
An Oracle White Paper
July 2009

Edition-Based Redefinition

a new capability in Oracle Database 11g Release 2
to support online application upgrade

www.oracle.com/technology/tech/pl_sql/pdf/Edition_Based_Redefinition.pdf 26-July-2009

Contents

Introduction . 2

Customer Goals and Oracle Database Capabilities 3

Edition-Based Redefinition . 4
The edition . 5

The challenge . 5
Conceptual explanation of the edition . 6

editions . 6
editionable object types, editions-enabled users, and editioned objects . 7
actual objects, inherited objects, and name resolution . 8
Retiring an edition . 10
Dropping an edition . 10

The edition-based redefinition lifecycle . 11
Diagramatically illustrated example . 12
A minimal, complete edition-based redefinition exercise code example 14
Consequential actualization of dependants and fine-grained

dependency tracking . 16
Deliberate invalidation and revalidation of editioned objects . 17
The effect of DDL in an edition with a child . 18
Using DBMS_Sql_Parse() to execute SQL outside of the current edition 18
Package state when the same package is instantiated in more than one edition 18

The editioning view . 19
The conditions that an editioning view must satisfy . 20

An editioning view must be owned by an editions-enabled user . 21
An editioning view must be owned by its table’s owner . 21
There can be no more than one visible editioning view for a particular table

in a particular edition . 21
The subquery factoring clause is not allowed . 21
The subquery must be a single query block . 21
The for update clause is not allowed . 21
The query block must identify exactly one table . 21
The select list must mention only column names and optional aliases . 21
The where clause, group by clause, and having clause are not allowed 21
The order by clause is not allowed . 22
Other restrictions . 22

Allowed freedoms when defining an editioning view . 22
The with read only clause is allowed . 22
Primary key constraints are allowed but foreign key constraints are disallowed 22

Operations supported by an editioning view that are not supported by
an ordinary view . 22
An editioning view allows table-style triggers . 23
A hint in a SQL statement that targets an editioning view

can identify an index by listing the names of its columns. . 23
Queries against an editioning view allow partition extended syntax . 24

Edition-Based Redefinition using only editions and editioning views 24
The crossedition trigger . 24

Basic firing rules for crossedition triggers . 26
Advanced firing rules for crossedition triggers . 29
The apply step: systematically visiting every row to transform the pre-upgrade representation to

the post-upgrade representation . 30
Using DBMS_Sql_Parse() to apply a forward crossedition trigger . 30
Crossedition triggers must be idempotent . 31
When to enable crossedition triggers — DBMS_Utility.Wait_On_Pending_DML() 31
Edition-Based Redfinition

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

www.oracle.com/technology/tech/pl_sql/pdf/Edition_Based_Redefinition.pdf 26-July-2009

Using the DBMS_Parallel_Execute API . 32
Using explicit SQL for the apply step . 32

Combining several bug fixes in a single edition-based redefinition exercise 32

Readying an application for edition-based redefinition 33
Editions-enabling the intended users . 33
Introducing an editioning view in front of every table . 34

Existing features in the presence of editions . 36
Database links . 36
Application Contexts . 37
VPD policies on editioning views and synonyms . 39
Regular and fine-grained audit policies . 39

Edition-Based Redefinition Case Studies . 39

Conclusion . 39

Appendix A:
Change History . 41
Edition-Based Redfinition

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Executive Overview

Large, mission critical applications built on Oracle Database 11g Release 1 and earlier
versions are often unavailable for tens of hours while the application’s database objects
are patched or upgraded. Oracle Database 11g Release 2 introduces edition-based
redefinition, a revolutionary new capability that allows online application upgrade with
uninterrupted availability of the application. When the installation of the upgrade is
complete, the pre-upgrade application and the post-upgrade application can be used at
the same time. Therefore an existing session can continue to use the pre-upgrade
application until its user decides to end it; and all new sessions can use the post-upgrade
application. As soon as no sessions are any longer using the pre-upgrade application, it
can be retired. In other words, the application as a whole enjoys hot rollover from the
pre-upgrade version to the post-upgrade version.

This whitepaper explains how edition-based redefinition works, and how to write online
application upgrade scripts using this capability, at the level of detail needed by engineers
who will write such scripts.
26-July-2009 page 1

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Introduction

To achieve online application upgrade1, the following challenges must be met:

• The installation of the changed database objects into the production database must not
perturb live users of the pre-upgrade application.

• Transactions done by the users of the pre-upgrade application must be reflected in the
post-upgrade application.

• For hot rollover, transactions done by the users of the post-upgrade application must be
reflected in the pre-upgrade application.

Oracle Database 11g meets these challenges by making some evolutionary improvements to
existing capabilities in both Release 1 in Release 2 and, more significantly, by introducing a
revolutionary new capability in Release 2.

The revolutionary new capability is edition-based redefinition:

• Code changes are installed in the privacy of a new edition.

• Data changes are made safely by writing only to new columns or new tables not seen by the
old edition. An editioning view exposes a different projection of a table into each edition to
allow each to see just its own columns.

• A crossedition trigger propagates data changes made by the old edition into the new edition’s
columns, or (in hot-rollover) vice-versa.

This whitepaper explains edition-based redefinition in detail by treating the concepts that
underpin it and by illustrating the basic operations with minimal code samples. Then it
presents a series of realistic use cases in order of increasing complexity. The discussion of
these use cases should prepare the user for designing and implementing scripts for the online
upgrade of the database component of real world applications.

This whitepaper does not attempt to be a reference manual. The relevant SQL syntax and
PL/SQL APIs are documented in the Oracle Database SQL Language Reference book, the
Oracle Database PL/SQL Language Reference book, and the Oracle Database PL/SQL
Packages and Types Reference book; and the catalog views that expose facts about the
relevant objects are documented in the Oracle Database Reference book. Rather, it aims to
explain the concepts and the use of edition-based redefinition at a depth that is not practical
in the the Oracle Database Documentation Library. In this way, it complements and extends
the treatment in the Oracle Database Advanced Application Developer’s Guide book and the
Oracle Database Administrator’s Guide book.

1. The term upgrade will be used in this whitepaper to denote both that and patch. The term patch is conventionally
used to denote changes that are made to a system to correct behavior which deviates from its current functional
specification; and the term upgrade is conventionally used to denote changes that are made to enhance behavior
so that it conforms to a new version of the functional specification. However, this distinction in intention has
no consequence for the nature of the changes that are made to an application’s database objects. A change,
for example, to a PL/SQL unit, to table data, or to table structure requires the same steps and has the same
consequences whether the intention is to patch or to upgrade.
26-July-2009 page 2

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Customer Goals and Oracle Database Capabilities

Businesses rely on applications, some of which are used by their employees and others of
which are used directly by their customers. Increasingly commonly, both the employees and
the customers may be located anywhere around the world. For such applications, then, there
is no common notion of the working day, the working week, or of public holidays. Therefore,
not only is randomly occurring unavailability in the face of some kind of electrical or
mechanical breakdown unacceptable, but so also is even planned unavailability to perform
predictable software maintenance tasks. The customer’s high availability goal is quite simply zero
downtime stretching into the indefinite future.

Oracle Database has for some time had various capabilities to allow customers to maintain
availability in the face of a spectrum of hardware problems ranging from disk or CPU failure
through to demolition of the whole site.

With respect to deliberately undertaken software changes, it is useful further to break down
this class into changes to the database system itself, as supplied by Oracle Corporation, and
changes to the database objects that constitute the back end of the application, as supplied by
developers employed by the customer organization or by an ISV.

Changes to the database itself are affected by running programs2 supplied by
Oracle Corporation. These changes are engineered to have no effect on the semantics of the
database component of an extant application3. This fact has allowed capabilities which were
designed to maintain availability the face of hardware problems to be used to maintain
availability the face of planned changes to the database system. Both Logical Standby and
Streams may be used in this way. Briefly, a new database is established as true copy of the
extant database on a second hardware system dedicated to that purpose. For a period, the new
database tracks the old database. Then the new database is taken off line, noting the moment
at which this is done4. The new database’s system software is upgraded as required and then it
is put back on line and tracking of the old database is turned on again so that it “catches up”
with the changes to customer objects that were made in the old database while the new
database was not tracking it. Finally, the new database is declared to be the canonical one and
end user sessions start to use it. (This requires a brief period of downtime to ensure that no
end-user sessions use the new database until the old one has been formally closed for such
sessions.) Then the hardware that supported the old database can be returned to the pool of
available hardware to restore the status quo of hardware use by the application. This approach
is viable also when it is required to upgrade the operating system software; it is viable, too,
even if the goal is to migrate the database to brand new hardware which possibly has a
different operating system.

The approach just described relies on the fact that the customer’s database objects are
identical in the old and the new databases. When the aim is to upgrade these objects, a
different approach is needed. Such an approach is first supported in Oracle Database 11g
Release 2 and is the subject of this whitepaper.

2. Here, the term program is used generically to mean a set of machine-readable files whose contents determine
the outcome when processed by various operating system utilities and utility components of the
Oracle Database software installation.

3. Of course, a bug fix intentionally causes a behavior change. But such benign changes are insignificant in the
present discussion.

4. This “moment” is recorded as a System Change Number.
26-July-2009 page 3

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

It is useful, finally, to distinguish between these two goals: online application upgrade and
online application maintenance. In the former, changes are made to the logical aspects of an
application’s database objects; and in the latter, changes are made to their physical aspects.
Examples of online application maintenance goals are the desire to tidy up a table by
coalescing chained rows, by reclaiming the space taken up by a column that has been set
unused, or by moving it to a different tablespace; and by the desire to rebuild an index.
Figure 1 summarizes the preceding discussion and shows illustrative capabilities of
Oracle Database that support the various depicted customer goals.

It is self-evident that the new Oracle Database capabilities that support the customer’s online
application upgrade goal must be fully interoperable with, and must not compromise the
reliability of, the Oracle Database capabilities that support other aspects of the customer’s
overall high availability goal. This whitepaper will show that this is the case.

Edition-Based Redefinition

Edition-Based Redefinition depends upon three new kinds of object: the edition, the editioning
view, and the crossedition trigger.

• If the application upgrade will change only views, synonyms, and PL/SQL objects, then the
edition alone is sufficient to allow these changes to be made while the application remains
on line. This type of change is common when, for example, new presentations of data or
new workflows are required.

Figure 1 Taxonomy of high availability goals and
illustrative capabilities of Oracle Database that support them

high availability

immunity to hardware failure
• RAC
• Physical Standby
• Logical Standby

ability to make planned software changes
on line

online database upgrade
• Logical Standby
• Streams

change application’s
database objects on line

online application maintenance
• online table redefinition
• online index rebuild

online application upgrade
• table DDLs governed by the

DDL_Lock_Timeout parameter
• edition-based redefinition
26-July-2009 page 4

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• If changes to table data or structure are restricted to only those tables that are not changed
via the ordinary end-user interfaces, then the edition together with the editioning view are
sufficient to allow these changes to be made while the application remains on line. Tables
whose data parameterizes the user interface layout or workflows meet this condition. So do
tables that hold the catalog of wares for a shopping application.

• If changes to table data or structure are required for those tables that are changed routinely
by the end-user, then the edition, the editioning view, and the crossedition trigger must be
used in concert to allow these changes to be made while the application remains on line.

This understanding determines the natural order of exposition of the following topics.

The edition

This section first explains, at the next level of detail the challenge that presents when several
mutually referring database objects are to be changed in the environment of others that, to
implement the current upgrade, will not be changed.

It then explains, at a conceptual level, what an edition is and how it solves the problem at
hand. This explanation brings with it some important terms of art that are not reflected
directly in SQL syntax or in the names of catalog views, their columns, or the values that these
contain.

It then presents code that illustrates the minimal self-contained illustration of a complete
edition-based redefinition exercise.

The challenge
Suppose that an application has 1,000 mutually dependent tables, views, PL/SQL units, and
triggers, that these are owned by more than one user, and that the source code of these
objects makes references to other of these objects, often by schema-qualified name5. Suppose
that the upgrade needs to change only 10 of these. Figure 2 illustrates this.

Of course, the 10 objects cannot be changed in place because many of the other 990 refer to
them and doing so would change the meaning of the pre-upgrade application. Through
Oracle Database 11g Release 1, the only dimensions that identify the intended object when
one object refers to another, are its name and its owner: these naming mechanisms are not
rich enough to support online application upgrade.

5. There is no getting away from schema-qualified names when an application’s database objects span two or
more schemas. The best that can be done is to isolate the schema-qualification in the definition of synonyms.

Figure 2 The challenge of online application upgrade

990 unchanged objects
+

10 changed objects

1,000 mutually referring objects
pre-upgrade application

post-upgrade application
26-July-2009 page 5

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

A short digression on the viability of an approach that uses schemas and synonyms to
explicitly to enrich the naming mechanisms manually will be useful. It would be possible for a
customer to impose a discipline where every reference from an object to another “primary”
object in a different schema is made via a “secondary” private synonym in the referring
object’s schema. In such a regime, it might seem that online application upgrade could be
achieved by installing the complete upgraded application in a new set of schemas with
appropriately redefined private synonyms. This would, at least, allow the source text of the
900 “primary” objects for which no change was intended to remain unchanged in the source
control system. There would, however, be some effort in redefining the synonyms in the
source control system, but this could, presumably be done automatically. This approach
suffers from a number of disadvantages with respect to using edition-based redefinition:

• It requires specific design by the customer.

• Every “primary” object needs to be duplicated. This costs both space and the time it takes
to run the DDL statements.

• While a scheme to handle changes to table data and structure might, just, be feasible using a
hand-crafted equivalent of the editioning view, the effort to design and implement a
scheme to reflect changes made by the pre-upgrade application into the representation that
the post-upgrade application uses, and vice versa, would be dauntingly complex and, because
of that, subject to an appreciable risk of error.

• Some applications issue DDL statements as part of their normal response to ordinary
end-user interaction. The the effort to design and implement a scheme to reflect such
changes forwards and backwards between the pre-upgrade and the post-upgrade
applications would be huge.

With applications of sufficient size and complexity, various issues arise (too complicated to
describe in this whitepaper) that defeat the scheme. It is, quite simply, not generally viable “in
the large”.

As shall be seen, edition-based redefinition supports the high-level philosophy of the manual
approach just described but overcomes all its disadvantages.

Conceptual explanation of the edition
The understanding of how the edition enriches the naming mechanism is best gained by first
appreciating the following new, seemingly dry, facts about Oracle Database 11g Release 2.

editions

• An edition is a new, nonschema object type, uniquely identified, therefore, by just its name.
Editions are listed in the DBA_Objects catalog view family where, just like the nonschema
object type directory, they appear to by owned by Sys6.

• Every database from 11.2 onwards, whether brand new or the result of an upgrade from an
earlier version, non-negotiably has at least one edition. Immediately on creation or upgrade
to 11.2, there is exactly one edition with the name Ora$Base.

• A new edition must be created as the child of an existing one; the syntax of the create edition
statement allows that the parent edition be identified using the as child of clause.

6. A nonschema object, just as the name implies, is not owned by a schema and is potentially visible to all users,
identified by just its name. The fact that DBA_Objects shows the owner of an edition or directory to be Sys is
an artefact of the implementation and has no practical significance.
26-July-2009 page 6

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• An edition may have no more than one child7.

• The create edition statement allows that the as child of clause be omitted to mean that the new
edition is created as the child of the leaf edition8.

• Every foreground database session, at every moment throughout its lifetime,
non-negotiably uses a particular edition9. This is reflected as the value of the new parameter
Current_Edition_Name in the Userenv namespace for the Sys_Context() builtin.

• A new not null database property, Default_Edition, listed in Database_Properties, specifies the
edition that a session will use immediately on connection if the connect syntax does not
nominate an explicit edition10. Code_1 shows the SQL statement to set this.

A side effect of making an edition the default is to grant Use on it to public.

• When a new connection is made, it is possible to specify to edition the session should
(initially) use.

• A new alter session command allows the edition that a session is using to be changed.
However, this command is legal only as a top-level server call; an attempt to issue it using
PL/SQL’s dynamic SQL will cause an error11. Further, an attempt to change the edition
that a session is using will fail if there is any uncommitted DML12.

editionable object types, editions-enabled users, and editioned objects

• Views (and therefore editioning views), synonyms, and all the kinds of PL/SQL objects
type13 (and therefore crossedition triggers) are editionable object types. There are no other
editionable object types. For example, table is not an editionable object type; nor is
java class14.

7. This restriction may be relaxed in a later version of Oracle Database. The reader will see that the conceptual
design accommodates this.

8. As long as the restriction holds that an edition may have no more than one child, there will always be exactly
one leaf edition. Until this restriction is lifted, Oracle recommends thathe plain create edition command be used
without the as child of clause.

9. Some background sessions, most notably MMON, also always use exactly one edition.

10. The OCI and JDBC programmatic interfaces have been enhanced to allow an edition to be specified at
session-creation time; and tools like SQL*Plus expose this new optional degree of freedom with appropriate
syntax. However, in 11.2, the connect string specification (i.e. the item for which an alias can be established in
tnsnames.ora) does not allow the edition to be specified. This means that a database link always connects to the
target database’s default edition.

11. A new overload for DBMS_Sql_Parse() allows a single SQL statement to be executed in a specifically
nominated edition. See “Using DBMS_Sql_Parse() to execute SQL outside of the current edition” on page 18. And a
new procedure DBMS_Session.Set_Edition_Deferred() causes the nominated edition to be made current as the
last action of the top-level server call that issues it.

12. The attempt causes ORA-38814: Alter session set edition must be first statement of transaction.

13. All the PL/SQL object types are potentially listed in the DBA_PLSQL_Object_Settings catalog view family. This
includes library.

-- Code_1 Making_Edition_Default_Grants_Use_On_It_To_Public\Demo.sql
alter database default edition = Some_Edition
26-July-2009 page 7

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• The nonschema object type user has a new Y/N property, shown in
DBA_Users.Editions_Enabled. This can be set with the create user command or changed with
the alter user command, but only from N to Y. However, certain users (Sys, System, and any
user listed in the DBA_Registry catalog view family) cannot be editions-enabled; the attempt
will cause an error.

• An object of an editionable object type that is owned by an editions-enabled user is editioned.
An object that is not of an editionable object type can never be editioned. An object of an
editionable object type that is owned by a user that is not editions-enabled is not editioned,
but it will irrevocably become so when its owner is altered to become editions-enabled.

• An object that is not editioned is uniquely identified, just as it was through 11.1, by just its
owner, name and namespace. The context of reference defines the namespace so that
references mention only the owner and name as explicit references. For example, a package
is in the namespace 1, and a package body is in the namespace 215. The create package
statement establishes the namespace as 1; the create package body statement establishes the
namespace as 2; and the invocation of DBMS_Output.Put_Line() in a PL/SQL unit
establishes that the identifier DBMS_Output is in namespace 1.

• An editioned object is uniquely identified by its owner, name, namespace and the value of
current edition that issued the SQL statement that created or changed it16. This fact is the
sine qua non of edition-based redefinition; it lets two or several occurrences of the “same”
object, as identified by owner, name, namespace, exist in the same database.

• The DBA_Objects catalog view family has a new column, Edition_Name17. It is always null
for an object that is not editioned; for an editioned object, it is always not null and shows the
name of the edition where the object was created or changed.

actual objects, inherited objects, and name resolution

• There is no edition-extended syntax. When an editioned object is to be identified, the name
of the edition is always supplied implicitly by the context of the reference. For a
DDL statement, the current edition provides the value; and for a reference from the source
code of an editioned object, the referring object’s edition provides the value.

• Therefore, the source code of an object that is not editioned may not refer to an editioned
object; such an attempt will cause a compilation error. As a corollary, an attempt to
editions-enable a user will sometimes fail18.

• When the source code of an editioned object refers to another editioned object, then this
reference is resolved to that occurrence whose Edition_Name is that of the edition which is

14. Objects of some types are purely metadata (represented just by rows in tables in the data dictionary) and
consume no quota. It is convenient to call these code objects. Objects of other types, like tables and indexes, not
only have metadata but also contain quota consuming substantive data. It is convenient to call these data objects.
Later releases of Oracle Database might grow the list of editionable by adding more code object types. But for
reasons that will become clear in “The editioning view” on page 19, the list will never include data object types.

15. Starting in 11.1, the DBA_Objects catalog view family gained the column Namespace to advertise this property
that, hitherto, had been somewhat obscure.

16. As will be seen, “change” includes not only the effect of the create or replace or alter statements but also
statements like grant and revoke.

17. This column was in fact introduced in 11.1, but there it was always null. It first becomes useful in 11.2.
26-July-2009 page 8

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

the closest ancestor to the one denoted by the Edition_Name of the referring object. When
the Edition_Name of the referenced object is the same as that of the referring object, then
the referenced object is said to be actual from the point of view of the referring object; and
when the Edition_Name of the referenced object denotes an ancestor to that of the referring
object, then the referenced object is said to be inherited from the point of view of the
referring object.

• This same distinction between actual and inherited holds between editioned objects listed
in the DBA_Objects catalog view family and varies according to the current edition. When
DBA_Objects.Edition_Name is the same as the current edition, then the object is said to be
actual in that edition; and when DBA_Objects.Edition_Name is that of an ancestor edition to
the current edition, then the object is said to be inherited in that edition.

• All the catalog views that show properties about objects whose type is editionable share the
behavior of showing only those editioned objects that are visible in the current edition.
However, only the DBA_Objects and the DBA_Objects_AE20 catalog view families have an
Edition_Name column19.

• A DDL statement that changes an existing inherited editioned object (for example
create or replace or alter) causes that object to become actual in the current edition of the
session that issued the DDL, in other words, it actualizes a new occurrence of the target
object. This means that the changes are not seen in ancestor editions.

• The effect of the drop command on an inherited object is to make it vanish from the point
of view of the current edition20. Again, the effect of this is not seen in ancestor editions.
The rename command is supported for views and synonyms but not for PL/SQL objects.
Rename behaves as if the target had been dropped and recreated with the new name: the
target object is visible with its old name in ancestor editions and with its new name in the
edition where the DDL statement was executed21.

• If the owner and name of the target of the create command collide with an existing editioned
object, then the attempt causes an error. This is the case both when the collision is with an
actual object and when it is with an inherited object. Of course, drop followed by create, using

18. First example: Suppose that the users u1 and u1 are both not editions-enabled and are not among those supplied
by Oracle Corporation that cannot be editions-enabled. Suppose that procedure u2.p depends on procedure
u1.p. An attempt to editions-enable u1 will fail unless u2 is editions-enabled first.

Second example: Suppose that table u1.Tabl has a column whose datatype is the user-defined type u1.Typ. An
attempt to editions-enable u1 will fail until u1.Tabl, or the column in question, is dropped.

This is discussed further in “Readying an application for edition-based redefinition” on page 33.

19. To do... Some other views like DBA_Errors_AE also have an Edition_Name column. List them here.

20. The DBA_Objects catalog view family is supplemented by the DBA_Objects_AE catalog view family. “AE”
stands for “all editions”; these views have the same columns as their non-AE counterparts; but for each
editioned object, they show each actual occurrence it has. DBA_Objects_AE shows an object that was the
target of the drop command with the type non-existent in the edition where it suffered that DDL. This fact is an
overt part of the user’s conceptual model; it lets the user understand how, even after dropping an object in a
particular edition, it is still visible in that edition’s ancestors (but not visible in any descendent editions).

21. The DBA_Objects_AE shows an object that was the target of the rename command with the type non-existent in
the edition where it suffered that DDL.
26-July-2009 page 9

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

the same owner and name, can have the result that the identified editioned object is of
different types in different editions22.

• An editioned object, then, is visible in its own edition and in descendants of its own edition
until, in such a descendant, there exists a new actual occurrence.

• If an editioned object is the target of a DDL statement in particular edition (including drop),
if that edition has descendants, and if the object in question is not actual in any of these
descendants, then the effect of the change is visible in the descendants. If the object in
question is actual in one of these descendants, then the change is visible in the intervening
descendants up to, but not including, the descendant where it is actual.

Retiring an edition

When an edition-based redefinition exercise is complete, it is useful to ensure that no new
sessions will start to use the pre-upgrade edition. This is simply achieve by revoking the Use
privilege on the to-be-retired edition from every user and role in the database. Notice that Sys,
being beyond the normal notions of privilege, can still use the retired edition. Advantage can
be taken of this to drop objects that are actual in such retired editions and that are not visible
in any non-retired edition because they are actual in a descendant of the retired edition.

Dropping an edition

It is useful to drop the new child edition that was used for an edition-based redefinition
exercise should the exercise for some reason fail, or should the result be deemed
unsatisfactory. For this use case, use the drop edition... cascade command to drop all objects the
are actual in the to-be-dropped edition.

While it is never necessary to drop the root edition, this may be done when the conditions given
below are met. The current root edition may be dropped, and then the new root edition may be
dropped, until the database has only a single edition: the leaf edition as was when these
successive drops of the root edition were started. Customers may occasionally like to do this in
pursuit of a feeling of hygiene. But doing this has no practical benefit except to remove
mental clutter.

The drop edition... cascade command. just like the drop user... cascade command, is not atomic.
This means that if the instance is shut down while the command is in progress, some of the
edition’s actual objects will have been dropped but others, and the edition itself, will remain.
However, unlike is the case if the instance is shut down while a drop user... cascade command is
in progress (where connecting as the to-be-dropped user is still safe), it is not now safe to use
the to-be-dropped edition. For this reason, such an edition is marked unusable. This status is
reflected in the Usable column in the DBA_Editions catalog view family. If a session attempts
to make an unusable edition its current edition, either with the alter session command or at
connect time, then an error occurs23.

An edition can be dropped only when the following conditions are met:

22. The create that follows a drop for a particular owner and name will re-use the non-existent object caused by the
drop. (Here, re-use refers to the value of Object_ID.) Most users will never notice this; but users who want to
develop a complete mental model might feel pleased when they appreciate that this is an inevitable
consequence of the axioms of the conceptual model.

23. An error also occurs if the overload of DBMS_Sql_Parse() that has an Edition formal is used to attempt to
execute a SQL statement in an unusable edition.
26-July-2009 page 10

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• The edition is not the only one in the database

- and either it has no child edition (i.e. is the leaf edition)

- or both it has no parent edition (i.e. is the root edition) and it has no editioned objects that are
inherited by its child edition24.

• No session is using the edition.

• The edition is not the database default edition.

Notice that the MMON background process, just as the foreground processes do, always uses
an edition. This is because, unlike other “primitive” background processes like SMON or
PMON, it issues SQL. Some other background processes also issue SQL. MMON and other
such SQL-issuing background processes use the database default edition. Therefore, before
attempting to drop, for example, edition Pre_Upgrade, it must be ensured that the default
edition is something else, for example, Post_Upgrade25.

The edition-based redefinition lifecycle
Most edition-based redefinition exercises will follow this simple pattern:

• Before starting, the database will have only one non-retired edition, say Pre_Upgrade.

• During the edition-based redefinition exercise, the database will have two non-retired
editions, Pre_Upgrade and its child, say Post_Upgrade.

• When no sessions any longer need to use Pre_Upgrade, then this will be retired and the
starting state for the next exercise will be restored: the database has only one non-retired
edition.

As long as the Pre_Upgrade edition is still available for ordinary use, then Post_Upgrade can be
simply dropped26. This might be done if it were realized that the upgrade install script is
irrevocably incompatible with some customizations that have be made at the particular
deployed site. With possibly some manual follow-up steps, all traces of the aborted upgrade
attempt can be removed without interrupting the availability of the pre-upgrade application.
The use-case for dropping the ultimate child edition, then, is clear.

The use-case for dropping the ultimate parent edition is far less clear and is expected to be a
rare occurrence. The idea of returning to the “ground state” after each edition-based
redefinition exercise, where the database has just one edition, seems initially to be intuitively
appealing. However, this is unnecessary and resource-intensive.

24. Notice that crossedition triggers (see “The crossedition trigger” on page 24) are of an editionable object type.
Moreover, every crossedition trigger must be editioned. However, as will be seen, a crossedition trigger is
visible only in the edition where it is actual. Therefore, the presence of crossedition triggers in an edition does
not affect whether that edition can be dropped.

25. MMON and other SQL-issuing background processes run in a continuous loop and poll the identity of the
default edition on each iteration. Should this be changed, then they issue an alter session command to use the
new default. This switch usually happens with very little delay. But if the attempt to drop the former default
edition is made before the switch has happened, then ORA-38805: edition is in use will occur.

26. As soon as the post-upgrade application is used to record end-user transactions that cannot be represented by
the pre-upgrade application, then the possibility for a simple return to the pre-upgrade application vanishes.
This is determined by ordinary logic and not by any restrictions imposed by edition-based redefinition.
26-July-2009 page 11

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The key question is this: what is the practical difference between using an edition where every
editioned object is actual and one where just a few are actual and most are inherited from
many retired editions stretching back over a lengthy ancestor chain? It might seem that, in
principle, name resolution in the many-edition regime would be appreciably slower than in the
single-edition regime because most lookups would involve a recursive search backwards in the
edition ancestor chain. However, the implementation, which faithfully preserves the
conceptual model, transparently uses a denormalization to avoid the recursive search.
Moreover, name resolution takes place at compile time and not at run-time27. It turns out,
therefore, that there is no noticeable difference between using a database where the only non-
retired edition is that database’s only edition and using one where the only non-retired edition
has an ancestor chain of, say, several hundred retired editions.

Diagramatically illustrated example
Figure 3 shows the kind of situation that might exist after a few distinct edition-based
redefinition exercises have been undertaken.

27. The compilation of a stored PL/SQL unit is very visible, because it requires a separate step. The compilation
of a SQL statement, often referred to as parsing, is less visible to users because interfaces like PL/SQL’s
embedded SQL disguise the distinction between SQL compilation and SQL execution; nevertheless, the
distinction is clear — and the famous so-called soft-parse skips the SQL compilation and goes straight to the
execution.

Figure 3 The situation after three edition-based redefinition exercises.
Actual editioned objects are shown as squares with a solid border; inherited editioned objects are shown as
squares with no border; objects that are not editioned are shown as circles with a solid border; active editions
are shown with a light gray fill; and retired editions are shown with a dark gray fill.

e1

p1

p2

v1

v2

p2

v1

v2

p1

p2

v1

v2

e2 e3 e4

t1

p1
26-July-2009 page 12

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• The starting point is that the database has exactly one edition, e128. The procedures p1 and
p2 and the views v1 and v2 are editioned objects and are actual, as they must be, in e1. The
table t1, because it is not an editioned object, is drawn outside of the containing box that
represents e1.

• Then e2 is created as the child of e1.

• Then a session that uses e2 does create or replace on p2 and v1, causing them to be actualized
in e2. A session using e2 sees p2 and v1 as actual and p1 and v2 as inherited; sessions using
respectively e1 and e2 see the same occurrence of p1 and v2; each sees its own distinct
occurrence of p2 and v1, each with its own defining source code; and, of course, each sees
the same t1 because there can never be more than one occurrence of an object that is not
editioned. When no sessions any longer need to use e1, it is retired.

• Then e3 is created as the child of e2.

• Then a session that uses e3 does create or replace on p1 and v2, causing them to be actualized
in e3; and it drops v1. A session using e3 sees p1 and v2 as actual and p2 as inherited. Of
course, it cannot see the dropped v1; and it sees the one-and-only occurrence of t1. Though
v1 is dropped in e3, it is still visible in e1 and in e2. When no sessions any longer need to use
e2, it is retired.

• Then e4 is created as the child of e3.

• Then a session that uses e4 does create or replace on v2, causing it to be actualized in e4. A
session using e4 sees v2 as actual and p1 and p2 as inherited. Of course, it too, like e3, cannot
see the dropped v1; and it, too, sees the one-and-only occurrence of t1. When no sessions
any longer need to use e3, it is retired.

28. This is very easy to achieve. A freshly created, or newly upgraded, 11.2 database has no editions-enable users
and therefore no editioned objects. It is trivial to create edition e1 as the child of Ora$Base, to set the database
default edition to e1, and then (when no sessions are using it) drop Ora$Base. This succeeds because Ora$Base
has no actual editioned objects. There is no reason to do this in a production environment; the name Ora$Base
is as good as any other name. But in a test database, and especially in connection with developing code
examples for teaching purposes, it is nice to choose the name of the starting edition.
26-July-2009 page 13

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Figure 4 shows the situation that might exist after the next edition-based redefinition exercise.

• e5 is created as the child of e4.

• Then a session that uses e4 does create or replace on v2; this change is denoted by the asterisk
in Figure 4. A session using e5 sees the same modified v2 because it sees v2 it as inherited.

• Then a session that uses e5 creates package v1. Because, just before it does this, e5 sees no
object called v1, there is no reason why this name cannot now be used for an editioned
object of a different type from that which the name denotes in e1 and e2. Notice that had an
attempt been made to create an object called v1 that was not editioned (for example a table
called v1), then this would have failed because of name collisions in e1 and e2.

A minimal, complete edition-based redefinition exercise code example
The starting point is a database that has exactly one edition, Pre_Upgrade. The application
architect has worked out that objects whose type is editionable and that are owned by
App_Owner should be editioned. Therefore, the DBA has executed the SQL statement shown
in Code_2.

App_Owner connects and inevitably uses edition Pre_Upgrade. The query shown in Code_3 is
then executed.

The output is as shown in Code_4.

Figure 4 The situation after four edition-based redefinition exercises

p1

p2

v1

v2

p2

v1

v2

v1

t1

v2*

p2

p1

v1

e1 e2 e3 e4 e5

v2*

p1

-- Code_2 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
alter user App_Owner enable editions

-- Code_3 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line

-- Code_4 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
procedure Hello is
begin
 DBMS_Output.Put_Line('Hello from Pre_Upgrade');
end Hello;
26-July-2009 page 14

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Of course, when Hello is executed, it shows “Hello from Pre_Upgrade”.

In preparation for the edition-based redefinition exercise, a user who has the
Create Any Edition system privilege creates Post_Upgrade, and allows App_Owner to use it, using
the SQL*Plus script shown in Code_5.

App_Owner is now able to execute the SQL statement shown in Code_6.

If Hello is executed, it still shows “Hello from Pre_Upgrade”. Now App_Owner executes exactly
the same DDL statement that would have been used to modify Hello in versions of
Oracle Database prior to 11.2 as shown in Code_7.

App_Owner now executes the SQL*Plus script shown in Code_8.

While App_Owner is using Post_Upgrade, the output of Hello is “Hello from Post_Upgrade” and
the code shown in User_Source is that of the new, modified occurrence; and while App_Owner
is using Pre_Upgrade, the output of Hello is “Hello from Pre_Upgrade” and the code shown in
User_Source is that of the old, original occurrence.

When all are satisfied that the application as represented in Post_Upgrade is an improvement
on the one represented in Pre_Upgrade, and no sessions any longer are using Pre_Upgrade, then
a suitably privileged user will retire the Pre_Upgrade edition29. In this trivial example,

29. See “Retiring an edition” on page 10.

-- Code_5 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
create edition Post_Upgrade as child of Pre_Upgrade
/
grant use on edition Post_Upgrade to App_Owner
/

-- Code_6 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
alter session set Edition = Post_Upgrade

-- Code_7 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
create or replace procedure Hello is
begin
 DBMS_Output.Put_Line('Hello from Post_Upgrade');
end Hello;

-- Code_8 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
begin Hello(); end;
/
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line
/

alter session set edition = Pre_Upgrade
/
select Sys_Context('Userenv', 'Current_Edition_Name')
from Dual
/

-- Notice that the spelling that follows is identical
-- to that used before the current edition was changed
begin Hello(); end;
/
select Text
from User_Source
where Name = 'HELLO' and Type = 'PROCEDURE'
order by Line
/

26-July-2009 page 15

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Pre_Upgrade now has no actual editioned objects that are inherited by its child (and has no
parent); there is no reason, therefore, not to drop it. However, in the general case, it is very
likely that Pre_Upgrade would have editioned objects that are inherited by Post_Upgrade and it
would not be cost-beneficial to actualize all of these in Post_Upgrade. Therefore, in the general
case, Pre_Upgrade would be retired but not dropped.

If, for some reason, it is decided to abandon the changes made in Post_Upgrade, then a user
who has the Drop Any Edition system privileges ensures that no session is using Post_Upgrade
and then executes the SQL*Plus script shown in Code_930.

Consequential actualization of dependants and fine-grained
dependency tracking
When an editioned object refers to, and therefore depends upon, another editioned object,
then, of course, the referenced editioned object31 must be visible in the edition where the
dependant is actual. The referenced object might be actual in the same edition as the
dependant, or might be actual in an ancestor edition to the dependant’s and therefore seen as
inherited in the dependant’s edition. This rule implies that when a referenced object is first
actualized in a particular edition, then all its direct and recursive dependants, that are not yet
actual in that edition, will be consequentially actualized in that same edition32.

Oracle Database 11g Release 1 brought a new, fine-grained dependency tracking model. In
earlier releases, any change to a referenced object caused all objects that depended on it to
become invalid. This was because only coarse-grained dependency information (object p
depends on object q) was recorded. The fine-grained model records dependency information
at the level of the element within the referenced object. For example:

• If procedure p depends only on procedure x in the package Pkg and if Pkg also exposes
other subprograms, variables, type declarations, and so on, then the dependency
information records that p depends on Pkg.x33.

• If view v mentions only columns c1, c2 and c3 in table t, then the dependency information
records exactly this34.

This means that when a referenced object is changed without changing the elements that an
object that depends on it refer to, then the dependant remains valid.

This understanding needs to be extended when the referenced object, and therefore the
dependant too, are editioned. If the dependant is already actual in the same edition as the
referenced object (after this has suffered the DDL), or in a descendant of that edition, then

30. See “Dropping an edition” on page 10

31. The term referenced object reflects the names of the columns in the DBA_Dependencies catalog view family:
Referenced_Owner, Referenced_Name, and so on.

32. The rule is a consequence of logic: an object cannot depend on another that it cannot see.

33. The fine-grained dependency information also records the signature of Pkg.x (the names and datatypes of its
formals).

34. The datatypes of the columns are recorded too.

-- Code_9 Minimum_Complete_Edition_Based_Redefinition\Demo.sql
drop edition Post_Upgrade cascade
/

26-July-2009 page 16

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

the full benefit of fine-grained dependency tracking is available and invalidation that is not
logically required is avoided. However, if on completion of the DDL to the referenced object,
it is now in a younger edition than the dependant, then the dependant is actualized into the
referenced object’s edition in an invalid state35.

Deliberate invalidation and revalidation of editioned objects
In an ordinarily installed Oracle Database, any user can invoke DBMS_Utility.Validate() or
DBMS_Utility.Compile_Schema()36 but only the owner, Sys, can invoke the Utl_Recomp APIs.

DBMS_Utility.Validate() has two overloads. One takes Object_ID and the other takes Owner,
ObjName, Namespace, and Edition. (Edition is defaulted to the current edition.) If the target
object is not actual in the current edition, then it is not actualized into this but remains actual
in the edition where it was found. Notice that this is different from how alter... compile behaves;
here, the target object is actualized into the current edition.

DBMS_Utility.Compile_Schema() and the Utl_Recomp APIs can be understood as wrappers that
apply DBMS_Utility.Validate() to all the invalid objects in all editions in the specified schema
or database-wide. As a consequence, using these APIs never causes actualization.

It is likely that an edition-based redefinition exercise will make changes to editioned objects
where at least some of these will have dependent objects. This will cause the dependent
objects to be actualized into the new edition in an invalid state37. It would be sensible to
revalidate such objects as soon as all the intended DDLs have been done in the new edition
and before proceeding to the next steps38. Utl_Recomp.Recomp_Parallel() is the natural choice.
There are no privilege concerns; implicit validation of invalid objects in the closure of
dependency parents of an invalid object that is referenced for compilation or execution will
anyway take place with no special privileges.

DBMS_Utility.Invalidate() has only one overload; this identifies the target object using
Object_ID. Its only use in an edition-based redefinition exercise would be to enable the values
of the PL/SQL compilation parameters for a large number of units to be changed in the new
edition with optimal efficiency. For example, an upgrade script might intend to compile each
of the application’s PL/SQL objects native. This is done efficiently by first invoking
DBMS_Utility.Invalidate() for each object, using an appropriate actual for p_plsql_object_settings,
and then invoking Utl_Recomp.Recomp_Parallel().

Oracle recommends against invoking DBMS_Utility.Invalidate() on an object that is not actual
in the current edition.

35. It turns out that, because of various internal optimizations, an invalid object that is the result of consequential
invalidation does not show up immediately in the DBA_Objects and DBA_Objects_AE catalog view families.
However, it will show up after a call to DBMS_Utility.Compile_Schema() or to one of the Utl_Recomp APIs. It
will show up, too, after an attempt to reference it (in either a compilation or an execution context).

36. The Execute privilege on DBMS_Utility is granted to public and the package has a public synonym.

37. This is explained in “Consequential actualization of dependants and fine-grained dependency tracking” on page 16.

38. The next steps begin with enabling all crossedition triggers and batch transforming all data from the old
representation to the new one.
26-July-2009 page 17

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The effect of DDL in an edition with a child
Suppose that a database has exactly N editions, e1 through eN, where e2 is the child of e1 and
so on. Let x[e1] denote an editioned object x that is actual in e1 and that has no dependencies
on any editioned objects. As long as no DDL has been done on x, while using edition e2 or
one of its descendants, then x[e1] will be visible in e2 and its descendants because no actual
occurrence of x exists in these editions. Notice that if x[e1] does have a dependency on an
editioned object, y, then it will be actualized as x[eM] in edition eM should y be actualized there
as y[eM].

In other words, when an editioned object suffers DDL using a particular edition, then the
change is visible in all descendent editions up to, but not including, the closest descendent
edition where another actual occurrence exists. (This actual occurrence might have
Object_Type = non-existent if a DDL had been issued in the descendent edition to drop the
object in question39.)

It can be seen, therefore, that in general, the effect of DDL in any descendent editions it
might have, depends on specific circumstances and history: it might well happen that the
effect “shines through” to all descendent editions; but this result is not guaranteed.

Using DBMS_Sql_Parse() to execute SQL outside of the current edition
DBMS_Sql_Parse() has some new overloads in 11.2. Some support working with crossedition
triggers; these will be described in “The crossedition trigger” on page 24. One new overload is
provided to execute a single SQL statement in a specifically nominated edition. This allows a
PL/SQL unit to execute SQL in two or more different editions and can be useful for
automating DBA tasks40. In 11.2, the remote session that supports access via a database link
can use only the remote database’s default edition. See “Database links” on page 36. By using
the remote database’s DBMS_Sql package, then at least single SQL statements can be
executed in the chosen edition in the remote database.

Package state when the same package is instantiated in more than one edition
Suppose that the database has two editions, Pre_Upgrade and Post_Upgrade and that the
editioned package Pkg, with the source shown in Code_1041, is actual in Pre_Upgrade and
inherited in Post_Upgrade.

39. Objects with Object_Type = non-existent can be seen in the DBA_Objects_AE catalog view family but not in the
DBA_Objects catalog view family. This is a deliberate design. The latter view shows a world which, if a user
uses only a single edition, reflects the same mental model as held for databases before 11.2. The former view
enables the user to understand the bigger picture and to predict what objects will be visible in any edition.

40. Recall that alter session cannot be used to change the current edition from a database PL/SQL unit.

41. The datatype simple_integer, new in 11.1, has a not null constraint.

-- Code_10 State_When_Package_Instantiated_In_Two_Editions\Demo.sql
package Pkg authid Current_User is
 State simple_integer := 0;
end Pkg;
26-July-2009 page 18

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The SQL*Plus script shown in Code_11 runs without error.

This shows that the same editioned package is instantiated distinctly in each distinct edition
from which it is referenced during the lifetime of a session and that its state for each edition’s
instantiation is preserved independently. It is important to understand this when a forward
crossedition trigger references an editioned package that is referenced also by ordinary
application code.

Notice that the opposite is the case for a noneditioned package. This has just a single
instantiation. This can be seen by re-running Code_11 when the owner of Pkg is not
editions-enabled. Now, the value of Pkg.State that was set in Pre_Upgrade is visible in
Post_Upgrade42.

The editioning view

Only some object types are editionable. Those that, in 11.2, are not can be split into two
classes: those that might become so in a later release of Oracle Database; and those that will
never be editionable. Objects of the types in the first class do not consume quota — they are
represented entirely by metadata (rows in various tables in the Sys schema) and cannot contain
data. It is convenient to refer to these as code objects. Objects of the types in the second class do
consume quota. In addition to the metadata that describes them, they contain substantive
data. It is convenient to refer to these as data objects. The obvious examples of data objects are
tables and indexes. These days, it is not uncommon for tables to contain terabytes of data.

It is practical for a given editioned object to have many occurrences in different editions, and
to rely on a name-resolution scheme that supplies the Edition_Name implicitly because, as
code objects, they are small enough to allow many distinct, but similar, occurrences to exist
without using a scheme that represents differences. However, the potential enormous size of
data objects makes such an approach impractical; and any approach that attempted to
represent only differences would have to use a fixed scheme in order not to harm the

42. A happy consequence of this is that you can still use DBMS_Output totrace code that does DML that causes
a crossedition trigger to fire. The messages that are written by the application code that causes the DML,
running for example in the pre-upgrade edition, and those that are written by the forward crossedition trigger,
running therefore in the post-upgrade edition, are interleaved in the chronological order in which they are
written and are displayed ordinarily in a tool like SQL*Plus when the server call completes.

-- Code_11 State_When_Package_Instantiated_In_Two_Editions\Demo.sql
alter session set Edition = Pre_Upgrade
/
begin Pkg.State := 1; end;
/
alter session set Edition = Post_Upgrade
/
begin
 if Pkg.State <> 0 then
 Raise_Application_Error(-20000,
 'Unexpected Pkg.State: '||Pkg.State);
 end if;
end;
/
alter session set Edition = Pre_Upgrade
/
begin
 if Pkg.State <> 1 then
 Raise_Application_Error(-20000,
 'Unexpected Pkg.State: '||Pkg.State);
 end if;
end;
/

26-July-2009 page 19

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

performance of DML and queries. The obvious scheme is physical: to use the database block
as the quantum of differencing. But while this might allow a very compact representation of
several occurrences of a table that differed only in a tiny number of rows, it is easy to see that
an unfortunate pattern of differences could lead to such a large number of blocks that
differed between the various occurrences that the explosion in data volume would be
unacceptable.

The only practical approach, then, is to let the user control the differencing explicitly. If the
aim is to change a column, for example by widening it, then the original column is left in place
and a new wider replacement column (or columns) is added to the table.

A further practical reason drives this design. Typical table changes during an application
upgrade are incremental: the pre-upgrade and post-upgrade applications see most of the
table’s data in common. Therefore, during an edition-based redefinition exercise, it is natural
and efficient to share this common data explicitly rather than to use mechanisms to keep tow
separate copies of nominally the same data synchronized.

How, then, can such a table be presented to editioned code objects so that these see only the
logical intention of the table at each new version and are not troubled by physical details? A
view provides exactly the right mechanism; but an ordinary view is too general in its power of
expression, and because of this forbids it being treated like a table with respect to some
application requirements. For example, it is not allowed to create table-style triggers43 on an
ordinary view.

11.2 brings a new kind of view, the editioning view. It is created using special syntax and its
defining select statement must satisfy strict restrictions if the creation is to succeed.

An editioning view, as a special kind of view, is editionable. It might help to think that while
the physical table cannot be editioned, the editioning view allows different occurrences of its
logical projection to be presented in different editions.

Indexes and constraints remain in the physical domain at the table level.

The conditions that an editioning view must satisfy

An editioning view’s defining select statement must obey several restrictions44. The following
list is not intended to be complete; rather, it is intended to make the spirit of the design
clearer. The restrictions reflect the intention that an editioning view must simply return every
row from a single table (and only those rows), without explicit ordering, and project, and
maybe rename, a subset of the columns.

Because a successfully created editioning view has been confirmed to have satisfied all the
restrictions, various operations on an editioning view can be supported that cannot be
supported on an ordinary view. In particular, all memory of the fact that an editioning view
stands in front of a table is lost during SQL compilation. The resulting execution plan is

43. A table-style trigger is one whose timing point is before statement, before each row, after each row, or after statement. An
ordinary view allows only instead of triggers.

44. An attempted create editioning view statement that fails to satisfy the restrictions will cause an error and the view
will not be created. The error message may seem obscure. For example, inclusion of a where clause causes
ORA-00933: SQL command not properly ended; and inclusion of the distinct keyword causes ORA-00936: missing
expression. If the statement succeeds without the editioning keyword but fails with it, then the reason is that the
defining statement does not respect the restrictions. This suggests an approach to debugging a failed
create editioning view statement: try it again without the editioning keyword.
26-July-2009 page 20

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

identical to the one for a query with the same meaning that targets the table(s) directly. In
other words, the use of an editioning view is guaranteed to bring no performance penalty.

An editioning view must be owned by an editions-enabled user

This restriction emphasizes the fact that an editioning view’s specific and only purpose is to
provide an editioned API to a projection of the data that is stored it the table it covers.

An editioning view must be owned by its table’s owner

This implies that the table for an editioning view cannot be in a different database denoted by
a database link.

There can be no more than one visible editioning view for a particular table
in a particular edition

This follows from the basic intent of the editioning view. Its purpose is to present different
logical projections of the data stored in a particular table in different editions. It is
meaningless, in the basic conceptual model, to have more than one logical projection of the
same table data in the same edition45.

The subquery factoring clause is not allowed

Because of the other restrictions, the subquery factoring clause could anyway have no
practical usability benefit.

The subquery must be a single query block

This implies that the keywords union [all], minus, and intersect are not allowed.

The for update clause is not allowed

The for update clause is always allowed in a query that targets an editioning view. (This is an
instance of the more general rule that the for update clause is allowed in a query that targets an
updatable view.)

The query block must identify exactly one table

The from list must have just one item and the must be a table. A self-join is not permitted46.
The item cannot be a view or a synonym.

The select list must mention only column names and optional aliases

No column can be mentioned more than once. No kind of expression is allowed in the
select list. For example, columns cannot be arithmetically combined; SQL and PL/SQL
functions are prohibited.

The where clause, group by clause, and having clause are not allowed

This is consistent with the basic intention to provide a logical cover for a physical table.
Application upgrades typically change the structure of tables and apply corrections, for every
row, to values in particular columns. It is rare that they need to add or remove rows in a table.

45. There are also situations where it is useful uniquely to identify, starting with a table, how it is projected in a
particular edition. For example, the intention to create an index on a list of logical columns is easily translated
into the corresponding create index statement at the physical level. And the presence of an index on physical
columns that are projected in a particular way in one edition suggests that a logically corresponding index, on
possibly different columns, will be needed to support access from a different edition. Customer-written
utilities can take advantage of the fact that the editioning view that presents a table into a particular edition is
uniquely determined.

46. ANSI join syntax is therefore disallowed.
26-July-2009 page 21

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

For such scenarios, different occurrences of the editioning view must denote different
physical tables in different editions47.

The order by clause is not allowed

This, too, is consistent with the basic intention. In particular, without this restriction the
requirement could not be met that the execution plan for a query that targets an editioning
view must be identical to the one for a query with the same meaning that targets the table
directly.

Other restrictions

The distinct, unique, and all keywords are not allowed before the select list. The hierarchical query
clause and the model clause are not allowed. The flashback query clause is not allowed.

Allowed freedoms when defining an editioning view
The following semantics are allowed in addition to the basic rule that an editioning view
merely projects a single table, maps the names of its columns, and does no restriction.

The with read only clause is allowed

Sometimes the amount of data in a table that needs to be changed in an application upgrade is
small. This is typically the case for lists of values and for data that configures the behavior of
the application. Moreover, such data is normally not modifiable by ordinary end-user actions
but, rather, is changed only by an administrator. In such cases, a very straightforward
approach to online application upgrade is possible. A new table is defined and populated
ordinarily and is then exposed using an editioning view with the same name and logical
meaning in the new edition as the one that exposed the old table into the old edition. By
setting these editioning views with read only, the intention that the table content is not changed
by end-users is formally enforced48.

Of course, the alter view command can be used to make an editioning view either read-only or
read/write. Notice that there is no special alter editioning view syntax.

Primary key constraints are allowed but foreign key constraints are disallowed

Primary key and foreign key constraints can be created on an ordinary view, but the keywords
disable novalidate must be used. The benefit is mainly that tools can generate diagrammatic
representations of the logical database design. However, an editioning view must be editioned
and an editioned object cannot be the source or the target of a foreign key constraint.
Therefore, an editioning view cannot be the source or the target of a foreign key constraint.
An editioning view can have a disable novalidate primary key constraint.

Operations supported by an editioning view that are not supported by
an ordinary view
The fact that the following operations are allowed on an editioning view reflects the intention
that, once an editioning view is in place in front of every table, then the rest of the application

47. It hardly needs pointing out that rows come and go, and are changed, as part of the routine operation of every
application. The capability to do this comfortably in a multiuser environment is well-established. It would be
appropriate to use edition-based redefinition to stage the visibility of such ordinary changes only when the
content of the tables in some way defines the behavior and meaning of the application, and, of course,
especially when both the context and the structure of such configuration tables needs to be changed.

48. The DBA_Views catalog view family has Y/N columns called Read_Only and Editioning_View.
26-July-2009 page 22

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

design and implementation can treat these editioning views as if they were tables and will
never, therefore, need to refer to a table explicitly.

The following are examples. However, rather than listing every single property that
distinguishes an editioning view from an ordinary view, it is more useful to state the overall
principle:

• Any select, insert, update, delete, merge, lock table or explain plan SQL statement49 that will run
without error on a table will run without error on an editioning view that covers that table.

An editioning view allows table-style triggers

Following the approach described in “Readying an application for edition-based redefinition” on
page 33 will leave triggers that had been defined on renamed tables still attached to those
table but possibly invalid50. However, to honor the principle that application code should not
refer explicitly to tables, the triggers should be recreated on the editioning view that now has
the table’s former name. This trivially achieved by dropping the triggers and then re-running
the DDL that created them51.

Notice that when DML is done using an editioning view, then not only will triggers defined
on the editioning view fire, but also ones defined on its base table will fire. However, when
DML is done using a table, then only the triggers defined on the table will fire — and triggers
defined on the editioning view will not fire. The paradigm requires that all regular application
DML be done using editioning views; as shall be seen (see “The crossedition trigger” on page 24)
only crossedition triggers are allowed to do DML using tables.

A hint in a SQL statement that targets an editioning view
can identify an index by listing the names of its columns.

This, again, allows extant application code to remain correct after the introduction of an
editioning view to cover a table.

49. For example, select Rowid, ev.* from ev is legal when ev is an editioning view.

50. When a table is renamed, the opening part of the source text of a trigger on the table is automatically updated
to reflect the new name. The same happens when columns are renamed and the they are mentioned in the
when clause. However, the source text of the PL/SQL that implements the trigger action is not updated. This
will leave the trigger in an invalid state when the text refers to other tables that have been renamed.

51. The DDL will run without error because the new editioning view exposes exactly the same identifiers as the
table it covers. This holds also for compound triggers that may been defined on the renamed table.
26-July-2009 page 23

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Queries against an editioning view allow partition extended syntax

When an editioning view’s base table is partitioned, then the same query extended syntax that
can be used against the table can be used against the editioning view. The SQL*Plus script
shown in Code_12 illustrates this.

Edition-Based Redefinition using only editions and editioning views
If an application upgrade will change only those tables whose data is not changed via the
ordinary end-user interfaces, then the edition together with the editioning view are sufficient
to allow these changes to be made while the application remains on line. The most obvious
example is configuration data — data that determines the behavior of the application and that
is changed only as part of an upgrade. Such data is typically not voluminous and so it would
be natural to create a replacement table for the upgrade so that an editioning view with a
particular owner and name selects from one table in the pre-upgrade edition and from a
different table in the post-upgrade edition. The upgrade installation script can simply
populate the replacement table as required. According to the requirements of the upgrade, the
editioning view that covers the post-upgrade table may, or may not, have the same shape as
the editioning view that covers the pre-upgrade table.

The crossedition trigger

Sometimes, an application upgrade has to change one or more tables whose content is
queried and changed by ordinary end-user interaction. The use case described in Xref to be
filled in52 provides such an example: a single column that represents a telephone number as it
would be used when dialling within the USA is to be split into two columns, one for the
country code and one for the within-country number. A bulk transformation of the data is
not, by itself, sufficient to ensure correctness of the transformed data. A mechanism is
needed to keep pace with changes that end-users of the pre-upgrade application make to the
old representation of the data, transforming it into the new representation, both during the
bulk transformation and after it is complete as some users continue to use the pre-upgrade
application while others start to use the post-upgrade application.

52. An account of this use case will be added in a later version of this whitepaper.

-- Code_12 Partition_Extended_Syntax_For_EV\Demo.sql
create table t(PK integer primary key, Info varchar2(10))
 partition by range(PK)
 (partition p1 values less than (10),
 partition p2 values less than (maxvalue))
/
begin
 insert into t(PK, Info) values (5, 'in p1');
 insert into t(PK, Info) values (15, 'in p2');
 commit;
end;
/

create view v as select a.PK, a.Info from t a
/
-- Causes ORA-14109
select * from v partition(p1)
/

create editioning view ev as select a.PK, a.Info from t a
/
-- Runs without error
select * from ev partition(p1)
/

26-July-2009 page 24

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Moreover, changes that end-users of the post-upgrade application make to the new
representation of the data must be transformed back into the old representation for the
benefit of end-users of the pre-upgrade application.

Triggers have exactly the right properties to effect the proper responses to the changes that
end-users make during the bulk forward transformation of data and during the hot rollover
period. Moreover, the use of a trigger for this purpose meets the high level requirement that
application code itself can be written to implement only what is needed for its ordinary pre-
and post-upgrade operation and need not implement special logic to accommodate the period
when an edition-based redefinition exercise is in progress. Special triggers, understood to be
distinct from the application code, can be deployed during the edition-based redefinition
exercise and dropped when it is complete.

A crossedition trigger is a special kind of trigger; and a trigger is an editionable object type.
However, unlike other objects whose type is editionable, a crossedition trigger must be owned
by an editions-enabled user; in other words, a crossedition trigger is always editioned53. The
reason for this restriction is that the firing rules for a crossedition trigger are defined with
respect to the relationship between the edition in which it is actual and the current edition of
the session that issues the DML. Further, a crossedition trigger is visible only in the edition in
which it is actual. As a consequence, the SQL*Plus script shown in Code_13 runs without
error.

It is unimportant with respect to the firing rules that a crossedition trigger is visible only in
the edition in which it is actual because these rules are explicitly defined; but this has the
consequence that dependencies between crossedition triggers (by virtue of follows or precedes
relationships) can exist only between sets of crossedition triggers that are actual in the same
edition54. If the clause is follows, then the target must be a forward crossedition trigger; and if
the clause is precedes, then the target must be a reverse crossedition trigger55.

53. If a user that is not editions-enabled attempts to create a crossedition trigger, this causes ORA-25030.

54. This restriction ensures that no contradictions about firing order can be expressed. As will be seen, the firing
order of crossedition triggers in a particular edition cannot be interleaved with that of crossedition triggers in
a different edition.

-- Code_13 Crossedition_Trigger_Visibilty\Demo.sql
alter session set edition = e2
/
create trigger x
 before insert or update or delete on t
 for each row
 forward crossedition
 disable
begin
 ...
end x;
/
-- e3 is the child of e2
alter session set edition = e3
/
-- Notice that we don't need "or replace"
create trigger x
 before insert or update or delete on t
 for each row
 forward crossedition
 disable
begin
 ...
end x;
/

26-July-2009 page 25

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The compilation of a crossedition trigger follows the normal rules for the compilation of any
editioned object: names are resolved to objects that are visible in the edition in which it is
actual. But in contrast to other editioned objects, a crossedition trigger and all code it calls
always runs using the edition in which it is actual. Code_20 is a SQL*Plus script that shows this.

A crossedition trigger may be created only directly on a table — and not on either a regular
view or an editioning view56. This implies that only the before statement, before each row, after each
row, and after statement variants may be specified; the instead of variant is not legal for a
crossedition trigger. A crossedition trigger may be a compound trigger.

Basic firing rules for crossedition triggers
The firing rules were designed on the assumption that the crossedition triggers required to
implement a particular upgrade are all installed in the post-upgrade edition. This is consistent
with the overall paradigm that (in order that the pre-upgrade application will be unperturbed)
all DDL to editioned objects is done in the post-upgrade edition. The rules assume that
pre-upgrade columns are changed (by ordinary application code) only by sessions using the
pre-upgrade edition and that post-upgrade columns are changed (again by ordinary
application code) only by sessions using the post-upgrade edition. There are therefore two
kinds of crossedition trigger:

• A forward crossedition trigger is fired by application DML issued by sessions using the
pre-upgrade edition. Such a trigger is used to implement transformations from the old
representation forwards into the new representation.

• A reverse crossedition trigger is fired by application DML issued by sessions using the
post-upgrade edition. Such a trigger is used to implement transformations from the new
representation backwards into the old representation.

The following is a more careful statement of the rules, acknowledging the fact that three or
more editions might be active during an edition-based redefinition exercise:

• A forward crossedition trigger is fired by application DML issued by a session using any
ancestor edition to that in which the trigger is actual.

• A reverse crossedition trigger is fired by application DML issued by a session using the
edition in which the trigger is actual or any descendant of that edition.

The following demonstration illustrates these basic firing rules for crossedition triggers. The
database has five editions, e1, e2 (child of e1), and so on through to e5 (child of e4).

55. The follows and precedes clauses were introduced in 11.1. A regular trigger may use only the follows clause and its
target must be a regular trigger on the same table. An ordering relationship may be established only between
triggers with the same timing point (before statement, before each row, after each row, or after statement). An attempt to
violate this rule causes ORA-25022: cannot reference a trigger of a different type. An ordering relationship may be
established between compound triggers; however, the ordinary ordering of the timing points (before statement
fires before before each row, and so on) is always respected. It might appear, therefore, that when a compound
trigger with only a before statement section is defined using follows with respect to one with only a before each row
section, the ordering specification is not respected. However, the ordering can be seen to make sense when
many compound triggers are mutually ordered and different ones of them have sections for different subsets
of timing points.

56. The attempt causes ORA-42306: a crossedition trigger may not be created on an editioning view.
26-July-2009 page 26

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The procedure Trace57, shown in Code_15, is owned by Sys and is therefore not editioned.

There is a public synonym for Sys.Trace, and Execute on Sys.Trace is granted to public.

The user Usr is editions-enabled and is granted only Create Session, Resource, and Use on each of
e1 through e5.

The function Usr.Curr_Edn, shown in Code_15, is actual in edition e1.

The table Usr.t has a column n of datatype number; the editioning view Usr.ev covers it and
selects n. The regular trigger Usr.Regular, shown Code_16, is actual in edition e2.

The forward crossedition trigger Usr.Fwd_Xed, shown in Code_17, is actual in edition e3.

57. It is typically not possible to trace the behavior of a crossedition trigger using DBMS_Output.Put_Line(). This
is because the procedure accumulates the lines in a DBMS_Output package global collection so that, when the
server call terminates, SQL*Plus can traverse the collection to print out the lines. However, as has been
explained (see “Package state when the same package is instantiated in more than one edition” on page 18), when a session
uses different editions during its lifetime, then a particular package is separately instantiated in each edition
from which a reference to the package is made. It is for this reason that the more cumbersome approach, using
Utl_File, is used. This method of tracing, using Utl_File to open the trace file in append mode, write one line,
and then to close the file is very inefficient. However, in a test such as this, the inefficiency is undetectable.

-- Code_14 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
procedure Trace(
 t1 in varchar2, t2 in varchar2 := null)
 authid Definer
is
 f Utl_File.File_Type := Utl_File.Fopen(
 Location => 'MY_DIR',
 Filename => 't.txt',
 Open_Mode => 'a',
 Max_Linesize => 32767);
begin
 if t2 is null then
 Utl_File.Put_Line(f, t1);
 else
 Utl_File.Put_Line(f, Rpad(t1, 30, '.')||' '||t2);
 end if;
 Utl_File.Fclose(f);
end Trace;

-- Code_15 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
function Curr_Edn return varchar2 authid Definer is
 e constant varchar2(30) not null :=
 Sys_Context('Userenv', 'Current_Edition_Name');
begin
 return e;
end Curr_Edn;

-- Code_16 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Regular
 after update on ev
begin
 Trace('From Regular', Curr_Edn());
end Regular;

-- Code_17 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Fwd_Xed
 after update on t
 forward crossedition
begin
 Trace('From Fwd_Xed. Expect E3', Curr_Edn());
end Fwd_Xed;
26-July-2009 page 27

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The reverse crossedition trigger Usr.Rev_Xed, shown in Code_19, is actual in edition e4.

Finally, the procedure Usr.Do_Update58, shown in Code_19, is actual in edition e1.

The SQL*Plus script shown in Code_20

58. Notice that the procedure Usr.Do_Update issues a commit. This allows the scripts shown in
Code_20 to run without error. It is illegal to change the current edition during a transaction.
(See “Conceptual explanation of the edition” on page 6.)

-- Code_18 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
trigger Rev_Xed
 after update on t
 reverse crossedition
begin
 Trace('From Rev_Xed. Expect E4', Curr_Edn());
end Rev_Xed;

-- Code_19 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
Do_Update authid Definer is
begin
 Trace('From Do_Update', Curr_Edn());
 update ev set n = n + 1;
 commit;
end Do_Update;

-- Code_20 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
alter session set edition = e1
/
begin
 Trace(Chr(10)||'App using e1');
 Do_Update();
end;
/

alter session set edition = e2
/
begin
 Trace(Chr(10)||'App using e2');
 Do_Update();
end;
/

alter session set edition = e3
/
begin
 Trace(Chr(10)||'App using e3');
 Do_Update();
end;
/

alter session set edition = e4
/
begin
 Trace(Chr(10)||'App using e4');
 Do_Update();
end;
/

alter session set edition = e5
/
begin
 Trace(Chr(10)||'App using e5');
 Do_Update();
end;
/

26-July-2009 page 28

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

will then produce this output to the trace file t.txt:

When a database has no more than two active editions during an edition-based redefinition
exercise and when no crossedition trigger issues DML59, then it is sufficient just to
understand these basic firing rules.

Advanced firing rules for crossedition triggers
We will use the term crossedition trigger DML for DML issued directly, using embedded SQL or
native dynamic SQL, from the PL/SQL unit that is a crossedition trigger; and we will use the
term regular DML for DML issued from any other site. Notice that this definition means that
DML that is issued from a PL/SQL unit that is invoked by a crossedition trigger is regular
DML. In particular, DML issued by using the DBMS_Sql API is by default regular DML,
even when the invocation of these subprograms is made directly from the implementation of
a crossedition trigger. However, if the name of the crossedition trigger that invokes the
DBMS_Sql API is provide for the actual of the Applying_Crossedition_Trigger() formal
parameter to DBMS_Sql_Parse(), then the DML that the DBMS_Sql API issues will be
crossedition trigger DML.

• Regular DML always fires both visible regular triggers and appropriately selected
crossedition triggers.

• The firing order of crossedition triggers in a particular edition is never interleaved with that
of crossedition triggers in a different edition. All forward crossedition triggers in
edition e will fire before any in a descendent edition of edition e. And all reverse
crossedition triggers in edition e will fire after any in an ancestor edition of edition e.

• Crossedition trigger DML from a forward crossedition trigger actual in edition e will fire
forward crossedition triggers that are actual in descendents of edition e but will never fire
reverse crossedition triggers or regular triggers.

• Correspondingly, crossedition trigger DML from a reverse crossedition trigger actual in
edition e will fire reverse crossedition triggers that are actual in ancestors of edition e but
will never fire forward crossedition triggers or regular triggers.

59. This situation is expected to be common.

-- Code_21 Crossedition_Trigger_Runs_Where_Its_Actual\Demo.sql
App using e1
From Do_Update................ E1
From Fwd_Xed. Expect E3....... E3

App using e2
From Do_Update................ E2
From Regular.................. E2
From Fwd_Xed. Expect E3....... E3

App using e3
From Do_Update................ E3
From Regular.................. E3

App using e4
From Do_Update................ E4
From Regular.................. E4
From Rev_Xed. Expect E4....... E4

App using e5
From Do_Update................ E5
From Regular.................. E5
From Rev_Xed. Expect E4....... E4
26-July-2009 page 29

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• Recall the fact that DML done to a table does not fire triggers on an editioning view that
covers the table (see “An editioning view allows table-style triggers” on page 23). This means that,
in practice, even DML to tables that a crossedition trigger issues using the DBMS_Sql API
or a helper PL/SQL unit that in turn does the DML (which is therefore regular DML) will
not fire regular triggers because these, following the paradigm, will not be created on tables
but will be created only on editioning views.

• Crossedition trigger DML from a unit that is actual in edition e does not, unless special
programming steps (described in the next two bullet points) are taken, fire crossedition
triggers that are actual in edition e.

• If forward crossedition trigger Fwd_Xed_1, on table t1, issues crossedition trigger DML to
table t2, then forward crossedition trigger Fwd_Xed_2, on table t2, will fire if and only if
there is an ordering relationship between Fwd_Xed_2 and Fwd_Xed_1. Either Fwd_Xed_2
may be defined using the follows Fwd_Xed_1 syntax; or the ordering relationship between
Fwd_Xed_1 and Fwd_Xed_2 may be established transitively (through one or several
intervening crossedition triggers).

• Correspondingly, if reverse crossedition trigger Rev_Xed_1, on table t1, issues crossedition
trigger DML to table t2, then reverse crossedition trigger Rev_Xed_2, on table t2, will fire if
and only if there is an ordering relationship between Rev_Xed_2 and Rev_Xed_1. Again, the
ordering may be direct or transitive60.

The apply step: systematically visiting every row to transform the pre-upgrade representation to the
post-upgrade representation
While forward crossedition triggers are necessary in order to propagate changes that happen
to be made to the pre-upgrade representation by user activity, just having them in place is, of
course, not sufficient to ensure that every row will be transformed. The simplest way to
ensure that every row is transformed is to use a batch process to force each forward
crossedition trigger to fire. This is trivially achieved by updating each forward crossedition
trigger’s base table to set a column that fires the trigger on update to itself. There is, however,
a little more to this than you might at first think.

Using DBMS_Sql_Parse() to apply a forward crossedition trigger

The firing rules for crossedition triggers dictate that regular DML issued by a session using
edition e will not fire forward crossedition triggers that are actual in edition e. But the
paradigm for edition-based redefinition requires that a session that is installing the upgrade
should use the post-upgrade edition. How, then, can such a session make a relevant forward
crossedition trigger fire?

New in 11.2, DBMS_Sql_Parse() has overloads with the formal parameter
Apply_Crossedition_Trigger. These overloads also have the formal parameters Edition and
Fire_Apply_Trigger. Apply_Crossedition_Trigger has no default value, Edition has the default
value null, and Fire_Apply_Trigger has the default value true. (Other overloads have just the
formal parameter Edition; in these, it has no default value.) Code_22 shows the simple use of

60. Of course, neither the use of the precedes clause nor the use of the follows must specify circularity. The attempt
causes ORA-25023: Cyclic trigger dependency is not allowed.
26-July-2009 page 30

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

the overload with Apply_Crossedition_Trigger to fire the forward crossedition trigger Fwd_Xed,
on table t, for each of its rows.

When Edition is null, then names are resolved in the current edition of the session that invokes
DBMS_Sql_Parse(). The significance of Fire_Apply_Trigger is explained in “Using explicit SQL
for the apply step” on page 32.

Forward crossedition triggers are the only triggers that you can apply (cause to fire on every
row of the table on which they are defined).

Crossedition triggers must be idempotent

It is impossible to predict whether a particular row that is to be transformed by a forward
crossedition trigger will be visited first by ordinary end-user activity or by the apply step.
Therefore, it is possible that, when the apply step happens second, the same transform will be
applied twice to the same row. The action of a forward crossedition trigger must therefore, by
explicit design, be idempotent. (Similar rationale holds for the design of a reverse crossedition
trigger — even though these are never the subject of an apply step.)

When a replacement table is used, then every row in the original table needs to be reflected in
the replacement. If the source row is visited first by ordinary end-user activity, then when the
same row is visited by the apply step, no further cation is needed. (This is because the current
state of the source row is already reflected in the target replacement table.) The
Ignore_Row_On_Dupkey_Index61 is provided to allow the rule to be simply implemented. It is,
however, necessary to detect that the apply step is in progress if this is implemented simply by
causing the forward crossedition trigger that implements the transform to fire for every row.
The boolean function Applying_Crossedition_Trigger() in the package DBMS_Standard is
provided for this purpose.

It is possible, of course, that when the forward crossedition trigger fires in response to
ordinary end-user activity, the source row is already reflected in the target table. If this is the
case, then the functional equivalent of a merge must be done. The Change_Dupkey_Error_Index
hint is provided to allow this functionality to be programmed conveniently62.

When to enable crossedition triggers — DBMS_Utility.Wait_On_Pending_DML()

In order that there be no “lost updates” during the apply step, the following logic must be
used.

• Enable the forward crossedition triggers that are mutually related by the follows relationship.

• Invoke DBMS_Utility.Wait_On_Pending_DML(). This waits until all transactions (other than
the caller’s own) that have locks on the listed tables and that began prior to the invocation
of this function have either committed or been rolled back.

61. The Ignore_Row_On_Dupkey_Index, Change_Dupkey_Error_Index, and Retry_On_Row_Change hints are new in
11.2.

62. To do... explain the circumstances when the Retry_On_Row_Change hint is useful.

-- Code_22
DBMS_Sql.Parse(
 c => The_Cursor,
 Language_Flag => DBMS_Sql.Native,
 Statement => 'update t set c1 = c1',
 Apply_Crossedition_Trigger => 'Fwd_Xed');
26-July-2009 page 31

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• Start the apply step.

Using the DBMS_Parallel_Execute API

If the table which will suffer the apply step has very many rows, then should the operation be
done as a single transaction, ordinary users attempting to change rows in the same table
would be very likely to suffer unacceptable waits. Therefore, the availability of the
pre-upgrade application will be improved if the apply step is conducted in separately
committed chunks of reasonable size. (Because the transform is required to be idempotent,
there is no requirement to complete the apply step in a single commit unit and no requirement
to keep the wall clock time between the commit of the separate chunks short.) The
DBMS_Parallel_Execute package63 provides a convenient way to achieve this. It exposes just
the same degrees of freedom as does the DBMS_Sql_Parse() overload shown in
Code_22 on page 31.

Using explicit SQL for the apply step

While it takes least effort on behalf of the developers of the edition-based redefinition
exercise to implement the apply step simply by causing the forward crossedition trigger(s) that
implement the transform for each row of the table, this is not always the approach that
produces the most performant result. This is especially the case when a replacement table is
used. A SQL statement that has the same effect (if one can be written) will use less
computational resource than the row-by-row approach (with associated per row SQL to
PL/SQL to SQL context switches) that reusing the forward crossedition trigger(s) implies.
Code_23 shows how, to achieve this, DBMS_Sql_Parse() is used with Fire_Apply_Trigger set to
false to indicate that rather than firing the forward crossedition trigger designated by
Apply_Crossedition_Trigger, the real SQL statement designated by Statement will be used.

It is necessary to specify the name of the forward crossedition trigger, Fwd_Xed, that
implements the same transform so that the closure of other forward crossedition triggers in
follows relationship the Fwd_Xed will fire. Of course, the DBMS_Parallel_Execute approach
may be used for this approach to the apply step.

Combining several bug fixes in a single edition-based redefinition exercise
Real applications are often very large and complex; they may be developed and maintained by
a large team; and, sadly but realistically, they suffer from many independent bugs. Each bug
fix might be implemented independently of others by a different developer. There are two
ways to implement a set of fixes at a deployed site.

• Either, a single patch script is developed to make the transformation corresponding to N
distinct bug fixes, going from the start state to the end state in an optimal fashion

• or N separate patch scripts are developed, each to implement the fix for one bug, and these
N scripts are run in succession in an order that has been designed to be appropriate.

63. The DBMS_Parallel_Execute is new in 11.2. It is implemented ordinarily in PL/SQL as wrapper for calls to the
DBMS_Scheduler API. It manages the state of progress of a task by using Sys-owned tables exposed via catalog
views.

-- Code_23
DBMS_Sql.Parse(
 c => The_Cursor,
 Language_Flag => DBMS_Sql.Native,
 Statement => The_Real_SQL_Statement,
 Apply_Crossedition_Trigger => 'Fwd_Xed',
 Fire_Apply_Trigger => false);
26-July-2009 page 32

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

The first approach is potentially more efficient; but the second approach is likely to require
less effort from the team that develops and maintains the application. Moreover, especially
when the application is delivered by an ISV64, different sites where the same application is
deployed might need to apply different bug fixes; in such cases, the second approach offers
more flexibility.

When the first approach is implemented using edition-based redefinition, it is very unlikely
that the advanced firing rules for crossedition triggers will be useful. The exercise will use
only a single new edition, and no crossedition trigger Trg2 will implement logic to respond to
a change that a different crossedition trigger Trg1 will make. (Rather, Trg1 will implement
directly the logic that Trg2 otherwise would have implemented.)

However, when the second approach is implemented using edition-based redefinition, it
might happen that one crossedition trigger Trg2 must fire only after another crossedition
trigger Trg1 has fired because, in the ordering scheme for individual fixes, it is realized that
Trg2 (on table t2) must read data that Trg1 (on table t1) must first have changed. In relatively
rare cases, not only might Trg1 do DML to t2 but also Trg2 might do DML to t1 — in other
words, a possibility of circularity might arise.

The conceptually simple way to avoid such circularity is to use a new edition for each fix,
where the parent-child order of the editions reflects the designed order of applying the fixes.
End-user sessions would use only the ultimate ancestor edition and the ultimate descendent
edition. The fact that crossedition trigger DML from a forward crossedition trigger will fire
only those forward crossedition triggers in descendent editions (and correspondingly for
reverse crossedition triggers) avoids circular firing. However, it is less cumbersome to use
only a single new edition; in this case, that fact that crossedition trigger DML will never fire
crossedition triggers in the same edition unless this is explicitly requested with a follows or
precedes mutual relationship avoids circular firing.

Readying an application for edition-based redefinition

Readying an application for edition-based redefinition requires that at lest one user be
editions-enabled and that an editioning view be introduced to cover each of the application’s
tables. It might be necessary to do some schema reorganization in order that the intended
editions-enabling will succeed.

This readying step is a non-negotiably offline operation. And, because of the requirement for
testing that the various changes to the application imply, the vehicle must be a new version of
the application. The application author must decide if a new version will be dedicated to be
the vehicle for delivering the edition-based-redefinition-ready application or if other
functionality changes might be bundled into the same new version.

Editions-enabling the intended users

Because an editioning view can be owned only by an editions-enabled user, then every user
that owns a table that belongs to the application, and that therefore will be covered by an
editioning view, must be editions-enabled65. Further, every user that owns a synonym, view,
or PL/SQL object that belongs to the application should be editions-enabled so that such

64. ISV stands for Independent Software Vendor and here denotes a vendor that produces an application for
Oracle Database that is deployed by many different customers.
26-July-2009 page 33

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

objects can be modified as appropriate in the child edition during an edition-based
redefinition exercise. Note though that an evolved ADT cannot be editioned and nor can a
view that is the source or the target of a foreign key constraint. This implies that, when the
application has such objects, some kind of explicit fix will be necessary.

Recall that an object that is not editioned cannot depend on one that is editioned. This means
that the attempt to editions-enable a user that owns an object whose type is editionable will
fail66 if that object has an object that is not editioned in the closure of its dependants that is
not owned by the to-be-editions-enabled user. If this failure occurs, then the force keyword can
be used. The alter user... enable editions force command will succeed but all the not editioned
objects in the closure of dependants of each now editioned object owned by the newly
editions-enabled user, not owned by the user, will be invalidated.

The invalidation will be recoverable for an invalidated object of editionable type if its owner can,
in turn, be successfully editions-enabled. But the invalidation will be irrecoverable for an
invalidated object that cannot become an editioned object, either because its type is not
editionable or because its owner cannot be editions-enabled.

It might prove necessary to designate one or more users that own objects that belong to the
application that will not be editions-enabled for the specific purpose of owning objects whose
type is editionable but that must become editioned in order to avoid irrecoverable
invalidations.

Introducing an editioning view in front of every table

Suppose that an extant application that runs in 11.1 has a table The_Rows with columns PK, a,
b, c, and d. Of course, these names will be reflected in very many places in the application’s
install scripts and in its code. In order to be ready to take advantage of edition-based
redefinition, application code must no longer refer to this table explicitly but must instead
refer to an editioning view that covers the table.

In fact, each one of an application’s tables must be covered by an editioning view; and all data
access from application code must reference the covering editioning view; only crossedition
triggers67 and, of course, editioning views, should be allowed to reference tables.

The least invasive way to effect this regime is to rename the table, giving it a name that is
conventionally related to its former name, and then to create an editioning view with the
table’s former name and that exposes the same column list as did the table. It is natural, but
not necessary, to rename the table’s columns using a convention that denotes the change
history.

65. Oracle recommends that no attempt be made to predict which tables are likely to suffer change in patches and
upgrades to the application in the hope that only each of these needs to be covered by an editioning view. This
is bound to be a false economy of effort.

66. The attempt causes ORA-38819.

67. See “The crossedition trigger” on page 24.
26-July-2009 page 34

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Code_24 shows an example of a create editioning view statement that follows such a naming
convention68.

Notice that edition-based redefinition cannot be used to support the introduction of an
editioning view to cover each of an applications tables69. Rather, the one-time operation, like
the upgrade of the Oracle Database to 11.2, is the price that must be paid to make the
application ready to benefit from edition-based redefinition. It would be natural to do both
first the upgrade to 11.2 and then the introduction of the editioning views in the same
downtime exercise.

Notice that constraints and indexes (with the exception of join indexes70) remain valid when
their tables, and the columns in these, are renamed because the rename command
automatically updates the constraint and index metadata. However, such renaming will, in
general, invalidate triggers because the trigger prologue is automatically edited but the
PL/SQLcode that implements the trigger is not. The remedy is simply to re-run the scripts
that created the triggers once the covering editioning views are in place. This will have the
effect of moving each trigger from a table to the editioning view that covers it, in line with the
recommended practice.

68. The name PK is meant to suggest primary key. Suppose that a particular application upgrade intended to split a
single primary key column into two which then would be then new primary key. Because constraints are
defined at the table level, this step would require the intermediate use of unique indexes.

69. This restriction needs to be stated more carefully. When the aim is to cover each table The_Rows with an
editioning view The_Rows by first renaming the table to The_Rows_, then edition-based redefinition cannot be
used to support this. If, rather, each table retains its old name and each editioning view has a new name, then
edition-based redefinition can be used. In this approach, a new edition would be used for the creation of the
editioning views. Of course, every database object that had referred directly to the table would now need to
be edited so that it referred to the corresponding editioning view. When such a reference was made from the
code of an editioned object, then a new occurrence could be ordinarily made in the new edition. However,
when the reference was made from a noneditioned object, then this would need to be manually versioned by
giving the new occurrence a new name. It is expected that the effort, and therefore the risk of introducing bugs,
of using edition-based redefinition to introduce the editioning views will be considered by most customers too
great and that they will choose, instead, to ready their applications offline.

70. A join index is created like this.

An attempt to rename the column Masters.Val fails with ORA-23293: Cannot rename a column which is part of a join
index.

-- Code_24 n/a
create editioning view The_Rows as
 select
 a.PK_1 PK,
 a.a_1 a,
 a.b_1 b,
 a.c_2 c,
 a.d_3 d
 from The_Rows_ a

create bitmap index i
on Details(Masters.Val)
from Details, Masters
where Details.PK = Masters.PK
26-July-2009 page 35

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Existing features in the presence of editions

Database links
A database link has always been allowed between databases at different versions of
Oracle Database. However, we need not consider the case where a database link in a database
at 11.1 or earlier denotes a 11.2 database71. We need only consider a database link in a
database at 11.2 or later that denotes a database at its own version or at an earlier version. The
interesting case is when a database with more than one edition has a database link that
denotes another database with more than one edition. It turns out that the case where the
target database has just one edition, or is at 11.1 or earlier where there is no such thing as an
edition, is a just degenerate case of the more interesting one.

Though a database link is a code object, the object type is not editionable.

The create database link statement has no way to identify the edition at the target database72.
When this target has more than one edition, then the session that supports the reference to an
object @Some_Link uses the target’s default edition. The local database therefore sees a “flat”
picture of the remote database. It cannot tell whether the target is at a version of
Oracle Database that knows nothing of editions, has is just one edition, or has several
editions. Especially, it cannot detect whether a remote object is editioned or not73.

For objects within a single database, an object that is not editioned cannot depend on an
editioned object. This restriction is necessary because of the rules which are used to
determine which actual occurrence of an editioned referenced object to resolve to. These
rules rely on knowing the edition of the dependent object.

The general rule, that an object that is not editioned cannot depend on one that is, needs to
be stated very carefully when the referenced object is remote. In this case, the flattening effect
of seeing the referenced object via the link trumps the fact that it might be editioned. For a
remote dependency, the mechanism of the link is sufficient to uniquely identify which actual
occurrence of the reference object to use when it is editioned. Therefore, a local object that is
not editioned can depend on a remote object that is editioned.

The pre-11.2 understanding about remote dependencies (timestamp mode versus signature
mode) holds even when both the local dependent object and the remote referenced object are
editioned and when the local database and the remote database each has several editions.

71. The source database should not be at an earlier version than the target. This rule holds for any client, for
example SQL*Plus; the client version must be at least the same as the database version. If a 9.2 SQL*Plus client
connects to a 11.1 database, many operations might seem to work, but some will fail. The advent of editions
doesn’t change this.

72. The power of expression of the connect string could be extended to allow the target edition to be specified.

73. Of course, if the local database executes a PL/SQL unit that uses remote procedure call to invoke the overload
of DBMS_Sql_Parse() in the remote database that allows the edition to be specified, and other appropriate
DBMS_Sql subroutines, then it can discover arbitrary information about the remote objects and execute SQL
statements of all sorts in any remote edition that it chooses. But such a unit is not expected to be part of an
ordinary application.
26-July-2009 page 36

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Application Contexts
Code_25 shows a SQL statement that creates a global application context.

Objects whose type is context are listed in the DBA_Objects catalog view family and they are
never editioned74. While it appears that My_Context depends on the package
Usr.My_Context_API, this is not a formal relationship. The create context statement will succeed
even if the package Usr.My_Context_API does not exist. Therefore, even though My_Context is
not editioned, Usr.My_Context_API may be.

The consequence of this is best understood by an example. Suppose that the database has two
editions, Pre_Upgrade and Post_Upgrade and that package Usr.My_Context_API with the source
shown in Code_26 is actual in Pre_Upgrade and inherited in Post_Upgrade.

Suppose, too, that the implementation in the body of My_Context_API is actual in both
Pre_Upgrade and Post_Upgrade because improved functionality is introduced in the newer
occurrence. It is common to use Set_Value() to restrict the choice of key using a list of allowed
keys and, therefore, a common improvement is to add a new key with a new meaning for the
clients of the context it controls. Such details are unimportant for this example; it is sufficient
to consider the Pre_Upgrade implementation shown in Code_27

and a Post_Upgrade implementation that simply replaces the text Pre_Upgrade with
Post_Upgrade.

74. The list of editionable object types is given in “editionable object types, editions-enabled users, and editioned objects” on
page 7; context is not among them.

-- Code_25 Application_Context\Demo.sql
create context My_Context
using Usr.My_Context_API
accessed globally

-- Code_26 Application_Context\Demo.sql
package My_Context_API authid Current_User is
 procedure Set_Value(Key in varchar2, Val in varchar2);
 function Key_Value(Key in varchar2) return varchar2;
end My_Context_API;

-- Code_27 Application_Context\Demo.sql
package body My_Context_API is
 procedure Set_Value(Key in varchar2, Val in varchar2) is
 begin
 DBMS_Session.Set_Context(
 namespace => 'My_Context',
 attribute => Key,
 value => 'Using the Pre_Upgrade''s Set: '||Val);
 end Set_Value;

 function Key_Value(Key in varchar2)return varchar2 is
 begin
 return 'Using Pre_Upgrade''s Key_Value: '||
 Sys_Context('My_Context', Key);
 end Key_Value;
end My_Context_API;
26-July-2009 page 37

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Suppose now that the SQL*Plus script shown in Code_28 is used to store values in the
context.

The result stands in contrast to that for package state75. All six key-value pairs are stored in
the same context but are (in this example) annotated differently reflecting the current edition
at the time that Set_Value() was invoked.

Suppose, finally, that the SQL*Plus script shown in Code_29 is used to retrieve values from
the context.

It produces this output:

75. See “Package state when the same package is instantiated in more than one edition” on page 18.

-- Code_28 Application_Context\Demo.sql
alter session set edition = Pre_Upgrade
/
begin
 My_Context_API.Set_Value(Key=>'a', Val=>'Apple');
 My_Context_API.Set_Value(Key=>'b', Val=>'Banana');
 My_Context_API.Set_Value(Key=>'c', Val=>'Carrot');
end;
/
alter session set edition = Post_Upgrade
/
begin
 My_Context_API.Set_Value(Key=>'d', Val=>'Date');
 My_Context_API.Set_Value(Key=>'e', Val=>'Eggplant');
 My_Context_API.Set_Value(Key=>'f', Val=>'Fig');
end;
/

-- Code_29 Application_Context\Demo.sql
alter session set edition = Pre_Upgrade
/
begin
 DBMS_Output.Put_Line('a: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
 DBMS_Output.Put_Line('d: '||
 Usr.My_Context_API.Key_Value('d'));
 ...
end;
/
alter session set edition = Post_Upgrade
/
begin
 DBMS_Output.Put_Line('a: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
 DBMS_Output.Put_Line('d: '||
 Usr.My_Context_API.Key_Value('a'));
 ...
end;
/

a: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Apple
b: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Banana
c: Using Pre_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Carrot
d: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Date
e: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Eggplant
f: Using Pre_Upgrade's Key_Value: Using the Post_Upgrade's Set: Fig

a: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Apple
b: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Banana
c: Using Post_Upgrade's Key_Value: Using the Pre_Upgrade's Set: Carrot
d: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Date
e: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Eggplant
f: Using Post_Upgrade's Key_Value: Using the Post_Upgrade's Set: Fig
26-July-2009 page 38

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

This shows that both the old and new implementations of Key_Value() see the same
edition-independent set of values stored in the context.

It is essential to understand this behavior when designing an upgrade to an application that
uses a context. Different strategies will serve different purposes. For example, if the setter and
getter subprograms did no more than enforce the list of allowed keys, then a new key could
be added in a new edition without considering the representation of the values that the
context stores, and the both the new and the old implementations could populate the same
context. For a more radical change, the new setter and getter subprograms could use a
different context than the old ones76.

VPD policies on editioning views and synonyms
Oracle recommends that any VPD policy that is attached to a table in the application before it
has been readied for edition-based redefinition be dropped and re-created on the editioning
view that covers the table after the application has been readied for edition-based redefinition.
The main reason is that the apply step needs to visit every row in the table; and a VPD policy
can block the table’s owner from seeing every row in he table.

Regular and fine-grained audit policies
Oracle recommends that any regular or fine-grained auditing policy that is attached to a table
in the application before it has been readied for edition-based redefinition be left at the table
level after the application has been readied for edition-based redefinition. This is because
auditing is the last line of defense in a security design. It is conceivable that a person who
knows the password of the user that owns a table could turn out to be untrustworthy and
might make unauthorized changes to the data that the table stores.

Edition-Based Redefinition Case Studies

Later versions of this whitepaper will add accounts of a variety of case studies.

Conclusion

This whitepaper has explained how edition-based redefinition is used to allow an application’s
database objects to be patched or upgraded while the application remains in uninterrupted
use. It has drawn attention to the following characteristics that distinguish the capability
markedly from other Oracle Database capabilities that support the other subgoals of the
overall high availability goal.

• An application must be specifically prepared to use edition-based redefinition. This will
need a new version of the application as the vehicle. The new version will be designed by
the application’s architect and will be delivered by upgrade scripts created in by the
application’s developers. The upgrade to the edition-based-redefinition-ready version must
be done in downtime because tables will be renamed and dependent objects will be
invalidated. Only when an editioning view covers each table and restores its former name
will revalidation be possible77.

76. This discussion reinforces the wisdom of the discipline of using a getter function in all application code,
thereby hiding the name of the context, rather than invoking Sys_Context('My_Context', Key) directly.
26-July-2009 page 39

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

• If the extant application, before it is made edition-based-redefinition-ready, has unfavorable
occurrences of objects that cannot be editioned that depend on objects that will be
editioned, if it has occurrences of evolved ADTs owned by users that will be
editions-enabled, or if it has occurrences of views that are the source or target of foreign
key constraints owned by users that will be editions-enabled, then the application’s architect
will need to design some non-trivial changes to the distribution of objects among the
applications owners.

• Once the application has been made edition-based-redefinition-ready, then subsequent
upgrades and patches may be done online.

• Such scripted edition-based redefinitionexercises, just like scripted classical offline upgrades
and patches, will be designed by the application’s architect and implemented by the
application’s developers. An administrator at the deployed site of an application cannot
perform an online application upgrade unless the application’s developers have delivered
the upgrade scripts as an edition-based redefinition exercise.

Should a particular upgrade require to change only synonyms, views, or PL/SQL objects,
then the upgrade scripts will be identical to those used for a classical offline upgrade. The
only difference will be that they are executed using a new edition.

Should a particular upgrade require additionally (or alternatively) to change the shape or
content of only those tables that do not suffer changes in consequence of ordinary end-user
activity, then the design and implementation of the edition-based redefinition exercise will not
need to use crossedition triggers; it will need only to change editioning views, and possibly
other editioned objects, in the new edition.

Only when the upgrade requires to change the shape or content of tables that do suffer
changes in consequence of ordinary end-user activity, is the use of crossedition triggers
required. These crossedition triggers are created to sustain the edition-based redefinition
exercise and are dropped when it is complete; in contrast to editioning views, they are not a
permanent part of the application.

Enjoy!

Bryn Llewellyn,
Product Manager, Database Server Technologies Division, Oracle Headquarters
bryn.llewellyn@oracle.com
26-July-2009

77. Of course, this revalidation will be possible without changing the code of the dependent objects.
26-July-2009 page 40

mailto:bryn.llewellyn@oracle.com
www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

www.oracle.com/technology/deploy/availability/.../Edition_Based_Redefinition.pdf Oracle White Paper — Edition-Based Redefinition

Appendix A:
Change History

26-July-2009

• First published version. Describes the conceptual framework and the basic use of the
edition, the editioning view, and the crossedition trigger. Detailed accounts of use cases will
be added in subsequent versions and in response to questions from customers.
26-July-2009 page 41

www.oracle.com/technology/tech/pl_sql/pdf/Plsql_Conditional_Compilation.pdf

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information
purposes only and the contents hereof are subject to change without notice. This document is not warranted
to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document and no contractual obligations are formed
either directly or indirectly by this document. This document may not be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

0109

Edition-Based Redfinition
July 2009
Author: Bryn Llewellyn

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

	Introduction
	Customer Goals and Oracle Database Capabilities
	Edition-Based Redefinition
	The edition
	The challenge
	Conceptual explanation of the edition
	editions
	editionable object types, editions-enabled users, and editioned objects
	actual objects, inherited objects, and name resolution
	Retiring an edition
	Dropping an edition

	The edition-based redefinition lifecycle
	Diagramatically illustrated example
	A minimal, complete edition-based redefinition exercise code example
	Consequential actualization of dependants and fine-grained dependency tracking
	Deliberate invalidation and revalidation of editioned objects
	The effect of DDL in an edition with a child
	Using DBMS_Sql_Parse() to execute SQL outside of the current edition
	Package state when the same package is instantiated in more than one edition

	The editioning view
	The conditions that an editioning view must satisfy
	An editioning view must be owned by an editions-enabled user
	An editioning view must be owned by its table’s owner
	There can be no more than one visible editioning view for a particular table in a particular edition
	The subquery factoring clause is not allowed
	The subquery must be a single query block
	The for update clause is not allowed
	The query block must identify exactly one table
	The select list must mention only column names and optional aliases
	The where clause, group by clause, and having clause are not allowed
	The order by clause is not allowed
	Other restrictions

	Allowed freedoms when defining an editioning view
	The with read only clause is allowed
	Primary key constraints are allowed but foreign key constraints are disallowed

	Operations supported by an editioning view that are not supported by an ordinary view
	An editioning view allows table-style triggers
	A hint in a SQL statement that targets an editioning view can identify an index by listing the names of its columns.
	Queries against an editioning view allow partition extended syntax

	Edition-Based Redefinition using only editions and editioning views

	The crossedition trigger
	Basic firing rules for crossedition triggers
	Advanced firing rules for crossedition triggers
	The apply step: systematically visiting every row to transform the pre-upgrade representation to the post-upgrade representation
	Using DBMS_Sql_Parse() to apply a forward crossedition trigger
	Crossedition triggers must be idempotent
	When to enable crossedition triggers — DBMS_Utility.Wait_On_Pending_DML()
	Using the DBMS_Parallel_Execute API
	Using explicit SQL for the apply step

	Combining several bug fixes in a single edition-based redefinition exercise

	Readying an application for edition-based redefinition
	Editions-enabling the intended users
	Introducing an editioning view in front of every table

	Existing features in the presence of editions
	Database links
	Application Contexts
	VPD policies on editioning views and synonyms
	Regular and fine-grained audit policies

	Edition-Based Redefinition Case Studies
	Conclusion
	Appendix A: Change History

