Authors:
Li, Juanzi; Tang, Jie; Li, Yi; Luo, Qiong
Author:
Li, J
Tang, J
Li, Y
Luo, Q
DOI:
http://dx.doi.org/10.1109/TKDE.2008.202
Ontology alignment identifies semantically matching entities in different ontologies. Various ontology alignment strategies have been proposed; however, few systems have explored how to automatically combine multiple strategies to improve the matching effectiveness. This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM. The key insight in this framework is that similarity characteristics between ontologies may vary widely. We propose a systematic approach to quantitatively estimate the similarity characteristics for each alignment task and propose a strategy selection method to automatically combine the matching strategies based on two estimated factors. In the approach, we consider both textual and structural characteristics of ontologies. With RiMOM, we participated in the 2006 and 2007 campaigns of the Ontology Alignment Evaluation Initiative (OAEI). Our system is among the top three performers in benchmark data sets.