dependence on
non-conceptual features of the business environments. Bias was pointed out in
several metrics: rate of change, compatibility, and complexity. Finally, it must
be kept in mind that the metrics are not geared towards design. If for some
UoD, one design approach is superior to all others, given the particulars of the
business environment, then this will not be discovered by our metrics.

We have no proof of completeness for our set of metrics, although we consider
it rather convincing that the metrics cover the dimensions and mechnisms of the
framework rather well. Even so, we cannot claim that all the dimensions and
mechanisms of the framework are covered to their full extend. No metric for
instance covers the ‘facilitate change propagation’ mechanism. The implication
is not that the mechanism is unimportant. If we thought so, it would have been
left out. Rather the reason is that any metric for this mechanism must involve
non-conceptual features of the business environment.

5 Field Study Setup

Although we claim internal validity of these metrics, we do not claim their ex-
ternal validity. External validity of our set of metrics rests upon their success-
ful application to schema evolution in actual business environments. The setup
would be a longitudinal study into the evolution of one, or perhaps several CSs
that lie at the heart of vital business information systems. The field study must
investigate the phenomenon of change in the CS over a considerable length of
time, long enough for the CS to evolve through several versions ([37] requires
that at least two CS versions be secured). The aim of the study would be to
demonstrate that the metrics can be applied in an operational setup, are objec-
tive and reliable enough, that they yield meaningful outcomes, and that they
are adequate in understanding the overall flexibility of the CS in the long run.

A first test for feasibility of most of the metrics can be provided by a single
case study. Some metrics yield only relative outcomes and to test them would
require that multiple business cases be compared. Another argument in favor of
multi-case field study is that more testing will lead to outcomes that are more
reliable in a statistical sense [45]. Reliability is essential for the next step in our
line of research, i.e. to switch from a study of past stability to a prediction of
future flexibility. This challenging area of research is to study if, and how our
metrics assist in the prediction of future CS changes. Our basic metrics would
probably have to be aggregated into more effective ones, in a similar fashion to
the approach taken in Function Point Analysis. The field studies can also be
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used to test metrics for topics that have not been covered yet, e.g. metrics for
derived data, data-dependencies etc.

To detect change in the CS in a business situation can and will encounter
problems such as

– lack of documentation. What has been changed in the CS may be discov-
ered with database reverse-engineering methods and tools [44,25], but the
business motivation for the change can only be learned from the stakeholders

– abundance of designs that represent the identical semantic structure of the
UoD in syntactically different ways

– lack of coordination, where multiple schema releases are being constructed in
parallel and the actual sequence of changes implemented in the CS remains
uncertain

– strategic changes, such as a switch in the strategies for data processing
– technical change drivers, such as a change of database software. Businesses

often find that new software releases invalidates current design decisions,
and thus causes serious impact on the existing CS.

All of these problems must be addressed and resolved in order to conduct reliable
field study into usability of the metrics. We claim that the study should use
operational CSs and be conducted within their business context. The option to
use a small-scale experiment is insufficient in our opinion for several reasons:

– real changes in a business environment are always subject to numerous ex-
plicit and implicit constraints

– seemingly unrelated changes in other information systems may have an un-
expected impact on the present CS

– live systems have a degree of fault tolerance, that allows minor defects to be
present in a CS without affecting the overall system quality

– lack of formal CS documentation in legacy systems maintenance, often being
balanced by

– huge experience and personal knowledge of maintenance engineers.

We feel that a laboratory setup cannot reproduce these features realistically.
To subject metrics intended for an operational environment to empirical valida-
tion [4,8] is in our view inadequate.

6 Related Work

Although many data modelling techniques exist that claim to deliver CSs of
high quality, relatively few attempts have been made at studying the stability
of schemas that are actually produced. It is remarkable that current literature
pays so little attention to the important topic of measuring the stability as
a determinant of CS quality. For instance, a paper by [36] is devoted to under-
standing quality in conceptual modeling, but it concentrates on the design phase
and mentions modifiability only in a sidebar. Indeed the whole area of software
measurement is considered to be immature [12,58].
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[33] discusses how a satisfactory schema evolution can be supported. The
focus is on enabling the propagation of changes, by creating a series of schema
versions that coexist in the database system. However, the taxonomy they use
consists of only 9 elementary schema transformations, and only the ‘timeliness’
dimension of CS stability is addressed, ignoring the other dimensions of business
environment and schema adaptability.

[37] reports on a research into the stability of 7 CSs denoted in a relational-
like data model theory. The following counts are used to define three metrics,
namely the ratios of primary, secondary and tertiary attributes over the total
number of entities:

– total number of entities
– total number of primary attributes, i.e. those that are essential to understand

what the entity represents
– total number of secondary attributes, i.e. relevant data attributes that are

not fundamental for understanding
– total number of tertiary attributes, i.e. those used to control and sustain

processing needs

The study is limited to a single evolution step of the CSs. It is observed how
the average number of primary and secondary attributes per entity increases
significantly, whereas the ratio of tertiary attributes per entity halves. We feel
that the observations in the report describe symptoms, rather than the essence
of the stability problem, and any conclusions drawn from them remain largely
intuitive because a formal framework linking the metrics with CS stability cri-
teria is lacking. The idea of the three discerned types of attributes is appealing,
but it is unclear what basis it has in theory or accepted best-practices.

[48] describes a longitudinal field study of the evolution in a single relational
CS covering parts of both the development period and the operational phase. His
findings are that all entities are affected by change at least once over the duration
of the field study. However, a serious drawback in his approach is that a very
simple taxonomy is used that lacks elements like attribute transformation. It is
found that the numbers of attribute deletions and additions are approximately
equal, but this finding may indicate that attributes are mostly altered in some
way, and this goes undetected because of the poor taxonomy.

[32] develop a theory for strategic information systems planning that includes
several hypotheses related to stability and complexity of the systems environ-
ment. The theory tries to capture the main determinants for stability and com-
plexity of the strategic information systems, and the tacit assumption is these
determinants will also ensure the stability of the CSs that will lie at the heart
of the systems.

We have paid little attention to the issue of facilitating change propagation.
Database facilities and techniques to enable propagation of changes with minimal
interruption of database services are the subject of ongoing research, especially
in object-orientation [2,23,41].

Whereas our focus is on evolution in the CS, several researchers are investi-
gating the area of evolving data model theory. Because the impact of changes
of data model theory at the CS and data levels can be huge, we feel that such
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research should first consider what the intended benefits are for flexibility of the
CS and quality of the operational information systems in the long term. Only
if proper goals are set can metrics be introduced to investigate and understand
what might be called: meta-evolution [51].

7 Conclusions

This paper has introduced a framework for assessing schema stability, consisting
of three dimensions. These were further refined into a number of mechanisms
and ‘best-practices’ for enhancing the flexibility of conceptual schemas. We used
this framework to develop a set of metrics that measure the evolution of the
CS with respect to each mechanism. Each metric has been rigorously defined in
an operational sense, so that outcomes will be consistent and repeatable when
applied to an evolving CS.

Nevertheless, some of our metrics for schema evolution build upon measures
for static CS composition, which are not always available and well-defined. For
instance, the hypothesis that more abstract CSs will go through less changes,
requires a preestablished measure of schema abstraction, which is found to be
lacking. But although the metric cannot be defined in an operational way, the
hypothesis can still be formulated and indicate the tendency in CS evolution.

The proposed set of metrics, which we do not claim to be exhaustive, can pro-
vide valuable insights into the working mechanisms for schema evolution. Only
when the elusive relationship between current characteristics of the Conceptual
Schema and their behaviour in future changes is well understood, can we hope
to improve current practices in database schema evolution.

Research directions. An important goal of current research is to determine
stability of an operational CS from a business point of view, i.e. to understand
the relationship between the syntactic change in the CS and the semantics of
the change driver. To this end, we are validating the metrics as a set of objective
measures for stability as a quality aspect of a given CS. Field research is in
progress to bring out which of the above metrics are best suited to gauge the
stability of schemas, and the impacts of proposed changes. The next challenge
in research is to study if, and how our metrics assist in the prediction of future
CS changes. We want to use these metrics and develop from them a set of
maintenance guidelines how to safeguard and enhance schema quality when faced
with changing information requirements and evolving schemas. A related area
where research is generally lacking is in bridging the gap between the design and
operational phases of the CS life cycle. It is common business experience that
the process of mapping a CS into a feasible database schema, requires many
implementation choices to be made. A considerable amount of those choices
are conceptual in nature, and ought to be incorporated as adjustments and
amendments on the CS design. No theoretical framework nor practical research
is available that charts the kinds of changes that are made, and whether the
effect of changes on the CS is detrimental or beneficial to the schema stability
in the long run.
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Fundamental research is needed in several areas where clarity of terms is
lacking. We already indicated how the notion of schema abstraction needs to be
clarified, the same problem was encountered in schema complexity. A promising
direction for theoretic as well as applied research is in disclosing the mechanisms
underlying our set of hypotheses. This research should include how data model
theories contribute to each hypothesis. Proponents of state-of-the-art modelling
approaches and design strategies make a variety of claims about schema stability
and flexibility. However, their references to stability are mostly unspecific, leav-
ing unclear if claims of stability are substantiated and by what mechanism the
promise of stability is realized. A paper is planned to analyse what mechanisms
underlies the claims of design strategies, using our framework from Section 2.

Another line of research which can be pursued is strategic alignment, i.e. to
match CS stability with business strategy and planning, in order to understand
the dynamics of the joint evolution of the business environment and information
systems. Other areas where these metrics may prove worthwhile is in estimating
cost and effort of a proposed change, in portfolio analysis, in benchmarking
organizations on their maintenance performance, etc.
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